Graduate Thesis Or Dissertation
 

Radiation tolerance of magnetic tunnel junctions with MgO barriers

Público Deposited

Contenido Descargable

Descargar PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/gf06g745d

Descriptions

Attribute NameValues
Creator
Abstract
  • In the next decade, technology trends--smaller dimension, lower voltage, higher operating frequency--introduce new technical considerations and challenges for radiation effects in integrated circuits. Semiconductor based circuits and traditional dynamic random-access memories will malfunction when exposed to extreme environments, such as space and nuclear reactor. The mechanisms for radiation effect are mainly attributed to the radiation-induced charging of the oxide in a CMOS device. Spintronics is an emerging area of nanoscale electronics involving the detection and manipulation of electron spin. The magnetic tunnel junctions (MTJs), based on the intrinsic spin of the electron, can be used as the storage elements in non-volatile magnetoresistive random-access memories (MRAMs). In this effort, we study radiation tolerance of MTJs by exposing the devices in gamma and neutron radiation environment. Theoretical model for the radiation-induced defects is analyzed in this work. Experiments of the MgO-based MTJs under the conditions of pre- and post-radiation are concluded. MTJs were irradiated with gamma ray to a total dose of 10 Mrad. During the neutron irradiation, total epithermal neutron fluence up to 2.9×10¹⁵/cm² was obtained. The experimental results show that neither the electrical nor the magnetic properties of MTJs are affected by the radiation.
License
Resource Type
Fecha Disponible
Fecha de Emisión
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Declaración de derechos
Publisher
Peer Reviewed
Language
Replaces

Relaciones

Parents:

This work has no parents.

En Collection:

Elementos