Graduate Thesis Or Dissertation
 

Analysis of thermal fatigue distress of asphalt concrete pavements

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/gh93h1646

Descriptions

Attribute NameValues
Creator
Abstract
  • Thermal cracking of asphalt concrete pavements is responsible for millions of dollars in annual maintenance and rehabilitation costs in the United States and Canada. Thermal cracking is typically associated with low temperatures in northern climates and at high elevations. However, another form of thermal cracking, known as thermal fatigue cracking, has been proposed by several researchers as a potential mode of distress in regions with relatively moderate climates but significant differences in high and low daily temperatures. The primary purpose of the research reported herein was to evaluate the possibility of occurrence of the thermal fatigue cracking mode of distress. A secondary objective was to identify a suitable laboratory test procedure to facilitate a mechanistic analysis of the thermal fatigue mode of distress. In light of these objectives, several laboratory test procedures were evaluated in the bituminous materials laboratory at Oregon State University (OSU). The test procedures evaluated included the phenomenological Thermal Stress Restrained Specimen Test (TSRST), the Energy Rate Integral Test (ERIT), the Direct Tension Test under constant rate of extension (DTT), and the Direct Tensile Creep Test (DTCT). The TSRST results were used to evaluate the possibility of occurrence of the thermal fatigue mode of distress. The ERIT, DTT, and DTCT procedures were evaluated with respect to the identification of a suitable laboratory test procedure to facilitate a mechanistic analysis of thermal fatigue. The results from the laboratory test program indicate that thermal fatigue distress in asphalt concrete mixtures is not a viable mode of distress in the absence of environmental aging. Based on the data presented herein and the results of previous researchers, it is evident that distress often attributed to thermal fatigue cracking is more likely the result of low temperature cracking of environmentally aged mixtures, and/or subgrade-related distress; fatigue distress due to thermal loading of semi-restrained pavements does not occur.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 8-bit Grayscale, 24-bit Color) using ScandAll PRO 1.8.1 on a Fi-6670 in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items