Graduate Thesis Or Dissertation
 

An implementation and initial test of generalized radial basis functions

Público Deposited

Conteúdo disponível para baixar

Baixar PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/gh93h1671

Descriptions

Attribute NameValues
Creator
Abstract
  • Generalized Radial Basis Functions were used to construct networks that learn input-output mappings from given data. They are developed out of a theoretical framework for approximation based on regularization techniques and represent a class of three-layer networks similar to backpropagation networks with one hidden layer. A network using Gaussian base functions was implemented and applied to several domains. It was found to perform very well on the two-spirals problem and on the nettalk task. This paper explains what Generalized Radial Basis Functions are, describes the algorithm, its implementation, and the tests that have been conducted. It draws the conclusion that network. implementations using Generalized Radial Basis Functions are a successful approach for learning from examples.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Declaração de direitos
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 5.0 was used for pdf compression and textual OCR.
Replaces

Relações

Parents:

This work has no parents.

Em Collection:

Itens