Graduate Thesis Or Dissertation
 

SuDong2012.pdf

公开 Deposited

可下载的内容

下载PDF文件
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/h128nj00g

Descriptions

Attribute NameValues
Creator
Abstract
  • Azaspiracid-1, a novel marine toxin that contains 9 rings and 20 stereogenic centers, has drawn considerable attention from synthetic groups worldwide due to its structural complexity, which includes a unique trioxabisspiroketal fused to a tetrahydrofuran ring (ABCD rings), a piperidine-tetrahydrofuran spiroaminal system fused to a 2,9-dioxabicyclo[3.3.1]nonane system (FGHI rings), a connecting six-membered cyclic hemiketal bridge (E ring) and a γ,δ-unsaturated terminal carboxylic acid side chain. Our efforts toward the total synthesis of azaspiracid-1 led to the completion of both C1-C26 northern and C27-C40 southern halves of azaspiracid-1. Herein, our improved and scalable synthetic studies toward the total synthesis of azaspiracid-1 is described. In particular, an improved and scalable synthesis of sulfone 3.6 with a key one-pot ketalization and methylation of ketone 3.22 to methylated hemiketal 3.24 is illustrated. A total 19 mmol of sulfone 3.6 has been prepared by this approach. An improved and scalable synthesis of aldehyde 3.7 utilizing allyl bromide 3.31 to couple with Evans auxiliary 3.33 has been developed. A total of 10 mmol of aldehyde 3.7 has been prepared by this approach. An improved synthesis toward the ABC ring fragment 3.52 with a high yield Julia coupling step is shown. Large scale improved syntheses of the linkage fragment 3.2, the aldehyde fragment 4.9 and the azide fragment 4.10 of the southern portion of (–)-azaspiracid-1 have been described. With an abundant material prepared by this scalable improved approach, we are confident that completing the total synthesis of (–)-azaspiracid-1 will occur in the near future.
关键词
权利声明

关联

Parents:

单件