Graduate Thesis Or Dissertation


Counterfactual States for Atari Agents via Generative Deep Learning Público Deposited

Contenido Descargable

Descargar PDF


Attribute Name LabelAttribute Values Label
  • Although deep reinforcement learning agents have produced impressive results in many domains, their decision making is difficult to explain to humans. To address this problem, past work has mainly focused on explaining why an action was chosen in a given state. A different type of explanation that is useful is a counterfactual, which deals with “what if?” scenarios. In this work, we introduce the concept of a counterfactual state to help humans gain a better understanding of what would need to change (minimally) in an Atari game image for the agent to choose a different action. We introduce a novel method to create counterfactual states from a generative deep learning architecture. In addition, we evaluate the effectiveness of counterfactual states on human participants who are not machine learning experts. Our user study results suggest that our generated counterfactual states are useful in helping non-expert participants gain a better understanding of an agent’s decision making process.
License Label
Resource Type
Fecha de Emisión
Degree Level
Degree Name
Degree Field
Degree Grantors
Graduation Year
Contributor Advisor
Contributor Committeemember
Academic Affiliation
Declaración de derechos


Relationships Parent Rows Label

Rows Empty Text

En Collection: