Flavor chemistry of butter culture Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/jd472z71v

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Numerous investigations have been made on the contribution of butter cultures to the flavor of cultured cream butter, but production of uniform cultured cream butter has not been possible in industry. Therefore, it was desirable to investigate in detail the qualitative and quantitative chemistry of the flavor of high quality butter cultures, and to examine more closely some of the aspects of flavor production by butter culture organisms. Volatile flavor components of high quality butter culture and control heated milk were isolated from intact samples by means of a specially designed low-temperature, reduced-pressure steam distillation apparatus. Most of the flavor compounds present in the resulting distillate fractions were tentatively identified by gas chromatographic relative retention time data. Flavor concentrates obtained by ethyl ether extractions of aqueous distillates were also separated by temperature-programmed, capillary column gas chromatography, and the effluent from the capillary column was analyzed by a fast- scan mass spectrometer. Many of the flavor compounds in the flavor concentrates were positively identified by correlation of mass spectral and gas chromatographic data. In addition, supporting evidence for the identification of some flavor components was obtained through the use of qualitative functional group reagents, derivatives and headspace gas chromatography. Compounds that were positively identified in butter culture include ethanol, acetone, ethyl formate, methyl acetate, acetaldehyde, diacetyl, ethyl acetate, dimethyl sulfide, butanone, 2-butanol, methyl butyrate, ethyl butyrate, methane, methyl chloride, carbon dioxide and methanol; also included were 2-pentanone, 2-heptanone, acetoin, formic acid, acetic acid, lactic acid, 2-furfural, 2-furfurol, methyl hexanoate, ethyl hexanoate, 2-nonanone, 2-undecanone, methyl octanoate and ethyl octanoate. Compounds that were tentatively identified in butter culture include hydrogen sulfide, methyl mercaptan, n-butanal, n-butanol, 2-hexanone, n-pentanal, n-pentanol, 2-mercaptoethanol, n-butyl formate, n-butyl acetate, 2-methylbutanal, 3-methylbutanal, methylpropanal, methyl heptanoate, n-octanal, 2-tridecanone, methyl benzoate, methyl nonanoate, ethyl nonanoate, ethyl decanoate, methyl dodecanoate, ethyl dodecanoate, delta-octalactone and delta-decalactone. Compounds that were positively identified in control heated milk include acetaldehyde, ethyl formate, ethyl acetate, 2-heptanone, 2-furfural, 2-furfurol, 2-nonanone, 2-undecanone, ethyl octanoate and methyl decanoate. Compounds that were tentatively identified in control heated milk include dimethyl sulfide, hydrogen sulfide, ammonia, methyl mercaptan, methyl acetate, acetone, methanol, butanone, butanal, n-butanol, methyl butyrate, ethyl butyrate, 2-pentanone, 2-hexanone, 2-mercaptoethanol, 2-furfuryl acetate, ethyl hexanoate, methyl heptanoate, 2-tridecanone, ethyl decanoate, ethyl dodecanoate, delta-octalactone and delta-decalactone. The data indicated that the qualitative flavor composition of control heated milk and butter culture were very similar. Diacetyl, ethanol, 2-butanol and acetic acid were noted to be consistently absent in the data for the control heated milk. Other compounds were not observed in the heated milk fractions, but were also absent from some of the culture fractions. This was attributed to their presence in low concentrations, chemical instability or inefficient recovery. A modified 3-methyl-2-benzothiazolone hydrazone spectrophotometric procedure was adapted for the determination of acetaldehyde produced in lactic starter cultures. The procedure was applied in conjunction with diacetyl measurements in studying single- and mixed-strain lactic cultures. The diacetyl to acetaldehyde ratio was found to be approximately 4:1 in desirably flavored mixed-strain butter cultures. When the ratio of the two compounds was lower than 3:1 a green flavor was observed. Acetaldehyde utilization at 21°C by Leuconostoc citrovorum 91404 was very rapid in both acidified (pH 4.5) and non-acidified (pH 6.5) milk cultures. The addition of five p.p.m. of acetaldehyde to non-acidified milk media prior to inoculation greatly enhanced growth of L. citrovorum 91404 during incubation at 21°C. Combinations of single-strain organisms demonstrated that the green flavor defect can result from excess numbers of Streptococcus lactis or Streptococcus diacetilactis in relation to the L. citrovorum population. Diacetyl, dimethyl sulfide, acetaldehyde, acetic acid and carbon dioxide were found to be "key" compounds in natural butter culture flavor. Optimum levels of these compounds in butter culture were ascertained by chemical or flavor panel evaluations. On the basis of these determinations, a synthetic butter culture prepared with heated whole milk and delta-gluconolactone (final pH 4.65) was flavored with 2.0 p.p.m. of diacetyl, 0.5 p.p.m. of acetaldehyde, 1250 p.p.m. of acetic acid, 25.0 p.p.b. of dimethyl sulfide and a small amount of sodium bicarbonate for production of carbon dioxide. The resulting synthetic butter culture exhibited the typical aroma, flavor and body characteristics found in natural high quality butter cultures, except that the delta-gluconolactone was found to contribute an astringent flavor.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using Scamax Scan+ V.1.0.32.10766 on a Scanmax 412CD by InoTec in PDF format. LuraDocument PDF Compressor V.5.8.71.50 used for pdf compression and textual OCR.
Replaces
Additional Information
  • description.provenance : Submitted by Erin Clark (ecscannerosu@gmail.com) on 2012-01-04T22:32:26Z No. of bitstreams: 1 LINDSAYROBERT1965.pdf: 2052087 bytes, checksum: a4d03f75bba85d923ac8ae1d9e6a22f0 (MD5)
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-01-05T16:55:38Z (GMT) No. of bitstreams: 1 LINDSAYROBERT1965.pdf: 2052087 bytes, checksum: a4d03f75bba85d923ac8ae1d9e6a22f0 (MD5)
  • description.provenance : Made available in DSpace on 2012-01-17T19:21:30Z (GMT). No. of bitstreams: 1 LINDSAYROBERT1965.pdf: 2052087 bytes, checksum: a4d03f75bba85d923ac8ae1d9e6a22f0 (MD5) Previous issue date: 1965-05-14
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-01-17T19:21:30Z (GMT) No. of bitstreams: 1 LINDSAYROBERT1965.pdf: 2052087 bytes, checksum: a4d03f75bba85d923ac8ae1d9e6a22f0 (MD5)

Relationships

In Administrative Set:
Last modified: 08/03/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items