Graduate Thesis Or Dissertation
 

Numerical analysis of condensation induced water-hammer in horizontal piping systems

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/jw827f67q

Descriptions

Attribute NameValues
Creator
Abstract
  • Condensation Induced Water-Hammer, CIWH, has been an historical problem for the nuclear power industry over the past 2 decades. It has caused damage to plant systems, and considerable anguish to plant operators. This thesis has embarked on an attempt to characterize the fluid motion, heat transfer, mixing, and stability of a horizontal, stratified flow of steam over subcooled water. A literature review was conducted to determine the state of numerical and analytical methods which have been applied to this problem. The result of the review has led to the implementation of new analytical interfacial stability models. Information from the review has also led to the development of correlations for wave frequency and amplitude on the phase interface. A numerical model has been developed to estimate the temperature profile on the phase interface. Also, the model will construct, by use of the above correlations, an estimate of the interface wave structure. This wave structure is then evaluated against a non-linear model for interface stability to determine the onset of slug formation. The numerical model has been used to evaluate two known CIWH events. The results indicate that the onset of slug formation is necessary, but not sufficient, to ensure a water-hammer event. The results imply that there is the possibility that once a slug has formed, it may break up before a trapped steam void can fully collapse. The model also indicates that CIWH in steam generator, feedwater nozzle sections is not due to the formation of slug on an unstable phase interface. Rather, CIWH may occur when the liquid level inside of the feedwater nozzle is above the top of the feedring, thus creating an isolated steam pocket. The rapid condensation of the trapped steam in the causes CIWH. This particular result implies that it may be possible to completely avoid CIWH in the feedwater nozzle altogether.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 8-bit Grayscale) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 5.0 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items