Graduate Thesis Or Dissertation


Robotic Actuation and Control with Programmable, Field-Activated Material Systems Public Deposited

Downloadable Content

Download PDF


Attribute NameValues
  • This dissertation presents novel, field-activated smart material systems for the actuation and control of autonomous robots. Smart materials, a type of material whose properties can be changed with an external stimuli, represent a promising direction to expand upon existing robotic control and actuation methods, particularly in the sub-fields of soft robotics and robotic grasping. Specifically, this work makes the following contributions: i) a literature review that synthesizes recent work on field-activated smart materials and their use in soft robotics; ii) an electrorheological fluid (ERF) valve to control soft actuators; iii) magnetic elastomers (MEs) to increase the grip strength of soft grippers; and iv) a low-power method for torque transmission enabled by magnetorheological fluid (MRF) and electropermanent magnet arrays. After the introduction, this dissertation presents a comprehensive literature review paper (Chapter 2) regarding the use of field-activated materials in soft robotics, with an emphasis on magnetic elastomers. The second paper (Chapter 3) describes the development of a 3D-printed pressure valve intended to leverage the pressuring-holding properties of ERF when under the influence of a high voltage field to actuate soft actuators. The third paper (Chapter 4) demonstrates how magnetic elastomers and magnetic fields can enhance soft robotic grip strength and versatility. The fourth paper (Chapter 5) models, fabricates, and characterizes a MRF-containing clutch device able to rapidly and reversibly module the amount of torque transmitted from an input shaft to an output by leveraging low-power electropermanent magnet arrays. Each work focuses on a field-activated smart material to perform a specific robotic function, with particular emphasis given to compliant mechanisms and soft robotics, as well as to reducing cost and improving ease of fabrication with the use of modern fabrication techniques. In these described papers, field-activated materials are first modeled and then deployed in functional prototypes, and their robotic utility is described in detail after extensive experimental characterization.
Resource Type
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Committee Member
Academic Affiliation
Rights Statement
Funding Statement (additional comments about funding)
  • This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1840998.
Peer Reviewed



This work has no parents.

In Collection: