Graduate Thesis Or Dissertation
 

Quantitative trait loci influencing free-threshing habit and spike morphology in wheat (Triticum aestivum L.)

Öffentlich Deposited

Herunterladbarer Inhalt

PDF Herunterladen
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/k643b398j

Descriptions

Attribute NameValues
Creator
Abstract
  • Spike morphology characteristics and the free-threshing habit of wheat have been extensively investigated because of their evolutionary significance and practical importance. Several genetic systems that govern these traits have been reported. Some studies suggest polygenic inheritance while others have identified major genes. This study was conducted to identify and locate quantitative trait loci (QTL) affecting the free-threshing habit and spike morphology characteristics in the International Triticeae Mapping Initiative (ITMI) recombinant inbred line (RIL) mapping population. The ITMI population was planted in three environments in 1999 and 2000. The ITMI RILs were evaluated for threshability and spike morphology characters. QTL analyses were performed using simple and composite interval mapping procedures. Two QTLs, one on chromosome lB and one on 4A, affecting spike length were identified. The QTL on chromosome 1B has not been described previously. One QTL controlling spikelet number was also detected on chromosome 4A. This QTL coincided in location with the QTL on chromosome 4A that affected spike length. One QTL controlling rachis internode length, a measure of spike compactness, was detected on chromosome 6A. The location of QTLs that affected spike length, spikelet number, and spike compactness did not coincide with the location of major genes (Q, C, S1, Ppd1, and Ppd2) known to affect these traits. Two QTLs, one on chromosome 2D and one on 4D, affecting threshability were identified. The QTL on chromosome 4D has not been described previously. A QTL that affected glume tenacity was also detected on chromosome 2D. Coincident QTLs on chromosome 2D that affected both threshability and glume tenacity are believed to correspond to Tg, a gene for tenacious glumes. In addition, an amplified fragment length polymorphism (AFLP) marker (XorstP3747207) that was putatively associated with Tg was identified using bulked segregant analysis. A QTL on chromosome 5A affecting glume tenacity was also identified. The QTL on chromosome 5A is believed to represent Q, a gene known to affect rachis fragility and glume tenacity. Information on the number, position, and effect of QTLs determining these traits and their associated molecular markers may facilitate their manipulation for wheat improvement purposes.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Urheberrechts-Erklärung
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 8-bit Grayscale) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces

Beziehungen

Parents:

This work has no parents.

In Collection:

Artikel