Graduate Thesis Or Dissertation


Public Deposited

Downloadable Content

Download PDF


Attribute NameValues
  • The Asphalt Pavement Analyzer (APA) device was used to characterize the impact of various mix factors on the development of permanent deformation in dense-graded mixes given a standard compactive effort. Factors included two aggregate sizes, three VMA levels, two fines contents, three binder contents and four binder types. All specimens received the same compactive effort (100 gyrations) using the Superpave Gyratory Compactor (SGC). For some tests, testing temperatures followed the standard APA test protocol (64C) and for some others, the test temperature was set at the high temperature of standard performance asphalt binder grade (e.g. 70C for a PG 70-22 asphalt binder). Statistical results showed that increased binder content increased permanent deformation in the 19.0 mm dense graded mixes prepared with the PG 64-22 binder irrespective of the other mix parameters. These effects were not noted in the mixes prepared with PG 70-22 and PG 76-22 binders, when tested at 64C. However, the same effect was noted when mixes prepared with PG 70-22, PG 70-22 Modified and PG 76-22 binders were tested at the high temperature of standard performance asphalt binder grade. All mixes prepared with the stiffer binders showed very low permanent deformation when tested at the standard 64C regardless of the value of the other mix parameters. The statistical analysis of permanent deformation provides evidence that the mixes prepared with the PG 76-22 and PG 70-22 Modified binders perform better than mixes prepared with the PG 70-22 and the PG 64-22 binders. The effect of VMA on permanent deformation depends on the maximum aggregate size used, test temperature, binder type and the fines content. It was not possible to separate these interaction effects. The results of this study suggest that the APA is relatively insensitive to changes in mix properties within the range of variables studied, when using the standard APA test temperature (64C). However, the APA device is sensitive when the test temperature matches the high temperature of the standard performance binder grade (e.g. 70C for a PG 70-22 binder). Based on the results of this study, it appears that the APA can be used to indicate the rut resistance of a mixture. Although some of the mix factors have an interactive effect in the mixes, the APA has a potential to predict the relative rutting of the hot mix asphalt mixes even when polymer modified mixes are used, provided that testing is conducted at the appropriate test temperature.
Rights Statement