Graduate Thesis Or Dissertation
 

Tandem intramolecular photocycloaddition-retro-Mannich fragmentation as a route to indole and oxindole

Público Deposited

Contenido Descargable

Descargar PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/mg74qp96f

Descriptions

Attribute NameValues
Creator
Abstract
  • Irradiation of a tryptamine linked through its side-chain nitrogen to an alkylidene malonate residue results in an intramolecular [2 + 2] cycloaddition to the indole 2,3-double bond. The resultant cyclobutane undergoes spontaneous retro-Mannich fission to produce a spiro[indoline-3,3-pyrrolenine] with relative configuration defined by the orientation of substituents in the transient cyclobutane. The novel tandem intramolecular photocycloaddition- retro-Mannich (TIPCARM) sequence leads to a spiropyrrolidine which is poised to undergo a second retro-Mannich fragmentation [TIPCA(RM)₂] that expels the malonate unit present in the photo substrate and generates transiently an indolenine. The indolenine undergoes rearrangement to a β-carboline which can undergo further rearrangement under oxidizing conditions to an oxindole. Three oxindole natural products, coerulescine, horsfiline and elacomine, were synthesized using this strategy. The TIPCARM strategy was extended to an approach that would encompass the Vinca alkaloids vindorosine and minovine. In this case, the TIPCARM sequence was followed by an intramolecular cyclization that provided tetracyclic ketone 5.86 containing rings A, B, C and D of vindorosine. A tetracyclic intermediate was synthesized which could also provided access to the Vinca alkaloid minovine.
License
Resource Type
Fecha Disponible
Fecha de Emisión
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Declaración de derechos
Publisher
Peer Reviewed
Language
Replaces

Relaciones

Parents:

This work has no parents.

En Collection:

Elementos