Physiochemical mechanisms for the transport and retention of technetium Public Deposited


Attribute NameValues
Abstract or Summary
  • Understanding the transport and retention of radionuclides in the environment is important for protecting freshwater supplies and minimizing impact to biologic systems. Technetium-99 (Tc⁹⁹) is a radionuclide of interest due to its long half-life (2.13 x 10⁵ years) and toxicity. In the form of pertechnetate (TcO₄⁻), Tc is expected to move nearly unretarded in the subsurface. Under reducing conditions Tc can precipitate in low solubility Tc oxide (TcO₂·nH₂O) and/or Tc sulfide (Tc₂S[subscript x]) phases. The studies presented in this dissertation investigate the physiochemical mechanisms for the transport and retention of Tc. Transport studies determined that TcO₄⁻ would move at pore water velocity in unsaturated sediments. Geochemical studies of contaminated sediments determined that nearly ~ 25 % of the total Tc was retained in phases associated with iron oxide and aluminosilicate minerals, thus reducing the mobility of Tc. Studies of Tc₂S[subscript x] mineral phases, generated using nano Zero Valent Iron (nZVI) and sulfide (HS-) in sediments, determined that Tc could be stabilized in mineral phases as Tc₂S[subscript x] that were slower to reoxidize than TcO₂·nH₂O phases.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Committee Member
Academic Affiliation
Non-Academic Affiliation
Rights Statement
Peer Reviewed



This work has no parents.

Last modified

Downloadable Content

Download PDF