Graduate Thesis Or Dissertation

 

Mechanical Design for Robot Locomotion Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/nk322k39g

Descriptions

Attribute NameValues
Creator
Abstract
  • Robotic limbs have been shown to enable mobility in unstructured, real-world terrain; they allow robots to step around cluttered environments, scramble up hills, carry heavy loads, and even perform acrobatics. However, mechanical limbs cannot operate as a means for such dynamic locomotion if they are simply treated as general articulated mechanisms. Mechanical design in the context of locomotion requires us to be aware of the control paradigm (sometimes even serving as a part of the controller) and how the robot relies on contact to generate motion. These two interfaces (software control, physical contact) direct the design of inherent hardware dynamics (passive dynamics), where mechanical design decisions are made specifically to serve the context. In this work, we create a practical definition of locomotion to lead us towards metrics for grading a design's aptitude for real-world mobility and tracking progress toward better designs. Metrics such as weight, cost, and other engineering goals are commonly understood and not considered here. Instead, we are interested in the locomotion-specific metrics of floating-base manipulability, impact reduction, power quality, and compliance tuning. These metrics have intuitive, geometric representations for use in human-driven design processes, while their numerical representations can be evaluated in simulation. Multiple competing metrics require a multi-objective design process, which here is discussed as stochastic search. This structure is analogous to a human-driven design process, but is also amenable to future computer automation.
License
Resource Type
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Rights Statement
Funding Statement (additional comments about funding)
  • National Science Foundation Graduate Research Fellowship Program
Publisher
Peer Reviewed
Language

Relationships

Parents:

This work has no parents.

In Collection:

Items