Vitamin E and K interactions : investigating mechanisms of reduced vitamin K status in response to excess vitamin E Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/nz806286f

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • The primary goal of my studies was to elucidate the mechanisms for the well-recognized interaction between two nutrients, vitamins E and K. The outcomes from my studies assess mechanisms for adverse effects of vitamin E and provide novel information on mechanisms for vitamin K homeostasis. These findings will provide information relevant for assessing optimal intakes of vitamins E and K. This dissertation presents studies aimed at evaluating three different mechanisms by which vitamin K status could be decreased by increases in whole body vitamin E concentrations in rats supplemented with vitamin E by subcutaneous injections (100 mg α-tocopherol (α-T)/ kg body weight per day), the model system developed in the Traber lab. The tested mechanisms by which vitamin E leads to reduced vitamin K status were: 1) increasing vitamin K metabolism, 2) decreasing menaquinone-4 (MK-4) synthesis from dietary phylloquinone (PK) and 3) potentiating vitamin K excretion through xenobiotic pathways. Two approaches were undertaken to evaluate the hypothesis that vitamin E increases vitamin K metabolism. In Aim 1.1, the in vitro omega-hydroxylation of vitamin K by human cytochrome P450 CYP4F2 (expressed in insect microsomes) was tested because CYP4F2 is considered the limiting step in the catabolism of both vitamins. Chapter 2 shows that CYP4F2 more rapidly hydroxylated vitamin K compared with vitamin E. Moreover, vitamin E did not stimulate vitamin K metabolism in vitro. Thus, it is unlikely vitamin E stimulates vitamin K metabolism in vivo by direct interaction with the CYP4F2 enzyme-substrate complex. In Aim 1.2, the in vivo urinary and biliary excretion of vitamin K metabolites was investigated. Chapter 3 shows that α-T-injected rats significantly increased urinary excretion of vitamin E catabolites, but no increases in urinary vitamin K catabolites were found. Chapter 4 shows that α-T-injected rats increased biliary excretion of 5C-aglycone, a major vitamin K catabolite shared by MK-4 and PK. However, the overall in vivo excretion of vitamin K catabolites was not changed when urinary excretion was also taken into account. Aim 2 evaluated the hypothesis that α-T interferes with the conversion of PK to MK-4 because α-T and PK have similar side-chains. In Aim 2.1, conversion of PK or MN to MK-4 was tested in vivo. Rats were fed semi-purified diets containing equimolar concentrations of either PK or MN for 10 days, then α-T injections were undertaken. Chapter 3 shows that extra-hepatic tissues from α-T injected rats contained significantly lower MK-4 concentrations irrespective of whether the rats were fed PK or MN. These findings show that if vitamin E is interfering with the metabolic mechanism of MK-4 synthesis, then it is not specific to the cleavage of PK's side chain. In Aim 2.2, conversion of deuterium-labeled PK (d₄-PK) to d₄-MK-4 was used to evaluate the extra-hepatic tissue uptake of d₄-PK in α-T-injected rats. Rats were fed semi-purified diets containing equimolar concentrations of d₄-PK similar to my previous study for 10 days then α-T injections were undertaken for 7 days. Chapter 5 shows that total (labeled and unlabeled) vitamin K concentrations decreased in extra-hepatic tissues from α-T injected rats fed d₄-PK. Both d₄-MK-4 and d₄-PK concentrations decreased, suggesting that MK-4 concentrations were dependent upon those of d₄-PK. These findings suggest that PK, and not MN, is the primary substrate for MK-4 synthesis in extra-hepatic tissues. Moreover, both d₄-MK-4 and d₄-PK decreased in α-T-injected rats demonstrating that vitamin E's untoward effect on vitamin K status is likely a mechanism that is shared by both vitamin K forms and not specific to MK-4 synthesis. Recycling of vitamin K from the epoxide was not examined in this study and interference with the recycling mechanism for either PK or MK-4 in α-T injected rats has not been examined. Vitamin E metabolism is greatly increased in α-T-injected rats by increasing various xenobiotic pathways. Thus, vitamin K status was hypothesized to decrease in α-T-injected rats as a result of the up-regulation of these pathways. As shown in Aim 1, urinary vitamin K metabolite excretion was not increased in α-T-injected rats. In Aim 3.1, the biliary excretion of vitamins E and K were examined to evaluate whether the increased expression in biliary transporters, such as MDR1, led to increased vitamin K and E excretion via the bile. Chapter 4 shows that α-T increased in bile over the week of vitamin E injections and α-CEHC was the major vitamin E form excreted in bile. Although biliary PK secretion was unchanged and biliary MK-4 was undetectable, increased excretion of a major catabolite of both PK and MK-4, 5C-aglycone, was observed. In Aim, 3.2, the gene expression of enzymes and transporters in liver and extra-hepatic tissues as mechanisms involved in regulating their concentrations in these tissues was assessed. In Chapters 3 and 5, increased expression of biliary transporters were observed, one of which is known to bind the vitamin K intermediate MN as its substrate. It is possible other vitamin K catabolites, in addition to 5C-and 7C-aglycone, may have been excreted that were unaccounted for, e.g. MN or vitamin K epoxide metabolites. In summary, my studies have shown vitamin K status is decreased in α-T-injected rats because PK and MK-4 concentrations are decreased in many extra-hepatic tissues. Although metabolism of vitamin K was not stimulated in response to α-T injections, increased excretion of a vitamin K catabolite was measured in the bile; however it may not account for all of the vitamin K loss observed in tissues. Alternatively, transport of PK and MN to extra-hepatic tissues or MK-4 recycling may have been inhibited in response to vitamin E. Further studies are needed to distinguish between these mechanisms.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Non-Academic Affiliation
Keyword
Subject
Rights Statement
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Approved for entry into archive by Laura Wilson(laura.wilson@oregonstate.edu) on 2013-01-15T17:55:52Z (GMT) No. of bitstreams: 1 FarleySherryM2012.pdf: 2344324 bytes, checksum: 9e46d8c1150bc672dfe91c82be91b5a9 (MD5)
  • description.provenance : Approved for entry into archive by Julie Kurtz(julie.kurtz@oregonstate.edu) on 2013-01-14T18:39:18Z (GMT) No. of bitstreams: 1 FarleySherryM2012.pdf: 2344324 bytes, checksum: 9e46d8c1150bc672dfe91c82be91b5a9 (MD5)
  • description.provenance : Made available in DSpace on 2013-01-15T17:55:52Z (GMT). No. of bitstreams: 1 FarleySherryM2012.pdf: 2344324 bytes, checksum: 9e46d8c1150bc672dfe91c82be91b5a9 (MD5) Previous issue date: 2012-11-12
  • description.provenance : Submitted by Sherry Farley (farleys@onid.orst.edu) on 2012-12-21T04:12:11Z No. of bitstreams: 1 FarleySherryM2012.pdf: 2344324 bytes, checksum: 9e46d8c1150bc672dfe91c82be91b5a9 (MD5)

Relationships

Parents:

This work has no parents.

Last modified

Downloadable Content

Download PDF

Items