Graduate Thesis Or Dissertation


A Fully Integrated Bio-potential Low-noise Amplifier Utilizing Capacitor Multipliers Public Deposited

Downloadable Content

Download PDF


Attribute NameValues
  • In any biomedical signal acquisition system, a front-end amplifier is needed to amplify low amplitude bio-signals while filtering out any unwanted low-frequency artifacts. The design of low frequency poles within the sub-Hz range implies very large time-constants which goes against system integrability. In recent years, the pseudo resistor has been used to provide very large on-chip resistance to achieve sub-Hz pole frequency. However, the pseudo resistor behaves poorly across PVT variations and is highly non-linear which makes the low-frequency pole unpredictable. In this thesis, a bio-LNA utilizing a differential difference amplifier structure along with gm-C filters is examined. The differential topology provides high CMRR while the negative feedback through the gm-C filter provides the low-frequency pole. A capacitor multiplier is also implemented to achieve a very high value effective on-chip capacitance. The functionality of the bio-LNA is validated through simulations in Cadence.
Resource Type
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Committee Member
Academic Affiliation
Rights Statement
Peer Reviewed



This work has no parents.

In Collection: