Graduate Thesis Or Dissertation
 

Resource placement, data rearrangement, and Hamiltonian cycles in torus networks

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/q524js22c

Descriptions

Attribute NameValues
Creator
Abstract
  • Many parallel machines, both commercial and experimental, have been/are being designed with toroidal interconnection networks. For a given number of nodes, the torus has a relatively larger diameter, but better cost/performance tradeoffs, such as higher channel bandwidth, and lower node degree, when compared to the hypercube. Thus, the torus is becoming a popular topology for the interconnection network of a high performance parallel computers. In a multicomputer, the resources, such as I/O devices or software packages, are distributed over the networks. The first part of the thesis investigates efficient methods of distributing resources in a torus network. Three classes of placement methods are studied. They are (1) distant-t placement problem: in this case, any non-resource node is at a distance of at most t from some resource nodes, (2) j-adjacency problem: here, a non-resource node is adjacent to at least j resource nodes, and (3) generalized placement problem: a non-resource node must be a distance of at most t from at least j resource nodes. This resource placement technique can be applied to allocating spare processors to provide fault-tolerance in the case of the processor failures. Some efficient spare processor placement methods and reconfiguration schemes in the case of processor failures are also described. In a torus based parallel system, some algorithms give best performance if the data are distributed to processors numbered in Cartesian order; in some other cases, it is better to distribute the data to processors numbered in Gray code order. Since the placement patterns may be changed dynamically, it is essential to find efficient methods of rearranging the data from Gray code order to Cartesian order and vice versa. In the second part of the thesis, some efficient methods for data transfer from Cartesian order to radix order and vice versa are developed. The last part of the thesis gives results on generating edge disjoint Hamiltonian cycles in k-ary n-cubes, hypercubes, and 2D tori. These edge disjoint cycles are quite useful for many communication algorithms.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using ScandAll PRO 1.8.1 on a Fi-6670 in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items