Graduate Thesis Or Dissertation
 

Estimates of genetic variability resulting from single, top, and double cross populations in durum wheat (Triticum turgidum L. var. durum)

Public Deposited

Contenu téléchargeable

Télécharger le fichier PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/rr1721503

Descriptions

Attribute NameValues
Creator
Abstract
  • The success of a plant breeding program depends upon the availability of useable genetic diversity. Such diversity may be enhanced depending on the type of hybridization strategy employed. Segregating progenies resulting from F2 populations, a double cross, and a top cross were compared for the amount of useable genetic diversity associated with six traits in durum wheat. The parental lines were three winter selections, H7092-11, H7092-52, and WD5, and two spring cultivars, WPB 881 and Altar 84. Traits evaluated were (1) plant height, (2) days to maturity, (3) harvest index, (4) kernel weight, (5) grain yield, and (6) pigment content. Analysis of the population mean values suggested the superiority of the F1 top cross for plant height, kernel weight, and grain yield. The F1 top cross progeny also had the highest genetic variability for grain yield. F2 population of the cross Altar 84 I H7092-52 gave the highest mean values for days to maturity and harvest index, and showed the highest genetic diversity for traits other than grain yield. The only population showing detectable genetic variance for pigment content was the F2 progeny of the single cross WPB 881 / H7092-11. When genetic diversity was detected, the double cross was approximately intermediate between the two F2 populations from which it was derived. Transgressive segregation was more frequent in the top cross population for grain yield, kernel weight, and plant height. No associations between grain yield and the other traits were noted for the F2 population of the single cross Altar 84 I H7092-52 and the top cross population. For the second F2 population (WPB 881 / H7092-11) and the double cross population, grain yield was found to be associated with harvest index and plant height. The only consistent relationship across all segregating generations was a negative correlation between plant height and harvest index. Based on the genetic diversity and the transgressive segregation observed, top crossing appears to be the more promising in improving grain yield in the experimental material investigated. For specific traits other than grain yield, it would appear that single crosses would be a more productive approach, however progress would depend on the specific parental combination. The double cross was inferior to the other crossing strategies for the traits measured.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Déclaration de droits
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using Capture Perfect 3.0 on a Canon DR-9050C in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces

Des relations

Parents:

This work has no parents.

Dans Collection:

Articles