Graduate Thesis Or Dissertation

 

Mixed-Severity Fire Effects on Biological Legacies and Vegetation Response in Pseudotsuga Forests of Western Oregon's Central Cascades, USA Öffentlichkeit Deposited

Herunterladbarer Inhalt

PDF Herunterladen
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/rx913s459

Descriptions

Attribute NameValues
Creator
Abstract
  • Mixed-severity fire occurrence is increasingly recognized in Pseudotsuga forests of the Pacific Northwest, but questions remain about how tree mortality varies, and forest structure is altered, across the disturbance gradient observed in these fires. Therefore, we sampled live and dead biological legacies at 45 one ha plots, with four 0.10 ha nested plots, stratified across an unburned, low, moderate and high-severity fire gradient. We used severity estimates based on differenced Normalized Burn Ratio (dNBR), and captured a disturbance gradient, but plots in our low-severity class underestimated fire effects because of misclassification or delayed mortality. We estimated probability of mortality for shade-intolerant (Douglas-fir, incense-cedar, sugar pine) and shade-tolerant (western hemlock, western redcedar, true fir) trees from 5,079 sampled trees and snags. The probability of mortality was higher for shade-tolerant species across all fire-severity classes, and decreased with increasing DBH except for western hemlock. Only large, shade-intolerant trees survived high-severity fire. Post-fire snag fall and fragmentation were estimated from 2,746 sampled snags and logs. The probability of snag fall decreased with increasing DBH for all species, and was positively correlated with fire severity, except for Douglas-fir that had a higher probability following low-severity fire. Snag fragmentation was positively correlated with DBH and fire severity for all species. We also estimated the coefficient of variation within- and among-plots by fire severity class, as well as across all sampled conditions. Structural attributes varied more within- than among-plots, likely a result of increasing sub-hectare patchy mortality as fire intensity increased. Although vertical and horizontal structural diversity increased at sub-hectare scales, the coefficient of variation was highest for all structural attributes when compared across all fire severity classes. Therefore, the range of fire effects observed in mixed-severity fires may be functionally important in creating structural complexity across landscapes, which is an important attribute of old-growth forests in the Pacific Northwest. Understory vegetation response to mixed-severity fires has not been characterized for these forests even though the majority of vegetation diversity is found in these vegetation layers. Therefore, we sampled forest structure (1000 m² circular plots) and understory vegetation (100 m² plots) at 168 collocated plots stratified across unburned, low, moderate and high-severity conditions 10 years (Tiller Complex) and 22 years (Warner Fire) post-fire. We focused on shrub species, but sampled forbs, graminoids, ferns and moss as functional groups. Offsite colonization and fire stimulated soil seedbanks increased the total species richness from 23 to 46. The life-history strategies of residual and colonizing species resulted in three dominant species response-curves to the magnitude of disturbance: 1) 'disturbance-sensitive', when relative abundance was highest in unburned plots and continued to decline with increasing fire severity, 2) 'disturbance-stimulated', when relative abundance was highest following low or moderate-severity fire and 3) 'disturbance-amplified', when relative abundance increased with increasing fire severity. Residual and colonizing species assemblages promoted five or six distinct understory communities, dominantly driven by legacy tree basal area rather than the proportion of basal area killed. Understory communities were rarely associated with one disturbance severity class as fire refugia, variation in overstory and understory fire severity, and compensatory conditions offset fire effects. Early-seral habitats were the most different from unburned forests, but were not the only post-fire conditions important across these burned landscapes. Interactions among live and dead forest structures following low or moderate-severity fire, and the vegetation response to these conditions, are also unique to the post-fire landscape and likely important for various wildlife species. Therefore, if ecological forestry paradigms focus dominantly on creating old-growth structure or early-seral habitats, they might exclude important conditions that contribute to the landscape structural complexity created by mixed-severity fires. Additionally, tree regeneration response to mixed-severity fires has not been characterized for these forests even though they offer insight into one aspect of the resilience of these ecosystems to disturbance. Therefore, we sampled forest structure (1000 m² circular plots) and regeneration dynamics (100 m² plots) at 168 collocated plots stratified across unburned, low, moderate and high-severity conditions 10 years (Tiller Complex) and 22 years (Warner Fire) post-fire. The largest marginal increase in tree mortality (stems ha⁻¹) occurred between unburned and low-severity fires, given preferential mortality of small trees and shade-tolerant species, but basal area mortality had the largest marginal increase moving from moderate to high-severity. Pairwise comparisons of legacy tree basal area between low and moderate-severity weren’t as significant as other comparisons, but did capture a gradient of increasing fire effects. Quadratic mean diameter and canopy base height were positively correlated with fire severity as incrementally larger trees were killed and canopy ascension followed. Regeneration density increased regardless of severity, relative to unburned forests (median density of 1,384 trees ha⁻¹), but the highest median density (16,220 trees ha⁻¹) followed low-severity fire at the Tiller Complex and moderate-severity fire (14,472 trees ha⁻¹) at Warner Fire. Plot-level average species richness was highest following these same fire severity classes, supporting the Intermediate Disturbance Hypothesis. Statistically distinct regeneration communities occurred across the fire severity gradient at both fire sites. The relative abundance of shade-tolerant tree species decreased as fire severity increased, except for a divergent response following stand-initiation at the Warner Fire. While divergent successional pathways were evident within a couple decades following stand-initiation, low or moderate-severity fires also modified successional trajectories and may be the most functionally important disturbance magnitude because it has the greatest potential to increase compositional and structural diversity. Incorporating mixed-severity fire effects into landscape management of Pseudotsuga forests could increase structural complexity at stand and landscape-scales.
  • Keywords: biological legacies, fire ecology, wildland fire, Douglas-fir, mixed-severity fire, snag dynamics, forest succession, post-fire regeneration
  • Keywords: biological legacies, fire ecology, wildland fire, Douglas-fir, mixed-severity fire, snag dynamics, forest succession, post-fire regeneration
License
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Urheberrechts-Erklärung
Publisher
Peer Reviewed
Language
Replaces

Beziehungen

Parents:

This work has no parents.

In Collection:

Artikel