Graduate Thesis Or Dissertation
 

Measurement and analysis of soft error vulnerability of low-voltage logic and memory circuits

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/t722hc71m

Descriptions

Attribute NameValues
Creator
Abstract
  • Scaling the supply voltage into the sub/near-threshold domain is one of the most effective methods for improving the energy efficiency of next-generation electronic microsystems. Unfortunately, the relationship between low-voltage operation and radiation-induced soft error rate is not widely known, as little research has been previously performed and reported for soft-error susceptibility of on-chip memory and logic at very low supply voltages. This information is critical for low-voltage circuit designers, as many applications that would benefit from the energy effi­ciency of sub/near-threshold also require high reliability. This work first details the design and implementation of a portable soft error reference platform, specif­ically targeting very low-voltage operation. The circuit-level details of a TSMC 65nm test-chip design are given, along with an analysis of data from experiments performed at Los Alamos Neutron Science Center (LANSCE) and the OSU Radi­ation Center. Once this soft-error rate is known, error resiliency techniques must be utilized for increased processor reliability. The design and implementation of an error-resilient, near-threshold SIMD processor in an IBM 45nm SOI process will also be covered. This prototype demonstrates both increased reliability and improved throughput over a conventional SIMD pipeline while operating in near-threshold.
License
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items