Development of a binary mixture gas composition instrument for use in a confined high temperature environment Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/tb09j8340

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • With recent advancements in material science, industrial operations are being conducted at higher and higher temperatures. This is apparent in the nuclear industry where a division of the field is working to develop the High Temperature Gas Reactor and the Very High Temperature Gas Reactor concurrently. Both of these facilities will have outlet gas temperatures that are at significantly higher temperatures than the typical water cooled reactor. These increased temperatures provide improved efficiency for the production of hydrogen, provide direct heating for oil refineries, or more efficient electricity generation. As high temperature operations are being developed, instruments capable of measuring the operating parameters must be developed concurrently. Within the gas reactor community there is a need to measure the impurities within the primary coolant. Current devices will not survive the temperature and radiation environments of a nuclear reactor. An instrument is needed to measure the impurities within the coolant while living inside the reactor, where this instrument would measure the amount of the impurity within the coolant. There are many industrial applications that need to measure the ratio of two components, whether it be the amount of particulate in air that is typical to pneumatic pumping, or the liquid to gas ratio in natural gas as it flows through a pipeline. All of the measurements in these applications can be met using a capacitance sensor. Current capacitance sensors are built to operate at ambient temperatures with only one company producing a product that will handle a temperature of up to 400 °C. This maximum operating temperature is much too low to measure the gas characteristics in the High Temperature Gas Reactor. If this measurement technique were to be improved to operate at the expected temperatures, the coolant within the primary loop could be monitored for water leaks in the steam generator, carbon dust buildup entrained in the flow, or used to measure the purity of the coolant itself. This work details the efforts conducted to develop such an instrument. While the concept of designing a capacitance sensor to measure a gas mixture is not unique, the application of using a capacitance sensor within a nuclear reactor is a new application. This application requires the development of an instrument that will survive a high temperature nuclear reactor environment and operate at a sensitivity not found in current applications. To prove this technique, instrument prototypes were built and tested in confined environments and at high temperatures. This work discusses the proof of concept testing and outlines an application in the High Temperature Test Facility to increase the operational understanding of the instrument. This work is the first step toward the ultimate outcome of this work, which is to provide a new tool to the gas reactor community allowing real-time measurements of coolant properties within the core.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Keyword
Subject
Rights Statement
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Approved for entry into archive by Julie Kurtz(julie.kurtz@oregonstate.edu) on 2013-01-18T18:59:26Z (GMT) No. of bitstreams: 1 Cadell_Dissertation.pdf: 6101523 bytes, checksum: 7b45289bd9ea1f385af7ed32ee26d746 (MD5)
  • description.provenance : Submitted by Seth Cadell (cadells@onid.orst.edu) on 2013-01-17T18:06:07Z No. of bitstreams: 1 Cadell_Dissertation.pdf: 6101523 bytes, checksum: 7b45289bd9ea1f385af7ed32ee26d746 (MD5)
  • description.provenance : Made available in DSpace on 2013-01-22T16:46:16Z (GMT). No. of bitstreams: 1 Cadell_Dissertation.pdf: 6101523 bytes, checksum: 7b45289bd9ea1f385af7ed32ee26d746 (MD5) Previous issue date: 2012-11-28
  • description.provenance : Approved for entry into archive by Laura Wilson(laura.wilson@oregonstate.edu) on 2013-01-22T16:46:16Z (GMT) No. of bitstreams: 1 Cadell_Dissertation.pdf: 6101523 bytes, checksum: 7b45289bd9ea1f385af7ed32ee26d746 (MD5)

Relationships

Parents:

This work has no parents.

Last modified

Downloadable Content

Download PDF

Items