Graduate Thesis Or Dissertation
 

ECDSA optimizations on an ARM processor for a NIST curve over GF(p)

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/wh246w43w

Descriptions

Attribute NameValues
Creator
Abstract
  • The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analog of the Digital Signature Algorithm (DSA) and a federal government approved digital signature method. In this thesis work, software optimization techniques were applied to speed up the ECDSA for a particular NTST curve over GF(p). The Montgomery multiplication is used extensively in the ECDSA. By taking advantage of the algorithmic properties of the Montgomery multiplication method, special structure of the curve parameters and also applying certain fundamental and specific software optimization techniques, we have achieved an overall 26% speed improvement. Further enhancements were made by implementing the Montgomery multiplication in the ARM assembly language that resulted in 44% speed improvement. The optimizations discussed in this thesis could easily be adapted to other curves with or without changes.
License
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items