Graduate Thesis Or Dissertation


Decision-Making for Cross-Laminated Timber Modular Construction Logistics Using Discrete-Event Simulation Public Deposited

Downloadable Content

Download PDF


Attribute NameValues
  • The two primary considerations for construction project management are budget and time management. Modular construction has the potential to improve construction productivity by minimizing time and costs while improving safety and quality. Cross-Laminated Timber (CLT) panels are beneficial for modular construction due to the high level of prefabrication, adequate dimensional stability, and good mechanical performance that they provide. Accordingly, CLT modular construction can be a feasible way to speed up the construction and provide affordable housing. However, an in-depth study is needed to streamline the logistics of CLT modular construction supply chain management. CLT modular construction can be performed by two primary means based on type of modules produced: panelized (2D) and volumetric (3D). This research aims to help the Architecture, Engineering, and Construction (AEC) industry by developing a tool to assess the impact of various logistical factors on both panelized and volumetric modular construction productivity. Discrete-Event Simulation (DES) models were developed for panelized and volumetric CLT modular construction based on a hypothetical case study and using data collected from superintendents and project managers. Sensitivity analysis is conducted using the developed models to explore the impact of selected manufacturing and logistical parameters on overall construction efficiency. Comparing volumetric and panelized simulations with the same number of off-site crews revealed that the volumetric model has lower on-site process duration while the off-site process is significantly longer. Accordingly, from manufacturing to the final module assembly, the total time for the volumetric model is longer than panelized model. Moreover, the simulations showed that volumetric modular construction is associated with less personnel cost since the main process is performed off-site, which has lower labor costs and a smaller number of crews required on-site. This framework could be used to identify the optimum construction process for reducing the time and cost of the project and aid in decision-making regarding the scale of modularity to be employed for project.
Resource Type
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Committee Member
Academic Affiliation
Rights Statement
Peer Reviewed



This work has no parents.