Honors College Thesis

Broad Histogram Algorithm Comparison for the Square Well Fluid

Public Deposited

Downloadable Content

Download PDF


Attribute NameValues
  • Thermodynamic properties of systems are often investigated computationally. Traditionally, thermal physics simulations are limited by their very small energy ranges and slow convergence. Broad histogram algorithms are a class of Monte Carlo algorithms that can explore an entire energy (and temperature) range in one thermal physics simulation: potentially saving months of compute time. In this paper, we investigate broad histogram methods designed inside (SAD, TMI, and TOE) and outside (Wang-Landau, Transition Matrix Monte Carlo, Wang Landau Transition Matrix Monte Carlo, and Stochastic Approximation Monte Carlo) of the Roundy research group. The square well potential of thermodynamics serves as the algorithm testing platform. This thesis covers the motivation and theory behind each histogram method. We then investigate algorithm performance on two sets of system configurations by analyzing their uncertainty and error when computing each system's entropy over time. Overall, three algorithms developed in group, SAD, TMI, and TOE consistently converged to low errors. In addition, SAD, TMI, and TOE were straightforward to prepare for simulation, as there aren't any user defined parameters. Wang-Landau Transition Matrix Monte Carlo (WLTMMC) converged to low error and low uncertainty rapidly, but required a predefined energy range. This research demonstrates that the popular Wang-Landau algorithm (while collecting lots of independent samples) may not work well for all systems and could take longer to correct system properties.
Resource Type
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Committee Member
Non-Academic Affiliation
Rights Statement



This work has no parents.

In Collection: