Graduate Thesis Or Dissertation

 

PotisukTanarat2001.zip Public Deposited

No preview available

Download the file

https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/6q182q67x

Descriptions

Attribute NameValues
Creator
Abstract
  • Three-dimensional finite element models are developed to simulate the behavior of four fill-scale reinforced concrete beams. The beams are constructed with different fiber-reinforced polymer (FRP) strengthening schemes, and are modeled using ANSYS, a commercially available finite element analysis program. The experimental beams replicate the transverse beams of the Horsetail Creek Bridge, and were constructed and tested at Oregon State University. The finite element models use a smeared cracking approach for the concrete and three-dimensional layered elements to model the FRP composites. It was found that the finite element models could effectively simulate the behavior of the full-scale beams. Results obtained from the finite element analysis are presented and compared with the experimental data from the full-scale beam tests through the linear and nonlinear ranges up to failure. Comparisons are made for load-strain plots, load-deflection plots, first cracking loads, loads at failure, and crack patterns at failure. The results from the finite element analysis show good agreement with those from the experimental data and support hand calculation predictions for the experiment very well. The crack patterns at failure predicted by the finite element program strongly corroborate the failure modes observed for the full-scale beam tests. Recommendations for finite element modeling improvement are included.
Rights Statement

Relationships

Parents:

Items