Undergraduate Thesis Or Project
 

dittrich thesis Cyclic electron flow Powering unique motility and alternative nitrogen uptake in Synechococcus WH8102 during nitrogen limited growth-1.pdf

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/undergraduate_thesis_or_projects/tq57ns93s

Descriptions

Attribute NameValues
Creator
Abstract
  • Global atmospheric carbon levels are continuing to rise from pre-industrial revolution levels. One of the main regulators of global atmospheric carbon levels, and thus climate, is the world's oceans. Unicellular marine cyanobacteria account for a large percent of total marine carbon fixation. We measured chlorophyll-specific ¹⁴C uptake rates (P[superscript b]) and net primary production (NPP*) in continuous steady state cultures of Synechococcus WH8102 grown at three different nitrogen limited specific growth rates. P[superscript b], NPP*, as well as cellular carbon, nitrogen, and Chl data revealed that NPP* was linearly dependent on nitrogen limited growth rate (R²=0.99). P[superscript b] also increased with nitrogen limited growth rate for Synechococcus WH8102, but growth rates of 0.2d⁻¹ and 0.5d⁻¹ gave similar production values (R²=0.89). The relationship between NPP* and P[superscript b] generally increased with decreasing nitrogen limitation, however, the two production measurements did not co-vary and P[superscript b] could not give a simple estimate for NPP*. Based on our experimental results, extensive literature search, and examination of Synechococcus WH8102's annotated genome, we conclude that cyclic electron flow around PS I is used by Synechococcus WH8102 to generate additional energy for uptake of alternative nitrogen sources and power for cellular motility.
  • Keywords: Synechococcus, Cellular motility, Net Primary Production NPP
  • Keywords: Synechococcus, Cellular motility, Net Primary Production NPP
Rights Statement