PRESSURE DROP AND HEAT TRANSFER FOR LIQUID-LIQUID DISPERSIONS IN TURBULENT FLOW IN A CIRCULAR TUBE

by

CHARLES HARRY WRIGHT

A THESIS

submitted to

OREGON STATE COLLEGE

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

June 1960

APPROVED:

Redacted for Privacy

Professor of Chemical Engineering

Redacted for Privacy

Alead of Department of Chemical Engineering

Redacted for Privacy

Chairman of School Graduate Committee Redacted for Privacy

Dean of Graduate School

Redacted for Privacy

Date thesis is presented

Typed by Barbara Wright

ACKNOWLEDGMENTS

The writer is priviledged to make the following acknowledgments:

To the National Science Foundation for the financial support in the form of a research grant.

To Dr. James G. Knudsen, the author's major professor, for outlining the general problem and the type of equipment which would be required, for obtaining the research grant, and for the helpful guidance during the course of the work.

To John A. Cengel, graduate student in Chemical Engineering, for helping in the construction of the apparatus which was used for both investigations.

Finally to my wife Barbara, who took care of our child, maintained our household and typed this thesis, and to whom this thesis is dedicated.

TABLE OF CONTENTS

Chapter			Page
	1	INTRODUCTION	1
	2	LITERATURE SURVEY AND THEORETICAL BACKGROUND	3
		General Review Heat Transfer - General Heat Transfer to a Two-Phase Fluid	349
		Non-Newtonian Properties Friction Losses - General Friction Losses for Two Phase Flow	15 16 20
	3	EXPERIMENTAL EQUIPMENT Supply Tank and Pump Main Piping System Orifice Meter Test Section Manometer System Thermometers	28 30 32 33 37 40
	4	EXPERIMENTAL PROCEDURE Scope of the Investigation Pressure Drop and Orifice Measurements	42 42 44
		Heat Transfer Measurements Flow Rate Measurements Summary of Experimental Procedure	45 46 47
	5	CALCULATION PROCEDURE Flow Rate	49 49
		Fanning Friction Factor Reynolds Number and Viscosity Temperatures and Temperature Rise Stanton Number and Prandtl Number Heat Transfer Coefficient Heat Losses	49 50 55 55 62
	6	SUMMARY AND ANALYSIS OF RESULTS Friction Losses Heat Transfer	63 63 68
	7	CONCLUSIONS	75
	8	RECOMMENDATIONS FOR FURTHER WORK	77
	9	BIBLIOGRAPHY	78

TABLE OF CONTENTS (continued)

Chapter

Page

APPENDICES

A	NOMENCLATURE	82
. B	PROPERTIES OF PURE LIQUIDS AND CALIBRATION CURVES	87
	Density	88
	Specific Heat	88
	Thermal Conductivity	91
	Viscosity	91
	Thermocouples	93
	Orifice Calibration	93
	Curve	
C	TABULATED DATA	97
	Observed Data	97
	Calculated Data	109

LIST OF FIGURES

Figure		Page
1	SCHEMATIC FLOW DIAGRAM	29
2	PHOTOGRAPH OF EQUIPMENT	31
3	A DIAGRAM OF THE RELATIVE LOCATIONS OF THE THERMOCOUPLES AND A DETAILED SKETCH OF A THERMOCOUPLE GROOVE	34
4	THERMOCOUPLE WIRING DIAGRAM	36
5	CUTAWAY OF TEST SECTION	38
6	POWER SUPPLY SYSTEM TO HEATING COIL	38
7	MANOMETER BOARD ARRANGEMENT	39
8	MANOMETER CONNECTED ACROSS A HORIZONTAL TUBE	52
9	TEMPERATURE PROFILE OF THE TEST SECTION FOR RUN NO. 35-1	58
10	FRICTION FACTOR DATA	66
11	VISCOSITY VERSUS FLOWRATE	67
12	EFFECT OF THERMAL CONDUCTIVITY ON HEAT TRANSFER CORRELATION	70
13	HEAT TRANSFER CORRELATION	71
14	HEAT TRANSFER COEFFICIENT VERSUS MASS FLOW RATE	74
15	DENSITY OF WATER AND SOLVENT VERSUS TEMPERATURE	89
16	EFFECTIVE DENSITY OF MANOMETER FLUIDS VERSUS TEMPERATURE	90
17	THERMAL CONDUCTIVITY OF WATER AND SOLVENT VERSUS TEMPERATURE	92
18	VISCOSITY OF WATER AND SOLVENT VERSUS TEMPERATURE	94
19	THERMOCOUPLE CALIBRATION CURVE	95
20	ORIFICE CALIBRATION CURVE	96

LIST OF TABLES

<u>Fable</u>		Page
1	Range of Observed Data	64
2	Average Per Cent Deviations of Data from the Theoretically Predicted St(Pr)2/3 Group from Equation (10)	72
3	Properties of "Shellsolv 360"	87
4	Observed Data	97
5	Calculated Data	109

PRESSURE DROP AND HEAT TRANSFER FOR LIQUID-LIQUID DISPERSIONS IN TURBULENT FLOW IN A CIRCULAR TUBE

CHAPTER 1

INTRODUCTION

For many years investigators have been studying the flow behavior of single-phase fluids. Only recently has attention been brought to the problems involved in twophase systems. The design of modern fluidized catalytic reactors and the problems of liquid-liquid extraction have prompted much work in this field.

The types of two-phase systems are liquid-vapor, liquid-liquid, liquid-solid, and vapor-solid mixtures. All of the above types have been studied by investigators and the work has also been extended to three-phase systems. Much of the work has been done to evaluate the properties of the systems under flow conditions.

Information on the various properties of a two-phase system is necessary to solve the problems encountered in industry. This is apparent when one considers that pumping power requirements are directly dependent on the frictional pressure losses; flow behavior is important when the problem of measuring flow rates is considered; and heat transfer characteristics are necessary in the design of many pipe-line reactors.

The present work is concerned with heat transfer to

a liquid-liquid dispersion in turbulent flow in a circular tube. Equipment was designed to measure film heat transfer coefficients and also the friction factor for turbulent flow. The friction factor measurements were necessary to evaluate some of the properties of the dispersion under flow conditions. This thesis presents the experimental results of this investigation.

CHAPTER 2

LITERATURE SURVEY AND THEORETICAL BACKGROUND General Review

The need for experimental work in two-phase flow has increased greatly during the past several years due to the conversion of many batch processes to continuous or flow processes. The use of the fluidized bed has demonstrated the need for considerable work in gas-solid, gasliquid, liquid-solid, and liquid-liquid systems.

There has been extensive investigation of gas-solid, gas-liquid, and liquid-solid systems. Relatively little work has been reported on liquid-liquid systems. This review will be confined to a consideration of work done on solid-liquid and liquid-liquid systems since these twophase systems have similar characteristics. The bulk of the literature covered deals with turbulent flow in tubes.

Early work on friction losses was done by Dix and Blair (12, p. 574) and Caldwell and Babbitt (7, p. 257) on suspensions of muds and sludges. Due to the non-Newtonian characteristics of these suspensions, Alves, Boucher, and Pigford (1, p. 388) developed relations by which the properties of these suspensions could be accounted for in the design of pipe lines. Recently work has been done on the heat transfer characteristics of water slurries of chalk,

sand, and several metals by Bonilla, Cervi, Colven, and Wang (5, p. 127), Orr and DallaValle (28, p. 29), Salamone and Newman (32, p. 283), and Miller and Moulton (25, p. 15).

The flow characteristics of an oil-water mixture were investigated by Russell, Hodgson, and Govier (39, p. 9) and the thermal conductivity of several liquid-liquid emulsions was measured by Wang and Knudsen (43, p. 1667). Considerable work has been done on the viscosity of emulsions and suspensions and numerous equations have been developed to extend the theoretical equation of Einstein.

Heat Transfer - General

There are several types of heat transfer but the only type to be considered in the following work will be forced convection during turbulent flow in tubes. Reynolds (18) proposed the following equation for the transfer of heat through a pipe-wall to water following through the pipe.

(1)
$$h = \alpha \frac{C_{p\mu}}{D} \left(\frac{DG}{\mu} \right)$$

where

h = heat transfer coefficient = $q/A(t_w - t_b)$ Cp = heat capacity \mathcal{M} = viscosity

L

D = inside diameter of pipe

G = mass velocity in pipe

 ρ = density of flowing fluid

n and are constants

This equation was tested by Stanton and Pannell (40, p. 119); Boussinesq (6) derived an equation by dimensional analysis which fairly well substantiated the previous work by Stanton and Reynolds.

(2)
$$h = \frac{k}{D} \phi \left(\frac{DV \rho}{\mu} \right) \psi \left(\frac{C_{p,\mu}}{k} \right)$$

Independently Nusselt (33, p. 736) derived the equation

(3)
$$h = \frac{\alpha_2 k}{D} \left(\frac{DV \rho C_p}{k} \right)^n$$

and applied it to his data. He obtained a value of n = 0.785 for water. Grober (22, p. 234) later proposed a similar equation for liquids and gases.

Heat transfer data for water and several oils were measured by Morris and Whitman (26, p. 234). Their data was fairly well correlated by plotting $\binom{hD}{k} / \binom{C_{D}\mu}{k}^{0.37}$ vs. $(DV\rho/\mu)$ for the heating of the liquids by steam.

Using the data of Morris and Whitman (26, p. 234) McAdams and Frost (22, p. 234, 23, p. 323) Dittus and Boelter (11, p. 443) plotted the data in the form of the

following relation.

(4)
$$\frac{hD}{k} = f\left(\frac{GD}{\mu}\right) \cdot \left(\frac{C_{p}\mu}{k}\right)$$

and obtained the equation

(5)
$$\frac{U^{\dagger}D}{k} = 19.5 \left(\frac{DG}{\mu}\right)^{0.8} \left(\frac{C_{D}\mu}{k}\right)^{n}$$

where n = 0.3 for cooling and 0.4 for heating

U' = overall heat transfer coefficient. The basic equation of Nusselt

(6)
$$\frac{hD}{k} = a \left(\frac{DV\rho}{\mu}\right)^n \left(\frac{C_{p\mu}}{k}\right)^m$$

was modified by Sherwood and Petrie (33, p. 736) Smith (37, p. 83) and several other investigators and finally resulted in the general equation:

(7)
$$\frac{hD}{k} = 0.023 \left(\frac{DV\rho}{\mu}\right)^{0.8} \left(\frac{C_{p\mu}}{k}\right)^{n}$$

where

n = 0.3 for cooling n = 0.4 for heating.

The equation is generally attributed to Dittus and Boelter for the flow of single phase fluids in pipes.

Colburn (10, p. 174) attempted to correlate forced convection heat transfer data and compared it with fluid friction. The two exponents on the Prandtl number could be eliminated by considering the properties of the fluid at the film temperature. The film temperature was defined as the average temperature of the laminar layer of the fluid at the pipe wall and it was evaluated by averaging the bulk temperature and the wall temperature:

(8)
$$t_{f} = t_{b} + \frac{1}{2} (t_{w} - t_{b})$$

where

 $t_f = film$ temperature $t_b = bulk$ temperature $t_w = wall$ temperature.

Colburn also related heat transfer data to pressure drop data by a j-factor:

(9)
$$f = \frac{1}{2}f = \frac{h}{C_{p}G} \left(\frac{C_{p}\mu}{k}\right)^{2/3}$$

where

f = Fanning friction factor
G = mass velocity

which gave a good correlation for the available data. The present form of Colburn's equation:

(10)
$$j = \frac{h}{c_p G} \left(\frac{c_p \mu_f}{k} \right)^{2/3} = 0.023 \left(\frac{DG}{\mu_f} \right)^{-0.2}$$

eliminates the variable exponent in Equation (7).

In later work the effect of difference between the viscosity at the bulk temperature and wall temperature was used to make Equation (7) more universal. Sieder and Tate (34, p. 1429) added a viscosity correction factor which gave a better correlation for the various fluids considered.

(11)
$$\left(\frac{h}{GC_p}\right)_b \left(\frac{C_p \mu}{k}\right)_b \left(\frac{\mu_W}{\mu_b}\right)^{0.14} = 0.023 \left(\frac{DG}{\mu_b}\right)^{-0.2}$$

where

 μ_{W} = viscosity of wall temperature μ_{b} = viscosity at bulk temperature

Several investigators have attempted to derive theoretical equations to predict heat transfer rates and the temperature distribution across the tube during turbulent heat transfer. Beckers (4, p. 147) and Sleicher and Tribus (36, p. 789) derived purely mathematical formulae to predict the heat transfer and temperature distribution for the turbulent flow of a fluid in a circular tube. Sleicher presented tables of the first three eigenvalues and constants for the problem of heat flow to a constant property fluid in established turbulent flow in a round pipe for all important values of Reynolds and Prandtl moduli. The theoretical equation by Beckers agrees satisfactorily with the experimental data summarized by

Equation (7) for cooling.

Heat Transfer to a Two-Phase Fluid

The pioneering work done by Winding, Dittman, and Kranich on slightly non-Newtonian synthetic rubber latices (14, p. 125) was correlated by Equation (7). Only about one-half of their data fell within \$ 10% of the equation and several points deviated as much as 35% from the correlating line. The investigators found that the suspension was pseudoplastic at the lower flow rates and behaved as a Newtonian fluid at high flow rates. The same correlating equation was used by several other investigators on suspensions of coal in water, calcium carbonate in water, graphite in water, and graphite in kerosene. Several of these systems were appreciably non-Newtonian and the apparent viscosities were calculated from pressure drop data. Miller and Moulton (25, p. 15) correlated their data on graphite in water and graphite in kerosene by the equation:

(12)
$$\frac{h_1 D}{k_c} = 0.029 \left(\frac{DG}{\mu}\right)^{0.8} \left(\frac{C_{pm\mu}}{k_c}\right)^{0.4}$$

where the thermal conductivity of the continuous phase, the specific heat of the mixture, and apparent viscosities were used. He also correlated the data of several other authors on coal in water and calcium carbonate in water

within 15 per cent by his equation.

Orr and DallaValle (28, p. 29) made a rather extensive study of the variables in the heat transfer equation. Tareef (28, p. 29) formulated a relationship for the thermal conductivity of a two-phase system based on the properties of the constituents and their concentrations. He reasoned that the thermal field in a two-phase system was entirely analogous to the electrical field in a similar system. The following equations were then worked out for thermal field by subsequent investigators.

(13)
$$k_{s} = k_{1} \left[\frac{2k_{1} + k_{p} - 2x_{v} (k_{1} - k_{p})}{2k_{1} + k_{p} + x_{v} (k_{1} - k_{p})} \right]$$

where

This equation was satisfactorily used for suspensions of powdered copper, graphite, and glass beads in water. Orr and DallaValle concluded that the thermal conductivity was independent of the degree of dispersion to a first approximation.

A viscosity correlation was obtained by Orr and DallaValle using an equation which gave very inaccurate results.

(14)

$$\mu_{s} = \frac{1}{\left[1 - \frac{X_{v}}{X_{vb}}\right]^{1.8}}$$

where.

M s = viscosity of the suspension M_1 = viscosity of the liquid X_v = volume fraction solids X_{vb} = volume fraction solids in sedimented bed

The data was correlated by the above equation to $\pm 15\%$ at X_v/X_{vb} equal 0.2 and $\pm 85\%$ at X_v/X_{vb} equal 0.6. This equation was not recommended for pipe-line design and in-vestigators used experimentally determined viscosities.

Their heat transfer data was satisfactorily correlated by Equation (10) using the properties evaluated at the film temperature and the volume fraction for calculating the density and the weight fraction for calculating the specific heat. The data was also correlated by the equation of Sieder and Tate:

(15)
$$\frac{hD}{k_{s}} = 0.027 \left(\frac{DV \rho_{s}}{\mu_{s}} \right)^{0.8} \left(\frac{C_{ps} \mu_{s}}{k_{s}} \right)^{1/3} \left(\frac{\mu_{1}}{\mu_{1w}} \right)^{0.14}$$

with the physical properties evaluated by the previously mentioned correlations. The data was well correlated by this equation for Reynolds numbers above 10,000. Good

results were obtained down to Re = 3000 but were not considered reliable. The maximum deviation of their data was of the order of \pm 30%.

Salamone and Newman (32, p. 283) recommended the correlation:

$$\frac{hD}{k_1} = 0.131 \left(\frac{DV_{os}}{\mu_s}\right)^{0.62} \left(\frac{(C_{p1})\mu_s}{k_1}\right)^{0.72}$$

(16)

$$\left(\frac{\mathbf{k_s}}{\mathbf{k_l}}\right)^{0.05} \left(\frac{\mathbf{D}}{\mathbf{d_p}}\right)^{0.05} \left(\frac{(\mathbf{C_{ps}})}{(\mathbf{C_{pl}})}\right)^{0.35}$$

where subscripts

s = solution
l = liquid

p = particle

on the basis of their experimental work on suspensions of copper, carbon, chalk, and silica in water and the experimental data of previous investigators. Their work had an overall accuracy of about \pm 10% and their experimental data were within this range.

Metzner, Vaughan, and Houghton (24, p. 92) obtained data for a sodium carboxymethylcellulose solution. They developed a method of determining the apparent viscosity by equating the Newtonian Reynolds number to be a generalized one as follows: if

$$\frac{DV\rho_{=}}{\mu_{a}} \frac{Dn' v^{2-n'}\rho}{v}$$

then

(17)

$$\mathcal{M}_{a} = \mathcal{C}\left(\frac{V}{D}\right)^{n'-1}$$

By substituting into the conventional Prandtl number one obtains

(18)
$$\frac{C_{p}\mu_{a}}{k} = \frac{C_{p}\chi}{k} \left(\frac{v}{D}\right)^{n'-1}$$

and accordingly

(19) Re =
$$\frac{D^{n'}v^{2-n'}}{\delta}$$
; Pr = $\frac{C_{p\delta}}{k} \left(\frac{V^{n'-1}}{D}\right)^{*}$; St = $\frac{h}{C_{p}G}$

where

 $n^{\dagger} = flow behavior index, dimensionless.$ Between zero and one for pseudoplastics and is defined by d (ln <u>DAP</u>)

$$n^{\dagger} = \frac{d \left(\ln \frac{DHr}{4L} \right)}{d \left(\ln \frac{8V}{D} \right)}$$

 $\delta = \text{fluid consistency, } \ln (\text{ft})(\text{sec})$

They also developed a relation between Newtonian and non-Newtonian heat transfer rates which decreased in importance as the flow became fully turbulent.

$$\Delta^{1/3} = \frac{(hD/k) \text{ non-Newtonian}}{(hD/k) \text{ Newtonian}}$$

They noted a more gradual transition from laminar to turbulent flow for the highly pseudoplastic fluids.

Finnigan (16), using the same dispersion as in the present work, attempted to correlate the heat transfer data for a mixture of two immiscible liquids. His data was correlated by Equation (7) within about 30% above a Reynolds number of 10,000. At the high flow rates experimental error became large due to the low wall temperatures involved. The heat input was from an electrical coil around the pipe and the heat flux was measured by the electrical input to the coil. This method had the advantage of not requiring a measurable amount of temperature rise in the flowing fluid and the system operated nearly isothermally. The density of the emulsion was computed from the volume fraction of each component. A better correlation was obtained when he used the heat capacity and thermal conductivity of the continuous phase rather than that of the emulsion in calculating the Prandtl number. The viscosity was determined by pressure drop measurements on the same section of vertical pipe used for the heat transfer measurements. An increase in viscosity with increase in flow rate indicated a dilatant fluid and the viscosity was best correlated by the Einstein equation

with an additional correction for higher concentrations and the effect of flow rate.

(21)
$$\mu_{\rm m} = \mu_{\rm e} \left[1 + 2.5\phi + (3.0 + 1.06w)\phi^2 \right]$$

Non-Newtonian Properties

Fluids are classified into two main categories, Newtonian or non-Newtonian, according to their behavior at constant temperature and pressure under imposed shear stresses. The Newtonian fluids are those which show a linear variation between shear stress and the rate of shear; the viscosity is constant in the equation:

(22)
$$\gamma = \frac{\mu}{g_c} (dV/dr)$$

where

 τ = the shear stress dV/dr = the rate of shear.

Non-Newtonian fluids are those in which the viscosity is a function of the rate of shear. There are three classifications of non-Newtonian fluids; (1) Bingham plastics this type has a constant viscosity but it requires a finite stress before deformation occurs; (2) Pseudoplastic fluids - most non-Newtonian fluids fall into this classification. They are characterized by a decrease in the the apparent viscosity as the rate of shear increases. The term apparent viscosity is used because the fluid is non-Newtonian. The apparent viscosity is the viscosity of a non-Newtonian fluid at a given rate of shear. This type of definition is necessary because the viscosity often changes with rate of shear; (3) Dilatant Fluids - these are characterized by a rheological behavior opposite to that of pseudoplastics in that the apparent viscosity increases with increasing rate of shear.

The flow behavior index n' is used to characterize the deviation of a fluid from Newtonian behavior as defined on page 13.

Friction Losses - General

The basis for all pressure drop calculations is the general energy equation for steady, isothermal, incompressible flow:

$$\frac{P_2 - P_1}{\rho} + \frac{V_2^2 - V_1^2}{2\alpha_{g_c}} + g \left(\frac{Z_2 - Z_1}{g_c}\right) = -\overline{W} - \overline{W},$$

where

 P_1, P_2 = the pressure at points 1 and 2, lb_f/ft^2 ρ = the density of the flowing fluid, lb_m/ft^3

 V_1 , V_2 = the average linear velocity, ft/sec

Z₁,Z₂ = the height above an arbritrary datum, ft g = acceleration of gravity, ft/sec² g_c = conversion factor, 32.2(lb_m)(ft)(lb_f)(sec²) W = work done on fluid between 1 and 2, (ft)(lb_f)/lb_m IW = work lost due to friction, (ft)(lb_f)/lb_m α = correction factor for type of flow, ½ for laminar, 1 for turbulent

The other useful equation is the continuity equation:

$$\frac{d(\rho AV)}{dL} = 0$$

for one-dimensional flow. A is the cross-sectional area of the flow channel. For conduit of uniform cross-section, Equation (23) can be reduced to

(25)
$$\frac{\Delta P}{P} + \frac{g}{g_c} \Delta Z = -IW$$

Equation (25) is applicable to the steady isothermal flow of an incompressible fluid in a uniform conduit containing no pumps or turbines.

A dimensionless ratio known as the Reynolds number, defined as $\text{Re} = DV \rho / \mu$, is used to define the type of flow in the system. Below Reynolds numbers of 2100 the flow is usually laminar and above 4000 it is usually turbulent with a transition region in between.

A large number of experimental determinations on turbulent flow of fluids have led to the following relationship known as the quadratic resistance law

$$(26) F = \frac{f\rho V^2 A'}{2g_c}$$

F is the resisting force at the wall of the conduit, A: is the surface area of the wall at which F acts, and f is a proportionality factor known as the Fanning friction factor. If this relation is made equal to the lost work term in Equation (25) one obtains

(27)
$$\Delta P + \rho \frac{g}{g_c} \Delta Z = -\frac{2 f L \rho V^2}{D g_c}$$

For a horizontal tube this becomes the familiar Fanning equation:

(28)
$$\Delta P_{f} = -\frac{2fL\rho V^{2}}{D g_{c}}$$

where ΔP_f = the pressure drop due to friction, lb/ft^2 .

Some of the first turbulent flow pressure drop data were obtained by Reynolds (18, p. 120), and his results were reported as the pressure gradient along the tube and not in terms of a friction factor. Blasius compiled all of the available data from other investigators and presented the following correlation between friction factor and Reynolds number (19, p. 171)

(29)
$$f = 0.079 (Re)^{-\frac{1}{4}}$$

This equation is accurate for Reynolds numbers from 3000 to 100,000. Stanton and Pannell (40, p. 119) conducted experiments on air, water, and oil for Reynolds numbers up to 500,000 and presented it on a friction factor versus log Reynolds number plot. Nikuradse (19, p. 172) compiled all the available data including his own on water for Reynolds numbers up to 3,240,000 and derived the following semi- empirical equation:

(30)
$$\frac{1}{\sqrt{f}} = 4.0 \log (\text{Re } \sqrt{f}) - 0.4$$

which is recommended for determining friction factors in smooth tubes. Other equations were those of Lees (13, p. 56):

(31)
$$f = 0.00180 + 0.153 \text{ Re}^{-0.35}$$

and Drew (13, p. 56):

(32)
$$f = 0.00140 + 0.125 \text{ Re}^{-0.32}$$

Various other equations which consider the roughness of the tubes have been derived but will not be considered here.

Friction Losses for Two Phase Flow

The main problem encountered in predicting friction losses during two-phase flow in pipe lines is the determination of the viscosity of the flowing fluid. There has been considerable theoretical study of the viscosity of suspensions and emulsions. Measurement of the viscosity is often difficult because the fluids are often non-Newtonian and the viscosity is then very dependent upon the method of measurement. Viscosities measured under laminar flow conditions are often different from those measured under turbulent flow conditions. Turbulent viscosities are then obtained by determining the friction loss during the turbulent flow of a two-phase fluid. An apparent viscosity is calculated so that the data fit the usual friction-factor Reynolds number curve for single phase fluids.

The original theoretical work done on the viscosity of suspensions was presented by Einstein (27, p. 396) for the ideal case of spherical particles in an infinite medium. This work was modified by Hatschek (17, p. 163) to account for the viscosity of the dispersed medium. Kunitz (5, p. 127) developed an empirical equation which closely represents the relation between the volume of solute and viscosity of the solution for solutions of sugars, glycogen, casein, and rubber.

(33)
$$\mu_m/\mu_c = (1 + 0.5\phi)/(1 - \phi)^4$$

where

Taylor (41, p. 41) developed an equation for spherical droplets of a dispersed phase and arrived at the relation:

(34)
$$\mu_m/\mu_c = 1 + 2.5 \phi (\mu_d + 2/5\mu_c)/(\mu_d + \mu_c)$$

where $\mu_d =$ viscosity of the dispersed phase.

Becher (3, p. 57) presented several equations which were modifications of Einstein's equation and Taylor's equation;

(35)
$$\mu_m/\mu_c = (1 + 2.5\phi + a\phi^2 + b\phi^3 + ...)$$

and

(36)
$$\ln(\mu_{m}/\mu_{c}) = 2.5 \left[(\mu_{d} + 2/5 \mu_{c}) / (\mu_{d} + \mu_{c}) \right] \\ (\phi + \phi^{5/3} + \phi^{11/3}) .$$

Clayton (9) found that fine emulsions were more viscous

than coarse emulsions at equivalent values of ϕ and the difference increases as ϕ increases. This effect had not been considered by most investigators.

As long as the emulsions were fairly homodisperse the viscosity at high rates of shear varied inversely as the mean globule size (30, p. 367). When the distribution was rather polydisperse the system was less viscous than would be indicated from the mean drop size and the previous relationship. At lower concentrations the variation of viscosity with rate of shear became less marked and the overall viscosity also diminished.

The actual flow of an emulsion must probably involve the slipping or squeezing of small globules through the spaces not occupied by larger ones. The observed variations of viscosity of a concentrated emulsion with concentration and rate of shear could be explained as the work done in distorting the globules and sliding them past each other.

Alves, Boucher, and Pigford (1, p. 388) studied turbulent flow non-Newtonian solutions and suspensions in connection with pipe line design for these fluids. They found the viscosity measured with small pipes and capillary tubes generally agreed fairly well with rotationalviscometer measurements. The non-Newtonian fluids behaved

similarly to Newtonian fluids in the turbulent-flow region, in that they exhibited a relatively constant apparent viscosity. The turbulent viscosity was computed from the turbulent-flow portion of the pipe-line shear diagram. A value of DAP/4L was selected and the linear velocity, V, calculated from the corresponding value of $8W/\rho D^3$. The friction factor was obtained from the Fanning equation

(28)
$$f = (D\Delta P/\mu L)(2g_e/\rho_m V^2).$$

The corresponding Reynolds number was then obtained from the usual friction factor-Reynolds number chart and the turbulent viscosity computed from this Reynolds number.

On data for sludges Caldwell and Babbitt (7, p. 25) found that if the viscosity of the dispersing medium were substituted for the viscosity of the liquid in the Reynolds number, the f vs. Re chart constructed will be almost the same as that for water. This type of result has not been verified by other investigators on different types of slurries. Alves (2, p. 107) reported their data on clay and sewage suspensions. Their systems acted as Bingham plastics and the usual friction factor versus Reynolds number plot was used with viscosity of the continuous phase and density of the slurry. They found the pressure drop to be independent of the yield stress and coefficient of rigidity. Wilhelm, Wroughton, and Loeffel(2, p. 107) obtained apparent viscosities higher than that for water in cement rock-water suspensions. Binder and Busher (2, p. 107) found the same effect for grain-water suspensions. The following method was recommended to obtain the turbulent viscosity.

(37)
$$f = (\Delta PD/4L)(2g_c/\rho_m v^2)$$

Re = DV ρ_m/μ_m .

Bonilla, et. al. (5, p. 127) obtained the best viscosity correlation for a chalk water slurry with Hatschek's equation above a Reynolds number of 100,000. An empirical correlation factor was applied to give ± 10% results down to Reynolds number 10,000. The slurry behaved as a Bingham body and it was noted that the effective viscosity of the slurry did not decrease with rise in temperature as rapidly as water. The viscosity data of Orr and DallaValle (28, p. 29) was very inconsistent with any available viscosity equations. Salamone and Newman (32, p. 283) did not consider the variation of viscosity with flow rate for a non-Newtonian suspension.

For sand and water slurries, Smith (37, p. 85) found the pressure drop of the slurry was greater for the slurry than would be obtained with a liquid of density equal to that of the slurry. This became less apparent at higher

velocities. An equation was derived but required that the diameter of the particles be known and that they be closely sized.

Spells (39, p. 79) correlated the data of several investigators on slurries of sand in water and boiler ash in water. For a certain velocity range immediately above the minimum velocity, where separation of phases begins, the friction losses were considerably greater than that of the equivalent true fluid; this being a fluid of density equal to that of the slurry and viscosity equal to that of water. As the rate of flow increased the pressure gradient approached the equivalent true fluid value and eventually became identical with it. He defines a standard velocity at which the pressure gradients for the slurry and its equivalent true fluid became identical. Thus, at the standard velocity the friction factor is the same for the slurry as for the equivalent true fluid. The values for the minimum velocity (V_m) and the standard velocity (V_s) were developed by semi-empirical means.

The variables are particle diameter, d, density of the continuous phase, ρ_c , density of the dispersed phase, ρ_d , and the acceleration due to gravity, g. The apparent weight of an immersed particle is proportional to $(\rho_d - \rho_c)$ where ρ_d and ρ_c are the densities of the dispersed and continuous phases respectively. These variables

can be arranged into the dimensionless groups of V^2/gd and $\rho_c/(\rho_d - \rho_c)$. Since the flow in a pipe is concerned, a relationship with Reynolds number is assumed. Thus the following equation is developed.

(38)
$$\frac{v^2}{gd} \left(\frac{\rho_c}{\rho_d - \rho_c} \right) = \psi \left(\frac{D V \rho_m}{\mu} \right)$$

The minimum velocities were obtained by noticing when the particles in suspension began to settle out and the standard velocities were the values at which the friction factor became the same for the slurry as for the equivalent true fluid.

From the available data Spells formulated the following equations.

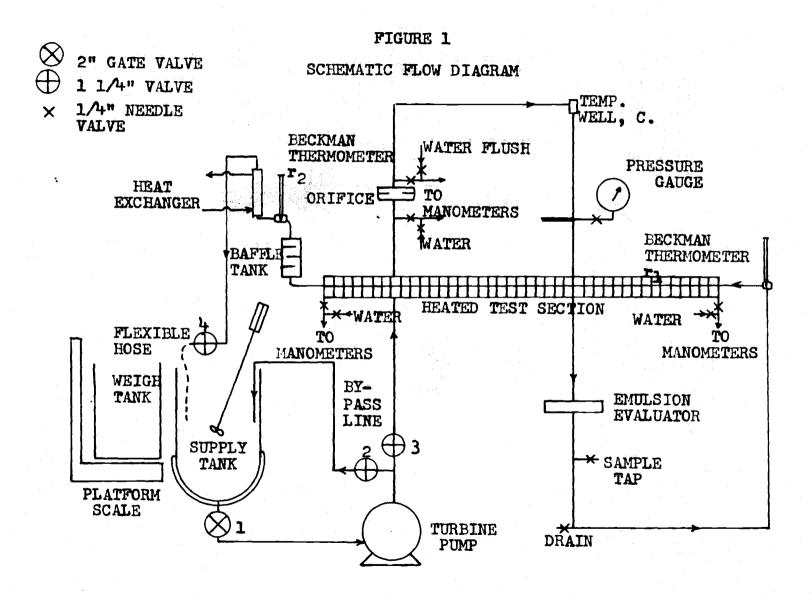
(39)
$$V_m^{1.225} = 0.0251 \text{ gd} \frac{D\rho_m}{\mu} 0.775 \frac{\rho_d - \rho_c}{\rho_c}$$

and

$$v_c^{1.225} = 0.0741 \text{ gd} \frac{D\rho_m}{\mu} \frac{0.775}{\rho_c} \frac{\rho_d - \rho_c}{\rho_c}$$

Winding (44, p. 527) investigated the flow properties of pseudoplastic fluids. For experimental data on GR-S latices (synthetic rubber) for flow in the turbulent region, the use of the Fanning equation was recommended and the graph of friction factor against Reynolds number was used with the limiting viscosity at infinite shear in the computation of the Reynolds number. Finnigan (16, p. 92) found a linear increase in the viscosity with increase in flow rate for a petroleum solvent and water emulsion. This type of variation would indicate a slightly dilatant type of fluid. The viscosity was calculated from pressure drop data on a vertical test section. The Fanning friction factor was computed from the pressure drop data and the Reynolds number determined from Nikuradse's equation for smooth tubes;

(30)
$$1/\sqrt{f} = 4.0 \log (\text{Re } \sqrt{f}) - 0.40$$
.


The apparent viscosity was determined from the Reynolds number.

CHAPTER 3

EXPERIMENTAL EQUIPMENT

The apparatus used was designed to carry out simultaneous investigations of the heat transfer characteristics and the viscosity of fluids. The general piping layout was similar to that used by Finnigan (16, p. 28) in his recent work on the same emulsion. Figure 1 presents a schematic diagram of the important features of the equipment used. The work of the author did not include laminar flow viscosities or light transmittancy measurements which were made simultaneously by Cengel (8) and this portion of the equipment will be mentioned only briefly.

The fluid was drawn out of a supply tank by a pump and to the horizontal test section where the heat transfer and pressure drop measurements were made. An orifice meter was installed between the pump and the test section. A baffled mixing tank and a heat exchanger were on the downstream side of the test section and from the heat exchanger the fluid was carried back to the supply tank. The supply tank, agitator, and pump were the same as those used by Finnigan (16) and are described in detail by him.

Supply Tank and Pump

A stainless steel supply tank was used to charge and mix the liquids. The instability of the emulsions made it necessary to install a propellor-type agitator on the edge of the tank. A bypass line on the discharge side of the pump allowed the flow rate of fluid through the test section to be varied without increasing the pressure in the system. The bypass line also contributed greatly to the circulation and mixing of the fluid in the tank. Figure 2 is a photograph of the test equipment.

The pump was a Fairbanks-Morse bronze turbine pump driven by a three horse power electric motor.

In the piping system used the maximum achievable water flow rate obtainable was about 24 gallons per minute.

Main Piping System

The entire piping system was constructed of copper and brass piping with the exception of a stainless steel supply tank, a flexible length of rubber hose and a short sight glass. The piping between the supply tank and the pump inlet was nominal 2-inch red brass pipe. A 2-inch gate valve (No. 1) was installed in this line to allow for separate draining of the system. Downstream from the pump the piping was line hose on the exit of the pump to dampen

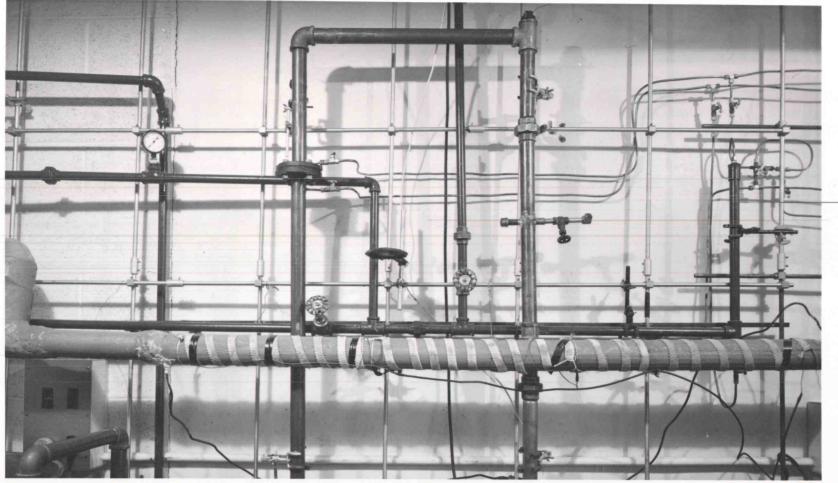


FIGURE 2 PHOTOGRAPH OF EQUIPMENT

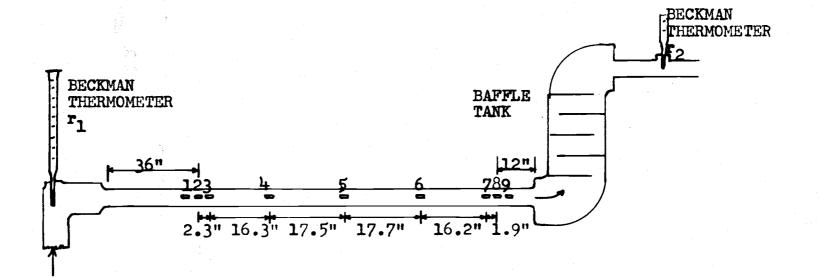
vibrations. All threaded pipe connections were sealed with "Cyl-Seal" high pressure sealant manufactured by the West Chester Chemical Company. This was effective in preventing leakage and was inert to the solvent.

Eight brass unions were placed strategically for ease of assembly and disassembly of the system. A plug was inserted below the emulsion evaluator for ease in draining as show in Figure 1.

The measurements of the mass flow rate were made by timing the flow of a predetermined weight of fluid by a stopclock.

Orifice Meter

The brass orifice meter used in all of the experimental runs was made and accurately calibrated by Finnigan (16, p. 96) in previous work. It was necessary to make spot calibration checks on the meter. The calibration curve of the orifice is given in Appendix B.

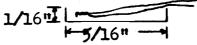

The average pipe diameter was 1.366 ± 0.002 inches and the orifice opening was 0.695 inches. The plate was made of 1/16-inch brass and the edge of the orifice was 1/64-inch thick. The orifice taps were 0.237 feet apart. Other details of the construction and calibration of the orifice meter are given in the thesis by Finnigan (16, p. 5).

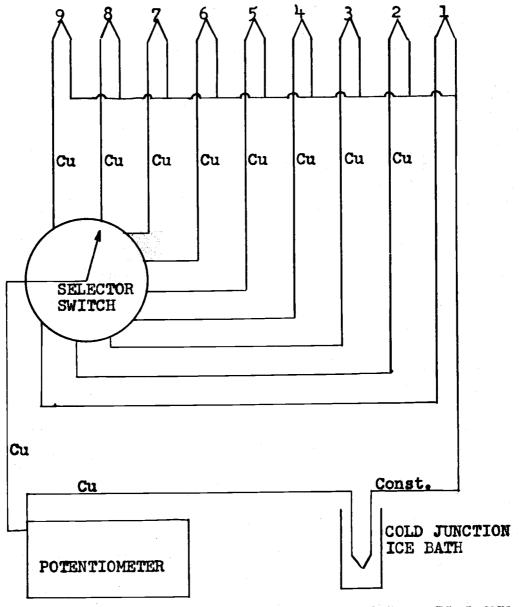

Test Section

The test section was a horizontal 10-foot length of smooth-wall copper condenser tubing, 7/8-inch 0.D., 16 BWG wall, and 0.745 \pm 0.003 inches I.D.

Two brass nipples were brazed onto the tubing 6 feet (or 97 diameters) apart and 1/32-inch holes bored through the tubing. Any burrs were removed by passing an emery cloth through the test section. This defined the length of the test section for pressure drop measurements. A calming section of 3 feet (or 48 diameters) preceded the test section and a length of one foot (or 16 diameters) followed the second pressure tap.

The heating was accomplished by a Nichrome ribbon having an effective length of 17.1 feet. The ribbon was 1-inch wide, 0.005 inches thick, and had an overall resistance of about 1.77 ohms. Nine thermocouples were used to measure the tube-wall temperature, three near each pressure tap and the remaining three equally spaced between. The relative locations and the numbering arrangement of the thermocouple junctions are shown in Figure 3. The thermocouples were made of number 30 B and S gauge copper and constantan wires supplied by the Leeds and Northrup Company. The thermocouples were positioned into grooves which had been previously tinned with solder. The ends of the leads were enameled with General Cement Insulating and




FIGURE 3

A DIAGRAM OF THE RELATIVE LOCATIONS OF THE THERMOCOUPLES AND A DETAILED SKETCH OF A THERMOCOUPLE GROOVE

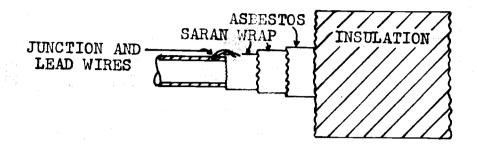
Dipping Varnish. About 1/8-inch was scraped clean on the ends and the wires were twisted tightly together. The junction was then warmed and thrust into a pool of solder in the groove. The area around the junction was painted with the insulating varnish and a piece of "Saran" wrap was placed under the lead wires near the junction, another layer of varnish was applied and a large piece of Saran wrap covered the pipe for a length of about 4-inches. A layer of asbestos paper was placed over the whole section to be heated. The Nichrome heating ribbon was wound over this and a multilayer corrugated insulation was used to cover the section to reduce heat losses. A cutaway model of the test section is shown in Figure 5.

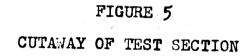
The nine thermocouple leads and another thermocouple in the flow system (designated as thermocouple c) were connected to a 2-pole 12-position non-shorting steatite rotary switch as shown in Figure 4. The cold junction leads were brought from the selector switch to a thin glass tube filled with oil and immersed in a thermos bottle filled with crushed ice in equilibrium with water. The thermocouple voltages were measured with a Leeds and Northrup potentiometer and a very sensitive Leeds and Northrup No. 2430 galvanometer. The thermocouples were then calibrated within about 0.2°F with a standard thermometer.

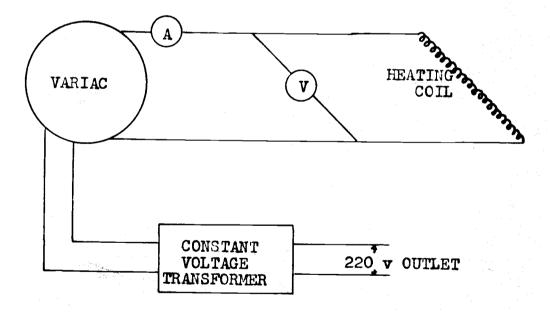
The heater coil was connected to a "Variac" and then

NOTE: ONLY ONE GANG OF THE TWO-GANG SWITCH IS SHOWN

FIGURE 4


THERMOCOUPLE WIRING DIAGRAM


to a constant voltage transformer which reduced the line voltage of 220 volts to 110 volts. This made it possible to supply about 3200 watts to the heating coil without overloading the equipment. An A. C. voltmeter and an ammeter were used to measure the total power input to the test section. Figure 6 shows the test section power supply.


Manometer System

The pressure differences across the orifice meter and the test section were measured with U-tube differential manometers. Two manometers were provided for each pressure drop measuring section. One of these manometers contained mercury and the other contained carbon tetrachloride. The carbon tetrachloride contained a small amount of iodine to give a sharp meniscus for ease in reading. The pressure transmitting medium in all cases was water and a flushing system was arranged so that if any of the emulsion from the piping system moved into the pressure transmitting lines it could be easily flushed out.

The manometers were made of heavy-wall "Pyrex" glass tubing and were about 3-feet in length. The manometers were connected to the brass seal pots by short lengths of rubber tubing and were securely wired down to prevent any leaks. Meter sticks were fastened to the panel to serve

FIGURE 6

POWER SUPPLY SYSTEM TO HEATING COIL

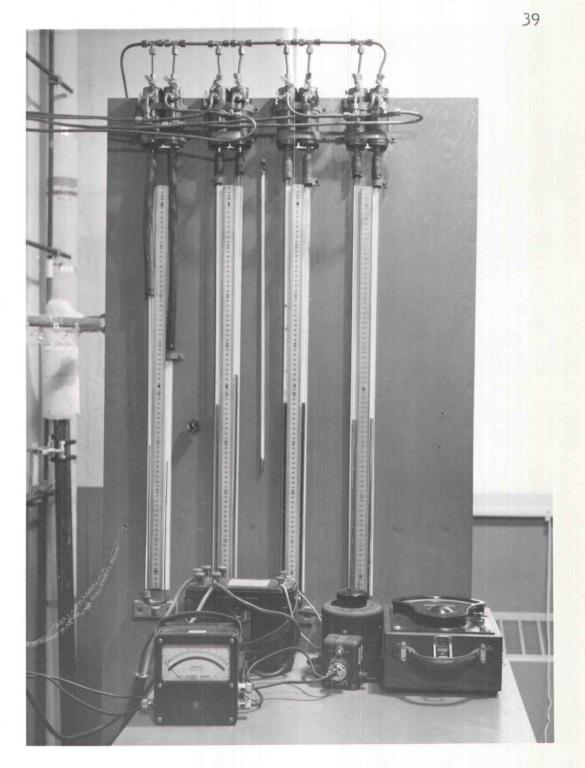


FIGURE 7

MANOMETER BOARD ARRANGEMENT

as length scales for the manometers as shown in Figure 7.

The pressure transmission lines were made of $1/l_{4}$ inch copper tubing. These lines were run horizontally for at least three feet to prevent transfer of the less dense two-phase fluid to the vertical portions of the lines. A series of $\frac{1}{4}$ -inch brass needle valves allowed the flushing water to be admitted to the lines either individually or in pairs.

Thermometers

A pair of Beckman thermometers with 0.01° C scale divisions were used to measure the change in bulk temperature of the fluid as it passed through the heated test section. The Beckman thermometers were calibrated in a constant temperature bath using a standard thermometer with $\pm 0.02^{\circ}$ C. The Beckman thermometer designated as r_1 was used to measure the temperature of the fluid entering the test section.

The thermometer wells were made by drilling a 1/2inch hole in a $1\frac{1}{4}$ -inch pipe plug and brazing on a 2 3/8inch piece of 3/4-inch copper tubing. A thin sheet of copper was brazed to the bottom of the well. The thermometer wells were filled with light oil and placed in the positions shown in Figure 3 to measure the bulk temperature. Magnesia insulation was packed around the pipe near the thermometers to prevent effects due to ambient

temperature.

Although the tests were run only under turbulent flow conditions, a baffle tank was built into the piping between the end of the test section and the second Beckman thermometer (r_2) as shown in Figure 3. The baffle tank was constructed from an 8-inch piece of 2-inch copper pipe. Two-inch brass elbows were brazed onto the ends after the five thin copper baffles had been installed. The baffles were circular with one side cut away and placed such that the fluid was continuously changing direction.

Down-stream from the second Beckman a heat exchanger was installed to cool the fluid to the bulk temperature of the fluid in the tank. The exchanger was a small Ross "BCF" exchanger and the fluid flowed through the tubes with cooling water flowing co-currently in the jacket. The water rate through the heat exchanger was used to control the system at the desired temperature and maintain it at steady-state.

The description of the capillary tubes, used to measure the laminar flow viscosity, and the Emulsion Evaluator, which was used to compare the light transmitted by the various emulsions, can be found in the thesis by Cengel (8).

CHAPTER L

EXPERIMENTAL PROCEDURE

Scope of the Investigation

The investigation was made to determine the pressure drop and heat transfer characteristics of a dispersion of two immiscible liquids flowing in a circular tube. The investigation was confined to the turbulent region because of the problems encountered when the phases begin to separate during laminar flow.

The liquids used were water and a petroleum solvent known as "Shellsolv 360" manufactured by the Shell Oil Company. These two liquids are insoluble in each other and no tendency toward stable emulsion formation was noted during the tests. The compositions to be used during the tests were charged to the tank before each series of runs and during the runs samples were taken in 500 ml. graduated cylinders to determine the actual composition of the mixture. The samples were sealed tightly and allowed to stand overnight and then the volume of each component after separation was measured to calculate the actual compositions. All samples were taken at a location upstream from the test section.

The physical properties of water were taken from the literature and the properties of the petroleum solvent,

which had not been supplied by the manufacturer, were measured by Wang and Knudsen (43, p. 1667) and Finnigan (16, p. 129). The individual properties of the liquids are presented in Appendix B.

The mixtures were prepared by charging a weighed amount of water to the supply tank and allowing this to circulate for several minutes through the entire piping system. The required amount of solvent was then added to the supply tank and the creamy white color of the emulsion became immediately apparent. The emulsion was considered well mixed when the light transmittancy became constant, no layer of solvent was evidenced in the tank, and consecutive pressure drop readings became constant. This required from about one to five hours depending on the composition. The compositions investigated were:

- 1. Pure water
- 2. 5% solvent in water
- 3. 20% solvent in water
- 4. 35% solvent in water
- 5. 50% solvent in water
- 6. Pure solvent

In the composition range between about 65% solvent in water and 15% water in solvent, Finnigan (16) found it very difficult or impossible to maintain a uniform and sufficiently stable composition. No measurements were

attempted in this range.

At the end of a series of runs the liquids were allowed to separate in the supply tank and the clear solvent decanted off and reused. The water and a layer of dirt which collected at the interface were flushed out. A small amount of contamination seemed to be present at the interface after every series of runs but their removal each time prevented a build-up which might affect the properties of the emulsion.

Pressure Drop and Orifice Measurements

After each series of runs the manometer lines were flushed with water and closed until the next series of runs had begun. When beginning a run the globe valve on the return line was closed but a positive gauge pressure of about 5 psig was maintained in the system by adjusting the bypass valve. The needle valves were opened on the manometer lines and the manometers were allowed to come to zero. The manometers on the orifice meter did not balance at the zero point except when pure water was being used and a small computation was required to compute the actual zero point. Since the test section was horizontal, no effect was caused by the various fluids present in the test section. The return line was then opened, closed, and a check made to see if the manometers returned to their zero positions. The manometer lines were flushed and this procedure repeated until consistently satisfactory readings were made.

The value at the end of the discharge line was opened partially and by adjusting the bypass value and the return line value the desired rate of flow and pressure in the system could be obtained. For the low flow rates the carbon tetrachloride manometers were used and these were closed off and mercury manometers for the high range were used. In the intermediate range of flow both manometers were used. The manometer readings ranged from about 1 centimeter of carbon tetrachloride to about 40 centimeters of mercury.

Any fluctuations which were present in the manometer columns were usually dampened by throttling down the needle valves on the manometer board. The air temperature was always taken to be used in calculating the effective densities of the manometer fluids.

Heat Transfer Measurements

The power input to the heating ribbon was usually adjusted by the "Variac" so that about $5^{\circ}F$ difference was obtained between thermocouples No. 1 and No. 3. This is the approximate driving force. The cooling water to the heat exchanger was then adjusted to remove the heat and

return the fluid to the tank at the temperature of the tank. The system was considered at thermal equilibrium when the temperature at Beckman r_1 changed by no more than 0.04° F in 10 minutes and the wall temperatures showed no measurable change. The total power input was measured by a voltmeter and ammeter in the power supply system. All of these readings were converted into power units and compared with the power as measured by the temperature rise in the fluid passing through the test section.

Since the application of the general energy equation requires isothermal conditions, the properties of the fluid were evaluated at an average bulk temperature. This assumption was considered accurate enough for the calculations involved.

Flow Rate Measurements

The mass flow rate was calculated from the determinations of Finnigan (16, p. 95) on the orifice coefficient and his graph of flow rate in 1b/sec versus

$$\rho_{\rm m} \left[\Delta P + L^{\dagger} \frac{g}{g_{\rm c}} \left(\rho_{\rm m} - \rho_{\rm c} \right) \right] \, .$$

where

 $\rho_{\rm m}$ = density of the emulsion, 1b/ft³ ΔP = the pressure drop across the orifice, 1b/ft²

At each concentration several checks were made by using a stopwatch to time the discharge of predetermined weight of the solution into a weighing tank. These values checked within about 5% of the values given by Finnigan's curve.

 $1b/ft^3$.

Summary of Experimental Procedure

At each flow rate of each series of runs the following data collecting procedure was used:

- (a) Manometers zeroed and flushed if necessary.
- (b) Establish an approximately determined flow rate through the system by adjusting the bypass valve and return line valve.
- (c) Adjust the Variac to give the approximate tempperature rise desired.
- (d) Stabilize the Beckman temperature readings; read and record them.
- (e) Read and record all thermocouple readings of test section wall temperatures and air temperature.
- (f) Read and record the orifice and test section manometer readings.
- (g) Read and record the power input and the system pressure.

(h) At least twice during a series of runs - check the flow rate and take a composition sample.

The above procedure was repeated for each flow rate during a series of runs. Steady-state was usually reached from 20 minutes to two hours after changing the flow rate.

CHAPTER 5

CALCULATION PROCEDURE

Flow Rate

The equation used to determine the flow rate was

(40)
$$\mathbf{w} = \mathbf{C}_{\mathrm{D}} \mathbf{A}_{\mathrm{O}} \left[\frac{2\mathbf{g}_{\mathrm{C}} \ \boldsymbol{\rho}_{\mathrm{m}} \left[-\Delta \mathbf{P} - \underline{\mathbf{g}}_{\mathrm{C}} \left(\boldsymbol{\rho}_{\mathrm{m}} - \boldsymbol{\rho}_{\mathrm{C}} \right) \mathbf{L}^{\dagger} \right]}{\mathbf{1} - \left(\frac{\mathbf{D}_{\mathrm{O}}}{\mathbf{D}_{\mathrm{I}}} \right)^{4}} \right]^{\frac{1}{2}}.$$

where

 C_D = the orifice coefficient, dimensionless L' = the distance between orifice taps, ft A_0 = cross-sectional area of orifice opening, ft² D_0 = diameter of the orifice, ft D_1 = diameter of the pipe, ft

All of the constants were determined by Finnigan (16, p. 98) and verified by the author with a final result of

(41)
$$w^2 = \kappa \rho_m \left[-\Delta P - \frac{g}{g_c} L^* (\rho_m - \rho_c) \right]$$

The data was plotted as log w versus log $\rho_{\rm m}$ $\left[-\Delta P - \frac{g}{g_{\rm c}} L^{\dagger} \left(\rho_{\rm m} - \rho_{\rm c}\right)\right]$ and gave a straight line.

A sample calculation could be illustrated by using

the data of run No. 1, 35% solvent in water (35-1) for a 34.2% emulsion of solvent in water at $71^{\circ}F$.

$$\mathcal{P}_{m} = \mathcal{P}_{w} @ 71^{\circ} F \left[(S.G._{w})(vol.fr.w) + (S.G._{s})(vol.fr.s) \right]$$

$$\mathcal{P}_{m} = 62.31 \left[(1.0)(0.658) + (0.784)(0.342) \right] = 57.70 \, 1b_{m}/ft^{-1}$$

$$\frac{g}{g_c} L^* (\rho_m - \rho_c) = \frac{32.2}{32.2} (0.237)(62.31 - 57.70)$$
$$= 1.09 \ lb_f/ft^2$$

 $\Delta P = \frac{(13.54 - 0.999)(62.43) \, 1bm/ft^3}{(304.8 \, mm/ft)} \quad (mm \, Hg)$

$$= (2.568)(45) = 115.6 \ lb_{f}/ft^{2}$$

 $\rho_{\rm m} \left[(\Delta P + \frac{g}{g_{\rm c}} L^{*} (\rho_{\rm m} - \rho_{\rm c}) \right] = 57.59 (115.6 + 1.12) = 6720 \ 1b^{2}/ft^{5}$

From Figure 20 w = $1.08 \text{ lb}_{m}/\text{sec}$

Fanning Friction Factor

The general energy equation presented in Chapter 2 was reduced to:

$$(28) \qquad \Delta P = \Delta P_{p}$$

for the horizontal test section which was used for pressure drop measurements. The pressures at P_1 and P_2 as shown in Figure 8 must be calculated and the difference taken to obtain the pressure change between points 1 and 2. By summing the pressures in each leg and taking the difference, the following equation results:

$$-\Delta P = b \left(\rho_b - \rho_c \right)$$

where

$$(\rho_{\rm b} - \rho_{\rm c}) = \rho_{\rm e}$$
.

The effective density of mercury and carbon tetrachloride under water is given in Figure 16 in Appendix B. The Fanning friction factor is given by the relationship,

(43)
$$\mathbf{f} = \frac{\mathbf{g}_{c} \mathbf{D}}{2\rho \mathbf{v}^{2}} \left(-\frac{d\mathbf{P}_{f}}{d\mathbf{L}}\right)$$

which can be altered to give

(43-a)
$$f = \frac{\pi^2}{32} \frac{g_c D^5}{L} \frac{\rho_m \Delta P}{w^2}$$

since

 $g_c = 32.2 \ lb_m ft/lb_f sec^2$ D = 0.062 ft L = 6.0 ft

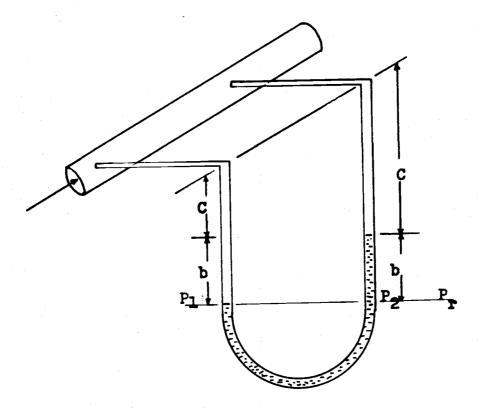


FIGURE 8 MANOMETER CONNECTED ACROSS A HORIZONTAL TUBE

$$\mathbf{f} = \frac{\eta^2 (32.2)(0.062)^5}{(32) (6.0)} \left(\frac{\rho_m \Delta P}{w^2}\right)$$

(43-b)
$$f = 1.516 \times 10^{-6} \left(\frac{\rho_m \Delta P}{w^2} \right)$$

A sample calculation for Fanning friction factor on run 35-1 is given below.

$$f = 1.516 \times 10^{-6} (57.70) \frac{(38)(2.568)}{(1.08)^2}$$

f = 0.007319

where

$$P_{\rm m} = 57.70 \ \text{lb/ft}^3$$

b = 38 mm Hg
 $\Theta = 2.568 \ \text{lb/ft}^2/\text{mm}$ Hg
w = 1.08 \ lb/sec

Reynolds Number and Viscosity

The Reynolds number was given by:

$$(44) \qquad \text{Re} = \frac{DV\rho}{\mu}$$

and can be altered by using:

$$(45) V = \frac{W}{\rho} \frac{4}{\pi D^2}$$

giving:

(44-a) Re = $(4w/\pi D/)$

and

(44-b) Re =
$$\frac{(4)(1488)}{(\pi)(0.062)} \frac{W}{M} = 30,600 \frac{W}{M}$$
.

where

The viscosity was calculated from the relation between friction factor and Reynolds number as given by Nikuradse.

(30)
$$\frac{1}{\sqrt{f}} = 4.0 \log (\text{Re } \sqrt{f}) - 0.40$$

By substituting the equation for the Reynolds number from Equation (44-b), this equation can be altered to give

$$(30-a) \frac{1}{\sqrt{T}} = 4.0 \log w\sqrt{T} - 4.0 \log \mu + 4.0 \log 30,600-0.40$$

The graph of 1//f versus log w/f (Figure 10) gives various parameters for the different emulsions. On this graph a straight line parallel to the line drawn for pure water would indicate a constant viscosity. The only series of data showing this tendency were the pure solvent and pure water. As the compositions increased the lines became more curved and had a slope increasingly different from that of pure solvent and pure water. From Figure 10 arbitrarily chosen values of friction factor were used to determine flow rate. The values of flow rate were substituted into Equation (30-a) to calculate viscosities for making Figure 11. From this figure the viscosity could be determined for any given flow rate at a given composition.

A sample calculation of Reynolds number on run 35-1 is given below.

w = 1.08 lb/sec

From Figure 11

 $\mu = 3.19 \text{ cantipoise}$ Re = (30,600)(1.08)(3.19)
= 10.360

Temperatures and Temperature Rise

The wall temperatures in the test section were measured by thermocouples and the bulk temperature of the fluid was measured by Beckman thermometers as shown in Figures 2 and 4.

The temperature driving force was computed by using the integrated average of thermocouples No. 3, 5, and 6. These thermocouples had been properly embedded and gave consistent readings. Thermocouples No. 4 and 7 gave temperature readings which were high. This error was probably due to the junction contact being made outside of the groove. The thermocouple calibration curve is given in Appendix B. The bulk temperature was calculated from the average of the two Beckman thermometer readings.

The average wall temperature was given by the equa-

(46)
$$t_{w} = \frac{(t_{3}+t_{5}) l_{1} + (t_{5}+t_{6}) l_{2}}{2 (l_{1} + l_{2})}$$

where

$$t_{3}, t_{5}, t_{6} = \text{temperatures measured by thermo-} \\ \text{couples No. 3, 5, and 6, }^{\text{F}} \\ l_{1}, l_{2} = \text{lengths between thermocouples No.} \\ 3 \text{ and 5 and 5 and 6, in.} \\ l_{1} = 33.8 \text{ in.} \\ l_{2} = 17.7 \text{ in.} \\ \\ t_{W} = \frac{33.8 (t_{3}+t_{5}) + 17.7 (t_{5}+t_{6})}{103.0} \\ \end{cases}$$

An example of this calculation for the previously used example is: (33.8)(76.1)+77.76) + 17.7(77.76) + 17.7(77.76)

$$t_{w} = \frac{(33.8)(76.14+77.76) + 17.7(77.76+77.76)}{103.0}$$

$$t_{w} = 77.23^{o}F$$

$$t_{b} = t_{r_{1}} + 0.38 (t_{r_{2}} - t_{r_{1}})$$

$$t_{b} = 0.62 t_{r_{1}} + 0.38 t_{r_{2}}$$

(The value of 0.38 was used to give the bulk temperature at the position of the average wall temperature.)

$$t_{b} = (0.62)(71.06)+(0.38)(72.29)$$

$$t_{b} = 71.53^{\circ}F$$

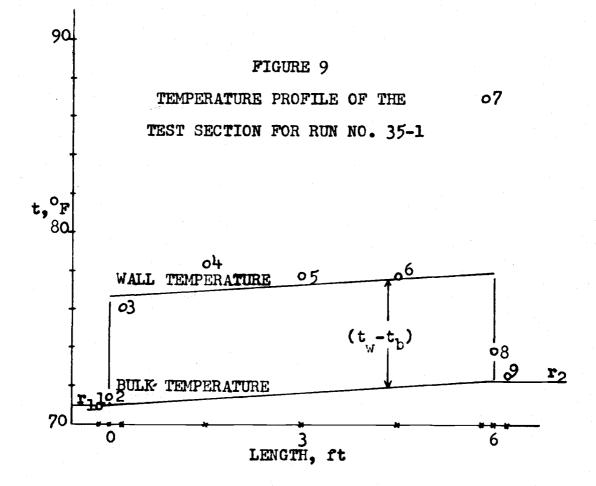
$$t_{w} - t_{b} = 77.23 - 71.53$$

$$= 5.70^{\circ}F$$

$$t_{r_{2}} - t_{r_{1}} = 72.29 - 71.06$$

$$= 1.23^{\circ}F$$

The temperature profile for run 35-1 is given in Figure 9. Stanton Number and Prandtl Number


The general heat balance equation might be given as

(47)
$$h_{m}(\pi DL)(t_{w}-t_{b}) = \frac{D^{2}\pi}{4} GC_{p}(t_{b2}-t_{b1})$$

The definition of the Stanton number is

$$St = (h_m/GC_p)$$

and the relation for evaluating the Stanton number is rearranged to give

.

$$St = \frac{D}{4L(t_w - t_b)_{1.m.}}$$

where the terms are defined as:

Since

$$D = 0.062 \text{ ft}$$

L = 6.0 ft

then

(48-a) St = 2.58 x 10⁻³
$$({t_b_2 - t_b_1})$$

 $(t_w - t_b)_{1.m}$

The Prandtl number is defined as

$$Pr = (C_p \mu / k) .$$

where

Pr = the Prandtl number, dimensionless k = the thermal conductivity, $Btu/(lb)(^{o}F)(ft^{2})/ft$ $C_{p_{m}} = (C_{p_{W}})(wt.fr.w) + (C_{p_{s}})(wt.fr.s)$

is calculated from Figure 11 knowing the flow rate.

 $k = k_c =$ the thermal conductivity of the continuous phase.

A sample calculation involved the Stanton number and Prandtl number for the previously used example is:

The average wall temperature, $t_w = 77.23$ °F The average bulk temperature, $t_b = 71.53$ °F The temperature rise of the fluid = 1.233 °F Viscosity, $\mu = 3.19$ centipoise Thermal conductivity at 71.5 °F = 0.346 Btu/(lb)(°F)(ft) $C_p = 0.711 + (0.289)(0.4676)$ $C_p = 0.846$ Btu/(lb)(°F) St = $\frac{(2.58 \times 10^{-3})(1.233^{\circ}F)}{(77.23 - 71.53)^{\circ}F}$ St = 0.558 x 10⁻³

 $Pr = \frac{(0.846)(3.19)(2.42)}{0.346}$

$$= 10.00$$

St(Pr)^{2/3}= (0.558 x 10⁻³)(18.88)^{2/3}
= 0.00396

Heat Transfer Coefficient

18 88

The heat transfer coefficient is the individual coefficient between the surface of the pipe and the fluid. Although the temperatures measured were the temperature of the outside wall of the pipe, the resistance of the pipe wall is negligible and the temperature of the outside and inside of the pipe are the same within the accuracy of the measuring instruments. The defining equation for heat transfer coefficient is given in Equation (47). A more workable form can be made by incorporating some of the terms into the Stanton number which gives:

$$h_{i} = (C_{p})(\rho_{m})(V)(St)$$

which upon rearrangement becomes

$$h = \frac{\mu c_p}{\pi p^2} (w) (st)$$

Substituting conversion factors and numerical constants gives the working equation:

$$h = \frac{(4)(3600 \text{ hr})}{\pi (.062)^2} (C_p)(w)(st)$$

(49)
$$h = 1.192 \times 10^6 (C_p)(w)(st)$$

A sample calculation for the previously used example is:

$$h = (1.192 \times 10^{6})(0.846)(1.08)(0.558 \times 10^{-3})$$
$$= 607.7 \text{ Btu/(hr)(ft)(}^{\circ}\text{F}\text{)}$$

Heat Losses

The electrical power input was measured and tabulated. The power transferred to the fluid as measured by temperature rise and flow rate was computed and compared with the electrical power input. For the run 35-1, these are compared as:

Electrical Power =
$$(47.0 \text{ volts})(27.0 \text{ smps})$$

= 1270 watts \pm 15 watts,
Input to Fluid = $(1.08 \text{ lb/sec})(1.233^{\circ}\text{F})(0.846$
Btu/(lb)(°F)(3600 sec/hr)
= 4056 Btu/hr
= 1189 watts,
Power Loss = $(1270 - 1189)(100)$
 1270
= 6.38% \pm 1.1%.

or

CHAPTER 6

SUMMARY AND ANALYSIS OF RESULTS

A summary of nominal and measured compositions studied, the range of Reynolds numbers, and the approximate stream temperature are presented in Table 1. Detailed observed and calculated data are presented in Appendix C.

Friction Losses

The pressure drop data was correlated by Nikuradse's friction factor equation for smooth tubes.

(30)
$$\frac{1}{\sqrt{f}} = 4.0 \log (\text{Re } \sqrt{f}) - 0.40$$

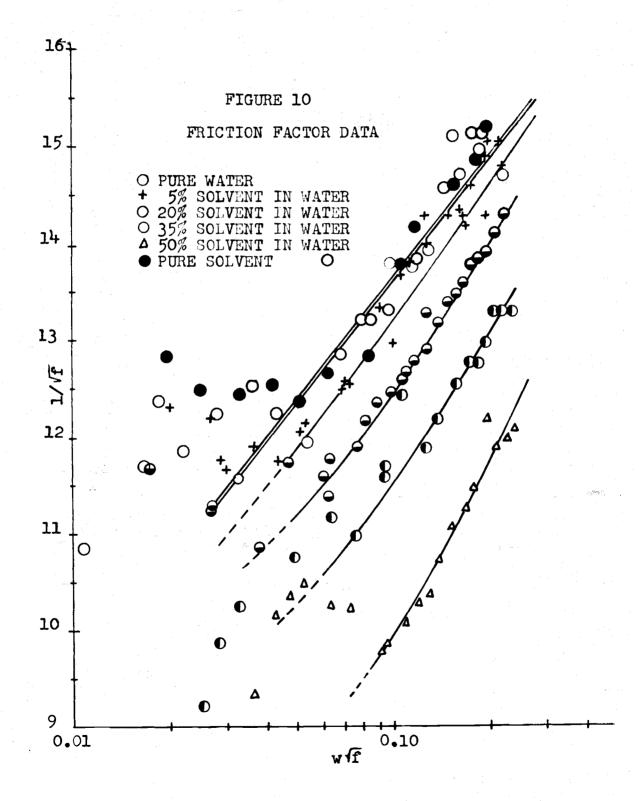
The friction factors for each run were calculated by the method given in equation (28) and $1/\sqrt{f}$ plotted versus $w\sqrt{f}$ for all of the data. Although the pressure drop measurements were made under non-isothermal conditions, no correction factor was applied. Each run within a series was made at nearly the same bulk temperature (within about 2°F). The viscosity, heat capacity, and thermal conductivity of the fluids were determined at the overall average bulk temperature during the run. Since the power was increased at a proportional rate with the flow rate, any variation due to the wall temperature was incorporated into the values of viscosity which were obtained. The plot of $1/\sqrt{f}$ versus

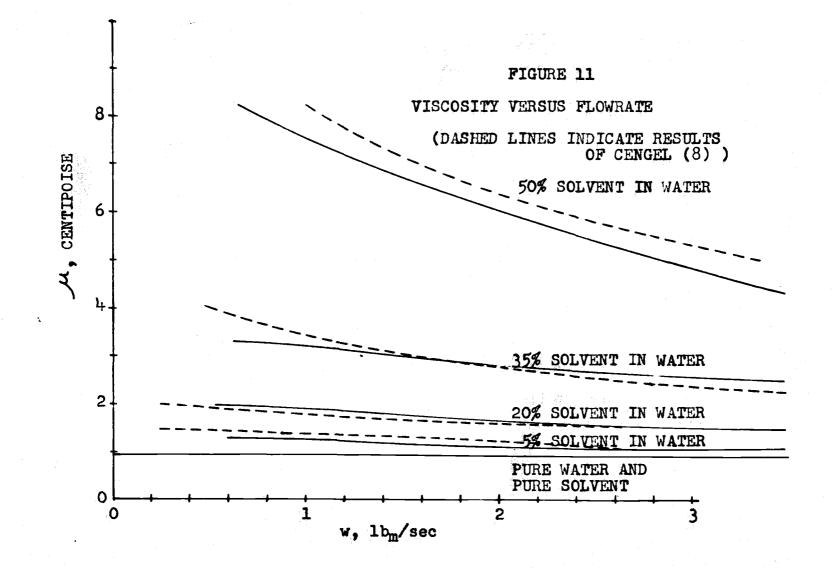
Table 1

Range of Observed Data

Nominal Composition	Measured Compositions, % Solvent by Volume	Largest Reynolds Number	Average Fluid Temperature, OF
Pure water		102,000	71.4
5% solvent in water	4.76- 4.49	95,000	70.9
20% solvent in water	19.39- 18.20	58,000	71.6
35% solvent in water	34+2	37,000	72.8
50% solvent in water	49.19	17,500	70.6
Pure solvent	100	95,500	72.0

w/f is shown in Figure 10 for the various fluids studied.


The viscosity was calculated by the following equation for each fluid and was plotted versus flow rate as shown in Figure 11.


(30-b)
$$\log \mu = \log w\sqrt{f} - \frac{1}{4\sqrt{f}} + \log 30,600 - 0.10$$

The viscosities given in Figure 11 were used to calculate the Reynolds number and Prandtl number in the analysis of the heat transfer data.

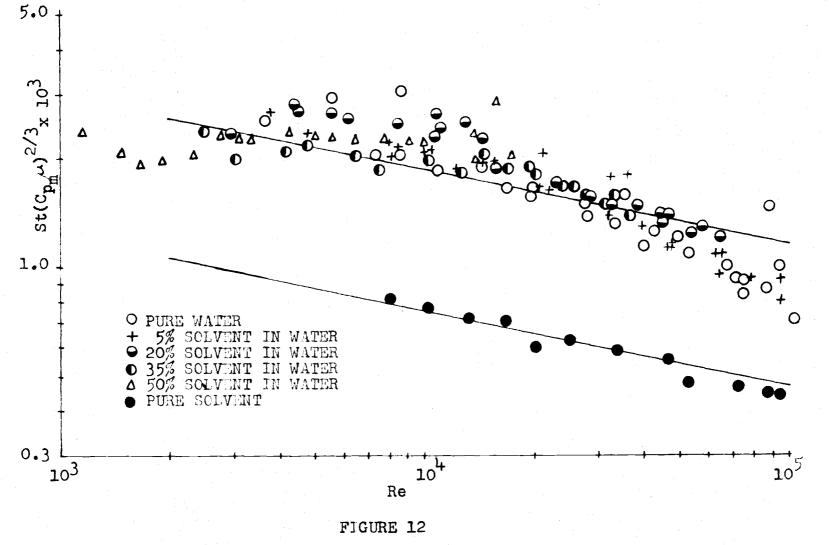
The two lines on Figure 10 for the water and solvent were drawn with a slope of 4.0 in accordance with Nikuradse's equation for Newtonian fluids and the experimental results agree satisfactorily with the lines. Viscosities obtained from these lines agree well with the experimental values for water. The line for pure solvent was obtained by least squares analysis with a slope of 4.0. This line gives a viscosity of 0.95 centipoise for solvent at a temperature of 72°F. This agrees fairly well with the value of 0.97 centipoise measured by Finnigan (16) for the same temperature.

All of the mixtures of solvent in water behave as pseudoplastic fluids approaching Newtonian behavior at high rates of shear. The limiting viscosity at these high rates of shear has been used by several authors to correlate their data throughout the entire turbulent flow

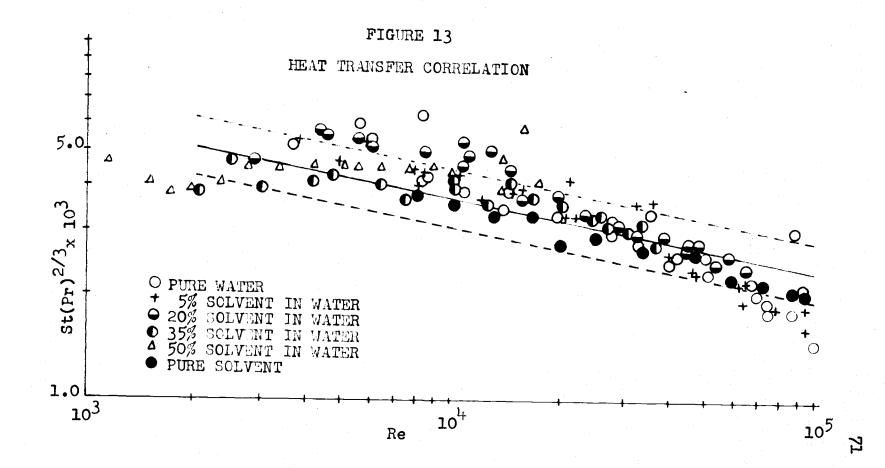
range. The results of this investigation gave a continual change in viscosity with a flow rate for a given composition although all of the measurements were in the turbulent range. The viscosities near the transition zone were erratic and the lines on Figure 10 were extrapolated into this region. The viscosities at the high flow rates tend to approach a constant value.

The broken lines on Figure 11 show the viscosity data obtained independently by Cengel (8) for isothermal flow of the same fluid in the same test section. Good agreement exists between the two sets of data and the viscosity of the dispersions may be predicted within ± 10% by an empirical equation derived by Cengel.

(47) $\mu_m/\mu_c = 1 + 2.5\phi - 11.01\phi^2 + 52.62\phi^3$


Heat Transfer

The heat transfer data was correlated by Colburn's equation.

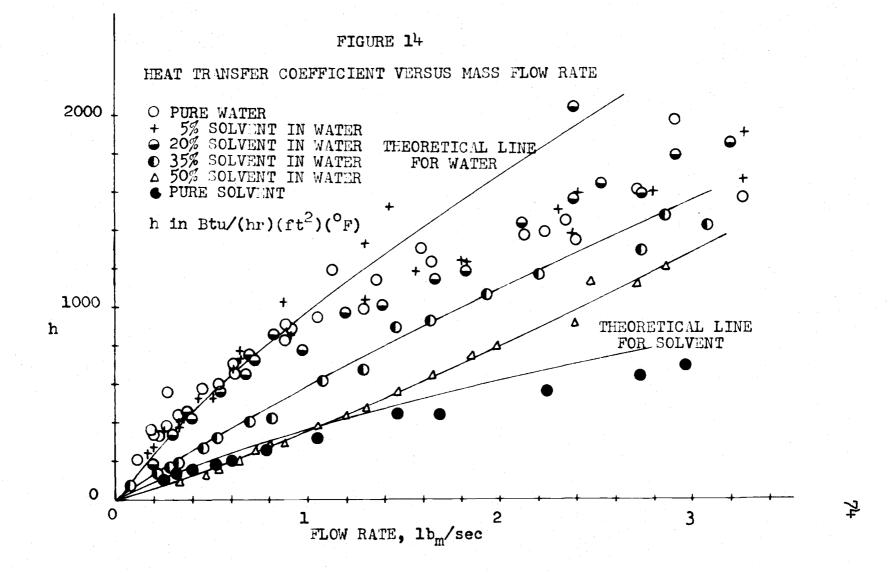

(10)
$$\left(\frac{h}{GC_p}\right)_f \left(\frac{C_p \mu}{k}\right)_f^{2/3} = 0.023 \left(\frac{DG}{\mu}\right)_f^{-0.2}$$

The various properties of the fluid to be used in this equation were found by fitting the data as closely as possible to the equation for single-phase fluids. This was done to determine whether the properties of the mixture,

the continuous phase, or the dispersed phase should be used. It is assumed that heat capacity and density are additive properties and may be calculated knowing the volume and/or weight fractions of the components in the dispersion. In Figure 12 the term St $(C_{p_m}\mu_m)^{2/3}$ was plotted versus Re and compared to the theoretical equations for pure water and solvent. This means of plotting was designed to determine the effect of concentration on the effective thermal conductivity of the dispersion. The heat capacity of the mixture was used and the viscosity determined from Figure 11. The data for water and all the dispersions lie in one group about the line representing Equation (10) for water. The solvent data form another group which also agree with Equation (10) for pure solvent. These results indicate that the effective thermal conductivity of the dispersion during turbulent heat transfer is the conductivity of the continuous phase. Therefore all heat transfer data are plotted in Figure 13 where St $(Pr)^{2/3}$ is plotted versus Re using the thermal conductivity of the continuous phase. The line represents Equation (10). The average deviation of all the data on the dispersions was 14% from the equation. The average deviations of each series of runs from Equation (10) are given in Table 2.

EFFECT OF THERMAL CONDUCTIVITY ON HEAT TRANSFER CORRELATION

Table 2


Average Per Cent Deviations of the Data from the Theoretically Predicted St(Pr)2/3 Group from Equation (10)

Nominal Composition,	Per Cent Deviation		
% by Volume	from Theoretical Values		
Pure water	15.0		
5% solvent in water	16.0		
20% solvent in water	17.0		
35% solvent in water	8.0		
50% solvent in water	12.0		
Pure solvent	9.0		
Average of Dispersions	14.0		
Overall Average	14.0		

The considerable scattering of the heat transfer data is probably due to errors in temperature measurement. There was a small rise in bulk temperature in passing through the test section but the temperatures were measured to $0.01^{\circ}C$ so the per cent error is of the order of 1%. Larger errors may be expected in measuring wall temperature; although the thermocouples were accurate to $0.1^{\circ}P$, difficulty in positioning the wall thermocouples in the relatively thin tube wall probably caused considerably larger errors. These errors are magnified since the temperature difference between wall and fluid was usually of the order of $4^{\circ}P$. The wall thermocouples were placed under the heating ribbon and the thermocouple reading could possibly be affected by the ribbon temperature and the high heat flux. Further work is recommended with a thick-walled tube so that the thermocouples may be placed deeper in the tube wall. Seventyfive per cent of the data shown in Figure 13 lie within $\pm 20\%$ of the line. The best correlation by Finnigan (16, p. 106) was obtained using the heat capacity of the continuous phase. Miller and Moulton (25, p. 15) and Bonilla, et al. (5, p. 127) used C_{pm} and k_c for their calculations on solid in liquid suspensions. Several other authors have used the thermal conductivity of the medium in their calculations.

The heat transfer coefficient for the inside of the pipe was calculated from Equation (49) and the results are shown in Figure 14. The values of h for water at the high flow rates tend to fall below those predicted from Equation (49).

The electrical power input to the heating coil is tabulated in Appendix C. The heat input used by Finnigan (16) was the electrical input. These values can be compared with the measured power input as tabulated in Appendix C. The average power loss was 6 per cent and the maximum about 13 per cent.

CHAPTER 7

CONCLUSIONS

Apparent viscosities of liquid-liquid dispersions were measured under non-isothermal conditions of turbulent flow in a smooth tube. These turbulent viscosities were calculated by substituting a measured friction factor into Nikuradse's friction factor equation and solving for the viscosity. As the concentration of the dispersed phase (petroleum solvent) increased the viscosity increased. The results agree with an independent study made by Cengel (8) on the same system but under isothermal conditions. The agreement between the two sets of data should be good since the non-isothermal data were obtained at almost the same average bulk temperature as the isothermal data and relatively small temperature differences were employed. His equation is applicable for turbulent flow rates above 1.0 lb/sec with an accuracy of ± 10%. The empirical equation proposed by Cengel to predict turbulent viscosities from composition of the dispersion may be employed to calculate the viscosity term used in subsequent heat transfer correlations.

(47) $\mu_{\rm m}/\mu_{\rm c} = 1 + 2.5\phi - 11.01\phi^2 + 52.62\phi^3$

Forced convection heat transfer coefficients were measured for turbulent flow in a circular tube for various dispensions and for the pure components.

The heat transfer data were satisfactorily correlated by the following equation:

(10)
$$\begin{bmatrix} h \\ \hline c_{p_m}G \end{bmatrix} film \begin{bmatrix} c_{p_m}\mu_m \\ \hline k_c \end{bmatrix}^{2/3} = 0.023 \begin{bmatrix} DG \\ \mu_m \end{bmatrix}^{-0.2}.$$

The heat capacity was the weighted average of the two components; the apparent viscosity was calculated from Figure 11 and the thermal conductivity of the continuous phase gave the best results. All data show an average deviation of 14% from the equation.

The heat transfer coefficients of the dispersions were intermediate between those for the pure solvent and pure water. The 5% and 20% solvent in water dispersions had very nearly the same heat transfer coefficient as that for pure water.

CHAPTER 8

RECOMMENDATIONS FOR FURTHER WORK

The results obtained in this thesis give a good correlation for turbulent flow pressure drop and heat transfer for a liquid-liquid dispersion flowing in a circular tube. During this investigation, many ideas were formed on further work which could be done. Some of the specific recommendations are given below:

(1) The investigation of other pairs of immiscible liquids. These liquids could have similar densities but widely different heat transfer coefficients or widely differing viscosities.

(2) The use of a heavy wall tube. The embedding of the thermocouples deep in the wall and covered with an electrically insulating material to permit more accurate measurements of the wall temperature.

(3) The use of various length and diameter tubes to determine the effects of settling during the passage of the fluid through the horizontal section.

CHAPTER 9

BIBLIOGRAPHY

- Alves, George E., D. F. Boucher, and R. L. Pigford. Pipe-line design for non-Newtonian solutions and suspensions. Chemical Engineering Progress 48: 388-393. 1952.
- 2. Flow of non-Newtonian suspensions. Chemical Engineering 56:107-109. May 1949.
- 3. Becher. Paul. Emulsions: theory and practice. New York, Reinhold, 1957. 382 p.
- 4. Beckers, H. L., Heat transfer in turbulent tube flow. Applied Science Research 6:147-190. 1956.
- 5. Bonilla, Charles F. <u>et al</u>. Heat transfer to slurries in pipe: chalk and water in turbulent flow. In: Chemical Engineering Progress Symposium Series no. 5, vol. 49. New York, American Institute of Chemical Engineers, 1953. p. 127-135.
- Butler, J. B. School of Mines and Metallurgy, 1926.
 62 p. (University of Missouri. Bulletin Technical Series 9, no. 4)
- 7. Caldwell, D. H. and H. E. Babbitt. The flow of muds, sludges, and suspension in a circular pipe. American Institute of Chemical Engineers Transactions 37:257. April 25, 1941.
- 8. Cengel, John A. Viscosity of liquid-liquid dispersions in laminar and turbulent flow. Master's thesis. Corvallis, Oregon State College, 1959. 110 numb. leaves.
- 9. Clayton, William. The theory of emulsions and their technical treatment. 3d ed. New York, Blakiston, 1953. 458 p.
- 10. Colburn, Allan P. A method of correlating forced convection heat transfer data and a comparison with fluid friction. American Institute of Chemical Engineers Transactions 29:174. 1933.

- 11. Dittus, F. W. and L. M. K. Boelter. Heat transfer in automobile radiators of the tubular type. University of California Publications in Engineering 2:443-461. October 17, 1930.
- 12. Dix, F. Johnson and G. W. Scott Blair. On the flow of suspensions through narrow tubes. Journal of Applied Physics 11:574. September 1940.
- 13. Drew, Thomas B., E. C. Koo, and W. H. McAdams. The friction factor for clean round pipes. American Institute of Chemical Engineers Transactions 28:56-72. 1932.
- 14. Drew, Thomas B. and John W. Hoopers, Jr. Advances in chemical engineering. New York, Academic Press, 1956. 448 p.
- 15. Farbar, Leonard and Morgan J. Morley. Heat transfer to flowing gas-solids mixtures in a circular tube. Industrial and Engineering Chemistry 49:1143-1150. July 1957.
- 16. Finnigan, Jerome W. Pressure losses and heat transfer for the flow of mixtures of immiscible liquids in circular tubes. Ph.D. thesis. Corvallis, Oregon State College, 1958. 154 numb. leaves.
- 17. Hatschek, Emil. Die Viskosität von Blutkörperchen-Suspensionen. Kolloid-Zeitschrift 27:163-165. 1920.
- 18. von Karman, T. Mechanical similitude and turbulence. National Advisory Committee for Aeronautics. Technical Memorandum no. 611. 1931.
- 19. Knudsen, James G. and Donald L. Katz. Fluid dynamics and heat transfer. New York, McGraw-Hill, 1958. 576 p.
- 20. Kunitz, M. An empirical formula for the relation between viscosity of solution and volume of solute. Journal of General Physiology 9:715-725. 1926.
- 21. McAdams, William H. Heat transmission. 3d ed. New York, McGraw-Hill, 1954. 532 p.
- 22. McAdams, William H. and T. H. Frost. Heat transfer for water flowing in pipes. Chemical and Metallurgical Engineering 30:234-236. February 11, 1924.

- 23. Heat transfer for water flowing inside pipes. Refrigerating Engineering 10:323-334. March 1924.
- 24. Metzner, A. B., R. D. Vaughan, and G. L. Houghton. Heat transfer to non-Newtonian fluids. American Institute of Chemical Engineers Journal 3:92-100. March 1957.
- 25. Miller, Aven P. and R. W. Moulton. Heat transfer to liquid-solid suspensions in turbulent flow in pipes. Trend in Engineering at the University of Washington 8:15-21. April 1956.
- 26. Morris, F. H. and Walter G. Whitman. Heat transfer for oils and water in pipes. Industrial and Engineering Chemistry 20:234-240. March 1928.
- 27. Oliver, D. R. and Stacey G. Ward. Relationship between relative viscosity and volume concentration of stable suspensions of spherical particles. Nature 171:396-397. 1953.
- 28. Orr, Clyde, Jr. and J. M. DallaValle. Heat transfer properties of liquid-solid suspensions. In: Chemical Engineering Progress Symposium Series no. 9, vol. 50. New York, American Institute of Chemical Engineers, 1954. p. 29-45.
- 29. Perry, John H. (ed.). Chemical engineers' handbook. 3d ed. New York, McGraw-Hill, 1950. 1942 p.
- 30. Richardson, E. G. The flow of emulsions. II. Journal of Colloid Science 8:367-373. 1953.
- 31. Russell, T. W. F., G. W. Hodgson, and G. W. Govier. Horizontal pipe-line flow of mixtures of oil and water. Canadian Journal of Chemical Engineering 37:9-17. February 1959.
- 32. Salamone, Jerome J. and Morris Newman. Heat transfer design characteristics: water suspension of solids. Industrial and Engineering Chemistry 47:283-288. 1955.
- 33. Sherwood, T. K. and J. M. Petrie. Heat transmission to liquids flowing in pipes. Industrial and Engineering Chemistry 24:736-745. 1932.
- 34. Sieder, E. N. and G. E. Tate. Heat transfer and pressure drop of liquids in tubes. Industrial and Engineering Chemistry 28:1429-1435. 1936.

- 35. Slawecki, T. K. and M. C. Molstad. Thermal conductivity of water, glycols, and glycol ethers. Industrial and Engineering Chemistry 48:1100-1103. 1956.
- 36. Sleicher, C. A. Jr. and M. Tribus. Heat transfer in a pipe with turbulent flow and arbitrary walltemperature distribution. American Society of Mechanical Engineers Transactions 79:789-797. 1957.
- 37. Smith, J. F. Downie. Heat transfer and pressure drop data for an oil in a copper tube. American Institute of Chemical Engineers Transactions 31:83-112. November 1934.
- 38. Smith, R. A. Experiments on the flow of sand-water slurries in horizontal pipes. Institute of Chemical Engineers Transactions (London) 33:85-92. 1955.
- 39. Spells, K. E. Correlations for use in transport of aqueous suspensions of fine solids through pipes. Institute of Chemical Engineers Transactions (London) 33:79-84. 1955.
- 40. Stanton, T. E. and J. R. Pannell. Similarity of motion in relation to the surface friction of fluids. Philosophical Transactions of the Royal Society (London) 214A:199-224. 1914.
- 41. Taylor, G. I. The viscosity of a fluid containing small drops of another fluid. Royal Society of London Proceedings 138A:41-48. 1932.
- 42. Van der Held, E. F. M. and F. G. Van Drunen. Physica 55:865. 1949.
- 43. Wang, R. H. and James G. Knudsen. Thermal conductivity of liquid-liquid emulsions. Industrial and Engineering Chemistry 50:1667-1670. 1958.
- 44. Winding, C. C., G. P. Baumann, and W. L. Kranich. Flow properties of pseudo-plastic fluids. Chemical Engineering Progress 43:527-529. 1947.

APPENDICES

APPENDIX A

82

NOMENCLATURE

Many of the equations in this paper involve dimensionless ratios, and any consistent system of units might be used. The units given below are those chosen by the author for this work.

Latin	Let	ter	Syn	1b0	ls

Symbol	Meaning	Units
A	Cross sectional area of flow channel	ft ²
A*	Surface area of wall of flow channel	ft ²
Ъ	Manometer reading	ſt
co	Orifice discharge coefficient	
cp	Specific heat at constant pressure	Btu (1b _m)(°F)
D	Inside diameter of tube	ft
Dl	Inside diameter of pipe	ſt
D _o	Diameter of orifice	ft
đ	Diameter of particle in dispersed phase	ft
0	Base of natural logarithms	
F	Frictional resistance force at wall of conduit	lb _f
f	Fanning friction factor	

		83
Symbol	Meaning	Units
G	Mass velocity	$\frac{1b_{m}}{(ft^{2})(sec)}$
g	Gravitational acceleration	ft sec 2
g _c	Conversion constant = 32.174	$\frac{(lb_m)(ft)}{(lb_f)(sec^2)}$
h	Film heat transfer coefficient	$\frac{Btu}{(hr)(ft^2)({}^{o}F)}$
ĸ	Constant in orifice equation	
k	Thermal conductivity	Btu (hr)(ft)(°F)
L	Length of conduit	ſt
Γ ι	Vertical distance between orifice pressure taps	ſt
1	Length between thermocouples	in.
n	Constant on heat transfer equation	
n†	Flow behavior index	
Р	Static pressure	$\frac{1b_{f}}{ft^{2}}$
Q	Power input to heater coil	watts
q	Steady state heat transfer rate	Btu hr
t	Temperature	oF
tb	Temperature of flowing fluid	oF
tw	Temperature of tube wall under heating coil	OF

0		84
Symbol	Meaning	Units
V	Average linear velocity of fluid	ft sec
Ωı	Overall heat transfer coefficient	Btu (hr)(ft)(°F)
W	Mass flow rate	1bm sec
W	Work done by flowing fluid	$\frac{(ft)(lb_f)}{lb_m}$
X	Volume fraction	
X	Weight fraction	
Z	Height above a datum plane	ſt
	Greek Letter Symbols	
~	Correction factor in expression for kinetic energy of fluid	
~	A function of, used in corre- lating dimensionless quantities	
۲	Fluid consistency	lbm
Δ	Finite difference	$(ft)(sec)^{2-n!}$
θ	Constant in some equations	
Y	Dynamic viscosity	Centipoise
Po	Viscosity of continuous phase	Centipoise
P_{a}	Viscosity of dispersed phase	Centipoise
\mathcal{V}_{m}	Apparent viscosity of mixture	Centipoise
97	Constant, 3.1416	
P	Density	$\frac{1b_m}{ft^3}$

Symbol

Meaning

Units

б	Conversion factor, 1488	c.p.
		(lb _m)(ft)(sec)
ч	Shear stress	$\frac{1b_{f}}{ft^2}$
¢	Volume fraction of dispersed phase	
Ý	Function of undetermined form in expression for heat transfer coefficient	• • •
	,	

Composite Symbols

BWG	Birmingham wire gauge	
gpm	U.S. gallons per minute	gal
log	Common logarithm (base 10)	
ĪW	Lost work due to friction in a flowing fluid	$\frac{(ft)(lb_f)}{lb_m}$

 $Nu = \frac{hD}{k}$ $Pr = \frac{C \mu}{k}$ $Re = \frac{DG}{\mu}$

Reynolds number

Prandtl number

Nusselt number

 $St = \frac{h}{C_p G}$

Stanton number

ΔP

Pressure difference between two points in a flowing fluid

Symbol		Meaning		Units
ΔP _r	Pressure friction	difference due	to fluid	$\frac{1b_{f}}{ft^2}$

Subscripts

Ъ	Bulk, the flowing fluid
C	Continuous phase
đ	Dispersed phase
0	Effective
ſ	Force (as in lb_f), or friction (as in P_f), or film
m	Mass (as in 1b _m), or mixture
0	Orifice
W	Tube wall under heating coil
1, 2	Refer to positions in a flowing system

APPENDIX B

PROPERTIES OF PURE LIQUIDS AND CALIBRATION CURVES

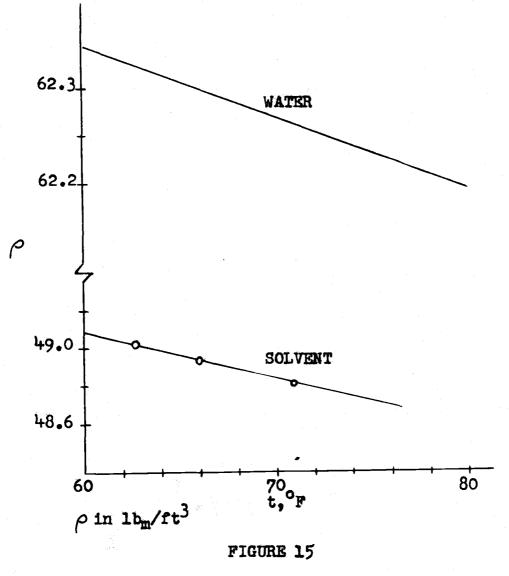
The solvent used as the organic component of the pair of immiscible liquids in this investigation was a commercial cleaning solvent manufactured by the Shell Oil Company under the name "Shellsolv 360". This liquid is clean and colorless, and is readily available in 55 gallon drum quantities at reasonable cost. The properties of this solvent are presented in Table 3.

Table 3

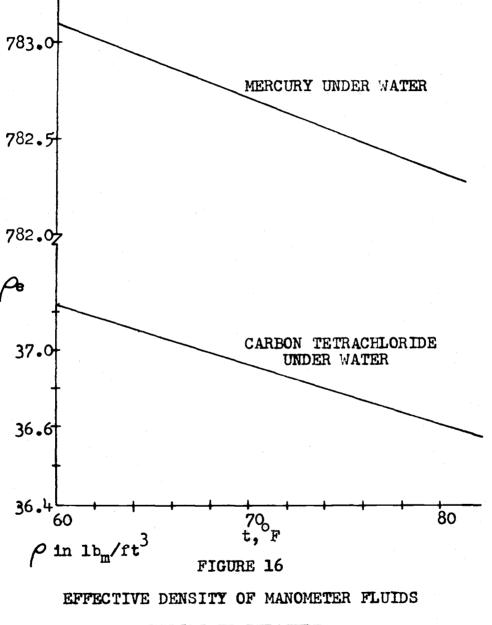
Properties of "Shellsolv 360" (Data from Company Specifications)

Gravity, API, 60°F	49.1
Specific Gravity, 60/60°F	0.7835
Color, Saybolt	26+
Flash Tag, 0.C., ^o F	110
Flash Tag, C.C., ^O F	103
Aromatics, Stoddard, % v	2
A.S.T.M. Distillation, ^o F:	
Initial Boiling Point	304
Final Boiling Point	362
10% Recovered	317
50% Recovered	323
90% Recovered	342
% Recovered	98.5

Table 3 indicates that the solvent is low in aromatic hydrocarbon content and a fairly high paraffinic content (16, p. 130). Finnigan decided the composition was in the nonane-decane range. He also estimated that the molecular weight was about 134.


The solubilities of hydrocarbons in water are quite low and Finnigan estimated a solubility of 0.05 mole per cent water in petroleum solvent at 70°F. This system consists of a pair of practically immiscible liquids.

Density


The densities of the water, mercury, carbon tetrachloride, and solvent change slightly with a change in temperature. The values used were taken from the Chemical Engineers' Handbook (29, p. 175) and the measurements made by Finnigan (16, p. 132). The specific gravity of the carbon tetrachloride was determined by weighing the volume delivered from a buret. The iodine coloring used had no effect on the specific gravity. The densities of water and solvent are plotted versus temperature in Figure 15. The effective densities of mercury under water and carbon tetrachloride under water are given in Figure 16.

Specific Heat

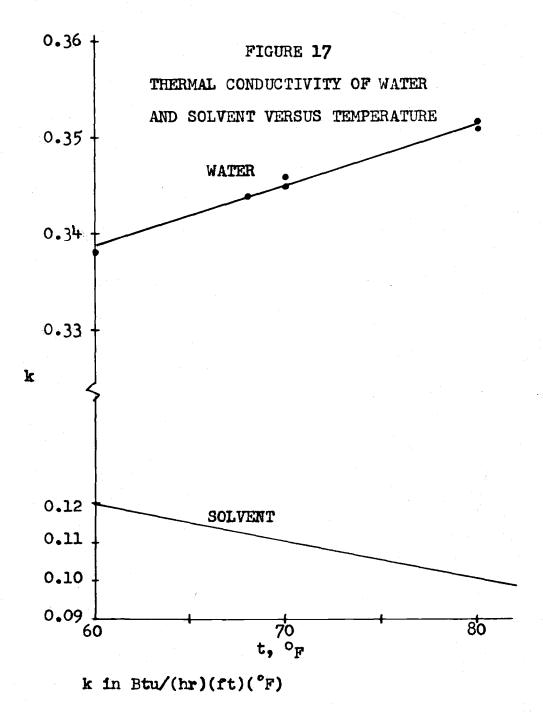
The specific heat of the petroleum solvent was measured by Finnigan (16, p. 134) and a value of 0.472 $Btu/(lb_m)(^{\circ}F)$

DENSITY OF WATER AND SOLVENT VERSUS TEMPERATURE

at 79°F was measured. Using the known variation of heat capacity with temperature, the value of 0.468 $Btu/(lb_m)(OF)$ was obtained at 71°F. The variation with temperature was small and the value of 0.468 $Btu/(lb_m)(^{OF})$ was used throughout the present work.

The specific heat of water is 1.0 $Btu/(lb_m)(^{o}F) \stackrel{+}{=}$ 0.1 per cent between 50 and 80°F and this value was used in all of the calculations.

Thermal Conductivity


Wang (43, p. 1667) has measured the thermal conductivity of a petroleum solvent with properties practically identical to those of the solvent used in this investigation. The thermal conductivity of hydrocarbon mixtures change slowly with changes in composition at a given temperature and Wang's values were applied to the present work.

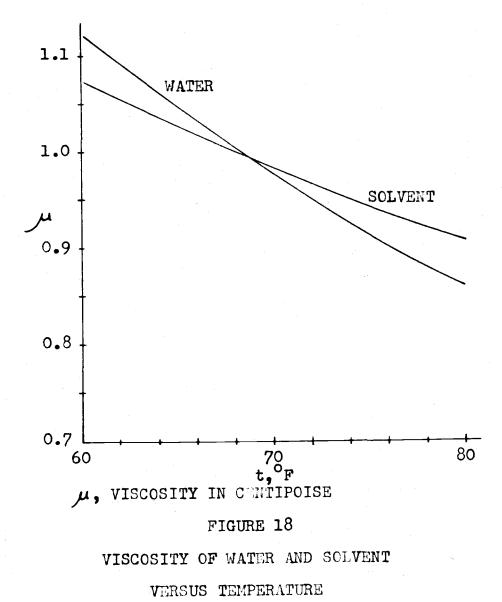
The thermal conductivity of water is given by McAdams (21, p. 864), Van der Held and Van Drunen (42, p. 865), and the Chemical Engineers' Handbook (29, p. 459).

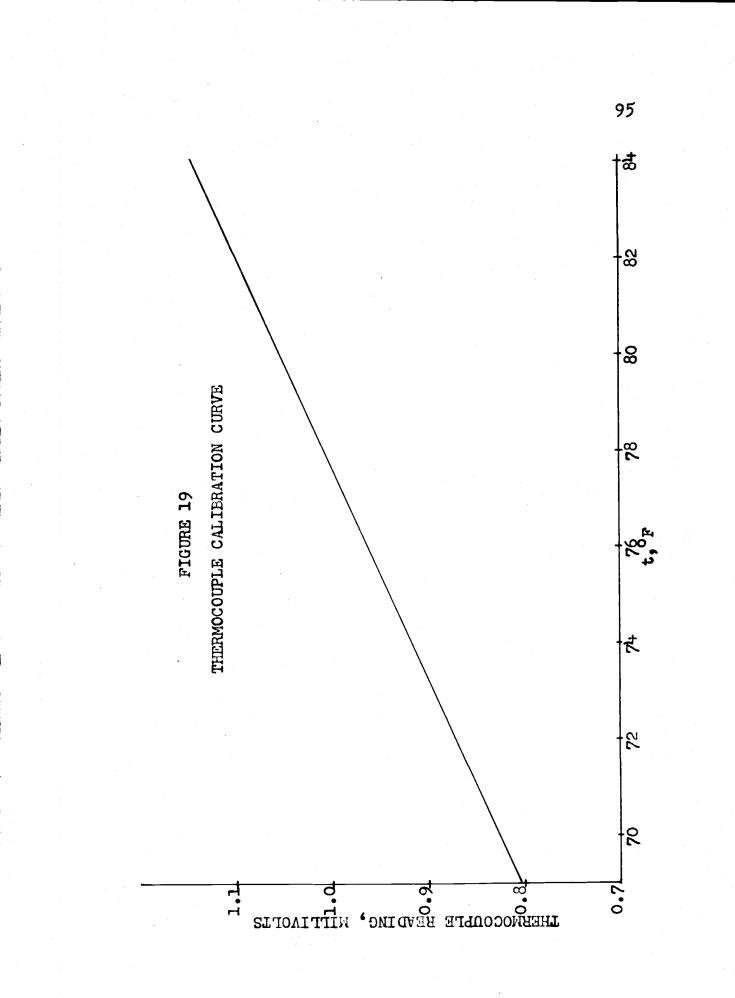
The thermal conductivity of water and solvent are plotted versus temperature in Figure 17.

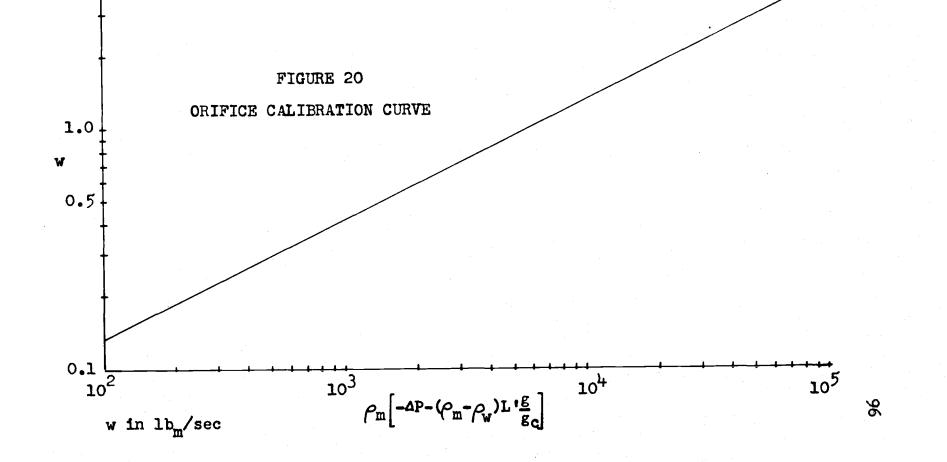
Viscosity

The dynamic viscosity of the petroleum solvent was

measured in an Ostwald viscometer by Finnigan (16, p. 140). He found a very slight change in viscosity after the solvent had been used several times. The values of viscosity versus temperature are plotted in Figure 18.


The values for the variation of the viscosity of water with temperature (29, p. 374) were obtained from literature values and plotted in Figure 18.


Thermocouples


The thermocouples were calibrated by graphing the temperature measured on the previously standardized Beckman thermometers versus the millivolt readings of the thermocouples during several isothermal runs on pure water. The differences between the various thermocouple readings was negligible and the same calibration curve was used for all thermocouples. The calibration curve is presented in Figure 19.

Orifice Calibration Curve

The orifice calibration curve, as given by Finnigan (16, p. 96) and used in the present calculations, is shown in Figure 20.

APPENDIX C

TABULATED DATA

Table 4

Observed Data

(1)*	(2)	(3)	(4)	(5)	(6)	(7)
Run	Entering	Air	Wal	1 temper	ature re	adings
No.	Temp., r ₁	t, ^o f	tl, ^{of}	t ₂ , o _F	^t 3, ^o F	t ₄ ,°F
W-1234567890112345671890122222222 5	71.69 70.66 70.16 70.75 71.67 71.65 71.46 71.13 69.76 70.20 69.43 69.44 70.02 71.51 70.21 70.78 70.89 68.97 71.13 69.71 72.64 72.64 72.64 72.64 72.64 72.64 72.64 72.63 70.90 70.50 69.95 69.86 70.33 71.14 70.64 71.03	78.0 78.0 75.2 77.7 77.7 77.7 77.7 77.7 77.7 77.7	71.33 70.37 70.12 70.60 71.37 71.00 70.17 68.76 67.60 67.60 71.04 70.38 67.60 71.03 70.38 67.70.30 70.17 68.80 67.90.17 71.955 70.435 69.90 70.17 68.80 67.92 68.64 67.30 70.00	71.60 70.65 70.43 70.70 71.99 71.86 71.17 70.88 69.51 68.27 70.66 68.27 70.66 68.27 70.66 68.27 70.66 68.27 70.66 68.27 70.66 68.27 70.66 68.25 71.325 70.655 70.655 71.325 70.655 70.655 71.325 70.655 70.655 70.66 68.18 68.32 68.325 68.355 68.355 6	76.56 756.28 76.55 76.85 76.88 75.68 75.76.88 73.90 73.10 73.68 73.65 73.65 73.90	77.99 77.99 77.99 77.540 77.540 77.540 77.56340 75.00

* The run number code is as follows: the first number (or symbol) represents the nominal composition and the second number represents the run number within the series. Thus, W-1 is the first water run, 50-2 is the second run with 50 per cent solvent in water, etc.

Table 4 - Continued

Observed Data

(1)* Run No.	(8) t5,°F	(9) Wall temper t ₆ ,°F	(10) rature read: t7, ^o F	(11) ings t ₈ ,°F	(12) t ₉ ,°F
W-1234567890112345678901222222222222222222222222222222222222	77.236775.441677777777777777777777777777777777777	78.11 77.76 76.43 76.435 76.445 76.445 76.445 76.445 76.445 76.445 76.445 76.4406 774.36 76.538 76.554 76.554 76.554 76.554 75.668 774.566 75.545	82.10 81.89 84.60 82.59 84.81 83.58 80.70 81.45 80.88 84.15 90.4 81.89 79.18 82.29 83.35 84.29 83.35 84.29 83.35 84.29 91.0 92.0 93.4 82.34 85.21	75.11 74.28 74.36 72.60 73.70 74.36 72.30 71.27 70.60 80.93 71.55 72.16 73.15 72.16 73.15 73.15 72.20 71.50 71.50 71.73 70.09 71.73 70.09 71.73 70.75 71.50 71.73 70.09 71.73 75.51	73.89 72.52 72.48 71.73 72.39 72.48 71.39 72.35 71.49 69.68 71.884 73.58 71.17 71.17 72.12 77.555 71.644 70.684 71.684 70.604 71.028

Note = Temperatures above $87^{\circ}F$ and all air temperatures are given only to the nearest $0.1^{\circ}F$.

Table 4 - Continued

Observed Data

(1)* Run No.	(13) Orifice mm CCl _j	(14) Manometer mm Hg	(15) Test S Manom mm CC1 ₁		(17) Q=IE, watts
W-1 345678901123456789011234567890122234567123	217 150 329 600 10 29 55 297 19 42 53 607 85	$ \begin{array}{r} 10 \\ 8 \\ 16 \\ 100 \\ 198 \\ 40 \\ 29 \\ 163 \\ 46 \\ 292 \\ 1 \\ 3 \\ 14 \\ 185 \\ 93 \\ 65 \\ 259 \\ 308 \\ 28 \\ 61 \\ 206 \\ 386 \\ 4 \\ 42 \\ 166 \\ 239 \\ 311 \\ \end{array} $	166 118 247 360 655 10 24 45 221 15 31 43 421 70	$ \begin{array}{c} 8 \\ 7 \\ 12 \\ 59 \\ 100 \\ 26 \\ 18 \\ 88 \\ 30 \\ 148 \\ 2 \\ 2 \\ 10 \\ 98 \\ 55 \\ 40 \\ 133 \\ 153 \\ 20 \\ 39 \\ 110 \\ 204 \\ 4 \\ 29 \\ 92 \\ 130 \\ 160 \\ 160 \\ \end{array} $	$1075 \\ 1037 \\ 1612 \\ 1850 \\ 2223 \\ 1672 \\ 1222 \\ 1604 \\ 1523 \\ 2383 \\ 842 \\ 724 \\ 724 \\ 1548 \\ 1767 \\ 1778 \\ 1767 \\ 1778 \\ 1767 \\ 145 \\ 2842 \\ 1264 \\ 1278 \\ 3152 \\ 1191 \\ 1391 \\ 1920 \\ 2243 \\ 995 \\ 1824 \\ 2188 $
27456	324 94	311 15 4	250 77	160 12 4	2862 1348 1353

(1)*	(2)	(3)	_(4)	(5)	(6)	(7)
5-789011234567890123456789011234567890112345678901123456789011234567890112345678901123456789011123456789	70.407 69.976 69.976 69.976 69.976 69.976 69.976 69.9776 69.9776 69.9776 69.977777777777777777777777777777777777	74.3 71.6 73.0 80.8 82.7 80.8 82.7 80.1 80.8 82.7 80.1 80.8 82.7 80.1 80.8 82.7 80.1 80.8 82.7 80.6 7 80.6 99.9 99.9 99.9 99.9 99.7 77778 78.1 80.1 80.1 80.1 80.1 80.8 80.7 80.6 78.9 90.6 99.9 99.9 99.7 777778 78.1 80.1 77.7 78.1 80.1 77.7 78.1 80.1 78.1 80.1 78.1 78.1 77.7 78.1 80.1 77.7 78.1 80.1 78.1 77.7 78.1 80.1 78.1 77.7 78.1 80.1 77.7 78.1 80.1 77.7 78.1 80.1 77.7 78.1 80.1 77.7 78.1 77.7 78.1 80.1 77.7 78.1 77.7 78.1 80.1 77.7 78.1 80.1 77.7 78.1 80.1 78.1 77.7 78.1 80.1 77.7 77.7 78.1 80.1 77.7 77.7 78.1 80.1 77.7 77.7 78.1 80.1 77.7 77.7 77.7 77.7 78.1 80.1 77.7 77.7 77.7 78.1 80.1 77.7 77.7 77.7 77.7 77.7 77.7 77.7 7	67.47 69.15 69.15 68.51 68.68.36 69.69.68.51 68.68.36 69.69.69.69 69.69.69.69 69.69.69.69 69.69.69.69 69.69.69.69 69.69.69.69 69.69.69.69 69.69.69.69 69.69.69.69 69.69.69.69 69.69.69.69 71.371.084455566 68.80593035550 68.90.65770.66570 72.68.8855503035550 70.665704772.16	68.53 69.60 69.637 69.637 68.31 68.31 68.68.68 68.68.68 69.40 70.377 70.43555 71.23529 73.19 69.430 70.70.70 71.23529 69.319 69.430 70.70.70 71.23529 69.319 69.430 70.70.70 71.5825 72.685 68.68,69 69.430 70.70.70 71.252 72.685 68.68 69.430 70.70 71.5825 72.685 72.695 72.685	75.06977421.0645228898288030755.080637177777777777777777777777777777777777	78.91 76.83 77.86.2 77.73.75.56.400250158 77.77.77.77.77.77.77.77.77.77.77.77.77.

(1)*	(8)	(9)	(10)	(11)	(12)
5-7890 11234567890123456789012345678901123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789000000000000000000000000000000000000	78.91 77.6.32 97.74.30 92.2.6.80 77.75.30 77.77.77.77.77.77.77.77.77.77.77.77.77.	79.30 78.803 777777777777777777777777777777777777	84.55 83.003 83.00	75.90 74.80 73.54 90.08 70.28 70.37 70.39 70.39 70.39 70.39 70.39 70.39 71.42 72.10 72.10 72.1	72.56 71.86 71.73 83.27 71.260 69.51 70.256 70.256 70.256 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 71.1005 72.260 70.956 70.956 70.956 70.956 70.956 70.956 70.956 70.956 70.957 72.260 71.1005 72.260 70.957 72.260 72.260 72.260 72.260 72.205 72.205 72.900 73.100 72.900 73.100 72.900 73.100

(1)*	(13)	(14)	(15)	(16)	(17)
5-7 8 9 10	44 146 295 571	7 14 28	33 120 231 424	5 10 19	1959 1139 1296 1646 547 544 594
12 13 14 15	18 18 47 597	28 61	12 36 435	2 19 39	547 544 594 996 1500
5-7 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 56 27 28 9 30 31 32 34 20 -1	329 89	28 61 75 120 193 301 16 4 88	257 74	2 19 39 45 67 107 158 13 53 194 191	996 1500 1736 1879 2175 2581 1356 1130 1932 2720 2720 2720 1594 1280 1278 1513
24 25 26 27 28 29	82 332 654	387 212 5 16 30 60 118 203 387	64 259 472	194 191 23 41 68 115 202	2720 2720 1594 1280 1278 1513 1797
30 31 32 33 34 20-1	202 90 31 390 127 69 556	10 4 18	165 80 30 337	9 5	1797 2034 2435 1148 1026 766 726
2345678	69 556	6 36 44 63 83	30 337 129 67 456	14 6 3 20 33 46 68	766 726 726 1385 1385 1385 1385
8 9 10 11 12 13 14 15 16 17 18	· · · · · · · · · · · · · · · · · · ·	83 105 147 191 213 242 285 320 383 103		70 94 118 130 144 167 185 217 71	1579 1901 2272 2525 2796 2882 2886 3360 1784 685
15 16 17 18 19	23	383 103 170 125	27	217 71 107 83	3360 1784 685 1872 1872

(1)*	(2)	(3)	(4)	(5)	(6)	(7)
$\begin{array}{c} 20-21\\ 223\\ 226\\ 228\\ 226\\ 229\\ 35-2\\ 229\\ 35-2\\ 229\\ 35-2\\ 229\\ 35-2\\ 229\\ 35-2\\ 229\\ 201\\ 234\\ 56\\ 78\\ 90\\ 112\\ 1456\\ 17\\ 18\\ 90\\ 112\\ 3456\\ 78\\ 90\\ 112\\ 122\\ 122\\ 122\\ 122\\ 122\\ 122\\ 12$	72.34 72.23 71.35 71.33 71.329 71.329 71.329 71.329 71.329 71.329 71.329 71.329 71.329 71.329 71.329 73.299 73.29	79.39376.81007084601823473707061489996308363487781087	72.29 71.99 71.933 70.608 70.592 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 70.793.488 71.000 71.001 70.603 70.603 70.603 70.603	73.10273.1071.1041888460002997177777777777777777777777777777777	777777777777777777777777777777777777	79.21 78.27 76.59 76.59 777777777777777777777777777777777777

101
TON.

					104
(1)*	(8)	(9)	(10)	(11)	(12)
20-20 $223 + 256 + 289 + 286 + 289 + 286 + 289 + 286 + 28$	78.65 77.6430 77.64901 75.55100 77.7777777777777777777777777777777777	79.00 77.03 77.03 77.03 77.03 77.03 77.03 77.03 77.03 77.048 800 77.048 800 77.048 800 83.000 83.000 83.000 83.000 83.000 77.05 77.048 800 77.05 77.048 800 77.05 77.05 77.048 800 83.000 77.05 800 83.000 77.05 76.05 80.05 76.05	87.10 85.21 83.67 83.005 83.005 87.87.87 79.102 866.78 866.78 886.99.570 887.6145 886.99.570 887.6145 887.654.59 887.655.655 887.635 887.655.655 877.87 877.87 877.87 887.655 877.87 887.655 877.87	75.69 74.58 76.098 73.32 72.7998 73.552 73.552 73.552 73.552 75552 75552 75552 75552 7552 7552 7552 7552 7552 7552 7552 7552 7552 7522 7	74.02 73.28 74.72.273 71.72.70 71.72.72.173 72.72.72.15.60 72.72.15.24 72.72.15.20

					105
(1)*	(13)	(14)	(15)	(16)	(17)
20-20 21 22 23 24 25 26 27 28 20	390 423 680 229 109 65	36 73 19 19 32 54 21 3 11	349 340 546 208 98	282 52 17 17 25 40 129 10	1621 1613 1125 1012 1191 1264 2208 700 697
29 35-1 2 3 4 5 6 7 6 7 8 9 10 11 12 13	410	45 65 82 107 145 192 211 239 289 319 392 19	64	38 38 48 58 106 134 148 165 188 207 241	573 1269 1339 1320 1580 1808 2128 2128 2128 2164 2273 2273 2273 2273
13 14 15 16 17 18 19 20 50-1 2 3 4 56	557 169 84 91 59 78 2 32	26 8 4 5 3 4 11 44 57	536 116 102 75 36 57 227	17 23 4 3 4 20 50 37 55 100 125	1126 1275 777 513 390 153 387 1273 1268 1255 1494 1575 1824 1977 2028 1662
3456 78910 1123145 1617 189	558 410 307 219 161 118 71	69 85 110 139 157 212 243 30 26 20 14 10 297 331	683 517 384 261 211 172 126	73 85 103 125 139 177 197 36 32 24 18 12 236 260	1024 1977 2028 1662 1000 939 847 715 595 455 401 308 1737 1737

(1)*	(2)	(3)	(4)	(5)	(6)	(7)
8-1 2 3 4 5 6 7 8 9 10 11	73.90 72.86 73.09 70.58 70.68 70.41 70.90 70.81 70.93 71.08 71.46	89.3 89.2 88.9 80.4 80.6 81.0 79.7 84.9 81.8 80.1 80.3	73.89 72.65 72.60 70.48 70.70 70.52 70.37 70.60 70.65 70.88 71.27	74.68 73.48 73.48 71.00 71.04 70.84 71.00 71.95 71.27 71.90 71.99	81.10 78.48 79.23 76.61 76.56 76.56 75.11 76.14 75.34 75.34 75.21	83.44 80.07 80.97 78.35 78.11 77.99 76.56 77.99 77.36 79.18 77.18
12	71.42	77.7	71.13	71.82	74.68	76.56

<u>(1)*</u>	(8)	(9)	(10)	(11)	(12)
S-1	82.85	83.27	88.9	77.81	75.69
2	79.44 80.38	80.17 80.70	86.15 87.1	75.69	73.93 74.40
1. State 1.	77.50	77.81	85.57	73.28	71.77
456	77 .13 76 . 97	77.36 77.36 77.50	85.92	73.15 72.82	71.50 71.17
7	76.52 78.03	77.50 78.44	79.90 80.79	73.93	71.82 72.12
8	77.27	77.86	79.90	74.40	72.39
10 11	79.10	79.90 77.81	81.22 78.70	75.47	73.15 73.10
12	77.01	77.59	77.76	74.58	73.19

÷2.	10	£3.	
3		a 19	
- 10	, .	÷.,	

(1)*	(13)	(14)	(15)	(16)	(17)
S-1 2 3 4 5 6 7 8 9 10 11 12	578 369 243 131 58 23	50 96 130 231 399 343 38 17 12 7	433 294 200 126 74 44	35 59 75 125 200 178 21 14	991 991 1186 1270 1415 1360 462 473 386 386 386 205 139

TABLE 5

Calculated Data

(1) Run No.	(2) W, lb _m sec	(3) Average t _b , o _F	(4) Average ^t w, op	(5) Driving Force (t _w -t _b)	(6) Temp. Rise $(t_{b_2}t_{b_1})$
W-123456789012345678901234567123456789011	0.528 0.455 0.628 1.66 2.35 1.058 2.132 0.192 0.262 1.132 0.192 0.260 2.259 9.120 0.260 2.259 1.388 1.132 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.388 1.231 0.260 2.259 1.340 0.2435 0.3445 0.3445 0.6155 0.855	72.35 71.44 70.97 71.13 72.01 72.01 72.17 71.39 70.27 70.57 70.63 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.92 70.95 70.95 70.92 70.95 70.95 70.92 70.95 70.95 70.92 70.95 70.92 70.95 70.95 70.92 70.95 70.92 70.95 70.92 70.95 70.92 70.92 70.95 70.92 70.92 70.95 70.92 71.92 72.92 7	77.16 76.43 77.28 75.32 76.44 76.91 75.45 76.91 75.45 74.53 73.58 76.21 74.83 74.83 74.83 74.83 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.88 74.52 74.53 74.53 74.53 74.53 74.53 74.53 74.53 75.51 74.53 74.53 74.53 75.51 74.53 75.51 76.53 76.53 76.53 76.53 76.53 76.53 76.53 76.53 76.53 76.53 76.53 76.53 76.53 76.53 76.53 76.53 76.53 77.55 76.53 77.55 76.53 77.55 76.53 77.55 76.53 77.55 77.55 76.53 77.55 75.50	4.81 4.79 6.319 4.479 4.479 4.4754 4.7544 4.754475 105.5485588 105.35.485588 105.35.485588 105.3703718 3.1446.328 2.5688 105.35.485588 105.3703718 3.1446.328 2.5688 105.35.598 105.35.598 105.35.688 105.3	$\begin{array}{c} 1.737\\ 2.052\\ 2.133\\ 0.999\\ 0.882\\ 1.377\\ 1.188\\ 0.690\\ 1.179\\ 0.963\\ 6.084\\ 3.132\\ 2.313\\ 2.32\\ 2$

Table 5 - continued

Calculated Data

•

(1) Run No.	(7) St x 103	$\binom{(8)}{f \times 10^3}$	(9) د مر centipoise	(10) Re x 10 ³	$st(c_p)^{(11)}_{z/3}$ x 103
W-123456789011234567890112222222123456789011	0.934 1.064 0.874 0.617 0.515 0.752 0.868 0.879 0.828 1.453 1.452 1.734 0.940 0.518 0.683 0.702 1.635 0.491 1.144 1.183 0.567 0.491 1.144 1.183 0.567 0.400 1.062 1.073 0.903 0.957 0.900 1.497 1.383 1.036 0.803 1.013	6.6904 6.403671854548766455546746544664446767666 7.54554548766452188497617828773107858326 7.66554773188497617828773107858326 7.6655465777310785566	0.949 0.960 0.961 0.951 0.951 0.951 0.951 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.975 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.975 0.975 1.235 1.255 1	$\begin{array}{c} 17.03\\ 14.51\\ 19.79\\ 52.64\\ 98\\ 20.75\\ 425\\ 5142\\ 512\\ 512\\ 512\\ 512\\ 512\\ 512\\ 512\\ 51$	1.63 1.87 1.54 1.08 0.90 1.31 1.52 1.00 1.56 1.46 2.54 2.56 3.06 1.64 0.92 1.20 1.20 1.23 2.90 0.86 2.01 2.03 0.98 1.37 1.13 0.83 0.71 1.85 3.10 2.87 2.14 1.98 1.66

Table 5 - Continued

Calculated Data

(1) Run No.	$(12)_{st(P_r)^2/3}$ x 10 ³	(13) h, Btu/(hr) (ft ²)(°F)	(14) $q =$ $wC_{p} \Delta t_{b'}$ watts	(15) 1∕√f	(16) w√r
W-123456789011234567890122222222712345678901	3.30 3.79 3.13 2.19 1.82 2.66 3.08 2.02 3.17 2.97 5.16 5.21 6.21 3.32 1.86 2.44 2.50 5.89 1.75 4.07 4.12 1.99 2.78 2.30 1.69 1.44 3.76 3.76	586 575 652 1220 1438 938 907 1437 180 2794 199 331 548 692 1385 1290 1133 350 1587 314 365 1967 813 982 1337 1554 433 1349 2250 2885 3069 1119 598 386 525 677 1565	968 985 1413 1750 2187 1525 1103 1551 1406 2885 738 634 649 1395 1688 1630 1626 516 2763 1153 1133 2967 1086 1266 1869 2173 964 1582 2131 2169 2781 1237 161 859 1028 1181 1480	12.23 12.50 11.92 13.83 15.04 13.18 13.64 14.53 13.17 14.945 13.69 12.244 14.552 13.75 13.69 12.244 14.552 13.75 13.89 15.38 15.43 15.43 15.45 14.654 12.245 14.654 12.48 14.67 12.48 11.67 12.48 11.67 12.48 11.67 12.48 11.67 12.48 11.67 12.48 12.04 12.46	0.043 0.053 0.120 0.156 0.080 0.064 0.147 0.086 0.190 0.011 0.016 0.022 0.050 0.155 0.116 0.099 0.013 0.019 0.022 0.050 0.155 0.116 0.099 0.013 0.019 0.022 0.050 0.155 0.116 0.099 0.022 0.050 0.0193 0.069 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.029 0.053 0.051 0.051 0.069

					112
(1)	(2)	(3)	<u>(4)</u>	(5)	(6)
5-12 13 14 15 16 17 18 19 21 23 223 256 289 312 334 20-1 2345 20 112 1345 1678 90 112 1345 1678 90 112 1345 1678 90 112 1345 1678 190 212 23 20-1 123 145 1678 90 112 1345 1678 190 212 23 20-1 123 145 1678 190 212 23 20-1 123 145 1678 190 212 23 20-1 123 145 1678 190 212 23 20-1 23 123 145 1678 190 212 23 212 23 20-1 123 145 1678 190 212 23 23 23 23 23 23 20-1 23 23 20-1 23 23 23 20-1 23 145 1678 190 212 23	0.15770 0.2870 1.422.0000 1.422.0000 1.422.0000 1.422.0000 1.422.0000 1.422.0000 1.422.0000 1.422.0000 1.422.0000 1.422.0000 1.422.00000 1.422.00000 1.422.000000 1.422.0000000000000000000000000000000000	769.4209885069077777777777777777777777777777777777	76.892509931500271048900339284576596207777777778778776.20953549962077777777777777777777777777777777777	6423244447445054444445682464322334444545413454487 6423244444744505444444568246432233444454541345469 10544444568246432233444454541345469	3.141 2.106 1.143 1.071 2.998 0.9970 0.8577 1.848 0.9577 1.2898 0.9577 1.2898 0.9499 0.739 1.26995 0.9499 0.73995 0.94995 1.2573 1.26995 0.748 1.2552 1.2552 1.1437 1.04995 1.0562 1.14953 1.0531 1.0556 1.0531 1.0557 1.0557 1.0557 1.0552

(1)	(7)	(8)	(9)	(10)	(11)
5-12 13 14 15 16 17 18 90 22 23 456 78 90 11 23 456 78 90 11 23 456 78 90 11 23 456 78 90 11 23 24 56 78 90 11 23 22 22 22 22 22 22 22 22 22 22 22 22	$\begin{array}{c} 1.294\\ 1.264\\ 1.009\\ 0.877\\ 0.902\\ 0.577\\ 0.558\\ 0.490\\ 0.953\\ 0.969\\ 0.969\\ 0.969\\ 0.969\\ 0.969\\ 0.908\\ 0.9797\\ 0.893\\ 1.034\\ 1.121\\ 0.990\\ 0.949\\ 1.012\\ 0.959\\ 0.973\\ 0.9949\\ 1.012\\ 0.959\\ 0.973\\ 0.959\\ 0.973\\ 0.959\\ 0.9571\\ 0.597\\$	5.45950004545457978787	1.255 1.259 1.214 1.202 1.164 1.205 1.255 1.550 1.500 1.50	3.82 23.67.51 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.67.55 4.55.55	2.68 2.0971111092710028285045124854248631300248828977776668893 1.11109282850451248563130102482897777666893

(1)	(12)	(13)	(14)	(15)	(16)
5-12 13 14 15 16 17 18 19 20 21 23 24 26 78 29 31 23 34 1 20 -12 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 34 20 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	5.20 4.50 2.133189188250 1.9988250 1.9988250 1.032218607513221 1.667513221 1.667513221 1.667513255555555555555555555555555555555555	236 363 1028 1327 1502 1507 1507 1505 1597 1505 1597 1905 1508 1015 1015 1015 1015 1015 1015 10	510 538 1034 1440 1623 1829 2149 2475 1228 1016 1858 2861 2736 1439 1194 1458 1759 2015 2495 1067 984 748 653 4724 1291	13.54 12.30 12.53 13.34 13.66 14.25 14.31 14.27 12.11 11.73 13.73 15.04 14.16 12.20 12.96 13.99 14.22 14.74 11.74 11.69 11.00 11.58 10.82 11.30	0.012 0.020 0.070 0.098 0.105 0.128 0.162 0.196 0.054 0.029 0.114 0.217 0.170 0.027 0.054 0.073 0.100 0.129 0.167 0.222 0.043 0.030 0.018 0.027
23456789011234567890112345678901222222	45.73860541 45.73860541 45.74146600209342 22.223.100209342 3.582 3.582	1153 1406 1551 1650 1784 1457 2048 1642 1586 1799 1855 1145 187 1424 1194 762 1006 650 723	1298 1322 1528 1880 2186 2210 2661 2739 2767 3255 1717 742 1806 1750 1455 1523 1045 985	12.32 12.54 11.82 13.22 13.37 13.55 13.72 13.79 13.87 14.05 14.05 14.23 12.88 11.68 13.39 13.14 12.12 12.61 11.35 11.74	0.089 0.104 0.126 0.128 0.148 0.166 0.174 0.183 0.198 0.208 0.225 0.129 0.017 0.158 0.139 0.081 0.139 0.081 0.110 0.061

					115
(1)	(2)	(3)	(4)	(5)	(6)
20-24 25 26 27 28 29 $30-1$ 3456 78 9 10 112 1345 16 78 9 10 112 13456 78 9 10 12 145 17 18 19 $20-1$ 3456 78 9 10 12 1456 17 8 9 10 12 1456 17 18 9 10 12 1456 17 18 9 10 12 1456 17 18 9 10 12 1456 17 18 9 10 12 1456 17 18 9 10 12 1456 17 18 19 $2-1$	0.91 1.20 2.39 0.294 1.20 2.39 0.294 1.07 1.4653 1.22.32930 0.1246 1.22.32930 0.145322 2.22.32936 0.25555 1.2222222 2.22230 0.255555 1.2055 1.235645 1.235645 1.2222222 0.2555555 1.23555555 1.23565 1.235655555 1.2356555555555555 0.43356650 0.55754555555555555555555555555555555555	71.83 71.53 71.13 72.043 71.148 72.043 71.72.043 71.72.043 71.72.043 71.73.74.77 73.91 73.91 73.91 73.91 73.91 73.91 73.91 73.91 73.91 73.91 73.91 73.91 73.91 73.91 74.36 70.769.70 69.323 69.522 69.522 71.67 71.67 71.67 71.67 71.67 71.67 71.67 71.67 71.67 71.67 71.67 71.71	75.66 2936535145395596663377777777777777777777777777777	3.83 3.15531001557238457068943107124626395657682431882 10.032528	1.251 1.053 0.945 1.260 1.854 1.971 1.233 1.287 1.080 1.170 0.999 1.134 1.170 0.9991 0.8911 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.981 1.170 0.999 0.981 1.170 1.611 1.197 1.206 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.278 1.265 1.656

(1)	(7)	(8)	(9)	(10)	(11)
$\begin{array}{c} (1) \\ 20-24 \\ 28 \\ 27 \\ 28 \\ 35-2 \\ 3$	0.845 0.918 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 0.975922 0.559222 0.55932 0.53932 0.53932 0.53932 0.53932 0.53932 0.53932 0.53932 0.53932 0.53932 0.53932 0.53932 0.53953 0.53953 0.53953 0.53953 0.53953 0.53953 0.53953 0.53953 0.53953 0.53953 0.53953 0.53953 0.53953 0.53953 0.53332 0.5332 0.5352 0.5352 0.5352 0.5352 0.5352 0.5352 0.5352 0.5352 0.5352 0.5	$\begin{array}{c} (0) \\ 7.082 \\ 6.486 \\ 5.2790 \\ 7.498 \\ 7.950 \\ 7.498 \\ 7.950 \\ 7.498 \\ 7.950 \\ 7.498 \\ 7.950 \\ 8.195 \\ 6.193 \\ 6.193 \\ 6.193 \\ 6.193 \\ 6.193 \\ 6.193 \\ 6.193 \\ 6.193 \\ 6.193 \\ 7.488 \\ 6.195 \\ 7.490 \\ 6.193 \\ 7.488 \\ 7.695 \\ 9.55 \\ 9.55 \\ 9.555 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ 9.55 \\ $	$\begin{array}{c} (9) \\ 1.905 \\ 1.843 \\ 1.023 \\ 3.104 \\ 2.035 \\ 3.104 \\ 7.703 \\ 2.2.14 \\ 2.2.14 \\ 2.2.14 \\ 2.2.14 \\ 2.2.2 \\ 2.2.2 \\ 2.2.2 \\ 2.2.2 \\ 2.3.3 \\ 3.3.3$	(10) 14.58 19.254 4.19.254 5.66 10.2666 5.2652 14.30 10.666 5.26 5.4 10.22 25.14 10.22 25.14 10.22 25.14 10.22 25.14 10.22 25.26 10.2 22 22 22 22 22 22 22 22 22 22 22 22 2	11) 2.90 1.39 2.692 1.692 1.60
19 S-1	0.462	6.920 6.073	5.00 0.946	17.46 33.86	2.05 0.574

(1)	(12)	(13)	(14)	(15)	(16)
(1) 20-245 267 28912 345678901123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789001123456789000000000000000000000000000000000000	(12) 4.77662999265554892912066840355599999708663569239 4.77666299926555489291206684035555599999708643569239 4.44444444444444444444444444444444444	(13) 855 974 1561 566 405 333 607 638 677 883 914 1062 1257 1298 1479 1411 397 264 182 69 121 312 379 485 644 793 131 296 281 252 193 132 125 132 125 132 125 132 125 125 125 125 125 125 125 125 125 12	(14) 1124 1248 2230 689 686 572 1188 1229 1530 1530 1570 2015 1970 2180 2171 2182 2006 1097 768 4595 219 3975 1176 1179 1415 1741 20655 1931 20655 1931 1764 179 1415 1744 1945 1744 1744 1744 1744 1744 1744 1744 17	(15) 11.88 12.42 13.77 11.71 11.55 11.21 11.67 12.40 12.76 12.40 12.70 12.91 13.26 13.24 13.25 11.15 10.97 13.26 13.24 13.25 10.97 13.26 10.23 9.87 4.24 9.17 10.73 10.06 10.25 10.31 10.70 11.68 9.78 9.85 10.23 10.48 10.23 10.48 10.23 10.23 10.48 10.23 10.248 10.23 10.24 10.23 10.23 10.23 10.23 10.24 10.23 10.23 10.23 10.248 10.25 10.23 10.248 10.25 10.23 10.248 10.25 10.23 10.248 10.25 10.23 10.248 10.25 10.23 10.248 10.25 10.25 10.23 10.248 10.25	(16) 0.077 0.097 0.174 0.047 0.033 0.026 0.093 0.093 0.104 0.135 0.174 0.135 0.174 0.183 0.193 0.206 0.216 0.233 0.063 0.075 0.035 0.028 0.019 0.024 0.049 0.104 0.117 0.126 0.136 0.150 0.165 0.174 0.196 0.207 0.089 0.082 0.051 0.042 0.036
19 S-1	4.07 2.63	1210 320	1778 858	12.02	0.238 0.082

1	1	8

(1) (2) (3) (4	(5) (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

-1	1	9

(1)	(7)	(8)	(9)	(10)	(11)
S-2 3 4 5 6 7 8 9 10 11 12	0.530 0.453 0.442 0.416 0.419 0.590 0.567 0.673 0.681 0.732 0.769	5.295 5.023 4.723 4.366 4.568 6.264 6.264 6.561 6.410 6.482 6.437 6.084	0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946	47.08 54.50 72.56 95.46 88.04 25.15 20.25 16.90 13.34 10.26 8.14	0.555 0.474 0.463 0.435 0.439 0.618 0.594 0.705 0.713 0.766 0.805

(1)	(12)	(13)	(14)	(15)	(16)
S-2 3 4 5 6 7 8 9 10 11 12	2.55 2.17 2.12 2.00 2.01 2.83 2.72 3.23 3.27 3.51 3.69	430 425 552 683 636 256 198 196 157 129 108	875 953 1189 1393 1333 429 418 356 357 217 163	13.73 14.12 14.53 15.11 14.79 12.61 12.33 12.48 12.42 12.42 12.47 12.81	0.106 0.120 0.155 0.196 0.185 0.062 0.051 0.042 0.033 0.026 0.020