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The resolution of analog-to-digital converters can be distinguished as

absolute resolution, or average resolution. This study reviews average

resolution enhancement techniques and proposes a method which is

particularly applicable as a low-cost modification to a high-speed

waveform acquisition system. This method uses oversampling combined

with computationally simple digital filtering to enhance the average

resolution of an analog-to-digital (A/D) converter, while maintaining

an absolute resolution which is at least that of the unmodified system.
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The average resolution enhancement is approximately 2 log2(N) - 4 bits,

where N is the oversampling ratio. The simple digital filter is also

shown to be useful in reducing alias errors when sample rates are

reduced to near Nyquist rates. Additive dither signals are shown to be

useful in maintaining expected resolution enhancement for certain

input signals.
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Resolution Enhancement of Analog-to-digital Converters

through Computationally Simple Digital Filtering

Chapter

Introduction

Analog-to-digital (A/D) converter resolution can be evaluated from two

perspectives [51: absolute resolution based on each sample considered

independently (eg. peak error and integral nonlinearity), or average

resolution based on an average of samples (eg. signal to noise ratio (SNR)

and effective bits). Enhancing the absolute resolution usually involves

improving the accuracy of the circuit technology and design. Enhancing

the average resolution can be accomplished by signal processing

techniques.

This thesis examines the use of high sampling rates combined with digital
filtering to enhance the average resolution of analog-to-digital ( A / D )

conversion. There are several ways in which the resolution will be

enhanced by such a system.

Under many circumstances the quantization error sequence is broadband.

If the input signal is sampled at a rate which is greater than the Nyquist

rate (oversampled), the error which is out of the signal band can be
reduced by digital filtering. Another factor which encourages the use of

oversampled ADCs is the ability to trade anti- aliasing analog filter
complexity for digital filter complexity. When oversampling is not used, a

front-end analog anti-aliasing filter is usually required. This lowpass filter

must have a narrow transition band and offer high attenuation in the stop
band. In an oversampled system, a digital filter can be used to suppress the
out of band components. The sample rate can then be reduced to near-

Nyquist rates by decimation. A simple analog anti-aliasing filter, often a

single pole filter [18], can be used with the oversampled system for an
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efficient combination of analog and digital system complexity. Other

advantages include the reduction of out-of-band system noise, and the

improvement of integral linearity by reducing out-of-band harmonics.

1.1 Purpose and motivation

The purpose of this thesis is to propose and analyze an oversampled A/D

conversion system to increase the resolution of digitized waveform samples

output at near-Nyquist rates. The system should :

1) operate at output sample rates ranging from a few

Kilosamples/second to hundreds of Megasamples/second,

2 be a low-cost modification to a high-speed quantizer,

3) maintain the absolute error of the raw quantizer for all cases of

signals where the output rate is at least the Nyquist rate.

These requirements are derived from the design of a general waveform

acquisition system.

To meet the objectives of this thesis, a family of computationally simple

digital lowpass filters is proposed which requires no multiplication. These

filters enhance A/D resolution by reducing the quantization error out of

the signal band.

1.2 Review of literature

Oversampled A/D converters can be distinguished by the absence or

presence of feedback around the quantizer. Those methods which do not

use feedback include:
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1) lowpass filtering,

2) the method of Claasen et al. [8],

3) the method of Belcher [4].

The most popular methods which use feedback can be classified as [24]:

4) linear predictive coders,

5) noise-shaping coders

Lowpass filtering

Lowpass digital filtering is among the simplest methods. This method is

shown in figure 1. A brief discussion of the method is made, without

implementation details, in [3] and [24]. In some papers which discuss other

methods the idea is considered as an introduction to or reference for more

complicated, higher performance schemes [1],[8],[24]. One author notes that

the lowpass method has been known for many years and has been used in

voice-grade converters used in telephone systems [1]. Deyst has analyzed

this method using an FIR filter [11]. However, very long filters having

filter coefficients which require general multiplication are used in this

analysis. Therefore, high-speed systems would be difficult to implement.

The method of Claasen et al.

The method of Claasen et al. [8] is shown in figure 2. In this method the

signal and the quantization noise are conditioned before the lowpass

filtering stage. The basic idea is to integrate the signal, quantize, then

difference the samples. The differencing operation shapes the power

spectrum of the noise so that most of the spectrum is out of the signal band.

Integration is performed on the analog signal before quantization to

minimize the effect of the differencing operation on the signal. Finally,

the output is lowpass filtered to remove the out-of-band noise. The input
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signal is assumed to be limited to an amplitude range -Xmax < x(t) < Xmax.

Adding Xmax to the input ensures that the signal which is integrated is

non-negative. The non-linearity before quantization, f(.), is required so

that the integrated signal does not saturate. The non-linearity after

quantization, g(.), cancels this distortion. Because of the noise shaping, this

method. offers substantially better performance than the lowpass method- -

it has the best performance of the non-feedback methods. However, it is

clearly more complex. It is not clear what advantage would be gained over

noise shaping coders which use feedback, which offer similar

performance for comparable complexity and have the advantage of greater

noise shaping flexibility. This might explain why no expansions to the idea

were found in the literature.

The method of Belcher

The system proposed by Belcher [4] is shown in figure 3. This method, along

with the lowpass filtering method, is among the least complex schemes.
1

Digital multiplication is not necessary if the IT/ factor implied in the

averager is carried along as a scaling factor and is handled off-line. For
1N=2m, scaling by KT could be be realized by an implied shift of the binary

point by m places. This system has the effect of reducing the quantization

uncertainty of the A/D converter by N. Deyst [11] has investigated the

performance of this system and found that it is very sensitive to A/D

converter non-linearities.

Linear predictive coders

The use of feedback in oversampled A/D converters dates back to the 1950s

[10],[22]. First we consider systems termed linear predictive coders. This

name comes from the telephony field where linear predictive coders have

been used to reduce the bit rate for coded speech waveforms by removing
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redundancy (correlation) before quantizing [12]. Linear predictive coders

can offer resolution enhancement without oversampling, but benefit
significantly from oversampling [24]. This method is shown in figure 4.

The transfer function in the feedback path can be analog or digital,

depending on the location of the digital-to-analog converter (DAC). Popular

methods which fit into this category include delta modulation (DM), and

differential pulse coded modulation (DPCM). Linear predictive coders

operate by quantizing the difference between the input signal and a linear

prediction of the current output signal. This difference signal has a

smaller variance than the input signal and makes more efficient use of the

dynamic range of the quantizer. The encoded output from the feedback loop

is then "reconstructed" by adding the quantized difference to the linear

prediction of the output.

Noise shaping coders

The noise shaping coders are similar to the linear predictive coders. In

figure 5, a general noise shaping coder is shown along with a popular

noise shaping configuration, the delta-sigma modulator [14] -- also known

as the sigma-delta modulator [1], [2], [16], [18] . The noise shaping coders get

their name because they shape the power spectrum of the quantization

noise such that little of the noise power remains in the signal band. Ideally,

this is accomplished without affecting the signal. The net effect is almost

the same as the Claasen et. al. system, but is accomplished using linear

feedback. Theoretically, the linear predictive and noise shaping coders

have been shown to offer the same resolution enhancement for a given

order [24]. However, the noise shaping coders have the advantage of using

a general lowpass decimator as the final stage, rather than a

"reconstruction filter" which needs to match a given predictor filter in the

feedback path.
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Comparison of methods

Figure 6 shows a comparison of the ideal performance of the different

methods. In terms of A/D resolution enhancement in implemented systems,
the noise shaping (specifically sigma-delta modulators) have offered the

highest- performance to date [7], [16], [18], [25]. Usually sigma-delta

modulators are constructed using a single-bit quantizer, which is

inherently linear. This has been critical because the overall linearity is

limited by the linearity of the DAC in the feedback path (for one-bit

quantizers, the DAC is simply the quantizer output followed by a flip-flop).
Recently, a method has been proposed to digitally correct for the

nonlinearity of the feedback DAC. Using this method a 4-bit quantizer, in

conjunction with oversampling by 128, has achieved simulated results of

21-bit resolution [7].

A primary problem with sigma-delta modulators for meeting the objectives
proposed in this thesis is related to operational speed. Very fast filters

which realize a z-domain transfer function (usually switched-capacitor)

are required in the feedback loop. State-of-the-art switched capacitor

filters using silicon technology offer sample rates of about 50 MHz [21],
which is inadequate for the hundreds of MHz objective of this thesis.

Another problem is that noise shaping causes an increase in total noise

power [2]. The performance degradation due to poor lowpass filter stopband
attenuation is more pronounced compared to the non noise-shaped lowpass

method. Therefore, using a computationally simple filter capable of

operating at high throughput rates can produce significantly poorer

results than ideal.

To meet the objectives of this thesis, the lowpass method was chosen. A set

of very simple digital filters are proposed which require no multiplication
(not even shifting), only addition. These filters operate at the oversampled

rate. A set of amplitude equalization filters operating at the decimated rate
is also proposed to complete the method. Thus a two stage decimation filter
is realized.
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1.3 Organization

This thesis examines the use of a particular family of computationally

simple lowpass filters for enhancing A/D resolution. The performance of

this me.thod is dependent on the power spectrum of the quantization error.
Chapter 2 presents an overview of models of the quantization noise found

in the literature, as well as some comparisons of model predictions and

simulated results. Chapter 3 introduces the family of filters and examines

their characteristics. In chapter 4 a theoretical analysis is performed of

the A/D resolution enhancement using this family of filters and a

quantization noise model presented in chapter 2. Chapter 4 also examines

the case of using noise shaping methods combined with a simple lowpass

filter and compares this to the lowpass method proposed in this thesis. The

validity of the theoretical analysis is demonstrated by simulations

presented in chapter 5. Simulation results are also presented which

examine the effectiveness of the family of filters in reducing alias errors

caused by decimation. The validity of the beneficial effects of dither, which

is discussed in chapter 2, is demonstrated by simulations. Chapter 6 presents

the conclusions of the thesis. Finally, appendices are included which

define errors and discuss error calculation methods used in conjunction

with the simulations.
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Chapter 2

Quantization Error Models

The lowpass method is very dependent on the broadband nature of the

quantization error. This chapter examines common assumptions of the

properties of quantization error and reviews some error models.

Conclusions are made regarding the validity and use of these models.

The quantization error is defined by

eq(nT) = Q[x(nT)] - x(nT) (1)

where T is the sampling period, x(nT) is the input signal, and Q [

represents the uniform quantization operation. A graph of Q[x] is shown in

figure 7a. A graph of the relationship of the quantization error as a

function of input, is shown in figure 7b.

Usually, analysis of quantization error effects is made possible by assuming

the error is a stochastic process which is statistically independent of the

input signal. The non-linear quantizer can then be modeled as a linear

system consisting of the input signal added to an independent noise source,

as shown in figure 10b. Frequently, all the following assumptions are made

to simplify analysis [19] :

1) eq(nT) is a stationary random process.

2) eq(nT) is uncorrelated with input sequence x(nT)

3) eq(nT) is an independent white noise process.
4) The probability density function of eq(nT) is uniform over

the amplitude range of quantization error, q.

If the input signal is "complicated", such as speech or music, this model has

been found to work well [19]. However, there are many cases where,

clearly, this model performs poorly (eg. constant input, step function,
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square wave). Mathematical models have been developed which are the

basis for these assumptions and clarify their validity.

2.1 Models for stochastic inputs

First, models are presented which assume the input signal is stochastic.

Widrow showed [26] that if

q<
6max

(2)

then the quantization error can be shown to be an independent stochastic

process (white noise) of uniform density and which is uncorrelated with

the input,

E {eq(n) x(n+m)} = 0 (3a)

rl
c-ci- ' 2

1_9. < x <2
2

feq(x) = i (3b)

I.0, otherwise

2
ra 2 -9-- m=0qe12 '

Efeq(n) eq(n+m) =
0, otherwise

(3c)

E {eq(n)} 0 (3d)

where q is the amplitude between quantization levels1 and m a x is the

highest significant (non-zero for an exact derivation) frequency in the

characteristic function of the input process.2

1 q = (2-13 fullscale), where B is the number of bits in the quantizer, and
fullscale is the analog range of the quantizer.
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All these results were derived using a quantizer of infinite amplitude

range. Infinite amplitude range is necessary for strictly meeting the

bandlimited condition of the characteristic function. Sripad and Snyder

have shown [23] that (2) is a sufficient, but not necessary for the model of
(3) to hold. They derive a necessary and sufficient condition which is

x2(2n1, 21r1c)=

q ) V 1#0 and k #0 (4)

where 4) x1 x2 2) is the second order characteristic function of the

sampled input x(nT) (xi = x(nT) x2 = x(mT)).

The significance of these result can be seen for the example of a Gaussian
input. Using the results of an analytical model related to (4), it has been

shown that for a first order Gaussian input the uniform noise model is a

very close approximation for I 0.7, where a is the standard deviation of

the input [23]. For the case of a second order Gaussian input, it has been
shown that the quantization noise is practically uncorrelated for q = a and

(3-12 < 0.9 where a12 is the 1,1 moment of the input [26]. Using these results,

2 If the input process is n-th order, then 4max = suPgmaxil i = 1,...,n. For

example, if the input process is second order the characteristic function is

00

(1) x1 x2( 1,12) = f f xix2(xl,x2) ei(x141 + x242) dxi dx2

-00 -00

where xi = x(n) and x2 = x(m).

x2(41,42) is non-zero and 4max2
non-zero. And

27r
q<

sup{max1,4max2}

for the model to hold.

4max is the highest 41 for which 4 x1

is the highest 42 for which (I) x1 x2(1,12) is
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it has been qualitatively stated that if the dynamic range of a variable

being quantized extends over several quantization levels, q, the model in

(3) holds [26]. However, it is easy to think of some deterministic inputs

covering a wide dynamic range for which this model breaks down --

basically any signal that varies less than q for long periods of time (eg. a

square wave).

2.2 Models for deterministic inputs

In response to this problem, a model has been proposed based on the

amplitude distribution function (ADF) of the derivative of a deterministic

signal [9]. The model of the power spectrum of the quantization noise is

CO

pi(S2/2nk)
Seq(52) =

k3
k=1

(5)

where pI(a) is the amplitude distribution function of the derivative of the

input signal3 , and SI is is the continuous-time frequency variable. For the

usual case of discrete-time the expression is given as,

00

Sde (ej°) = 1,12 Seq(S2 + m
2n

)

m=

where T is the sample period.

For the important case of a sinusoid x(t) = A sin(flot), the ADF is,

(6)

3All references to amplitude used in this model are normalized to the
amplitude of the quantization step, q.
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and the ADF of the derivative of x is pi(a) = px(a,C1 0 A). Inserting (7) into (5)

and then (5) into (6) we can find the model of the quantization noise for

the sinusoid sampled with period T. The authors show that if

T»
0.0A

( 8 )

the noise power spectrum is flat. A comparison of the noise power spectrum

predicted by this model and simulated results is shown in figures 8a - 8c.

Note that the model performs best for the case of the smallest oversampling
ratio. Also note that for the higher oversampling ratios, for N=500 and

N=5000, the noise is becoming significantly correlated. For the former, the

noise is highpass, and for the later it is lowpass.

2.3 Effect of dither on quantization noise

A small dither signal can be added to the input signal before quantizing to
whiten the power spectrum of the quantization noise and decorrelate the

signal from the quantization noise. The dither signal can be subtracted

from the samples after quantization. In an oversampled acquisition system,

most of the broadband dither power can be removed by lowpass filtering

[6].

A necessary and sufficient condition for a dither signal, w(t), which will

make the quantization noise white and uncorrelated with the input is [20],

0 V lc* 0 ( 9 )
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Power spectrum of quantization noise for oversampling ratio of 500, where
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Some common examples of the probability density function which satisfy

this condition are shown in figure 9.

Using the results from the stochastic models it can be stated that if the

signal has random amplitude fluctuations that cover a few quantization

intervals, then the white noise model of (3) should be applicable. For

signals which do not fluctuate randomly, the white noise model is not

necessarily a good model, even if the signal amplitude covers many

quantization intervals. This was demonstrated in figures 8b and 8c for the
case of highly oversampled sinusoids. The deterministic model for the

quantization power spectrum could be used for predicting results. In an

actual acquisition system it is reasonable to suspect that there will be small

additive noise which are uncorrelated with the input -- or a dither signal

could be purposely added. If the dither satisfies (9), it will cause the

quantization noise to be white. Even if it does not satisfy (9) exactly, it will

tend to decorrelate the quantization noise. Therefore, for an actual

acquisition system, the white noise model should be reasonably accurate.
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Figure 9 Examples of dither probability density functions which cause the
quantization noise to be white.



23

Chapter 3

Oversampled Acquisition System using

a Simple Averaging Lowpass Filter

The lowpass method using a family of very simple finite impulse response

(FIR) lowpass filters (known as comb filters or averaging filters) is

proposed for reducing quantization error. This family will be referred to

collectively as the MA (moving average) filter. These filters will operate at

the oversampled rate. The only arithmetic operation they require is

addition. A complimentary family of amplitude equalization filters, which

operate at the decimated rate, is also proposed. These filters will be referred

to collectively as the inverse filter. The inverse filter requires general

multiplication. The MA filter and the inverse filter form a two-stage

decimator. The architecture of the complete acquisition system is shown in

figure 10a. Figure 10b gives a more general system diagram which will be

referred to throughout the text.

3.1 MA Filter characteristics

The impulse response of the MA filter is

n<N

hM A (n) =

0, otherwise

1
where the N scaling factor can be eliminated

implementation and computed off-line, if necessary.

only the addition operation and multiplication is not

advantage of this filter is that the width of the passband

( 1 0)

from the filter

This filter requires

necessary. Another
of the filter is
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inversely proportional to the filter length, N. Therefore, to realize the

filtering and decimation process, it is possible to accumulate N inputs and
store them directly to waveform memory. If this relationship were not true,
additional buffering would be necessary.

The frequency response of the filter is,

N-11 v ;
HmA(z) =

i=0

Evaluating at z=ei (fs

wN

(co(N-1))
sin(2fs)

HMA(eja)) = e-k fs )
N 2fs

(12)

,where fs is the sampling frequency. The frequency response is shown in

figure 11 for N=10, and figure 12 for N=50. If the signal is decimated by N

after filtering, signal components will fold about the frequency 27cfs/ 2N ,

(normalized frequency of ION). Therefore the passband will be defined by,

nfs
< <

nfs (13)

at co
27cnfs

areThe nulls of the filter , n=1,...,N-1. An interesting

consideration is that, although the filter response has high side lobes, if

the desired passband is much smaller than /ON, the nulls in the response

will reject the bands which will fold into the passband of the decimator.

Figures 13-15 summarize the magnitude response characteristics of the MA
filter. The maximum passband error for various values of N is shown in

figure 13 where the error is the difference between the ideal LPF and the

MA filter at the cutoff frequency of we =
nfs

, that is,

.7cfs)
max(ep) = 1 - l HMA N )1

(14)
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The error reduces to about 0.37 for N > 10. Figure 14 depicts the half-power

(-3 dB) frequency as a function of N (here, frequency is multiplied by N to

scale to filter passband). Note that this does not significantly change for N
... 10. Finally, figure 15 shows the ratio of passband energy of the filter over

the total energy in all bands except the passband of the filter, that is,

)
band energy ratio = passband energy

(otherband energy)

where4 ,

passband energy

It

N

= "I J ilimmejf-0) l2 dco
2n -n

N

otherband energy = total energy - passband energy

1

N - passband energy

(15)

(16)

(17)

This ratio is a measure of filter ideality with respect to removing out-of-

band noise.

In observing these graphs it can be seen that the performance of the MA

filter does not improve significantly by increasing N beyond 10, except

that the passband becomes more narrow with N. Therefore, we do not

4 See [19] p. 572 for:

It
11 f I HmA(ejw)12 " =2ntotal energy =

-n

7C

r i )2
sin(v
N sin fs

1
dco = KT
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expect the resolution enhancement to become more like the ideal Iowpass

filter case with increasing N.

3.2 Amplitude equalization methods and the inverse filter

The passband amplitude errors caused by the MA filter could be

compensated by various methods.

If the input signal is known to contain a single frequency (ie. a sinusoid),

the output could be scaled by 1/ II-1M A (e.0-10) I, where co() is the frequency of

the input. For the general case, an inverse filter could be applied to the

decimated output. This filter has a frequency response of,

I Hinv(e) I =
1

,w
I HmA(efi)

, Iwl<n (18)

The frequency response of this filter for N = 5 is shown in figure 16. The

inverse filter increases the signal amplitude after decimation to cancel the
undesirable non-flat passband of the MA filter. Note that by correcting

(increasing) the signal amplitude, the acquisition errors (eg.. quantization,

aliasing, other system noise) will be increased.

An alternative scheme which trades waveform memory for performance

can be devised. Suppose that an input signal is bandlimited to only a

fraction of the MA filter passband (I co I < c) or it is desired to only

preserve this band of the signal. In this case it is only required to correct

the amplitude over the fraction of the passband. From figure 16 it can be

seen that the magnitude of the inverse filter frequency response is

monotonically increasing with I co I (I co < 7r). Therefore, the increase in

acquisition error caused by amplitude correction can be decreased if we
only correct the amplitude over this fraction of the MA filter passband. To
extend this idea, we can design the higher frequency band of the amplitude
correction filter to approximate zero to reduce the acquisition errors in
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this frequency band, followed by a decimation by 1 , where [3 is the fraction

of the MA filter passband which the signal covers. This scheme can be seen
as oversampling by a higher ratio. However, it has two advantages

compared to simply oversampling by a higher ratio using Hinv as defined

in (18). One is that the acquisition errors are increased less by the process
of amplitude correction. The second is that if there are large, undesirable

signal components just beyond the filter passband, I col < co c, the alias

errors will be reduced (see figure 17). This method requires more

waveform memory because the final decimation by 1 is performed using

samples that have already been stored in the waveform memory.

The inverse filter and the alternate inverse filter are ideal filters. A Linear

phase FIR approximation to the ideal inverse filter is shown in figure 18

for N=5. This filter was designed using the Parks et. al program [17] with

the desired magnitude subroutine modified appropriately.5

There are three main conclusions from this chapter. The first is that the

MA filter performs well at removing the quantization noise. In fact, since
1the total energy of the MA filter is N' which is the same as an ideal lowpass

filter, the MA filter is as effective as an ideal lowpass filter in reducing the

variance of white noise. The second conclusion is that the characteristics

of the MA filter do not become significantly closer to the lowpass filter of
the same cutoff frequency by increasing the filter length. Finally, a

primary disadvantage of the MA filter is its non-flat passband response.

This can be corrected at the expense of increasing the noise. For the

general case of the signal covering the entire passband of the filter, the

benefit of compensating for the non-flat passband response outweighs the

negative effect of increasing the noise, since the passband error has a

larger amplitude than the noise.

5 If I Hinv(ejw) is used as the desired magnitude, the error is not
equiripple--there is a negative bias to the error which increses with
frequency. In an attempt to reduce this bias, the desired magnitude was
altered slightly from I Hin v(e)(9 j .
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Normalized frequency

Figure 16 Frequency response of inverse filter and corresponding MA
filter (N=5). The frequency scale in parentheses is for the
inverse filter.
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Figure 17 An alternate inverse filtering scheme used when the desired
input signal band is a fraction (b) of the MA filter passband.
After decimation, the undesirable signal beyond coc is
aliased, but is eliminated by the stopband of the
alternate inverse filter. Other acquisition errors in this
band are also eliminated.
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Figure 18 Example FIR realization of the inverse filter for N=5. The filter
has 511 floating-point coefficients. (a) Magnitude response, and
(b) error of magnitude from ideal.
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Chapter 4

Theoretical System Performance

In this chapter, the performance of the MA lowpass system for increasing

resolution of the A/D converter is considered. First effective bits is

introduced as a measure of A/D converter resolution. Then an analysis of

the resolution is given assuming the white noise model for the quantization

noise. An interesting comparison is then made between the performance o f

the lowpass MA system alone compared to that of using the MA filter with

noise shaping coders. Finally, the worst case performance is analyzed.

4.1 Effective bits

Effective bits has been defined as an empirical method for calculating the

average resolution of an A/D converter using sinusoidal inputs [13]. In this

thesis the measure will be used in a broader sense. The general usage will

be explained in context. For more specific information, see appendix 2.

4.2 Theoretical analysis of improvement of SNR and effective

bits

No aliasing effects caused by the decimation stage are considered here.

Because of the signal dependency of alias errors, these effects will be

examined through simulations.

The quantization noise in different parts of the oversampled system is

labeled in figure 19. Assume, for the moment, that eq'(n) is decimated by

factor, M, which is different than the length of the impulse response of the

MA filter, N. The autocorrelation of the noise eq'(nM) is,
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eq(n) (n)
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Figure 19 Quantization error notation at different stages in the system.



Re ,(kM) = E {eq'(nM) eq'((n +k)M)}

00 00

=E{ E hMA(nM -i) eq(i) hMA((n+k)M-j) eq(n}
j=_.

00

hmA(nM-i) hMA((nM-j+kM)) Req(i-i)

where it is assumed that eq(n) is wide-sense stationary,
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(19)

Req(i-j) = aeq2 8(i-j) (20)

Substituting (20) into (19) results in,

Req,(kM) = ae
q

00

E hmA(nM-i) hMA((nM-i+kM))
i=-00

00

Req,(kM) = 6eg2 E hmA(p) hmAup+km»
1)=--m

(21)

(22)

Now consider the case that the decimation factor, M, is greater than or
equal to the MA filter length, N (in the proposed system M = N). In this case,
(22) can be reduced to,

00

Req,(kM) - aeq 2 hMA2(p) 8(kM)
13=-°°

The power spectrum of the error is then,

t
Se ,(z) = (re 2 hMA2(P) 8(kM)

q k=-00 q

z-k

(23)
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(24)

It is seen that the power spectrum of the residual quantization noise, after

MA filtering and decimating by N, is white noise which has a variance

reduced by a factor of N as compared to the variance of the unprocessed

quantization noise.

4.2.1 Effect of correcting passband amplitude on residual
noise

When the amplitude of the passband is equalized (increased), which is

necessary due to the non-flat passband of the MA filter, the average power

of the residual quantization noise is increased. From (24), the final SNR of

the entire system is,

a x2 N
SNRtot = (25)(gain)

where 6x2 is the variance of the input signal, and ri gain is the noise power

gain as a result of the passband equalization process.

When scaling is used for passband equalization, for sinusoidal inputs,

1

Again = 2
IHMA(de)°)

where coo is the frequency of the input sinusoid.

When inverse filtering is used,

(26)
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IC

N
N 1

llgain= 2_
"

(27)
IHMA(e) 12

dco

i°3
-7C

N

for a given filter length N. Note that the noise after inverse filtering is no
longer white.

If the alternative scheme of inverse filtering is used, as described in

section 3.2, then

N
llgain=

27r
Iiiimmei(o) 1 2

-7C

TST-13

do) (28)

where f3 is the fraction of the MA passband covered by the signal.

The effective bits can be calculated by,

EB = B - 1 log2
L

(11 g a i n)
2 ) (29)

When scaling is used, gain and EB are dependent on the input signal

frequency and EB will decrease with increasing frequency. Since there

can be a variation of EB for a given N, defining some average EB for the

input signal frequencies over the passband is of interest. To be consistent
with the simulation results, the sample mean of EB for 16 input sinusoids

equally spaced in frequency over the passband is used as this average

measure. Note that using these calculations there is no variation of Again,

thus EB, with input frequency when inverse filtering is used. A graph of
the sample mean of effective bits as a function of N using these theoretical

results is shown in figure 20. The sample standard deviation of EB for the 16
input sinusoids, as a function of N, is also shown. Figure 20 also includes
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deviation of effective bits over 16 input frequencies equally spaced over the
passband.
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theoretical results for the case of using an ideal lowpass filter (Again = 1)
instead of the MA filter.

4.2.2 Effect of adding white system noise

When white system noise, w(n) in figure 10b, is added to the input signal
the effective bits can be calculated by,

1
EB = B -

2 log2

and the SNR by,

a x2 N
SNRtot =

(6e g2 + a w 2 ) (Again)

(30)

(31)

where a 2 is the variance of the additional system noise. Here it has been

assumed that the quantization noise is uncorrelated with the additional

system noise. The theoretical results of (30), assuming an ideal lowpass

filter, are graphed, along with simulation results in figures 25-30 for cases
of different noise variances.

4.3 Comparison to noise shaping systems which use the MA
filter

As seen in figure 6, noise shaping coders offer much better resolution

enhancement over the simpler lowpass method when an ideal (or near

ideal) lowpass decimation filter is used. However, to achieve high

operational speed a simple filter is required. Figure 21b shows the average
resolution enhancement for various noise-shaped cases and the non noise-
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shaped case where the MA filter is used as the lowpass filter. The white
noise model is assumed. In this figure the transfer function from the noise
source to the input of the decimation filter is

T(z) = (1-z- 1)
n (32)

for nth order noise shaping. Figure 21a shows the magnitude of T(z) for n
of 1, 2, and 3. Figure 21b clearly shows that using simple filters can

drastically reduce the performance of noise shaping coders. Therefore,

considering a cost/performance analysis, lowpass filtering could be a

better alternative to noise shaping coders at high input sample rates.

4.4 Worst case performance

An input signal for which the proposed system has the poorest resolution

enhancement is a constant-valued signal (other signals could also cause

the same performance, but never poorer performance). In this case the

quantization error is also constant-valued. Therefore, lowpass filtering will

have no effect on the quantization error and there will be no resolution
enhancement. Note that the resolution is not degraded from the case of

using the quantizer alone; this was one of the objectives of the thesis. As
discussed in chapter 2, dither can be used to significantly improve the

resolution for input signals which otherwise cause poor performance.

This chapter can be concluded by two basic statements. First, from figure
1

20, we expect the lowpass system using the MA filter to perform within 4 of

an effective bit of an ideal lowpass system. Second, from figure 21b, when
the MA filter is used as the lowpass decimation filter (applicable to high

sample rates), the simpler lowpass system provides at least
1 the resolution

enhancement (in effective bits) as a noise shaped coder.
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Chapter 5

Simulations

In this section, the results from an extensive set of simulations is

presented which demonstrates the resolution enhancement of the MA filter
lowpass system. Simulations were performed using sinusoidal inputs with

and without the addition of white system noise. These simulation results are
used to measure effective bits while avoiding alias errors. Simulations were

also performed using non-bandlimited pulse train inputs. Simulations were

performed with and without the addition of white system noise. These

simulation results are aimed at investigating alias error and the beneficial

effect of system noise (dither) on square-like waves. A summary of the
definitions of error signals, and the methods used to calculate them is

presented in Appendix 1.

5.1 Simulations for effective bits measurement

Simulations were performed where the inputs to the model in figure 10b

are sinusoidal, ie. x(n) = A.co s( o.) on), for two basic cases. In the first case,

there is no system noise (w(n) = 0). In the second case, system noise is

added. The signal quantizer was an ideal, uniform, 8-bit quantizer and the
output of the decimator, ym A (nN), was

Both methods of amplitude correction,

normalized and rounded to 16 bits.

scaling and inverse filtering, were

used. The filtering transients were removed from the output signal before
analysis.

The sinusoid frequencies are in the passband of the decimator filter and

the signal alias effects after down sampling are not considered. For each

moving average filter length (N), 16 sinusoids were generated with

normalized frequencies
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= (32N + fraction) , i = 1,...,16.
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(33)

Note that these 16 sinusoids divide the decimation filter's passband (10)C I <

N) into 16 nearly equal parts. The "fraction" term in (33) was included so

that the period of the sampled sinusoid would be increased. If this term

were not included, the quantization error would contain large magnitudes

at harmonics of the input sinusoid's frequency, in which case the white

noise model for the quantization error would be poor.6

The output record length was 512 samples after all transients from MA

filtering and inverse filtering were removed and decimation was

performed. These sinusoids all had a magnitude such that they covered 0.95
of the full scale range of the quantizer.

Two methods of calculating effective bits (EB) were used.

Tektronix Effective Bits Package? : In this method, the input to the
system must be a sinusoid. The output sequence from the system (

A[ym '(nN)] in figure 10b ) is fed directly to the program. The frequency

of the input sinusoid is also reported to the program. This program fits the

sequence (least squares) to a sinusoid of the same frequency. The error
sequence is calculated as the differences between the system output data

sequence and the least-squares-fit sinusoidal sequence. Effective bits is

then computed by substituting the error average power, into the UcC

variable in the effective bits formula.8

6For simulation case where "fraction" = 0, see Appendix 3.

?This package was made available by Tektronix. It was written by Marc
Frajola and Dan Knierim--both of Tektronix. It uses the method described in
[13].

8Equation (A31) in Appendix 2.
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Direct calculation of error average power: The second method is

described in detail in Appendix A1.4. This method calculates the final error
signal by feeding the actual quantization error sequence9 eq(n) through

the system shown in figure 10b. The error average power is substituted into

the Uq' variable for the effective bits formula.10

5.1.1 Simulation results for the case of no system noise

Results for the case of using the Effective Bits Package and performing
amplitude correction by scaling are summarized in figure 22, where w(n) =
0. The most important graph in figure 22 to consider is the graph of the
mean effective bits as a function of N. Comparing the simulation results in

figure 22 to the theoretical results in figure 20 it can be seen that for small
N the simulated results of mean EB are nearly the same as the results using
the theoretical model. However, as N increases beyond 10 the mean EB starts

to increase at a rate greater than anticipated by the theoretical results. At N

> 70, the simulated EB actually becomes greater than the theoretical results

using an ideal low pass filter. The two graphs at the bottom of figure 22
show the variation of effective bits with input signal frequency. In the

graph where N=1000, note that for the most highly oversampled signals
(low frequency part of band) the effective bits decreases. These

phenomena can be attributed to the breakdown of the assumption that the

quantization error is uncorrelated (white noise). The model for

quantization noise for deterministic inputs presented in chapter 2 predicts

that the noise will become non-white for higher N. From (8) we have
N«iraA for the noise to be white, where 0 a 5_ 1 represents the fraction of

(00Nthe MA filter passband of the input sinusoid frequency (a= ). The lowest

frequency sinusoid (of the 16 used) for a given N corresponds to a=116 . For

9 eq(n) + w(n) if system noise is non-zero. x(n) is held at zero.

"Equation (A31) in Appendix 2.
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these simulations, A=128.0.95. Therefore the model predicts that for N «24

the noise should will be white. As N approaches 24, the lowest frequency
sinusoid would produce non-white quantization noise. As N approaches 384,

all 16 sinusoids will produce non-white noise.

Comparing the graphs of the standard deviation of EB vs. N in figure 22 and
the corresponding graph of the theoretical results in figure 20 it is clear

that the simulation results do not correspond well for large N. Simulation
results agree better when system noise is added, as will be seen later.

When the quantization error sequence is used directly to calculate EB,

slightly different results are obtained. These results are summarized in

figure 23. The main difference between the results of the two methods is
that for N > 100 the mean and the variance of the EB over the passband are

slightly less for the method using the error sequence. The fact that the

mean EB is higher when using the Effective Bits Package makes sense

since, by definition, the least squares sinusoid of all possible sinusoids of

the known frequency is found from the quantized samples. This is used as if
it were the actual input sinusoid. Therefore, "least squares" translates to

"highest EB" of all sinusoids of the known frequency.

Results obtained when inverse filtering is used for amplitude correction

are summarized in figure 24. Recall that the theoretical model predicts that

there should be no deviation of EB across the passband when this method is
used. In the simulations there is significant deviation. As will be seen later,

when system noise is added, this deviation is reduced.

5.1.2 Simulation results for different cases of system noise

In all cases the noise w(n) was a uniformly distributed pseudo random

sequence. Three cases of noise amplitude ranges were simulated,

Aw
Ax

= {0.2, 0.02, 0.002} (34)
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Figure 25

Effective bits for sinusoidal inputs, with uniform random system noise added
of amplitude range (0.2 sine amplitude range). Scaling is used to correct
MA filter passband amplitude. The raw quantizer is 8-bits.
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a Simulated results using MA decimation filter.
b Simulated results without filtering.
c Theoretical results using an ideal lowpass filter and white

noise model for quantization and system noise.

Figure 26

Effective bits for sinusoidal inputs, with uniform random system noise added
of amplitude range (0.02 sine amplitude range). Scaling is used to correct
MA filter passband amplitude. The raw quantizer is 8-bits.
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a - Simulated results using MA decimation filter.
b - Simulated results without filtering.
c - Theoretical results using an ideal lowpass filter and white

noise model for quantization and system noise.

Effective bits for sinusoidal inputs, with uniform random system noise added
of amplitude range (0.002 sine amplitude range). Scaling is used to correct
MA filter passband amplitude. The raw quantizer is 8-bits.
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a - Simulated results using MA decimation filter.
b - Simulated results without filtering.
c - Theoretical results using an ideal lowpass filter and white

noise model for quantization and system noise.

Effective bits for sinusoidal inputs, with uniform random system noise added
of amplitude range (0.2 sine amplitude range). Inverse filtering is used to
correct MA filter passband amplitude. The raw quantizer is 8-bits.
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a - Simulated results using MA decimation filter.
b - Simulated results without filtering.
c - Theoretical results using an ideal lowpass filter and white

noise model for quantization and system noise.

Effective bits for sinusoidal inputs, with uniform random system noise added
of amplitude range (0.02 sine amplitude range). Inverse filtering is used to
correct MA filter passband amplitude. The raw quantizer is 8-bits.
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a Simulated results using MA decimation filter.
b Simulated results without filtering.
c Theoretical results using an ideal lowpass filter and white

noise model for quantization and system noise.

Figure 30

Effective bits for sinusoidal inputs, with uniform random system noise added
of amplitude range (0.002 sine amplitude range). Inverse filtering is used
to correct MA filter passband amplitude. The raw quantizer is 8-bits.
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Time
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N = 100

Time domain graphs of a noisy sinusoid before and after MA filtering. In
each window the bottom graph is before filtering and the top graph is after
filtering. The noise amplitude range is (0.2 sine amplitude range).
Signal frequency is 21cfs/32N. Output is decimated by N. MA filter amplitude
roll-off corrected by scaling.
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where Aye, is the amplitude range of w(n), and Ax is the amplitude range of
x(n), the sinusoidal input. These noise amplitudes correspond to {± 20 LSB, ±
2.4 LSB, ± 0.24 LSB} of the 8-bit quantizer, respectively. The SNR can be

determined by,

A )2
2

ax2 2 3 Ax
2

SNR
a 2 2 2A w2

12

(35)

where ax2 is the average power in the sinusoidal input x(n), and aw 2 is the

average power in the system noise w(n). Therefore, the cases of noise
amplitude in (34) correspond to SNRs of {15.7 dB, 35.7 dB, and 55.7 dB},
respectively.

Both methods of amplitude correction were simulated. The results where
scaling was used are summarized in figures 25-27. The results where

inverse filtering was used are summarized in figures 28-30. Effective bits
was computed using the Tektronix Effective Bits Package for all cases.

The mean EB over the band are essentially identical for both amplitude

correction methods. However, the deviation of EB over the band is less

when inverse filtering is used.

Comparing the white noise model results for (mean EB) vs. N in figure 20 to

the simulation results where w(n) = 0, figures 22-24, and to simulation

results where system noise is added, figures 25-30, it is seen that the

addition of system noise causes the simulated results to agree more closely

with the theoretical white noise results. This is consistent with the

theoretical results of section 2.3 which show that dither signals tend to

whiten the quantization noise.

When system noise is present, the mean EB is generally about 1/4 of an

effective bit less than the theoretical results for the case of ideal lowpass
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filtering, regardless of N. Also note that the deviation of the EB over
frequency, for a given N, is reduced when noise is added.

The ability of the MA filter to remove noise from a sinusoid for the case of
15.7 dB SNR, seen in the time domain, is demonstrated in figure 31.

5.2 System performance in reducing alias error for

non-bandlimited signals

In previous sections, the input signal x(n) was a sinusoid and was always

bandlimited within the passband of the decimation filter.11 Now the case is

considered where the input signal is not constrained to the frequency

range of the filter passband. First, the undesirable effects of aliasing and
high frequency signal cutoff will be discussed. Next, the trade-offs between
reducing aliasing error, residual quantization error, and passband

attenuation error, depending on the configuration of the system are

described. Finally, simulation results are presented for example inputs

from a class of non-bandlimited signals. The last simulation results

presented examine the beneficial effects of system noise (dither) for

certain signals.

5.2.1 Alias and cutoff error for non-bandlimited inputs

When performing decimation, aliasing is avoided if the signal components

having frequencies greater than the folding frequency12 are eliminated.

11The system noise added to the input, w(n), extended beyond the cutoff
frequency of the decimation filter. But we are not concerned with aliasing
effects on the noise--only its average power.

12 The folding frequency is, we N , where N is the decimation ratio.
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The decimation filter is used to approximate this result. However, in this

case, the high frequency components of the signal are filtered out, this

could also be considered an error. Therefore two separate sources of error
result when the non-bandlimited signal is sampled, filtered, and decimated:

alias error resulting from non-ideal stopband characteristics of the

decimation filter, and cutoff error caused by the fact that the signal

components at frequencies greater than the folding frequency are not

represented. The alias error can be decreased by using a lowpass filter

which is a better approximation to an ideal lowpass filter. The cutoff error
is, in general, unavoidable for non-bandlimited inputs--the only way to

improve it is increase the sampling rate. The cutoff error is not considered

in this study. However, the alias error is. Figure 32 clarifies the difference

between these two separate error sources.

5.2.2 System configuration trade-offs for reducing error

Three system configurations will be considered. Simulations were

performed for all three cases which will be discussed in the next

subsection.

In the first case there is no signal processing. The input signal is

quantized, then decimated. For this configuration there is no passband

attenuation error, but alias error could result from the decimation process.

There is no reduction of the quantization error. The second case uses

ym A '(nN) from figure 10b as the system output. That is, no amplitude

correction is performed. In this case the passband attenuation error must

be considered. The MA filter will significantly reduce the alias error and
the quantization error. The last case uses A[ym Ai(nN)] from figure 10b as

the system output. That is, amplitude correction is performed so that the
passband attenuation error is eliminated13 . However, the effect of

13In an actual implementation it would not be completely eliminated. If
scaling were used for a sinusoidal input, the exact frequency of the
sinusoid would not be known, and the input would not be a perfect sinusoid.
If inverse filtering were used, there would always be some difference
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correcting the passband attenuation will increase the residual quantization

error, eq'(nN) , and the residual alias error, ea'(nN).

5.2.3 Description of simulations using periodic
non-bandlimited inputs

The class of exponentially damped pulse trains were used to represent

signals which are not band-limited. By varying the amount of damping we

can obtain near-triangle and square waves. Time domain plots of example

pulses used in the simulations can be found in figure 33. For each

simulation case, 50 different pulse train inputs were generated having

fundamental frequencies equally space& covering 1/10 of the passband of
the MA filter. Each input record contained one or more exact periods of the

sampled input, thereby validating the method described in appendix A1.3.2.

In all cases it was assumed that the input signal, before decimation, was
sampled without aliasing. A decimation factor of 10 was used for all

simulations. All signals had an amplitude range of -1.0 to 1.0. The input

quantizer amplitude range was from -1.05 to 1.05.

5.2.4 Simulation results for the case of no system noise

Damping ratios, T, of 0.5, 0.2, and 0.05 period were used. The results from

these simulations are summarized in figures 34-36. Each figure presents

simulation results for pulse train inputs of the same damping ratio. For

between a realizable filter and the ideal inverse filter. In the simulations
which follow, inverse filtering was performed by linear phase, 511 tap, FIR
filters. However errors were not calculated comparing system input to
system output (there would be no way to distinguish different error
sources). The main purpose of inverse filtering was to see its effect on
increasing the residual quantization noise. Inverse filtering also increases
alias error, but this effect was calculated by using the ideal inverse filter
response in the frequency domain for a given frequency component of a
line-spectra signal.
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each damping ratio, the three system configurations discussed in 5.2.2 were
simulated. The rms of the various errors are shown versus the fundamental
frequency of the pulse train. Effective bits versus fundamental frequency

is also included with each simulation set.1 4

14 Effective bits is defined, here, as the result of summing error signal
average powers for all the measured errors, call this U, and using U in
place of the Uq variable in the effective bits equation (equation (A31) in
Appendix 2). It is assumed that the different errors are uncorrelated.

U = Uq + Ua (no filtering)

U = Uq, + Ua, + Up (MA filtering, but no amplitude correction)

U = Uq' Ua, (MA filtering, and inverse filter amplitude
correction)

See Appendix 1 for definitions of Uq', Ua', and Up.
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Two errors resulting from the combined operation of filtering a n d
decimation. "Alias error" can only appear at frequencies below o3c = 2nfs/ 2N,
whereas "cutoff error" can only appear at frequencies above 2n fs/ 2N ,
where N is the decimation ratio.
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A) RMS of errors for case of no filtering.
B) RMS of errors for MA filtering without passband amplitude correction.
C) RMS of errors for case of MA filtering, and inverse filtering.
D) Comparison of effective bits for methods in A), B), and C).
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B) RMS of errors for MA filtering without passband amplitude correction.
C) RMS of errors for case of MA filtering, and inverse filtering.
D) Comparison of effective bits for methods in A), B), and C).
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The simulation results for T = 0.5 period are presented in figure 34, where
ea, ea', eq, eq', and ep are the rms values of alias error without processing,

alias error after processing, unprocessed quantization error, processed

(residual) quantization error, and passband attenuation error, respectively.

The worst results of the three system configurations is clearly the case of

no processing. Of the two system configurations where processing is

performed, inverse filtering actually degrades overall performance for

very low frequency input signals, as seen in figure 34(D). The results for T

= 0.2 period, shown in figure 35, are similar.

The results for 'T = 0.05 period, where the input is nearly a square wavel5 ,

are shown in figure 36. Here, eq', is almost as large as eq. This phenomenon

is discussed in the next subsection. The peak in EB for low input

frequencies is not present in figure 36(D), as it is in figures 35(D) and

34(D).

5.2.5 Simulation results when system noise is present

When the input is nearly a square wave it is clear that the system is

becoming less effective at reducing the rms of the quantization noise" .
Except for the short transition periods, the signal spends most of the time

moving very slowly. In this case, the quantization errors are highly

correlated, and the power spectrum of the noise is no longer white; it is

predominantly low frequency. So, the lowpass filter is less effective in

reducing the noise power. If small amounts of noise (dither) are added to

this signal, the quantization noise becomes significantly less correlated.

This idea was verified by a simulations where uniformly distributed

pseudo-random system noise, w(n), was added to the input signal. The

15See figure 33 for a time domain graph.

16Compare eq and eq' in figgure 36(B).
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Figure 37

Simulated results showing effect of adding uniform, random noise to pulse
train inputs having a pulse shape of ti = 0.05 period. HERE, eq and eq, include
added system noise. A MA filter is used on the original rate samples.
Decimated output is inverse filtered to correct for MA filter passband roll-
off. Decimation ration N = 10. A/D full scale = 2.1. Pulse amplitude range = 2.0.

A) Noise range is 0.0005(pulse amp. range), ie. (± 1/16 LSB of 8-bit A/D.)
B) Noise range is 0.002(pulse amp. range), ie. (± 1/4 LSB of 8-bit A/D.)
C) Noise range is 0.004(pulse amp. range), ie. (± 1/2 LSB of 8-bit A/D.)
D) Comparison of effective bits for methods in A), B), and C).
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simulation results are summarized in figure 37. In these graphs, eq, and eq

include the added system noise" . Even though more noise is being added,

the overall effect is that an optimal compromise is obtained when the
1

amount of uniform noise added is about + 2 LSB (or perhaps slightly

greater), as seen in figure 37(D).

It has been demonstrated by simulations that for sinusoidal inputs the
1

resolution enhancement of the proposed lowpass system is within 2
an

effective bit of the theoretical results predicted in chapter 4. It is seen that

for 10 < N 500 the correlation of the quantization noise produces a

highpass spectrum and the resolution enhancement is higher than

predicted. For N > 500 the correlation of the quantization noise produces a
lowpass spectrum and the resolution enhancement decreases. Simulations

have demonstrated that when a small dither signal is added to the input, the
resolution enhancement is very close to that derived in chapter 4 using the

1

white quantization noise model. This performance is within 4 of an

effective bit from that of an ideal lowpass system. For a class of periodic,
non-bandlimited inputs it was demonstrated that the overall acquisition

error, including alias error, is significantly reduced by the proposed

lowpass system. For low fundamental frequencies it was shown that the

operation of amplitude correction offers no substantial improvement in

overall effective bits. The effects of dither for improving resolution of the
lowpass system for squarewave-like signals was also demonstrated by

simulations.

17 Define elq(n) = Q[x(n) + w(n)] - x(n) , then the RMS of the total noise
before processing is calculated,

eq =

L-1
Ielq2(n)
n=0

eq' is calculated by passing elq(n) through the system in figure 19, then
calculating the RMS of the residual error.
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Chapter

Conclusion

A computationally simple lowpass system has been proposed which

enhances the average resolution of an A/D converter. The system meets all
the objectives of this thesis, as stated in section 1.1:

1) It can operate at sample rates over a broad range of frequencies.
The upper speed limit could reach hundreds of Megasamples/second
due to the fact that addition is the most complex arithmetic operation
required.

2) It is a low-cost modification to a raw, high-speed AID converter.

Primarily, the only extra component required is a high-speed

accumulator. Amplitude correction can be processed off-line on low-
speed computation facilities.

3) The absolute error of the raw quantizer is maintained for all inputs.

The worst case is a constant-valued input. In this case, there would be no
resolution enhancement. However, in actual system, ambient noise, or an

added dither signal would ensure that there would always be some

resolution enhancement.

This simple system is expected to provide about
1

the resolution

enhancement (in effective bits) as a substantially more complex noise

shaping coder, when high speed operation is desired. Dither was shown to

enhance the resolution enhancement for signals where the signal varies

slowly for a large percentage of time. The system was also shown to be

useful in reducing alias errors for non-bandlimited input signals.
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Appendix 1:

Error Calculation Methods

This appendix defines many of the specific error discussed in this report

and explains the methods used to calculate these errors from the

simulations. First, some preliminary definitions are given, followed by

definitions and calculation methods for specific errors.

A1.1 Preliminary definitions

Signal average power will be used extensively in the measurement of

errors of the simulated results.' 8

For a discrete-time signal, average power will be defined by

L-11 v
Ux =L x- (nT)

n=0

and for continuous time

tt.1 i
Ux j x2 t) dttf-t0

to

L-1 tf
18 Other practical measures could be I le(nT) I) 4-4 J le(t)I dt

n=0 to

or max(e(nT)) 4-) max(e(t))
ne [0,L-1] (integers) to RO,ta

(Al)

(A2)
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where L is the number of samples in the record covering the time interval
[tf,t0] and T is the sample period.

The discrete Fourier transform (DFT) will be defined

L-1
2n 2n

c) = x(n) k

n=0

(A3)

The discrete Fourier series (DFS) is identical to the DFT with the provision

that the record length is the period of the sequence. The DFS will be
denoted by X(k) to distinguish it from the DFT.

A1.2 Method for measuring passband attenuation error

This error is easiest to define and calculate in the frequency domain. The
passband attenuation error spectrum is defined

(1-HmA(eic°)) X(&°")) , 1 0) 1<

Ep(eiCt) = (A4)

1. 0 , otherwise

where X(eic° ) is the spectrum of the unquantized discrete-time input

calculated over the record of L samples, that is,

L-1
X(ec°)= x(n) e-ju)n

n=0
(A5)

For all the cases that were simulated, the input signals were periodic and

had line spectra. Therefore, the average power of the passband attenuation

error can be exactly calculated using the DFS. Using Parseval's relation



L-1 L-1

Ix(n)12 =L IX(k)12
n=0 k=0

the average power can be calculated by

'r
Up =

12 Ep(0) 1
2

+ 2 1 Ep(k)1
2

k=1
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(A6)

(A7)

27c
where b is the largest integer which satisfies b 5 N. It is assumed in (A7)

that the input signal is real and therefore has a conjugate symmetric

spectrum. If x(n) is decimated by N, then Up is divided by N (see equation

(A15)).

A1.3 Method for measuring alias errors

First, a general framework for measuring alias errors is given. Then a

specific method, used in conjunction with the simulations, is presented.

A1.3.1 General method for measuring alias error

after decimation

We would like to keep all measurements using discrete-time since our

original input will be in the form of a time series, as opposed to

interpolating increasingly fine to approximate continuous time. Another

problem with using continuous time is that we would have to be careful

that all errors in interpolation and numerical integration would not

become significant. The concept of aliasing, however, makes more sense in

continuous time. To resolve this issue the meaning of aliasing will be

investigated. Aliasing is usually discussed in conjunction with the

sampling theorem. If the original continuous-time input signal is band-
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limited, ie. IX(co)I = 0, for fro' > coB , and is sampled at a rate greater than the

Nyquist rate, then if the sampled signal is decimated by N < B ,

theoretically, the original continuous-time signal could still be

reconstructed. But if we decimate by greater than nicoB , then it would be

impossible to reconstruct the signal in general. Note that the process of

decimation does not introduce error in the samples, it only introduces error

in the reconstructed continuous time signal. Thus we cannot directly "see"

aliasing error using discrete time. But we can measure it indirectly; we can

measure the difference between a decimated sequence from which perfect
reconstruction could be performed, and a decimated sequence from which
aliasing would occur. For example, suppose we have a bandlimited

continuous-time signal x(t) which we sample with infinite amplitude

precision, at slightly greater than the Nyquist rate. This forms the

sequence x(nT). Now we decimate by N. Before we decimate, we pass the

same sequence x(nT) through different discrete-time (digital) filters hi

and hM A (see figure 38) to produce yi and ym A , respectively. Then we

decimate by N to produce yi (nTN) and ym A (nTN). Using a sin(x)/x

interpolator we produce the continuous-time "reconstructions" Y1 (t) and

ym A (t). The average power of the alias error signal would be

tf

Ua
r

WO= j [ YM A(012 dttft0
1

tO

(A8)

using the continuous-time average power definition, and similarly

L-1 L-1
-1-jUa = Lyi(nTN) YMAO TN)]2 = I ea2(nTN)

n=0 n=0
(A9)

using the discrete-time average power definition. Equation (A9) describes

the general method used to measure alias average power for discrete-time

signals--we pass the input sequence through a reference lowpass filter,

which is perfectly, or almost perfectly bandlimited, similar to hl, then pass

the input sequence through another filter which is being evaluated and

compare the two results. Note that hi and hMA have the same magnitude
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(moving average filter, for given N)
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(ideal lowpass)

(like I10, except has magnitude

of MA filter in passband)
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N N

Figure 38
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Family of filters used in the analysis of alias and passband errors (no
periodicity requirement on input).

,27r
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o ( n )
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27c 2
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Figure 39

Family of filters used in analysis of alias and passband errors (periodic
inputs).

a) Frequency response.
b) Impulse response (included to show time-domain correspondence of



78

frequency response in the passband. Thus, passband attenuation error is

eliminated.

A1.3.2 Specific method for measuring alias error

after decimation

This methods operates on the unquantized input sequence. In the model of
quantization, ie. Q[x(n)] = x(n) + eq(n), we have separated the source of
quantization error, eq(n), from the signal, x(n). Alias and passband errors

are only meaningfully defined over x(n), therefore, eq (n) is not

considered when analyzing alias effects) 9 This method only works

accurately for periodic sequences. It works for any down sampling factor
N. All analysis is performed in the frequency domain.

Assume we have a record of length L of a periodic sequence, x(n), which
contains an exact number of periods. That is, x(n) = x(n+) for m e {1,2,...}.

The DFT of this record is precisely the DFS of the periodic sequence. With
these assumptions, we can realize a lowpass filter which has the same

2n
effect as an ideal lowpass filter. The easiest way is to multiply X(e) L ) by

,2n
110(d L k ), where

2n
HO(e-1 L

)

(i)
coBL

IL 0 < k < BL
2n

and L - < k L-1

(A10)

LO, UL' < k < L (°13L
2n 2n

2nk
0

19 See equation (A21).
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Note that Ho (k) is real. Thus, the corresponding impulse response ho(n) is

is symmetrical about n=0 (zero-phase) (see figure 39).

The filter we want to analyze, the MA filter, is defined

r 1
N' 13n<N

-1
hmA(11

N
27) =

0, otherwise

The time offset of
N- 1 is included so that the filter is zero-phase.

2

(All)

The DFS of the reference sequence yi (n) is obtained by multiplying the
2n 2n .2n

DFT of Hi(el V() and X(el /71(). The reference filter we use, Hi (ei Lk), must

have the same pass band magnitude response as the filter we are analyzing.
So,

2n 2n 2n

H1(e L ) = HO(ej
L k) HMA(ej

L
k) (Al2)

This is equivalent to circular convolution in the time domain. The output of
the circular convolution represents one period of y (n). Next, one period of

the convolution of x(n) and hM A (n), (ie. ym A (n)) must be obtained to

compare with the reference yi (n). The implementation of circularly

convolving hM A (n) and x(n) was performed by linearly convolving

hM A (n) with x'(n), then removing transients, where

I x(n), 0 n < L+N-1

x'(n) =
0, otherwise

Thus,

One period of x(n),
extended by N-1 samples

(A13)



L-1
YMA(11) = hM A (k) x'(n-k)

i=0

N-1 N-1<n<L+
2 2
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(A14)

Now we consider the effect of decimation on both ym A (n) and Y1 (n). We do

not explicitly decimate in the time domain for y (n). Instead we use the

following formula which represents the effects of decimation in the

frequency domain (this is exact for periodic, sequences, or for infinitely

long records of any sequence) [15],

N-1

DFT[yl(nN)] =
1

y (ei`EkLN

i=0

N-1V k
i2n( k :4

N Z,i X(e-. LN N)) H1 (e- JRLN

i=0

1 k
= N X(e-12n LN) H1(e-i2nLN)

(A15)

We do explicitly decimate ym A (n) in the time domain, thus by using (A6)

we can write the final expression for alias error average power,

u a =
1

2 I Ea(0)12 + lEa(k)12
k=1

where b is the largest integer which satisfies
2n

b N, and

1 k k k (N-1)
Ea(k) = N X(e.121) H1(e12lT) - DFT[yMA(nN)] e--147cLN 2

(A16)

(A17)

Note that the phase modification to DFT[yM A (nN)] in equation (A17)

accounts for the fact that only non-transients are used.2

20See equations (A13) and (A14).
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After inverse filtering is performed to provide amplitude correction we

have,

Ua, =
1 1

lEa1(0) I
2

+ 21 lEa,(k)12
k=1

where,

1

Ea'(k) = Ea(k)
Hinv(ejly)

(A18)

(A19)

For this method to be precise L/N must divide exactly, so that the length

L/N DFT of the down sampled periodic sequence ym A (nN) is precisely the

DFS (no spectral leakage).

A1.4 Method for Analyzing Quantization Error after Filtering

Throughout this study, quantization error is modeled as

Q[x(n)] = x(n) + eq(n) (A20)

where Q[.] represents the quantization operation. If we pass Q [ x ( n )]

through the filtering/decimation system in figure 10b, we see that the

output can be calculated as,

N-1 N-1

YMA() = hMA(k) x(nN-k) + hMA(k) eq(nN-k)
k=0 k=0

(A21)

The first sum determines ep and ea, and the second sum determines eq'.

Equation (A21) clarifies why the passband and alias error were calculated
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on the unquantized signal; the different error calculations separate nicely

with this approach.

The average power of the filtered quantization error sequence can be

expressed,

L-1
u

q L
,= 1

2d
e

q
,2(nN)

nN=0

L -1 N-1
(--=i-: E I hMA(k) e (nN-k)

k=0
nN =O

(A22)

If the output precision of the decimator is less than the number of bits i n
N-1

the maximum sum of ym A (nN) = hMA(k) Q[x(nN-k)], a second
k=0

quantization stage is realized. This stage represents rounding the result to a

specified number of bits,

N-1
eq"(nN) = RND(NORM(E hMA(k) Q[x(nN-k)) )

k =0

(N-1
NORM E hMA(k) Q[x(nN-k))

k=0

(A23)

where eq,i(nN) is the error sequence caused by rounding. NORM stands for

a normalization operation where the accumulation of the current filter

output is right-shifted such that the longest possible accumulation would

not overflow the desired precision MSB. RND stands for the rounding

operation where the least significant bits of the normalized accumulation

are rounded off.

eq'(nN) can be updated to input the rounding error eq"(nN)

(total with rounding) (total without rounding) (rounding)
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eq'(nN) E- eq'(nN) + eq"(nN) (A24)

and,

L-1
1

ucf eci:2(nN)
nN=0

assuming eq'(n) (no rounding) is uncorrelated with eq,f(n).

(A25)

If the output sequence is to be amplitude corrected, this operation must be

performed on the error sequence as well. So, finally,

e q (I1N) A[eq,(nN)] (A26)

where AN stands for the amplitude correction operation (scaling or

inverse filtering), and again

L-1
=--

I 7,
ucf eq'

nN-0
(A27)
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Appendix 2:

A Broader Definition of Effective Bits

The definition of effective bits is (13],

(actual rms error 1 actual ms (A28)EB B log ideal rms error -2 °g2(ideal ms error

where "ideal rms error" = represents the rms error of a B bit quantizer

assuming the white uniform noise model. The "actual rms error" is the rms

of the difference between the A/D output samples and a signal which is a

least squares fit of the samples to a sinusoid. Three comparable definitions

of EB are also used in this thesis.

Theoretical analysis: Theoretical variances of stochastic processes are

substituted for the "actual ms error" term. In this case,

(7e
q2;\1EB =B --2 log2 2q_

12 j

where a

white system noise, w(n), is added to the input,

2

(A29)

is the theoretical variance of the quantization noise. When

1

(aeq + crw2 2 \
EB = B --2 log2 2

(A30)

12

where it is assumed that eq(n) and w(n) are uncorrelated, so variance adds.

Empirical: Average power measures, different from those in the original

definition of effective bits, are substituted for "actual ms error." In the
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method for analyzing quantization error described in appendix A1.4, the

average power of eq'(n), Uq', is substituted for "actual ms error",

EB = B
1

1°g2 2

12

(A31)

In the simulation results presented in section 5.2, average powers from

different sources are summed and are substituted for "actual ms error." For

example,

EB = B - 2 B
log.

q' U
2

+ Up

12

(A32)

It is assumed that the different errors are not cross correlated, so average

power adds.
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Appendix 3:

When the sampling frequency

is an exact multiple of the input signal frequency

One set of simulations was performed where the sampling frequency was
an exact multiple of the input frequency--a rare case in actual sampling

("fraction" = 0 in equation (33)). These simulation results are presented in

figure 40. These results were inconsistent with the other simulations where
37

fraction = 87

and fraction =
11

173
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a - Simulated results using MA decimation filter.
b - Theoretical results using an ideal lowpass filter and white

quantization noise models.

2nfs
2N

Typical effective bits for the unusual case where the sampling frequency is
an exact multiple of the input sinusoid frequency. Decimated output is scaled
to correct for MA filter roll-off.


