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Introduction  24 

This Supporting Information file contains supplementary Text S1, Text S2, Text S3, and Text S4, 25 
Figures S1 and S2, Tables S1 and S2, Captions for Dataset S1, and references.  Text S1 though 26 
S4 describe the data analysis methodology of this study.  Figure S1 shows the differences 27 
between ship based observations of δA and Tropospheric Emissions Spectrometer (TES) δA 28 
estimates before and after applying the calibration correction and Figure S2 is a flowchart 29 
depicting data analysis.  Table S1 lists the TES calibration coefficients used to correct the 30 
satellite retrievals.  Table S2 and S3 document literature reviews of measurements of the D/H 31 
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ratio of the world’s major rivers and in evapotranspiration flux estimates respectively.  Dataset 32 
S1 includes monthly bias-corrected estimates of δA and associated uncertainties. 33 
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Text S1  35 

Multivariate Regression 36 

This study used data from the Tropospheric Emissions Spectrometer (TES), specifically the 37 
latest version of the TES Lite products (v006) which report HDO, H2O, and a suite of other 38 
meta-data on 17 pressure levels.  Spectral radiance is measured by TES in the 650 to 3050 cm-1 39 
(15.4 to 3.3 μm) bands at an apodized resolution of 0.1 cm-1.  A correction is applied to each 40 
individual TES retrieval to estimate the surface vapor D/H isotope ratio. The applied correction 41 
takes the form of 42 

(S1) , 43 

where δA is the corrected surface composition, β1 through βn-1  are the correction coefficients, 44 
x1 through xn-1  are the regression parameters respectively, βn is the final intercept term, and ε 45 
is the random error not captured by this regression (further described in Text S4).   46 

Throughout this study, all D/H isotope ratios are reported relative to the V-SMOW standard in 47 
δ notation expressed in parts per thousand (‰=10-3), where δ=Rsample/Rstd-1, with R the ratio of 48 
D to H.  The TES surface layer is defined as the average of the bottom two pressure levels 49 
within the TES lite data files and troposphere values are calculated as the average of all levels 50 
(including the surface) below the tropopause.  The two TES layers used in this analysis reflects 51 
vapor at an average pressure of 996hPA, which corresponds to the lowermost ~140m of the 52 
atmosphere.  We found that two layers, while integrating over a thicker layer, provided 53 
improved performance over using just the lower most TES layer alone. 54 

The chosen regression parameters (listed in Table S1) represent a compromise between 55 
parsimonious model development and accurate estimation.  Though a single isotope profile 56 
as a function of pressure is used as the TES a-priori [Herman and Osterman, 2012], variations in 57 
surface and tropopause pressure will cause values both these a-prioi isotope values to vary for 58 
each retrieval, thus capturing many physical atmospheric processes that control the quality of 59 
the TES retrieval.  Similarly, variation in water vapor mixing ratios (q) at both the surface and 60 
within the entire troposphere will also alter the quality of the TES retrieval [Field et al., 2012].  61 
Other properties of the TES retrieval, such as the surface temperature, nadir angle, and the 62 
values within the TES averaging kernel, were also found to be strongly correlated with the TES 63 
HDO bias relative to the ship based δA values.  However, many of these were redundant with 64 
the parameters listed in Table S1 and were therefore not included in the bias-correction 65 
model developed here, though they merit further investigation. 66 

The best fit and associated uncertainty in values of correction coefficients (β ‘s) was 67 
determined though a multivariate least squares regression where δA in equation (S1) is taken 68 
to be the data set of the ship based observations.  A jackknifing approach [Wu, 1986; Bowen 69 
and Revenaugh, 2003] is used to assess the uncertainty in the regression, wherein each ship 70 
based observation is removed from the data set, and a regression is preformed to determine 71 
the β values.  The mean and standard deviation (σn) of these different regression models were 72 
then calculated and shown in Table S1.  Before applying the correction, the mean difference 73 
between δA observed from the ships and δA observed from TES was 14.5‰ (red histogram 74 
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Figure S1).  Cross-validation of the bias-corrected results using the jackknife iterations (each 75 
observation was removed and the compared with the predicted value at that site using the 76 
newly derived set of β values) shows that the average prediction bias is removed (blue 77 
histogram Figure S1).  Also shown in Table S1 are the Pearson correlation coefficients 78 
between δA observed from the ship and each regression parameter.   79 

80 
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Text S2 81 

Oceanic Evaporation Isotopic Composition 82 

The isotopic composition of oceanic evaporation flux, δE(O), is calculated based on the ratio of 83 
the HDO vapor pressure deficit to the H2O vapor pressure deficit [Craig and Gordon, 1965] as 84 

(S2) . 85 

Above, sea surface water isotopic composition, δL, is assumed equal to 0, and surface vapor 86 
composition, δA, is estimated based on the bias-corrected climatologically averaged TES 87 
observations (Text S1).  The vapor/liquid equilibrium fractionation factor, α*, is dependent on 88 
surface temperature [Majoube, 1971], and the equilibrium enrichment is given by ε*=(1-α*)103.  89 
The value of the kinetic enrichment, εK=CK(1-h), is determined by surface conditions and is 90 
not well constrained, and therefore we conservatively assume that CK ranges from 2 to 6.5, 91 
representing the range of values expected for rough to smooth oceanic conditions [Merlivat 92 
and Jouzel, 1979].   Both temperature and surface-normalized relative humidity, h, are 93 
obtained directly from the TES retrievals and averaged within each grid cell in the same 94 
manner as the δA values [Gat, 1996; Horita et al., 2008]. 95 

  96 
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Text S3 97 

Atmospheric and Oceanic Mass Fluxes 98 

A total mass flux is calculated for oceanic evaporation, total oceanic precipitation, total land 99 
precipitation and the associated isotopologue fluxes.  Total land evapotranspiration and 100 
runoff, and their associated isotopic values are then determined as the residuals of the 101 
atmosphere and ocean mass balance.  Values for oceanic evaporation isotope composition 102 
were calculated as described above (Text S2) while data from global the Global Network of 103 
Isotopes in Precipitation (GNIP) and published literature were used to model global 104 
precipitation isotope values (δP) based on a non-linear least squares approach [Bowen and 105 
Wilkinson, 2002; Bowen and Revenaugh, 2003].  Briefly, this method involves optimization of a 106 
model representing observed δP as a function of site latitude and elevations (as proxies for 107 
temperature effects) and a interpolated spatial field of residuals from the latitude-elevation 108 
model (reflecting circulation-driven effects). The accuracy of this approach has been 109 
determined via resampling (N-1 Jackknife), at stations and resulted an average error of ~9.4‰ 110 
[Bowen and Revenaugh, 2003].  The set of Jackknifed model parameters were used to generate 111 
a synthetic set of grids representing precipitation isotopic composition for each month and its 112 
uncertainty. 113 

The mean global precipitation over land, , and its associated isotopic value, , are 114 
estimated as 115 

(S3a)   116 

and 117 

(S3b)  . 118 

Where  is the average precipitation occurring in grid cell at location x, y, in month m 119 
taken from the GPCP [Adler et al., 2003].  The indicator function, , takes a value of 1 if 120 
the current grid cell is over land or a value of 0 if over water, and  is the area of each 121 
2x2 degree grid cell. Similarly, the mean global precipitation over the oceans, , and its 122 
associated isotopic composition, , are estimated as 123 

 (S4a)   124 

and 125 
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(S4b)  . 126 

Finally, calculation of mean global evaporation over the oceans, , and its associated 127 
isotopic composition, , are estimated as  128 

(S5a)   129 

and 130 

(S5b)  . 131 

Where  is evaporation occurring in each grid cell each month [Yu and Weller, 2007]. 132 

 133 

Atmospheric and Oceanic Mass Balance 134 

Based on the estimated global fluxes and their associated isotopic composition, we construct 135 
a mass balance of the Earths oceans and atmosphere for both H2O and HDO.  These are used 136 
to estimate the isotopic composition of global continental runoff, , and global 137 

continental evapotranspiration, .  The mass balance of the oceans is solved for global 138 
runoff isotopic composition as 139 

(S6)  , 140 

where the denominator on the right side in Equation S6 is the global runoff flux amount.  141 
Similarly, we construct a mass balance of the atmosphere and solve for the isotopic 142 
composition of land evapotranspiration as 143 

 (S7)  , 144 

where the denominator on the right hand side in Equation S7 is the global continental 145 
evapotranspiration flux amount. 146 
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Text S4 148 

Monte-Carlo Simulations of Fluxes 149 

An ensemble of Monte-Carlo simulations is used to determine uncertainty in the final estimate 150 
of and , with the workflow depicted in Figure S2.  In total 1000 different 151 

simulations were conducted, each resulting in a unique value of and , with the 152 
mean and standard deviation of these 1000 values taken as our final result. 153 

The first step, as described in Text S1, was to use the each of the N-1 jackknife regression to 154 
determine the mean and covariance matrix the regression coefficients.  Then, for each 155 
simulation, a set of regression coefficients was randomly generated assuming a bivariate 156 
normal distribution for these parameters.  This set of regression coefficients was then use to 157 
estimate a bias-corrected value of δA for each TES retrieval.  After applying our bias-correction 158 
the difference between the observed δA(Ship) value and the corrected TES δA(Cor) has an 159 
average value of zero, denoting that the bias has been removed, and a standard deviation of 160 
13.4‰ (Figure S1).  This residual uncertainty not captured with the multivariate regression is 161 
propagated by adding random noise, ε (i.e. an independent and identically distributed 162 
random variable) with mean zero and standard deviation σε=13.4‰ to each retrieval for each 163 
Monte-Carlo simulation (first and second red box in Figure S2).  Thus in each grid cell the 164 
standard deviation of δA(Cor) between Monte-Carlo simulations will decrease with 1/sqrt(N), 165 
with N the number of TES retrievals in each grid cell (See Figure 2A and 2B of the main article).  166 
Similarly, random perturbations to the TES values of surface temperature and relative 167 
humidity were added independently to each TES retrieval in each simulation for the TES.  For 168 
temperature a normal distribution of errors was assumed with a standard deviation of 2 169 
degrees C (third red box in Figure S2), while for relative humidity a Beta distribution (bound at 170 
0 and 1) about the TES retrieved value was assumed with a standard deviation of 10% RH 171 
(fourth red box in Figure S2).   172 

TES data from 2005 though 2012 was used, and each month contained approximately 30,000 173 
TES retrievals for δA, surface temperature and normalized relative humidity each month, and 174 
all of these retrievals were simulated 1000 times with uncertainty added to each unique value 175 
separately (third row in Figure S2).  For each of the simulations all values within each 2x2 176 
degree grid cell each month were averaged to produce 1000 x 12 different monthly 177 
climatological grids of δA, surface temperature and normalized relative humidity (fourth row 178 
in Figure S2).  Finally, because the strength of kinetic isotope fractionation effects are also 179 
uncertain, a different value of CK was generated for each simulation, with this distribution 180 
assumed uniform between 2 and 6.5 [Merlivat and Jouzel, 1979] (fifth red box in Figure S2).   181 

The gridded simulations for δA, surface temperature, relative humidity, and CK values were all 182 
combined and used to calculate 1000 x 12 different grids of δE(O) using Equation (S2) (second 183 
purple diamond Figure S2).  The δE(O) grids were then used with the bulk fluxes and 184 
precipitation isotope estimates to calculate 1000 global mass balance estimates using the 185 
equations descripted in Text S3.  For the bulk fluxes of precipitation and oceanic evaporation, 186 
both observational uncertainty and inter-annual variability are considered via a resampling 187 
approach with random errors included.  For each simulation, one of the years during the TES 188 
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period (2005-2012) was selected at random (representing inter-annual variability in fluxes).  189 
Then based on the error assessment included with the GPCP and OAflux data files random 190 
noise was added to that years precipitation and evaporation fluxes (this incorporates any 191 
observations uncertaity).  Although our study only considers the GPCP and OAFlux datasets, 192 
and other global flux data produces with somewhat different characteristics are available, the 193 
variability introduced in our analysis by resampling years at random (e.g. oceanic precipitation 194 
varies from 372,000 km3 to 393,000 km3) is larger than expected differences between different 195 
data products [Syed et al., 2010]. 196 

The gridded precipitation and evaporation fluxes and their estimated isotope values are then 197 
combined to estimate the global fluxes with Equations (S3)-(S5) for each simulation (seventh 198 
row of Figure S2).  Finally, these values were used in the ocean and atmosphere mass balance 199 
Equations (S6) and (S7) to determine the final value of continental runoff and 200 
evapotranspiration for each simulation.  The mean and standard deviation of these 201 
simulations was then taken to determine the final value of and , and its associated 202 
uncertainty. 203 

  204 



 
 

11 
 

Figure S1 205 

 206 

Figure S1. Difference between TES δA estimates and ship-based observations of atmospheric 207 
δA values based on jackknifed estimates of β coefficients (δA(Error) = δA(TES) - δA(Ship)). 208 
  209 
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Figure S2 210 

 211 

Figure S2. Flowchart depicting the data analysis steps used in this study. 212 
213 
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Table S1 214 

 215 
n Parameter (xn) Units βn σn ρn * 
1 TES surface δA retrieval ‰ 4.60e-03 2.87e-04 0.50 
2 TES troposphere δA retrieval ‰ 9.91e-02 4.40e-04 0.02 
3 TES surface δA a-priori ‰ 3.68e-01 4.95e-03 0.29 
4 TES troposphere δA a-priori ‰ -1.57e-01 6.52e-04 -0.65 
5 TES surface q retrieval mol/mol -1.22e+02 2.05e+00 0.60 
6 TES troposphere q retrieval mol/mol 5.65e+02 9.68e+00 0.56 
7 TES surface q a-priori mol/mol 3.25e+03 6.57e+00 0.69 
8 TES troposphere q a-priori mol/mol -6.87+03 1.75e+01 0.59 
9 Intercept  -9.91e+01 4.07e-01  
*All regression coefficients are highly significant at p<0.001, except for x2, where p<0.5. 216 

Table S1. Meta-data parameters used to bias-correct TES surface retrievals. 217 
218 
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Table S2 219 

 220 
Rank River Flow1 [km3 yr-1] δD [‰] Reference 
1 
 

Amazon 6642 -46 [Longinelli and Edmond, 1983] 
2 Congo 3699 -13 [Vangriesheim et al., 2009] 
4 Changjiang 944 -46 [IAEA, 2012] 
5 Brahmaputra 628 -48 [Gajurel et al., 2006] 
6 Mississippi 610 -44 [Kendall and Coplen, 2001] 
7 Yenisei 599 -139 [Yi et al., 2012] 
8 Parana 568 -33 [Panarello and Dapeña, 2009] 
9 Lena 531 -156 [Yi et al., 2012] 
10 Mekong 525 -38 [IAEA, 2012] 
12 Ob 412 -113 [Yi et al., 2012] 
14 St Lawrence 363 -52 [Kendall and Coplen, 2001] 
17 Amur 354 -108 [Moon et al., 2009] 
19 Mackenzie 290 -154 [Yi et al., 2012] 
21 Columbia 252 -124 [Kendall and Coplen, 2001] 
24 Yukon 212 -158 [Yi et al., 2012] 
26 Danube 202 -69 [IAEA, 2012] 
30 Fraser 140 -136 [Cameron et al., 1995] 
35 Kolyma 118 -171 [Yi et al., 2012] 
38 Indus 104 -55 [IAEA, 2012] 
49 Sacramento 69 -79 [Kendall and Coplen, 2001] 
53 Kuskokwim 57 -132 [Kendall and Coplen, 2001] 
67 Alabama 51 -24 [Kendall and Coplen, 2001] 
68 Stikine 51 -139 [Kendall and Coplen, 2001] 
74 Susquehanna 46 -56 [Kendall and Coplen, 2001] 
77 Susitna 45 -151 [Kendall and Coplen, 2001] 
95 Copper 34 -168 [Kendall and Coplen, 2001] 
108 Nushagak 31 -113 [Kendall and Coplen, 2001] 
123 Tombigbee 27 -23 [Kendall and Coplen, 2001] 
165 Colorado 12 -99 [Kendall and Coplen, 2001] 
179 Brazos 7 -19 [Kendall and Coplen, 2001] 
194 Colorado (TX) 3 -19 [Kendall and Coplen, 2001] 
195 Rio Grande 1 -12 [Kendall and Coplen, 2001] 
1Flow at mouth and rank estimates from [Dai and Trenberth, 2002] 221 

Table S2. Literature review of the D/H isotope ratio of rivers worldwide.  222 
223 
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Table S3 224 

 225 
Location δD Range [‰] System Reference 
Arizona, US  
 

-79 to -74 Savanna [Yepez et al., 2003] 
Morocco -63 to -40  Olive orchard [Williams et al., 2004] 
Arizona, US -71 to +100 Savanna [Yepez et al., 2005] 
China -64 to -53 Shrubland [Xu et al., 2008] 
Colorado, US -150  to -290 Grassland [Noone et al., 2013] 
Kenya -75 to -40 Savanna [Good et al., 2014] 

Table S3. Literature review of measured evapotranspiration D/H isotope ratios.  226 
  227 
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Data Set S1 228 

Bias-corrected marine surface layer δA estimates and their uncertainty are included as a 229 
supplementary data file (sd01.nc). 230 
 231 

232 
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