@AGUPUBLICATIONS

1	
2	Geophysical Research Letters
3	Supporting Information for
4	D/H Isotope Ratios In The Global Hydrologic Cycle
5	Stephen P. Good ^{1,2} , David Noone ³ , Naoyuki Kurita ⁴ , Marion Benetti ⁵ , Gabriel J. Bowen ¹
6	1) University of Utah, Department of Geology and Geophysics, Salt Lake City, Utah, USA
7	2) Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
8	3) College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
9	4) Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
10 11	5) Laboratoire d'Ocanographie et du Climat, Exprimentations et approches Numriques, IPSL, UPMC, CNRS, Paris, France
12	
13 14	Contents of this file
15	Text S1, S2, S3, and S4
16	Figures S1 and S2
17	Tables S1 and S2
18	Description of Dataset S1
19	References
20	
21	Additional Supporting Information (Files uploaded separately)
22	
23	Dataset S1
24	Introduction
25	This Comparison Information file contains complementary Tayt C1 Tayt C2 Tayt C2 and Tayt C4

This Supporting Information file contains supplementary Text S1, Text S2, Text S3, and Text S4, Figures S1 and S2, Tables S1 and S2, Captions for Dataset S1, and references. Text S1 though S4 describe the data analysis methodology of this study. Figure S1 shows the differences between ship based observations of δ_A and Tropospheric Emissions Spectrometer (TES) δ_A estimates before and after applying the calibration correction and Figure S2 is a flowchart depicting data analysis. Table S1 lists the TES calibration coefficients used to correct the satellite retrievals. Table S2 and S3 document literature reviews of measurements of the D/H

- 32 ratio of the world's major rivers and in evapotranspiration flux estimates respectively. Dataset
- 33 S1 includes monthly bias-corrected estimates of δ_A and associated uncertainties.

36 Multivariate Regression

37 This study used data from the Tropospheric Emissions Spectrometer (TES), specifically the 38 latest version of the TES Lite products (v006) which report HDO, H₂O, and a suite of other 39 meta-data on 17 pressure levels. Spectral radiance is measured by TES in the 650 to 3050 cm⁻¹ 40 (15.4 to 3.3 µm) bands at an apodized resolution of 0.1 cm⁻¹. A correction is applied to each 41 individual TES retrieval to estimate the surface vapor D/H isotope ratio. The applied correction 42 takes the form of

43 (S1) $\delta_A = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{n-1} x_{n-1} + \beta_n + \varepsilon,$

44 where δ_A is the corrected surface composition, β_1 through β_{n-1} are the correction coefficients,

45 x_1 through x_{n-1} are the regression parameters respectively, β_n is the final intercept term, and ε

46 is the random error not captured by this regression (further described in **Text S4**).

47 Throughout this study, all D/H isotope ratios are reported relative to the V-SMOW standard in

48 δ notation expressed in parts per thousand (‰=10⁻³), where $\delta = R_{\text{sample}}/R_{\text{std}}-1$, with R the ratio of

49 D to H. The TES surface layer is defined as the average of the bottom two pressure levels

50 within the TES lite data files and troposphere values are calculated as the average of all levels

51 (including the surface) below the tropopause. The two TES layers used in this analysis reflects

vapor at an average pressure of 996hPA, which corresponds to the lowermost ~140m of the

atmosphere. We found that two layers, while integrating over a thicker layer, provided

54 improved performance over using just the lower most TES layer alone.

55 The chosen regression parameters (listed in **Table S1**) represent a compromise between 56 parsimonious model development and accurate estimation. Though a single isotope profile 57 as a function of pressure is used as the TES a-priori [Herman and Osterman, 2012], variations in 58 surface and tropopause pressure will cause values both these a-prioi isotope values to vary for 59 each retrieval, thus capturing many physical atmospheric processes that control the quality of 60 the TES retrieval. Similarly, variation in water vapor mixing ratios (q) at both the surface and 61 within the entire troposphere will also alter the quality of the TES retrieval [Field et al., 2012]. 62 Other properties of the TES retrieval, such as the surface temperature, nadir angle, and the 63 values within the TES averaging kernel, were also found to be strongly correlated with the TES 64 HDO bias relative to the ship based δ_A values. However, many of these were redundant with 65 the parameters listed in Table S1 and were therefore not included in the bias-correction 66 model developed here, though they merit further investigation.

67 The best fit and associated uncertainty in values of correction coefficients (β 's) was

determined though a multivariate least squares regression where δ_A in equation (S1) is taken

to be the data set of the ship based observations. A jackknifing approach [*Wu*, 1986; *Bowen*

and Revenaugh, 2003] is used to assess the uncertainty in the regression, wherein each ship

71 based observation is removed from the data set, and a regression is preformed to determine

The β values. The mean and standard deviation (σ_n) of these different regression models were

then calculated and shown in **Table S1**. Before applying the correction, the mean difference

between δ_A observed from the ships and δ_A observed from TES was 14.5‰ (red histogram

- 75 **Figure S1**). Cross-validation of the bias-corrected results using the jackknife iterations (each
- observation was removed and the compared with the predicted value at that site using the
- 77 newly derived set of β values) shows that the average prediction bias is removed (blue
- 78 histogram Figure S1). Also shown in **Table S1** are the Pearson correlation coefficients
- 79 between δ_A observed from the ship and each regression parameter.

82 Oceanic Evaporation Isotopic Composition

83 The isotopic composition of oceanic evaporation flux, $\delta_{E(O)}$, is calculated based on the ratio of

84 the HDO vapor pressure deficit to the H₂O vapor pressure deficit [Craig and Gordon, 1965] as

85 (S2)
$$\delta_{E(O)} = \frac{\alpha_* \delta_L - h \delta_A - (\varepsilon_* + \varepsilon_K)}{(1-h) + 10^{-3} \varepsilon_K}.$$

Above, sea surface water isotopic composition, δ_L , is assumed equal to 0, and surface vapor composition, δ_A , is estimated based on the bias-corrected climatologically averaged TES

composition, δ_A , is estimated based on the bias-corrected climatologically averaged TES observations (Text S1). The vapor/liquid equilibrium fractionation factor, α_* , is dependent on

surface temperature [*Majoube*, 1971], and the equilibrium enrichment is given by $\varepsilon_* = (1 - \alpha_*)10^3$.

90 The value of the kinetic enrichment, $\varepsilon_K = C_K(1-h)$, is determined by surface conditions and is

91 not well constrained, and therefore we conservatively assume that C_K ranges from 2 to 6.5,

92 representing the range of values expected for rough to smooth oceanic conditions [Merlivat

93 and Jouzel, 1979]. Both temperature and surface-normalized relative humidity, h, are

94 obtained directly from the TES retrievals and averaged within each grid cell in the same

95 manner as the δ_A values [*Gat*, 1996; *Horita et al.*, 2008].

98 Atmospheric and Oceanic Mass Fluxes

99 A total mass flux is calculated for oceanic evaporation, total oceanic precipitation, total land 100 precipitation and the associated isotopologue fluxes. Total land evapotranspiration and 101 runoff, and their associated isotopic values are then determined as the residuals of the 102 atmosphere and ocean mass balance. Values for oceanic evaporation isotope composition 103 were calculated as described above (Text S2) while data from global the Global Network of 104 Isotopes in Precipitation (GNIP) and published literature were used to model global 105 precipitation isotope values (δ_P) based on a non-linear least squares approach [Bowen and 106 Wilkinson, 2002; Bowen and Revenaugh, 2003]. Briefly, this method involves optimization of a 107 model representing observed δ_P as a function of site latitude and elevations (as proxies for 108 temperature effects) and a interpolated spatial field of residuals from the latitude-elevation 109 model (reflecting circulation-driven effects). The accuracy of this approach has been 110 determined via resampling (N-1 Jackknife), at stations and resulted an average error of ~9.4% 111 [Bowen and Revenaugh, 2003]. The set of Jackknifed model parameters were used to generate 112 a synthetic set of grids representing precipitation isotopic composition for each month and its 113 uncertainty.

114 The mean global precipitation over land, $\overline{P(L)}$, and its associated isotopic value, $\overline{\delta_{P(L)}}$, are

115 estimated as

116 (S3a)
$$\overline{P(L)} = \sum_{m,x,y} P(m,x,y)A(x,y)I(x,y)$$

117 and

118 (S3b)
$$\overline{\delta_{P(L)}} = \frac{\sum_{m,x,y} \delta_P(m,x,y) P(m,x,y) A(x,y) I(x,y)}{\sum_{m,x,y} P(m,x,y) A(x,y) I(x,y)}.$$

119 Where
$$P(m, x, y)$$
 is the average precipitation occurring in grid cell at location x, y , in month m
120 taken from the GPCP [Adler et al., 2003]. The indicator function, $I(x, y)$, takes a value of 1 if
121 the current grid cell is over land or a value of 0 if over water, and $A(x, y)$ is the area of each
122 2x2 degree grid cell. Similarly, the mean global precipitation over the oceans, $\overline{P(O)}$, and its
123 associated isotopic composition, $\overline{\delta_{P(O)}}$, are estimated as

124 (S4a)
$$\overline{P(O)} = \sum_{m,x,y} P(m,x,y)A(x,y)(1-I(x,y))$$

125 and

126 (S4b)
$$\overline{\delta_{p(O)}} = \frac{\sum_{m,x,y} \delta_p(m,x,y) P(m,x,y) A(x,y) (1-I(x,y))}{\sum_{m,x,y} P(m,x,y) A(x,y) (1-I(x,y))}.$$

Finally, calculation of mean global evaporation over the oceans, $\overline{E(O)}$, and its associated isotopic composition, $\overline{\delta_{E(O)}}$, are estimated as

129 (S5a)
$$\overline{E(O)} = \sum_{m,x,y} E(m,x,y)A(x,y)(1-I(x,y))$$

130 and

131 (S5b)
$$\overline{\delta_{E(O)}} = \frac{\sum_{m,x,y} \delta_{E(O)}(m,x,y)E(m,x,y)A(x,y)(1-I(x,y))}{\sum_{m,x,y} E(m,x,y)A(x,y)(1-I(x,y))}.$$

132 Where E(m, x, y) is evaporation occurring in each grid cell each month [Yu and Weller, 2007].

133

134 Atmospheric and Oceanic Mass Balance

- Based on the estimated global fluxes and their associated isotopic composition, we construct a mass balance of the Earths oceans and atmosphere for both H₂O and HDO. These are used to estimate the isotopic composition of global continental runoff, $\overline{\delta_{R(L)}}$, and global
- 138 continental evapotranspiration, $\overline{\delta_{ET(L)}}$. The mass balance of the oceans is solved for global
- 139 runoff isotopic composition as

140 (S6)
$$\overline{\delta_{R(L)}} = \frac{\overline{\delta_{E(O)}}\overline{E(O)} - \overline{\delta_{P(O)}}\overline{P(O)}}{\overline{E(O)} - \overline{P(O)}},$$

141 where the denominator on the right side in Equation S6 is the global runoff flux amount.

142 Similarly, we construct a mass balance of the atmosphere and solve for the isotopic

143 composition of land evapotranspiration as

144 (S7)
$$\overline{\delta_{ET(L)}} = \frac{\overline{\delta_{P(O)}}\overline{P(O)} + \overline{\delta_{P(L)}}\overline{P(L)} - \overline{\delta_{E(O)}}\overline{E(O)}}{\overline{P(O)} + \overline{P(L)} - \overline{E(O)}},$$

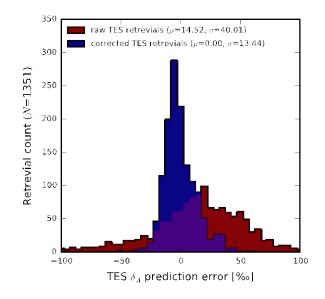
145 where the denominator on the right hand side in Equation S7 is the global continental 146 evapotranspiration flux amount.

149 Monte-Carlo Simulations of Fluxes

150 An ensemble of Monte-Carlo simulations is used to determine uncertainty in the final estimate

151 of $\delta_{R(L)}$ and $\delta_{ET(L)'}$ with the workflow depicted in **Figure S2**. In total 1000 different

152 simulations were conducted, each resulting in a unique value of $\overline{\delta_{R(L)}}$ and $\overline{\delta_{ET(L)}}$, with the


153 mean and standard deviation of these 1000 values taken as our final result.

154 The first step, as described in **Text S1**, was to use the each of the *N-1* jackknife regression to 155 determine the mean and covariance matrix the regression coefficients. Then, for each 156 simulation, a set of regression coefficients was randomly generated assuming a bivariate 157 normal distribution for these parameters. This set of regression coefficients was then use to 158 estimate a bias-corrected value of δ_A for each TES retrieval. After applying our bias-correction

- 159 the difference between the observed $\delta_{A(Ship)}$ value and the corrected TES $\delta_{A(Cor)}$ has an
- average value of zero, denoting that the bias has been removed, and a standard deviation of
- 161 13.4‰ (**Figure S1**). This residual uncertainty not captured with the multivariate regression is
- 162 propagated by adding random noise, ε (i.e. an independent and identically distributed 163 random variable) with mean zero and standard deviation $\sigma_{\varepsilon}=13.4\%$ to each retrieval for each
- 164 Monte-Carlo simulation (first and second red box in **Figure S2**). Thus in each grid cell the
- 165 standard deviation of $\delta_{A(Cor)}$ between Monte-Carlo simulations will decrease with 1/sqrt(N),
- 166 with *N* the number of TES retrievals in each grid cell (See Figure 2A and 2B of the main article).
- 167 Similarly, random perturbations to the TES values of surface temperature and relative
- 168 humidity were added independently to each TES retrieval in each simulation for the TES. For
- temperature a normal distribution of errors was assumed with a standard deviation of 2
 degrees C (third red box in **Figure S2**), while for relative humidity a Beta distribution (bound at
- 170 degrees C (third red box in **Figure 52**), while for relative numberly a beta distribution (bound a) 171 0 and 1) about the TES retrieved value was assumed with a standard deviation of 10% RH
- 172 (fourth red box in **Figure S2**).
- 173 TES data from 2005 though 2012 was used, and each month contained approximately 30,000 174 TES retrievals for δ_A , surface temperature and normalized relative humidity each month, and
- all of these retrievals were simulated 1000 times with uncertainty added to each unique value 175
- 175 all of these retrievals were simulated 1000 times with uncertainty added to each unique val 176 separately (third row in **Figure S2**). For each of the simulations all values within each 2x2
- degree grid cell each month were averaged to produce 1000 x 12 different monthly
- 177 climatological grids of δ_A , surface temperature and normalized relative humidity (fourth row
- 179 in **Figure S2**). Finally, because the strength of kinetic isotope fractionation effects are also
- 180 uncertain, a different value of C_K was generated for each simulation, with this distribution
- assumed uniform between 2 and 6.5 [Merlivat and Jouzel, 1979] (fifth red box in Figure S2).
- 182 The gridded simulations for δ_A , surface temperature, relative humidity, and C_K values were all 183 combined and used to calculate 1000 x 12 different grids of $\delta_{E(O)}$ using Equation (S2) (second
- purple diamond **Figure S2**). The $\delta_{E(O)}$ grids were then used with the bulk fluxes and
- 185 precipitation isotope estimates to calculate 1000 global mass balance estimates using the
- 186 equations descripted in **Text S3**. For the bulk fluxes of precipitation and oceanic evaporation,
- 187 both observational uncertainty and inter-annual variability are considered via a resampling
- approach with random errors included. For each simulation, one of the years during the TES

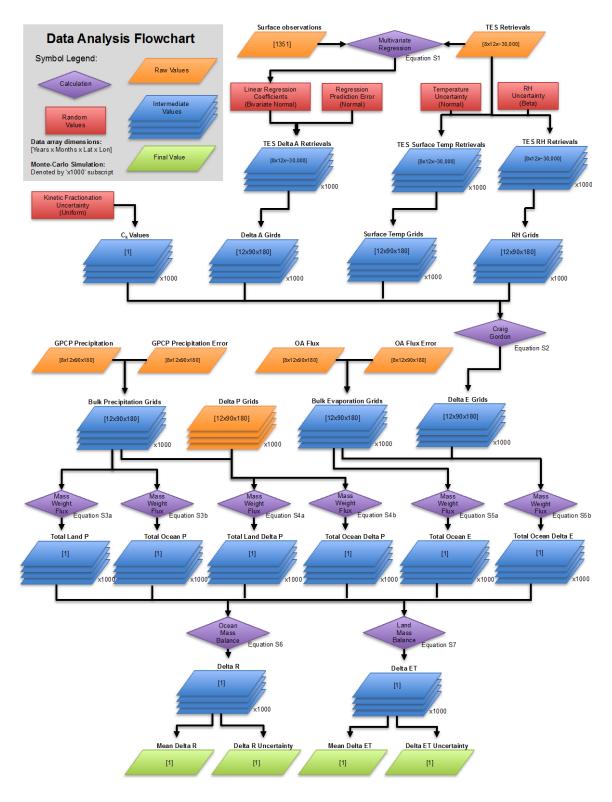

- 189 period (2005-2012) was selected at random (representing inter-annual variability in fluxes).
- 190 Then based on the error assessment included with the GPCP and OAflux data files random
- 191 noise was added to that years precipitation and evaporation fluxes (this incorporates any
- 192 observations uncertaity). Although our study only considers the GPCP and OAFlux datasets,
- and other global flux data produces with somewhat different characteristics are available, the
- variability introduced in our analysis by resampling years at random (e.g. oceanic precipitation
- varies from 372,000 km³ to 393,000 km³) is larger than expected differences between different
- 196 data products [Syed et al., 2010].
- 197 The gridded precipitation and evaporation fluxes and their estimated isotope values are then
- 198 combined to estimate the global fluxes with Equations (S3)-(S5) for each simulation (seventh
- 199 row of **Figure S2**). Finally, these values were used in the ocean and atmosphere mass balance
- 200 Equations (S6) and (S7) to determine the final value of continental runoff and
- 201 evapotranspiration for each simulation. The mean and standard deviation of these
- simulations was then taken to determine the final value of $\delta_{R(L)}$ and $\delta_{ET(L)}$, and its associated
- 203 uncertainty.
- 204

Figure S1

- **Figure S1.** Difference between TES δ_A estimates and ship-based observations of atmospheric
- δ_A values based on jackknifed estimates of β coefficients ($\delta_{A(\text{Error})} = \delta_{A(\text{TES})} \delta_{A(\text{Ship})}$).

Figure S2

Figure S2. Flowchart depicting the data analysis steps used in this study.

Table S1

n	Parameter (x _n)	Units	β_n	σ_n	ρ_n *
1	TES surface δ_A retrieval	‰	4.60e-03	2.87e-04	0.50
2	TES troposphere δ_A retrieval	%0	9.91e-02	4.40e-04	0.02
3	TES surface δ_A a-priori	%0	3.68e-01	4.95e-03	0.29
4	TES troposphere δ_A a-priori	‰	-1.57e-01	6.52e-04	-0.65
5	TES surface q retrieval	mol/mol	-1.22e+02	2.05e+00	0.60
6	TES troposphere q retrieval	mol/mol	5.65e+02	9.68e+00	0.56
7	TES surface q a-priori	mol/mol	3.25e+03	6.57e+00	0.69
8	TES troposphere q a-priori	mol/mol	-6.87+03	1.75e+01	0.59
9	Intercept		-9.91e+01	4.07e-01	

*All regression coefficients are highly significant at p<0.001, except for x_2 , where p<0.5.

Table S1. Meta-data parameters used to bias-correct TES surface retrievals.

Table S2

Rank	River	Flow ¹ [km ³ yr ⁻¹]	δD [‰]	Reference
1	Amazon	6642	-46	[Longinelli and Edmond, 1983]
2	Congo	3699	-13	[Vangriesheim et al., 2009]
4	Changjiang	944	-46	[<i>IAEA</i> , 2012]
5	Brahmaputra	628	-48	[<i>Gajurel et al.,</i> 2006]
б	Mississippi	610	-44	[Kendall and Coplen, 2001]
7	Yenisei	599	-139	[Yi et al., 2012]
8	Parana	568	-33	[Panarello and Dapeña, 2009]
9	Lena	531	-156	[Yi et al., 2012]
10	Mekong	525	-38	[<i>IAEA</i> , 2012]
12	Ob	412	-113	[Yi et al., 2012]
14	St Lawrence	363	-52	[Kendall and Coplen, 2001]
17	Amur	354	-108	[<i>Moon et al.,</i> 2009]
19	Mackenzie	290	-154	[Yi et al., 2012]
21	Columbia	252	-124	[Kendall and Coplen, 2001]
24	Yukon	212	-158	[Yi et al., 2012]
26	Danube	202	-69	[<i>IAEA</i> , 2012]
30	Fraser	140	-136	[Cameron et al., 1995]
35	Kolyma	118	-171	[Yi et al., 2012]
38	Indus	104	-55	[<i>IAEA</i> , 2012]
49	Sacramento	69	-79	[Kendall and Coplen, 2001]
53	Kuskokwim	57	-132	[Kendall and Coplen, 2001]
67	Alabama	51	-24	[Kendall and Coplen, 2001]
68	Stikine	51	-139	[Kendall and Coplen, 2001]
74	Susquehanna	46	-56	[Kendall and Coplen, 2001]
77	Susitna	45	-151	[Kendall and Coplen, 2001]
95	Copper	34	-168	[Kendall and Coplen, 2001]
108	Nushagak	31	-113	[Kendall and Coplen, 2001]
123	Tombigbee	27	-23	[Kendall and Coplen, 2001]
165	Colorado	12	-99	[Kendall and Coplen, 2001]
179	Brazos	7	-19	[Kendall and Coplen, 2001]
194	Colorado (TX)	3	-19	[Kendall and Coplen, 2001]
195	Rio Grande	1	-12	[Kendall and Coplen, 2001]

¹Flow at mouth and rank estimates from [*Dai and Trenberth*, 2002]

Table S2. Literature review of the D/H isotope ratio of rivers worldwide.

Table S3

Location	δD Range [‰]	System	Reference
Arizona, US	-79 to -74	Savanna	[Yepez et al., 2003]
Morocco	-63 to -40	Olive orchard	[<i>Williams et al.,</i> 2004]
Arizona, US	-71 to +100	Savanna	[Yepez et al., 2005]
China	-64 to -53	Shrubland	[<i>Xu et al.</i> , 2008]
Colorado, US	-150 to -290	Grassland	[Noone et al., 2013]
Kenya	-75 to -40	Savanna	[Good et al., 2014]

Table S3. Literature review of measured evapotranspiration D/H isotope ratios.

Data Set S1

Bias-corrected marine surface layer δ_A estimates and their uncertainty are included as a supplementary data file (sd01.nc).

233 234	Supporting Information References
234	Adler, R. F. et al. (2003), The Version-2 Global Precipitation Climatology Project
236	(GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4(6),
237	1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
238	Bowen, G. J., and J. Revenaugh (2003), Interpolating the isotopic composition of modern
239	meteoric precipitation, <i>Water Resour. Res.</i> , 39(10), 1–13,
240 241	doi:10.1029/2003WR002086. Bowen, G. J., and B. Wilkinson (2002), Spatial distribution of δ18O in meteoric
241	precipitation, <i>Geology</i> , 30(4), 315–318, doi:10.1130/0091-
243	7613(2002)030<0315:SDOOIM>2.0.CO;2.
244	Cameron, E. M., G. E. M. Hall, J. Veizer, and H. R. Krouse (1995), Isotopic and
245	elemental hydrogeochemistry of a major river system: Fraser River, British
246	Columbia, Canada, Chem. Geol., 122(1-4), 149–169, doi:10.1016/0009-
247	2541(95)00007-9.
248	Craig, H., and L. I. Gordon (1965), Deuterium and oxygen-18 variations in the ocean and
249	the marine atmosphere, in Stable Isotopes in Oceanographic Studies and
250	Paleotemperatures, edited by E. Tongiori, pp. 9–130, Consiglio Nazionale Delle
251	Richerche Laboratorio Di Gelogica Nucleare, Pisa, Italy.
252	Dai, A., and K. E. Trenberth (2002), Estimates of Freshwater Discharge from Continents:
253	Latitudinal and Seasonal Variations, J. Hydrometeorol., 3(6), 660–687,
254 255	doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2. Field, R. D., C. Risi, G. A. Schmidt, J. Worden, A. Voulgarakis, A. N. LeGrande, A. H.
255 256	Sobel, and R. J. Healy (2012), A Tropospheric Emission Spectrometer HDO/H ₂ O
257	retrieval simulator for climate models, <i>Atmos. Chem. Phys.</i> , 12(21), 10485–10504,
258	doi:10.5194/acp-12-10485-2012.
259	Gajurel, A. P., C. France-Lanord, P. Huyghe, C. Guilmette, and D. Gurung (2006), C and
260	O isotope compositions of modern fresh-water mollusc shells and river waters from
261	the Himalaya and Ganga plain, Chem. Geol., 233(1), 156–183,
262	doi:10.1016/j.chemgeo.2006.03.002.
263	Gat, J. R. (1996), Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev.
264	<i>Earth Planet. Sci.</i> , 24(1), 225–262, doi:10.1146/annurev.earth.24.1.225.
265	Good, S. P., K. Soderberg, K. Guan, E. G. King, T. M. Scanlon, and K. K. Caylor (2014),
266 267	δ 2H isotopic flux partitioning of evapotranspiration over a grass field following a water pulse and subsequent dry down, <i>Water Resour. Res.</i> ,
268	50(DOI:10.1002/2013WR014333), 1410–1432,
269	doi:10.1002/2013WR014333.Received.
270	Herman, R., and G. Osterman (2012), Earth Observing System (EOS) Tropospheric
271	Emission Spectrometer (TES),
272	Horita, J., K. Rozanski, and S. Cohen (2008), Isotope effects in the evaporation of water:
273	a status report of the Craig-Gordon model., Isotopes Environ. Health Stud., 44(1),
274	23–49, doi:10.1080/10256010801887174.
275	IAEA (2012), Monitoring Isotopes In Rivers: Creation Of The Global Network Of
276	Isotopes In Rivers (GNIR), IAEA-TECDOC-1673, International Atomic Energy
277	Agency, Isotope Hydrology Section, Vienna, Austria.

- Kendall, C., and T. B. Coplen (2001), Distribution of oxygen-18 and deuterium in river
 waters across the United States, *Hydrol. Process.*, *15*(7), 1363–1393,
 doi:10.1002/hyp.217.
- Longinelli, A., and J. M. Edmond (1983), Isotope geochemistry of the Amazon Basin: A
 reconnaissance, J. Geophys. Res., 88(C6), 3703, doi:10.1029/JC088iC06p03703.
- Majoube, M. (1971), Fractionnement en oxygene 18 et en deuterium entre leau et sa
 vapeur, J. Chim. Phys, 68, 1423–1436.
- Merlivat, L., and J. Jouzel (1979), Global climatic interpretation of the deuterium-oxygen
 18 relationship for precipitation, *J. Geophys. Res.*, 84(C8), 5029–5033,
 doi:10.1029/JC084iC08p05029.
- Moon, S., Y. Huh, and A. Zaitsev (2009), Hydrochemistry of the Amur River:
 Weathering in a Northern Temperate Basin, *Aquat. Geochemistry*, 15(4), 497–527, doi:10.1007/s10498-009-9063-6.
- Noone, D. et al. (2013), Determining water sources in the boundary layer from tall tower
 profiles of water vapor and surface water isotope ratios after a snowstorm in
 Colorado, *Atmos. Chem. Phys.*, *13*(3), 1607–1623, doi:10.5194/acp-13-1607-2013.
- Panarello, H. O., and C. Dapeña (2009), Large scale meteorological phenomena, ENSO
 and ITCZ, define the Parana River isotope composition, *J. Hydrol.*, 365(1-2), 105–
 112, doi:10.1016/j.jhydrol.2008.11.026.
- Syed, T. H., J. S. Famiglietti, D. P. Chambers, J. K. Willis, and K. Hilburn (2010),
 Satellite-based global-ocean mass balance estimates of interannual variability and
 emerging trends in continental freshwater discharge., *Proc. Natl. Acad. Sci. U. S. A.*,
 107(42), 17916–21, doi:10.1073/pnas.1003292107.
- Vangriesheim, A., C. Pierre, A. Aminot, N. Metzl, F. Baurand, and J.-C. Caprais (2009),
 The influence of Congo River discharges in the surface and deep layers of the Gulf
 of Guinea, *Deep Sea Res. Part II Top. Stud. Oceanogr.*, 56(23), 2183–2196,
 doi:10.1016/j.dsr2.2009.04.002.
- Williams, D. G. et al. (2004), Evapotranspiration components determined by stable
 isotope, sap flow and eddy covariance techniques, *Agric. For. Meteorol.*, *125*(3-4),
 241–258, doi:10.1016/j.agrformet.2004.04.008.
- Wu, C.-F. J. (1986), Jackknife, bootstrap and other resampling methods in regression
 analysis, *Ann. Stat.*, 14(4), 1261–1295.
- Xu, Z., H. Yang, F. Liu, S. An, J. Cui, Z. Wang, and S. Liu (2008), Partitioning
 evapotranspiration flux components in a subalpine shrubland based on stable
 isotopic measurements, *Bot. Stud.*, 49(4), 351–361.
- Yepez, E. A., D. G. Williams, R. L. Scott, and G. Lin (2003), Partitioning overstory and
 understory evapotranspiration in a semiarid savanna woodland from the isotopic
 composition of water vapor, *Agric. For. Meteorol.*, *119*(1-2), 53–68.
- Yepez, E. A., T. E. Huxman, D. D. Ignace, N. B. English, J. F. Weltzin, A. E.
 Castellanos, and D. G. Williams (2005), Dynamics of transpiration and evaporation
 following a moisture pulse in semiarid grassland: a chamber-based isotope method
 for partitioning flux components, *Agric. For. Meteorol.*, *132*(3-4), 359–376.
- Yi, Y., J. J. Gibson, L. W. Cooper, J.-F. Hélie, S. J. Birks, J. W. McClelland, R. M.
 Holmes, and B. J. Peterson (2012), Isotopic signals (18 O, 2 H, 3 H) of six major
 rivers draining the pan-Arctic watershed, *Global Biogeochem. Cycles*, 26(1), n/a–
 n/a, doi:10.1029/2011GB004159.

- 324 Yu, L., and R. A. Weller (2007), Objectively Analyzed Air–Sea Heat Fluxes for the
- 325 Global Ice-Free Oceans (1981–2005), *Bull. Am. Meteorol. Soc.*, 88(4), 527–539, doi:10.1175/BAMS-88-4-527.