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Privacy-Sensitive Robotics

1 Introduction

When humans look at the world we go beyond mere facts to values—i.e., the

importance, worth, or desirability of objects and states of affairs. We can value

concrete or mundane things as well as abstract or lofty ones: a drink of water,

my next-door neighbor, justice, my favorite hat, the people of Oregon, a walk in

the woods, regular meals with my family, and friendship1. As we develop robotics

technologies, they will interact more and more with the things we value. To the

extent that the robots we have made so far have been for industrial tasks like

moving heavy things or performing rapid, precise assembly tasks, we are used to

designing robots to optimize values like speed, accuracy, and cost. As we turn

towards making robots that operate outside of industrial settings, however, and

especially as they become a part of our social lives, they will begin to interact with

other things we value: personal property, privacy, healthy relationships, courtesy,

calmness, and human autonomy and identity2. These other, more social values

can be very important, but also easy to overlook or, worse, intentionally ignore

at users’ expense. Neglecting some of these values has caused such big problems

in the past that many companies have instituted formal processes for protecting

them; examples include safety [67], usability [248], and accessibility [3]. It would

1This explanation of human values is inspired by the one in Section 2.1 of “Value Sensitive
Design and Information Systems” [80].

2This list is adapted from the one in Table 1, ibid.
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not be wise to always wait until significant damage has been done before we learn

to consider all the important values that robotics technologies can impact.

One systematic way to consider what people value when we create or evaluate

technologies is through Value Sensitive Design [80]. Value Sensitive Design is a

three-part methodology: (1) investigate the values involved (“conceptual investiga-

tion”), (2) investigate how people experience and prioritize those values in real life

(“empirical investigation”), (3) investigate how the technology in question protects

or damages the things we value (“technical investigation”). The work presented

in this dissertation represents the start of a new effort to bring much-needed con-

sideration to a value that has been neglected so far by the robotics community:

privacy.

Privacy can be defined as the effective setting of boundaries between oneself and

other people [10]. These boundaries can regulate personal information, personal

space, territory, social interaction, relationships, thoughts, feelings, opinions, and

decisions [196]. All humans need privacy, although different cultures seek it in

different ways [11]. Privacy is a crucial requirement for relationships to flourish

[110] and for individuals to mature and have freedom. As robots enter human-

occupied spaces, they will pose new threats to the privacy of the people around

them. Robots are capable of violating human privacy: they can collect and share

information, move through personal spaces and territories, and interact with people

socially [168]. Thus, robots and the companies that design them will need to earn

people’s trust regarding privacy if they are going to be accepted.

Research has not given us the knowledge we need to do this. Privacy scholars
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have formulated several theories of how privacy works between humans [10, 172],

but we do not know how they extend to interactions with robots. Plus, privacy has

several distinct dimensions [196] and is often the subject of legal debates—privacy

is a complicated value. The field of human-robot interaction (HRI) has barely

begun to think about privacy—it has neither drawn significantly from privacy

scholarship nor designed practical systems to comprehensively protect user privacy.

In this dissertation we present work to help launch a new surge of research on

privacy in HRI—we call this sort of work “privacy-sensitive robotics” research. We

present findings and recommendations from our delvings into privacy scholarship

as well as from three empirical studies of human-robot interactions.

The following chapter (Chapter 2) presents our understanding of privacy and

why it matters for human-robot interactions from a detailed review of the pri-

vacy literature. We then present five contributions to “privacy-sensitive robotics”

research—the first is a survey of existing technologies, the next three are findings

from empirical studies, and the last is a set of recommendations:

1. Survey of Existing Technologies. To protect users’ privacy we will need

technologies that enforce constraints on robot perception, navigation, and

manipulation. We survey the literature and present some existing technolo-

gies that have already been used as constraints on robots, as well as many

more that could potentially be used for this purpose in the future (Chapter

3).

2. Study of Interfaces for Specifying Privacy Preferences. For our first

empirical contribution we focused on visual privacy by evaluating “physical
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marker” interfaces for specifying private objects. We present findings from a

controlled experiment in a real office setting using prototypes of the interfaces

with a PR2 robot (Chapter 4).

3. Study of Contextual “Framing” Effects on Privacy Judgments. For

our second empirical contribution we present findings from four online sur-

veys on the effects of contextual framing on privacy judgments about a telep-

resence robot. We used realistic, animated videos of a telepresence robot in

a home setting (Chapter 5).

4. Study of Mental Model Formation over Time in the Wild. For our

third and final empirical contribution we interviewed participants throughout

a six week study of multiple interactions with a novel robot in a natural

setting. We present findings about how each user formed their mental model

of how the robot works (Chapter 6).

5. Recommendations for the Future of Privacy-Sensitive Robotics.

We present a roadmap for this new area of research, as well as the various

topics to study and the collaborations needed to study them, for our final

contribution (Chapter 7).

These five contributions are linked by the goal of privacy-sensitive robotics re-

search: to enable a future in which robotics technology upholds and respects our

privacy. We close with a short summary of our findings and recommendations,

plus a call to action for privacy-sensitive robotics research (Chapter 8).
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Note that although we are not design experts and do not go through an entire

design process for a particular robotics application, we do work relevant to all

three parts of Value Sensitive Design [80] in this dissertation. We do conceptual

investigation in the next chapter (Chapter 2), technical investigation in Chapters

3 and 4, and empirical investigation in Chapters 4, 5, and 6. We intend for this

dissertation to begin showing how to do each of these three types of investigation

for privacy concerns about the use of robots.
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2 Privacy in Human-Robot Interaction: Background and

Literature Review

This chapter introduces the emerging research area we call “privacy-sensitive robotics.”

We begin by discussing different definitions of privacy and surveying the privacy

literature across several disciplines. We then turn to the question of how privacy

is implicated by human-robot interactions. After introducing “privacy-sensitive

robotics” as a new area of research, we outline the rest of this dissertation with a

preview of our five contributions.

2.1 What is Privacy?

There is a lot of literature on privacy. The conversation spans many disciplines and

is difficult to summarize concisely. The following several sections (this one plus

Sections 2.2, 2.3, and 2.4) present our summary of privacy scholarship beginning

with abstract ideas and proceeding towards concrete applications in the real world.

This first section is about the definition of privacy, over which much ink has been

spilled.
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2.1.1 Views on the Definition of Privacy

Perhaps the simplest definition of privacy is that of Judge Thomas Cooley: the

right “to be let alone” [251]. It becomes clear that privacy is difficult to define

without generalizing or inviting criticism. What follows is an aggregation of many

definitions and descriptions of what privacy is. We will then give the definitions

we used for our work in the form of theories (Section 2.1.2), a taxonomy (Section

2.1.3), and a discussion of how the word is used in everyday conversation (Section

2.1.4).

We recommend the Stanford Encyclopedia of Philosophy article on privacy by

Judith DeCew as a comprehensive guide to the definition of privacy [58], espe-

cially in law and philosophy. Most of the references in this section we owe to the

bibliography from that article. As we explore the various definitions of privacy in

the literature, we will follow her threefold division: informational privacy, consti-

tutional privacy (i.e., in making intimate decisions about oneself), and privacy in

terms of access to the self, both physical and mental.

2.1.1.1 Informational Privacy.

Informational privacy refers to privacy concerns about personal information. This

was the definition of privacy held by Warren and Brandeis [251] in their famous

article. A number of other authors have presented informational definitions of pri-

vacy, although whether they believed this to be the only aspect of privacy is not in

view here. Prosser [185] divided (informational) privacy into four parts. His for-
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mulation continues to be referenced today. Briefly, Prosser divides (informational)

privacy into intrusion, public disclosure, false light, and appropriation. These mean

the following. First, intrusion into one’s private affairs includes trespassing, search,

and remote intrusion such as wire tapping. Second is public disclosure of private

facts. Third is publicly portraying the victim in a false light, e.g., by misattribut-

ing to the victim a statement or opinion. Fourth is appropriation, or pretending to

be the victim for one’s own advantage. Solove [223] has constructed a taxonomy

of privacy concepts based on Prosser’s formulation. It is shown in Figure 2.1 as a

general overview of informational privacy concerns.

A number of other authors offer informational definitions of privacy that seem

to gel with Prosser’s. Fried [78] defines privacy as control over knowledge about

oneself. Parent [180] defines privacy as the condition of others not possessing

undocumented information about oneself. Parent also follows, to a certain extent,

in the footsteps of so-called “privacy reductionists” like Thomson [241] in that he

dismisses other, non-informational aspects of privacy as being covered by other

rights. For example, Parent considers constitutional privacy concerns about the

freedom to make important personal decisions to be a matter simply of liberty.

Privacy is not a branch of liberty, he argues, because they could be at odds;

for example, when someone freely gives up their privacy they are simultaneously

exercising their liberty! Parent argues against Thomson, however, by keeping

the right to privacy as a distinctive idea; Parent believes that Thomson had to

invent some far-fetched human rights in order to maintain her view. “Privacy

reductionism” is discussed further in Section 2.2.1.
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Figure 2.1: Daniel Solove’s visual “model” of his taxonomy of (informational)
privacy [223].
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Moore [164] defines privacy as, “control over access to oneself and information

about oneself.” This is a “control-based” definition of privacy, in which it doesn’t

matter per se whether somebody accesses you or your information, but rather

whether you can control that access. Control-based definitions account for situa-

tions in which someone invites others into his close company, or willingly gives out

personal information. These actions would violate privacy if privacy is the state

of being let alone, or of having all your personal information kept to yourself. But

authors holding to control-based definitions of privacy maintain that the person in

question is still in control, so there’s no violation; this especially makes sense in

the legal context. Moore [163] defines this control in terms of the inner spheres of

personal information, about the “core self.” He limits his definition to the “core

self” to intentionally limit the First Amendment1 freedom of speech in some cases.

Moore argues that sex offenders should be forced to reveal their criminal history

to their neighbors, and that politicians, having chosen a very public profession,

cannot complain when the public learns about some of their more outward char-

acteristics. On the other hand, Moore says, it is suspicious whenever the press

claims that the public has a “right to know the truth” about some controversial

but very private incident. He holds that privacy may win out in such a situation.

Austin [17] offers a more nuanced definition of privacy: freedom from “public

gaze.” She argues that this updated definition deals with the problem of new tech-

1The First Amendment to the U.S. Constitution reads in its entirety, “Congress shall make no
law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging
the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to
petition the Government for a redress of grievances.” [2]
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nologies to which older definitions of privacy do not object. In particular, Austin

is concerned about cases wherein people know they are under surveillance, about

the collection of non-intimate but personal information (e.g., in data mining), and

about the collection of personal information in public. She claims that other, older

definitions of privacy do not agree with our intuition that these technologies (could)

invade our privacy by denying us our freedom from “public gaze.”

2.1.1.2 Constitutional Privacy and Autonomy.

A second legal interpretation of privacy emerged in 1965 with the Griswold v.

Connecticut decision [255]. This was named the “constitutional right to privacy,”

defined rather vaguely as, “a right protecting one’s individual interest in indepen-

dence in making certain important and personal decisions about one’s family, life

and lifestyle” [58]. Note that the protection is against governmental, not private,

action. This has been used to overturn laws against certain sexual acts and against

abortion. In law, this represents a general shift from property-based definitions of

privacy to definitions based more on personal liberty. The constitutional right to

privacy is mentioned here as a nod to its importance in the conversation about

defining privacy; since it applies very little to technology and robotics, it is largely

ignored outside of this section and the section on privacy in U.S. law (Section 2.2.2).
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2.1.1.3 Access Privacy: Intimacy, Solitude, and Space.

Daniel Solove wrote that a society without privacy is a ”suffocating society” [223].

This section presents the broadest conception of privacy, which concerns the human

need for being away from others for the sake of both the self and one’s intimate

relationships. Along these lines, Alan Westin lists four different states of privacy:

solitude, anonymity, intimacy (i.e., being alone with someone), and reserve (i.e.,

keeping to oneself) [255]. Similarly, Leino-Kilpi et al. [144] divide privacy into (1)

physical privacy, over personal space or territory; (2) psychological privacy, over

thoughts and values; (3) social privacy, over interactions with others and influ-

ence from them; and (4) informational privacy, over personal information. This

section reviews the definitions of privacy from the first three of those categories—

physical, psychological, and social privacy—and from all four of Westin’s private

states. These conceptions of privacy are of special interest to anthropologists,

psychologists, philosophers, and those in the medical profession.

Julie Inness wrote the book on privacy as it relates to intimacy [110]. She

disagrees with Fried’s understanding of intimacy as a “commodity” which derives

its value from its scarcity, and rather proposes that intimate interactions must be

motivated by liking, love, or care in order to be intimate. As evidence she points to

Supreme Court decisions wherein constitutional privacy protection was conferred

to issues of the family and sexual health due to the personal, emotional impacts

that made those issues intimate. In this way, Inness seems to define privacy as

the protection of intimate matters, where intimacy comes from the motivation and
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not the behavior itself (e.g., kissing is not automatically intimate). She recognizes

that this definition of intimacy is subjective, making legal rulings more difficult.

Privacy might also include solitude, i.e., being physically removed from other

people. Solitude is more than a freedom from trespassing; one needn’t be at home

to desire solitude. Allen [9] includes solitude in her article on privacy and medicine.

In the medical setting, the sick often want to be comforted by company, but also

to have some time alone. This could be especially true for patients with termi-

nal illnesses, who might want to reflect on their lives and make some important

decisions. In such cases we tend to respect their wishes. Allen [9] also mentions

“associational privacy,” the ability to choose one’s own company. She notes that

patients do not merely desire intimacy, but rather “selective intimacy” with certain

loved ones, and this is an aspect of privacy to consider.

Finally, privacy could be defined in terms of one’s personal space or territory.

These concepts are found readily in proxemics literature as well as in psychology

and ethology (i.e., animal behavior studies) in general. Patricia Newell includes

territoriality in her review of Perspectives on Privacy [170], although she also cites

a study that separates between the two [63]. We have already mentioned that

Leino-Kilpi et al. [144] define physical privacy as being over personal space and

territory, and Westin also mentions it when he links human privacy ideas with

animal behavior in Westin [255].
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2.1.1.4 Summary of Definitions.

This concludes our overview of different definitions of privacy from the literature.

One begins to see some common themes, but also the scattered nature of the

literature. Newell [170] in particular and also Leino-Kilpi et al. [144] do a good

job of synthesizing broad sections of what has been written (from psychological

and medical perspectives, respectively). See Figure 2.2 for Newell’s table of privacy

definitions. Newell [170] says, quoting an earlier privacy review, that, “theorists do

not agree...on whether privacy is a behavior, attitude, process, goal, phenomenal

state, or what.” Privacy is mysterious. But we have covered a diverse array of

definitions for privacy thus far; DeCew [58] gives a cursory recapitulation:

Privacy can refer to a sphere separate from government, a do-

main inappropriate for governmental interference, forbidden views and

knowledge, solitude, or restricted access, to list just a few.

2.1.2 Privacy as Described by Prominent Theories

We now present the three main ways we understood privacy for the work presented

in this dissertation: theories that define privacy (this section), a taxonomy that

describes its component parts (the next section), and the different ways it is used

in everyday conversation by people who are not privacy scholars (Section 2.1.4).

A näıve attempt at a theory of privacy might define it as the extent to which

you withhold your personal information from others and keep away from human
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Figure 2.2: Patricia Newell’s summary table of privacy definitions from the (largely
psychological) literature [170].
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contact. Privacy in this sense would be most effectively achieved by the hermit

living in a remote hut, shunning all visitors. The problem with this view is that

we often want to confide in other people and be part of human society. In fact,

humans want to share their lives with others—just not too much.

Adam Moore offers an alternative definition to account for this objection: ac-

cording to him, privacy is “control over access to oneself and information about

oneself” [164]. This is a “control-based” definition of privacy, in which it doesn’t

matter whether somebody accesses you or your information, but rather whether

you can control that access. Control-based definitions account for situations in

which someone invites others into his or her close company, or willingly gives out

personal information. These actions would violate privacy if privacy is the state

of being let alone, or of having all your personal information kept to yourself. But

authors holding to control-based definitions of privacy maintain that the person in

question is still in control, so there’s no violation; this especially makes sense in

the legal context.

Irwin Altman offers a more sophisticated theory. He defines privacy as a bound-

ary regulation process wherein people try to achieve their ideal privacy state by

using certain mechanisms to regulate interaction with others [10]. Notice how

this definition allows privacy to sometimes mean more interaction with others,

and sometimes less interaction; successfully switching between the two is the key.

Along these lines, Altman calls privacy a dialectic process, i.e., a contest between

two opposing forces—withdrawal and engagement—which alternate in dominance.

Hence, privacy to Altman is dynamic in that the desired level of engagement
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changes over time for a given individual. This theory is necessary for understand-

ing Altman’s discussion of personal space, territoriality, and crowding.

Finally, Helen Nissenbaum’s approach to privacy, which she calls “contextual

integrity,” focuses on the idea that different norms of information gathering and

dissemination are observed in different contexts [172]. Privacy is violated in a

given context when the norms for information gathering or dissemination within

that context are broken. Nissenbaum argues that some scenarios, especially public

surveillance, are intuitively felt by many to be potential privacy violations, and that

while U.S. legal policy overlooked these scenarios (at time of writing), “contextual

integrity” does a better job of accounting for our intuitive concerns [172].

2.1.3 Privacy as a Taxonomy of related Constructs

Whereas theories about privacy try to define it as a whole, a taxonomy describes

its parts and shows how they are related to each other. There are different types

of privacy—e.g., regarding personal information vs. social boundaries. This sec-

tion presents a breakdown of privacy into its different sub-concepts that has been

organized into a hierarchical taxonomy. This taxonomy attempts to organize all

the different types of privacy mentioned by privacy scholars into a single structure.

This is the second of three ways we understood privacy in our work.

A paper describing this taxonomy has been placed on arXiv [196]. This section

draws text from that paper.
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2.1.3.1 A Taxonomy of Privacy Constructs for Human-Robot Inter-

actions

This section lays out our taxonomy of privacy constructs and summarizes the key

literature behind it. Definitions of terms are to be found via the references where

not defined hereafter. The taxonomy is as follows:

Privacy (see Leino-Kilpi et al. [144] for subdivision)

1. Informational (see Solove [223] for subdivision)

(a) Invasion

(b) Collection

(c) Processing

(d) Dissemination

2. Physical

(a) Personal Space [255]

(b) Territoriality [255, 170, 39] (see Altman [10] for subdivision)

i. Intrusion

ii. Obtrusion

iii. Contamination

(c) Modesty [9]
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3. Psychological

(a) Interrogation [255]

(b) Psychological Distance [95]

4. Social

(a) Association [9]

(b) Crowding/Isolation [10]

(c) Public Gaze [17]

(d) Solitude [9] (see Westin [255] for subdivision)

(e) Intimacy

(f) Anonymity

(g) Reserve

2.1.3.2 The Literature behind the Taxonomy

We recommend the Stanford Encyclopedia of Philosophy article on privacy by

Judith DeCew as a comprehensive guide to the definition of privacy [58], espe-

cially in law and philosophy. Most of the references in this section we owe to the

bibliography from that article.

1-4 Leino-Kilpi et al. [144] divide privacy as follows:

1. Informational privacy, over personal information
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2. Physical privacy, over personal space or territory

3. Psychological privacy, over thoughts and values

4. Social privacy, over interactions with others and influence from them

1.a-d Informational privacy refers to privacy concerns about personal infor-

mation. In 1960, William Prosser divided (informational) privacy into four parts.

His formulation continues to be referenced today. Briefly, Prosser divides (infor-

mational) privacy into intrusion, public disclosure, false light, and appropriation.

These mean the following. First, intrusion into one’s private affairs includes tres-

passing, search, and remote intrusion such as wire tapping. Second is public dis-

closure of private facts. Third is publicly portraying the victim in a false light,

e.g., by misattributing to the victim a statement or opinion. Fourth is appropri-

ation, or pretending to be the victim for one’s own advantage. Daniel Solove has

constructed a taxonomy of privacy concepts based on Prosser’s formulation. It is

shown in Figure 2.1 as a general overview of informational privacy concerns. We

use the highest level of Solove’s hierarchy for 1.a-d.

2.a-b Privacy could be defined in terms of one’s personal space or territory.

These concepts are found readily in proxemics literature as well as in psychology

and ethology (i.e., animal behavior studies) in general, but are not often connected

with privacy. Patricia Newell includes territoriality in her review of Perspectives

on Privacy [170], although she also cites a study that separates between the two

[63]. Leino-Kilpi et al. [144] define physical privacy as being over personal space

and territory, and Westin also mentions it when he links human privacy ideas with
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animal behavior [255].

Social psychologist Irwin Altman pulls together the related concepts of privacy,

personal space, territoriality, and crowding [10]. His book, along with Burgoon’s

article [39] (discussed below), is a good foundation for environmental and spatial

factors related to privacy.

Judee Burgoon presents a communication perspective on privacy, including

territoriality, in a broad survey [39]. She argues that more “physical” privacy

could consist of blocking more communication channels, including sight, sound, and

even smell (e.g., the smell of food being cooked next door). We would add further

channels enabled by technology: phone calls, text messages, Facebook posts, and

the like. Alternatively, Burgoon writes that to have more territory, higher-quality

territory (e.g., better-insulated walls), and more unquestioned control over that

territory is to enjoy more physical privacy.

2.c Allen lists modesty as an important physical privacy concern in medical set-

tings, especially from the philosophical standpoints of Christian ethics and virtue

ethics [9]. Modesty may drive patients to request same-sex or even same-race

doctors.

3.a According to Westin’s account of privacy in U.S. law, the right to privacy

swelled in the late 1900’s [255]. The Supreme Court continued to try cases in

which new technologies created privacy concerns beyond physical entry and tangi-

ble items. According to Westin, new protections included “associational privacy”

over group memberships (this is distinct from 4.a) and “political privacy” over

unfair questioning on account of political positions.
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3.b Proxemics can include psychological distance as well as physical distance

(see Hall [95] cited by Mumm and Mutlu [165]).

4.a and 4.d Privacy might also include solitude, i.e., being physically removed

from other people. Solitude is more than a freedom from trespassing; one needn’t

be at home to desire solitude. Anita Allen includes solitude in her article on privacy

and medicine [9]. In the medical setting, the sick often want to be comforted by

company, but also to have some time alone. This could be especially true for

patients with terminal illnesses, who might want to reflect on their lives and make

some important decisions. In such cases we tend to respect their wishes. Allen also

mentions “associational privacy,” the ability to choose one’s own company [9]. She

notes that patients do not merely desire intimacy, but rather “selective intimacy”

with certain loved ones, and this is an aspect of privacy to consider.

4.b Altman calls both crowding and isolation failures to regulate the amount

of interaction with others [10]. It may seem odd to call social isolation a privacy

issue, but it is a logical conclusion from within Altman’s theory of privacy (see

Appendix).

4.c Lisa Austin offers a more nuanced definition of privacy: freedom from “pub-

lic gaze” [17]. She argues that this updated definition deals with the problem of

new technologies to which older definitions of privacy do not object. In particular,

Austin is concerned about cases wherein people know they are under surveillance,

about the collection of non-intimate but personal information (e.g., in data min-

ing), and about the collection of personal information in public. She claims that

other, older definitions of privacy do not agree with our intuition that these tech-
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nologies (could) invade our privacy by denying us our freedom from “public gaze.”

4.d-g Alan Westin lists four different states of privacy: solitude, anonymity,

intimacy (i.e., being alone with someone), and reserve (i.e., keeping to oneself)

[255].

2.1.3.3 Measuring Constructs from the Taxonomy

This taxonomy takes the broad concept of privacy and breaks it into more specific

constructs. We have split the single trunk into what we see as its main branches,

and some of those branches have also been shown to fork off, too. To study

privacy in human-robot interaction (e.g., in human-subject experiments), we need

the leaves of this privacy tree. Unlike the trunk and branches, the leaves are

no longer abstract constructs; instead, they are concrete measures. For example,

one operationalization of personal information collection (1.b) would be whether

someone knows your social security number—a simple, binary measure. Other

measures might be contextual, e.g., given that you are alone in a room with a

PR2 robot staring at you, do you feel comfortable changing your shirt? This

comfort level, a proxy for modesty (2.c), could be measured, for example, by a

questionnaire. All such measures would tap the extent to which a person’s privacy

has been preserved or violated.
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2.1.4 Privacy as a Word with Multiple Folk Definitions

So far we have presented scholarly definitions of privacy. Our third way of un-

derstanding privacy is by considering how it is used by non-scholars in everyday

conversation. I.e., we must remember that “privacy” is a word in the English

language. A word can have multiple meanings or be used differently by different

individuals or cultures. This perspective on “privacy” is important when we brief

our study participants, write questionnaires, and analyze what participants say.

Asking them, “how concerned are you about your privacy when this robot is in

the room?” could be interpreted in multiple ways. For example, in everyday con-

versation the same person could say, “I went to my room for some privacy” (i.e.,

solitude) and, “I adjusted the privacy preferences on my Facebook account” (i.e.,

information privacy)—the same word is used to mean two different things.

We do not believe, however, that it is always necessary to avoid using the word

“privacy” because of its ambiguity when talking to participants. Rather, we must

be clear about which sense of the word we mean, e.g., “privacy, by which I mean

control over who can start a conversation with you,” perhaps even operationaliz-

ing a construct into something measurable, e.g., “access privacy, which here means

the fraction of daily conversations that you did not want to have.” The “fraction”

in the latter example is relatively unambiguous compared to the word “privacy”

or even “access privacy;” researchers should favor such language to avoid misun-

derstandings. When analyzing spoken or written responses, researchers should be

skeptical of what a participant means by “privacy” and other words with multiple
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meanings. Searching the context for clues or—even better—asking the participant

for clarification can help in these situations.

2.2 Privacy Scholarship: a Survey across different Disciplines

We now present a review of privacy scholarship across a variety of disciplines.

The history of privacy in philosophy and U.S. law is given first as a sort of back-

drop. Psychology, anthropology, and several other social sciences are discussed

next along with medicine as the main sources of scientific research on privacy.

Finally, technology is discussed as an application domain for privacy.

2.2.1 History: Privacy in Philosophy

Privacy has a long but scattered history in the field of philosophy. Several philoso-

phers, such as Solove, Thomson, and DeCew, have already been mentioned above

as they contributed to defining privacy. This section includes some older thinkers,

and presents some useful distinctions that go beyond just defining privacy. Here

again, Judith DeCew’s article in the Stanford Encyclopedia of Philosophy is our

guide [58].

Aristotle wrote the earliest extant philosophy of privacy. Remember, however,

that modern usage of the word “privacy” is different than ancient usage. The Greek

concept of privacy was a distinction between the affairs of the oikos (household) as

separate from the polis (city-state) [8]. The former situation had free males ruling
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collectively over the city-state, whereas in the latter they ruled “despotically” over

the household. So when, in Book II of his Politics, Aristotle asks whether property

ought to be held “privately” or “in common,” he is asking whether each individual

man should own it or whether all the men should own it together [13]. To this

question he answers, “privately.” Aristotle argues that, if men own things privately,

they will take better care of them and enjoy them more. Furthermore, sharing will

take place naturally (an optimistic claim!), and all the evils commonly blamed on

the paradigm of private property are actually due to human wickedness. Hence,

Aristotle is an early proponent of our Western ideal of private ownership, which

undergirds certain aspects of privacy.

John Locke was an Enlightenment philosopher who greatly influenced American

political thought. In his liberal philosophy, Locke was a promoter of human rights.

Adam Moore has written a book on the Lockean idea of intangible property, which

includes things like intellectual property which we do not purchase but nonetheless

possess by right [163]. According to Locke, things that we create are ours as the

right of the laborer, “at least where there is enough and as good left for others”

[163]. In other words, our ideas or self-expressions can be ours by property rights

so long as they aren’t significantly depriving anyone else of similar rights. Applying

this rule can be tricky in the legal context.

Modern philosophers joined the conversation about privacy that started around

the beginning of the 20th century. They especially help to subdivide the topic into

clear categories. For example, they distinguish between descriptive and normative

accounts of privacy, i.e., between describing what privacy covers and examining
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why it’s important as a value or right. The rest of this section is divided according

to that distinction; we start by looking at some descriptions of privacy, then move

to some work on the normative side.

A key contribution by philosophers to descriptive privacy is the coherentist-

reductionist debate [58]. Schoeman [214] coined the words “coherentist” and “dis-

tinctivist” to represent separate groups of people, but we will take them together

as a single group that talks about privacy as an independently important idea that

cannot be reduced to other ideas—“reductionists” hold that other view [58]. We

think that taking the reductionist view here would contradict popular opinion and

shatter this one paper into many, so we shall remain coherentists. Nevertheless,

it is valuable to understand the reductionist viewpoint, stated most famously by

Judith Thomson.

In her 1975 article, The Right to Privacy, Thomson does not debunk privacy

altogether but rather calls it a “derivative” right, i.e., a right based on other rights

[241]. The argument runs as follows. First, we have rights over not just our

property but (even more so) over our own bodies. What might these rights of the

body include? Here Thomson cites what she believes to be the earliest statement

of body rights: “A Definition of Privacy,” written in 1974 by Professor Richard

Parker. Parker says the following:

Privacy is control over when and by whom the various parts of us

can be sensed by others. By ‘sensed,’ is meant simply seen, heard,

touched, smelled, or tasted. By ‘parts of us,’ is meant the parts of our

bodies, our voices, and the products of our bodies. ‘Parts of us’ also
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includes objects very closely associated with us [e.g., possessions].

Thomson’s examples of body rights are the right to not be looked at and the

right not to be listened to. She is quick to state that these rights are not always

claimed ; rather, we usually waive them implicitly when we go out in public, per-

haps whistling as we walk. But they become very apparent in some cases: Muslim

women would surely claim the right not to have even a bare knee seen by a stranger,

for example.

Surprisingly, Thomson does not throw privacy out completely here. Instead,

she defines each privacy right as some other right with a personal component. For

example, someone reading my book violates my right to it as my property, whereas

someone reading my diary violates the same right, but with regard to my personal

information, from which arises an additional right to privacy. Or consider the case

of torture: torturing me to extract some random fact, like the capital of the state

of Oregon, only violates my body right to go unharmed by others. Torturing me

for personal information, however, violates the same body right and my further

right to privacy. The key here is the direction of the logic: my right not to be

harmed for my personal information does not come from my right to privacy, but

rather the other way around.

Most authors, however, talk about privacy as distinct and not (wholly) derived

from other rights. On that note, we now consider some normative accounts of

privacy; that is, some different conceptions of why privacy is important. Why is

it good or useful to value privacy? For Bloustein [32], privacy is about the safety

and freedom of each person’s individuality and dignity. Fried notes its necessity for
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friendship and trust [78]. Inness among others says it is necessary for intimacy with

others [110]. James Rachels, besides making several other cogent contributions

that have been kept from this paper for brevity, addresses the question of why

we need privacy if we aren’t doing anything embarrassing [187]. He answers that

the presence of other people influences our actions, so being unable to control

one’s company is actually a loss of autonomy. Hence, privacy is a concern even

when we’re behaving ourselves—in fact, inasmuch as we feel pressured to “behave,”

privacy includes the freedom to escape such a situation.

2.2.2 History: Privacy in U.S. Law

The story of privacy law in the United States is in many ways the crux of the history

of privacy. What began as essentially a set of property rights has grown at both

the state and federal levels to include rights to confidentiality and about intimate

personal decisions. This section surveys the major contributions in chronological

order, beginning with the ratification of the Bill of Rights in 1791.

The Fourth Amendment to the U.S. Constitution begins as follows:

The right of the people to be secure in their persons, houses, papers,

and effects, against unreasonable searches and seizures, shall not be

violated. . . [1]

. . . to which the reader should silently add, “by agents of the government.” The

Bill of Rights was drafted in order to protect the rights of U.S. citizens from

an unlimited federal government; it was only by the doctrine of “incorporation”
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that, starting in the 1920s, courts began holding state governments accountable

for these rights as well. History lessons aside, the Fourth Amendment has been

one foundation, although not the only one, of court rulings about privacy rights in

the United States.

In 1967, Alan Westin published Privacy and Freedom, the result of over four

years of effort and study by a group of researchers [255]. His book includes a

chronology of privacy law in the United States which we will follow here with

some interjections from other authors. Westin begins with America as a new

nation, framed by the Constitution. Compared to Europe, America had much

in the way of privacy law before the Civil War [255]. American politics were

founded on the worth of the individual, limited government, property rights, and

the liberty to do what one will with his property. The First Amendment conferred

the freedom to speak, but also to keep silent. Anonymous publication of one’s

opinions was allowed, and police surveillance of public meeting places, as was

prevalent in Europe, was expressly forbidden. Justice Story held that the Third

Amendment (against housing troops in private homes) was meant to secure, “that

great right of the [English] common law, that a man’s house shall be his own

castle, privileged against all civil and military intrusion” [255]. There was also

judicial precedent (part of common law) that forbade nuisances, trespassing, and

eavesdropping. Trademarks, corporate and government secrets, and letters all

enjoyed general protection.

It was technology that began causing problems from the legal perspective [255].

The telephone was invented in the 1880s, followed closely by wire-tapping within
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a decade. Similarly, the microphone was invented in the 1870s, followed by the

dictograph recorder in the 1890s. For capturing images, “instantaneous photog-

raphy” became possible with the Kodak camera in the 1880s, and by 1902 The

New York Times reported on what we would call the first paparazzi: “kodakers”

waiting to capture photos of important people [255]. It is not a coincidence that

this is when the Supreme Court and legal scholars began to treat seriously the

expansion of American privacy rights.

We have already mentioned the true beginning of the privacy conversation in

America: the short article written in 1890 by Samuel Warren and Louis Bran-

deis entitled, “The Right to Privacy” [251]. The occasion was a humorous one.

Warren’s wife was among the social elite and her parties tended to be written up

in the newspaper; eventually, Mr. Warren got fed up and joined with Brandeis

to write the article [185]. Warren and Brandeis cite Judge Cooley’s right “to be

let alone” in the context of increasing invasions by journalists of Americans’ pri-

vate lives [251]. They argued that both the intimate and the mundane details

of one’s life are protected, along with one’s thoughts, sentiments, and emotions,

until “published” to others. Violations are to be redressed by tort (i.e., monetary

compensation) or by a court injunction (i.e., restraining order).

Prosser [185] reports that the article by Warren and Brandeis was argued over

for about 30 years. By the 1930s, its arguments began to be accepted by the courts,

and most states had privacy regulations along the lines of Warren and Brandeis by

1960. Prosser reviewed the over 300 privacy cases on the books by 1960 and reports

on the emergence of four separate torts over the years. We have already discussed
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them in Section 2.1.1.1: invasion, public disclosure of private facts, false light in

the public eye, and appropriation of someone’s name or likeness. We now con-

tinue with Westin’s account [255]. The right to privacy swelled in the late 1900s.

The Supreme Court continued to try cases in which new technologies created pri-

vacy concerns beyond physical entry and tangible items. Other new protections

included “associational privacy” over group memberships and “political privacy”

over unfair questioning on account of political positions. Anonymity in public

opinion was upheld in Talley v. California, 1960 [255]. Privacy of the body was

upheld in a 1964 case wherein the “reasonableness” of certain compulsory medical

examinations were in question [255]. Most importantly, and as discussed above

in Section 2.1.1.2, “constitutional privacy” emerged in 1965 with the Griswold v.

Connecticut decision [255].

In 1948, the Universal Declaration of Human Rights was adopted by the United

Nations General Assembly [239]. Although it came before the rise of “constitu-

tional privacy” in America, this document communicated an updated understand-

ing of privacy rights to the world:

No one shall be subjected to arbitrary interference with his privacy,

family, home or correspondence, nor to attacks upon his honour and

reputation. Everyone has the right to the protection of the law against

such interference or attacks. (Article 12)

The words “interference” and “privacy” seem to be quite general here; we see this

statement as a pretty broad dispensation of privacy rights.
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A number of authors have written about privacy more recently (say, since 1980).

We have already discussed several in Section 2.1.1 [180, 17, 223] that contributed

to defining privacy in the legal domain. Beginning in the 1970s, however, feminist

criticism of traditional understandings of privacy arose [8]. Anita Allen, for one,

reminds privacy scholars that home life is not automatically good; privacy can

hide abuse, subordination, and isolation, especially for women [8]. Allen believes

that we can salvage privacy as a society, however, which is good news seeing as

constitutional privacy rights about abortion and contraceptive use are especially

important for protecting women. Her argument seems a bit conflicted in places,

but underlines that women can be especially affected by the way we implement

privacy as a society.

2.2.3 Research: Privacy in the Social Sciences

Various social sciences—anthropology, sociology, psychology, economics—have stud-

ied privacy in humans. That being said, one could also argue that the roots of

human privacy values can be seen in animal behavior—that is, in ethology. Alan

Westin states that almost all animals seek privacy, either as individuals or as small

groups [255]. It is from animals that we get the idea of territoriality, or the defense

of one area against intrusion by others of one’s own species (which raises questions,

by the way, about what species a robot might be—see Section 7.1.1.7). Westin re-

ports three types of spacing observed between animals: personal distance between

individuals (e.g., between birds on a wire), social distance between groups, and
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flight distance at which an intruder causes fleeing [255]. At the same time, animals

often gather in large crowds, and it seems that at least part of the reason is the

mere social stimulation. Animals, like humans, seem to live in a tension between

privacy and sociality.

The English words “private” and “privacy” come from the Latin adjective pri-

vatus, meaning “set apart, belonging to oneself (not to the state), peculiar, or

personal.” This is used in contrast to publicus and communis, which have the ex-

pected meanings. Privatus is itself the past participle of privare, a verb meaning

“to separate or deprive,” which in turn comes from the adjective privus, meaning

“one’s own, individual” [4]. Several modern languages lack a word with the exact

sense of English “privacy;” these include Arabic, Dutch, Japanese, and Russian

[170]. French has some related words, but none covers the concept in general.

Japanese has four related concepts with similar meanings to “private life,” “free-

dom,” “solitude,” and “secrecy” in English [170]. Therefore, having a single word

that is even roughly equivalent to the English “privacy” is not universal across

languages.

Is privacy-regulating behavior peculiar to Western cultures, or even to Ameri-

can culture? Irwin Altman investigates in his study entitled, “Privacy Regulation:

Culturally Universal or Culturally Specific?” [11]. He hypothesizes that privacy

is a universal human need, but that different cultures have different privacy regu-

lation mechanisms. Altman surveys two types of cultures: those with apparently

minimal privacy and those with apparently maximal privacy. If mechanisms exist

to regulate privacy in those extreme cultures, he argues, then privacy must be
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universal despite all appearances. This was in fact the case. For example, the

Mehinacu culture in Brazil appears to have almost no privacy; housing is com-

munal, people enter huts without announcement, and each person’s actions and

whereabouts are generally known [192]. Upon a closer look, however, we see mech-

anisms for regulating privacy. It is permissible to leave the village for days at a

time, or to walk various secret paths alone and unaccounted for. Lying was used

regularly to avoid revealing too much while living in such close quarters. Some

privacy-related behaviors were humorous, especially that of the Sapps people of

Northern Europe. These are reindeer herders who live in tents, and while anyone

could make oneself welcome in anybody’s tent, a disgruntled occupant would often

feign sleep to signal for privacy [179].

We move now to studies of human privacy in the modern, developed world.

Privacy during childhood is a good place to start. Zeegers et al. [261] found that

58 of 100 three-, four-, and five-year-olds said they had a special place at the

daycare center that belonged only to them. When confronted with reduced time

and space for privacy, children in daycare can become territorial, more defensive

of their personal space, and more attentive of their physical privacy [113]. Newell

[170] mentions the importance of “refuge” to autistic children especially; she even

reports that some children use poor behavior to get put in isolation.

What about privacy norms in adults? Patricia Newell’s study of American,

Irish, and Senegalese subjects (mostly students) found that they usually sought

privacy when sad or tired, or to concentrate, and felt relaxed and refreshed af-

terwards [169]. Friedman et al. [79] studied the difference in privacy judgments
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between the so-called “watcher” and the person being “watched” in a public set-

ting. The results revealed a gender difference: women were significantly more likely

to be surprised or troubled by the idea of being watched via a video camera. Also,

men were less privacy-sensitive as watchers than they were when watched.

Acquisti and Grossklags [5] study the dichotomy between privacy attitudes and

privacy behaviors. Sometimes, even people who value their privacy don’t seem to

act to protect it. The authors hypothesize three reasons for this dichotomy. First,

people have incomplete information when they make privacy decisions. Second,

humans have only “bounded rationality,” so we can’t make perfectly rational de-

cisions if there is too much information to consider. Third, we have certain sys-

tematic biases. For example, we lack self-control and opt for instant gratification

even when it’s sub-optimal in the long run. The results of a 119-subject survey

supported all three hypothesized factors. For example, 44% of subjects showed a

time-inconsistency bias by discounting future payoffs. This suggests that people

cannot be expected to make fully rational decisions about privacy, even if they

value it dearly.

Another study by Acquisti and his colleagues assessed the subjective value of

privacy [6]. They draw an important distinction between the willingness to accept

(WTA) payment to give up one’s privacy and the willingness to pay (WTP) for

privacy protection. Economists have found that people are willing to accept only

a very high payment to give things up, perhaps due to “loss aversion” [6]. The

results gathered by Acquisti et al. [6] showed five times higher WTA than WTP

in a privacy-related context; subjects were unwilling to make even small monetary
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sacrifices to gain privacy protection. They also found that valuation of privacy

depends on how you ask. It depends very much how much privacy protection a

person is given to start with, and whether you propose to take some of it away or

to provide more.

2.2.3.1 Personal Space, Territoriality, and Environment.

Social psychologist Altman [10] pulls together the related concepts of privacy, per-

sonal space, territoriality, and crowding. His book, along with work by Burgoon

[39] and Sommer [225], discussed below, is a good foundation for environmental and

spatial factors related to privacy. Altman’s theory defines privacy as a boundary

regulation process wherein people try to achieve their ideal privacy state by using

certain mechanisms to regulate interaction with others. Notice how this definition

allows privacy to sometimes mean more interaction with others, and sometimes

less interaction; successfully switching between the two is the key. Along these

lines, Altman calls privacy a dialectic process, i.e., a contest between two opposing

forces—withdrawal and engagement—which alternate in dominance. Hence, pri-

vacy to Altman is dynamic in that the desired level of engagement changes over

time for a given individual. This theory is necessary for understanding Altman’s

discussion of personal space, territoriality, and crowding.

To Altman, personal space and territoriality are two mechanisms for achieving

a desired privacy state. Another example is speech. Reviewing the literature at the

time, Altman reports that there are individual differences in the use of personal
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space, but it’s hard to confidently state clear differences between men and women

or between different cultures. It does seem that people maintain less personal space

with people they know and like, as well as in informal settings. Personal space is

also relationship-dependent; being too close is an invasion for strangers and some

interactants, but excessive distance can be undesirable between intimates. As for

territoriality, Altman notes that the phenomenon in animals is related in some

ways, but also markedly different in other ways. He lists three kinds of territories:

primary (e.g., a bedroom or home), secondary (e.g., a local bar), and public (e.g., a

bus seat). The three kinds vary in the extent to which markers and other strategies

can be used to claim and defend space. Altman also distinguishes from outright

intrusions both obtrusions—defined as “excessive use” of the space, such as being

too noisy—and contaminations of the space. Altman recommends longitudinal

studies in natural environments for future research on territoriality.

Altman distinguishes crowding from density. Crowding is when too much social

interaction occurs, whereas density is a quantitative measure of persons per area,

per room, per home, etc. The opposite extreme from crowding is social isolation;

both are bad and indicate failure of the regulatory mechanisms that enforce a

person’s privacy. Altman presents results of laboratory experiments on the effects

of crowding on people, as well as various mechanisms for coping with crowding.

Judee Burgoon presents a communication perspective on privacy, including

territoriality, in a broad survey [39]. She argues that more “physical” privacy

could consist of blocking more communication channels, including sight, sound, and

even smell (e.g., the smell of food being cooked next door). We would add further
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channels enabled by technology: phone calls, text messages, Facebook posts, and

the like. Alternatively, Burgoon writes that to have more territory, higher-quality

territory (e.g., better-insulated walls), and more unquestioned control over that

territory is to enjoy more physical privacy. She goes on to list many aspects of

physical privacy: in spatial intrusions, the probability of violation, humanness of

the violator, and relationship with the violator; in social interactions, control over

who the interactants are, the frequency and length of the interaction, and the

content of the interaction; also, formality allows interactions to be kept short and

impersonal, whereas a more private state is characterized by greater rule-breaking,

“backstage” behavior, and freedom to engage in emotional release.

Burgoon cites Robert Sommer’s book on personal space with respect to the

possibility that an intruder would be treated as a “nonperson” [225]. Sommer

observes that inanimate objects like trees and chairs, as well as pets in some

circumstances, are not treated as intruders at all. This same phenomenon can

occur with people. For example, a cubicle dweller might continue a sensitive phone

conversation even as the janitor enters and begins emptying the trash. In certain

social contexts, such as subway trains and sporting events, it can be socially normal

to treat others as nonpersons.

Sommer also studied territorial markers. To effectively protect an area, markers

need to either be an explicit sign (e.g., a “Reserved” sign) or to have intrinsic

value (e.g., coat, purse, umbrella); litter doesn’t count. Valid markers can be very

effective at protecting a spot, especially during low room density. As more people

enter the space, markers are more likely to be ignored, and others in the room
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might be asked to confirm whose territory that is.

We now return to Burgoon’s list of privacy mechanisms in Altman’s sense (see

discussion of Altman [10] above), clearly influenced by her expertise in communi-

cation. She lists six categories of mechanisms. First is environment and artifacts,

which is further broken into architectural design, artifacts and furnishings, and

gatekeepers (e.g., receptionists effectively guard the rest of the building). Factors

like the size of each area, the blockage of senses between areas, and other cues that

say “socialize here” or “don’t” all impact the privacy of a space. Second is per-

sonal space and touch, which includes interpersonal distance, seating positions at

tables, body orientation, degree of sideways or backwards lean, and use of physical

touch. Third is chronemics, or the usage of time. For example, people could use

the same space but at different times, avoid social areas during peak usage hours,

or even declare different functions for a shared space at different times. Fourth is

kinesics and vocalics, or cues from the body and voice. Examples of “exclusion

cues” include “body blocks” or closed postures in a dyad, saying “go away,” silence,

or avoiding eye contact so others can’t begin visual communication. “Affiliation

cues” include smiling, relaxed postures, greater mirroring, and warm vocal tones.

Fifth is physical appearance and attire, and sixth is verbal mechanisms. Numerous

verbal mechanisms exist. The linguistic features of speech, such as tense, use of

personal pronouns, use of negation, and ambiguity can regulate privacy. So can

the degree of self-disclosure and formality, changing the topic, brevity or verbosity,

and direct references to one’s possessions, territory, or rights. Finally, there is the

idea of “linguistic collusion”—using in-group language to exclude others [39].
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We will mention several field studies in this area. First, Becker and Mayo [25]

note the possibility of confusing the concepts of personal space and territoriality.

They study whether what Sommer and Becker [226] call territorial behavior in a

cafeteria setting is actually closer to Hall’s concept of personal distance [95]. Is

using markers to reserve a spot at a table really just a mechanism for maintaining a

comfortable personal distance? If so, the person who marked the space will be just

as likely to move to a new spot upon intrusion than defend that spot in particular.

A study of 48 unsuspecting university students supported this hypothesis. The

authors argue that the active construct in that scenario was personal distance, not

territoriality.

Walden et al. [250] study how incoming freshmen at an American university

cope with different levels of crowding. The authors measure both objective and

subjective crowding (what Altman calls density and crowding, respectively; see

above). They also highlight the difference between one’s expectation of achieving

the desired privacy state and the value or pay-off of achieving that goal. For the

study, students were assigned either a two-person or a three-person dormitory room

and surveyed about their experiences. The results showed an apparent difference

between the way males and females cope with crowding, but were limited by a low

sample size, especially of male subjects.

Sebba and Churchman [216] interview 45 Israeli families with two to four chil-

dren living in apartments of almost identical size and layout. Based on their

results, they classified territorial areas into four categories. The first three were

called individual, shared, and public areas. Single-occupancy bedrooms were indi-
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vidual territorial areas, multiple-occupancy bedrooms were shared, and most living

rooms were public. The final category they called jurisdiction areas, wherein one

person has jurisdiction but the space is used by everybody. About half of the

kitchens were defined as jurisdiction areas—they were used by everybody, but be-

longed to the mother. Additional research is needed to determine whether these

findings generalize to other demographic groups and types of spaces.

2.2.3.2 Online Privacy.

Privacy on the Internet is a bit of a different animal. The user can browse as an

anonymous, disembodied agent, and is confronted with compelling advertisements

and endless information. In a study of online interaction in general, subjects were

guided by an online avatar named “Luci,” who asked them personal questions to

help them pick out some things to buy [30]. Some questions were purely relevant

to the purchasing task, while others were more prying. In general, subjects gave

away a lot of information, and again this was true even of those who self-reported

as valuing their personal information.

Paine et al. [178] studied why people (don’t) act to protect their privacy online.

Five hundred and thirty people from various countries responded to an open-ended

survey administered by an automated instant-messaging bot. When asked why

they were (not) concerned about privacy online, those concerned cited viruses,

hackers, etc., whereas those not concerned cited their own competency, protective

software, apathy, and a lack of valuable information to hide. Those who reported
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not taking privacy-protective actions cited as reasons apathy, a lack of felt need

for protection, and (this was troubling) not knowing how to get effective privacy

protection online. Again, the questions were open-ended and subject to respon-

dents’ interpretations of “privacy online,” but the results enumerate some issues

that need addressing in online privacy.

Of special interest to this paper is the development of privacy metrics and

evaluation methods, since those could possibly be adapted for use in human-robot

interactions (see Section 7.1). Buchanan et al. [37] construct a new online privacy

measure (namely, a questionnaire) and test it against two popular privacy measures

from the previous literature. They propose three privacy metrics to be measured

by a 28-item questionnaire: General Caution (when using the Internet), Technical

Protection, and Privacy Concern. These metrics were validated both as constructs

and against two other scales: Westin’s Privacy Segmentation [98] and the IUIPC

[156]. Over 1000 respondents took all three measures, and results were significantly

correlated in general.

2.2.4 Research: Privacy in Medicine

The field of medicine is aware of the importance of privacy. This is evidenced by

the Declaration on the Promotion of Patients’ Rights in Europe, which includes

respect for privacy as 1 of its 6 human rights [239]. The Declaration frowns on any

medical treatment that cannot be performed with respect for the patient’s privacy.
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Allen [7] lists three main uses of the term “privacy” in the healthcare do-

main: physical privacy, informational privacy, and decisional privacy. The third

usage—decisional privacy—is especially salient in healthcare. Allen defines deci-

sional “privacy” as the freedom to make one’s own decisions (here, about medical

treatment) and act on them without undue outside influence. Careful readers will

notice that decisional “privacy” is the same as constitutional privacy, discussed

above in Section 2.1.1.2. Allen places quotation marks around the word “privacy”

in decisional “privacy” because of some controversy over whether decisional “pri-

vacy” should be called privacy at all, but rather liberty, freedom, or autonomy [7].

In a different article, Allen [9] lists modesty as an important physical privacy con-

cern in medical settings, especially from the philosophical standpoints of Christian

ethics and virtue ethics. Modesty may drive patients to request same-sex or even

same-race doctors.

Things we consider common etiquette, such as knocking on a door before en-

tering, can be supportive of physical privacy [144]. Also, technology is causing

problems in the medical as well as the legal realm; a survey in a Finnish hospital

revealed that, “Only 30% of 166 respondents, however, believed that their data

was safe in the hospital’s computer system” [144]. In a 2005 study of an Australian

emergency department, 105 of 235 survey respondents reported a privacy breach,

defined as either personal information being overheard or private body parts being

seen [121]. Influencing factors included the length of stay and whether patients

were separated by solid walls or just curtains.

Applegate and Morse [12] have published a study of privacy in a nursing home
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for Canadian war veterans. The authors focused on the relationships between the

residents, between the staff members, and between residents and staff. Relation-

ships were categorized by how relational others were treated: as friends, strangers,

or inanimate objects. This last phenomenon is understood as dehumanization,

and took several different forms. Privacy was violated most often for those who

were dehumanized. Dehumanization was more common towards the less mentally

competent residents; other residents would sometimes push them out of the way,

and staff members might administer their medicine forcibly and without verbal

acknowledgement. This study highlights how privacy-relevant behavior is subject

to other factors—here, the mental act of dehumanization—that might not be ex-

pected by the privacy researcher but nevertheless drastically affect the situation.

Moreover, here we see that there are places wherein privacy is not a fringe concern,

but rather an everyday concern, a central quality of life issue like it is in a prison.

These may be edge cases, but they are nonetheless motivating.

2.2.5 Applications: Privacy in Technology

Video media spaces (VMS) connect people separated by distance with video chan-

nels. Mediated interactions differ from face-to-face interactions in several key ways;

Boyle et al. [36] present a vocabulary for understanding these differences. Disem-

bodiment is the stripping of context (e.g., at home, hard at work) from the inter-

action. Role conflict is when a media space places someone in several disparate

contexts at once, as in the familiar case of working from home. Dissociation is
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the decoupling of one’s body and identity from one’s actions, as with a remote

operator of a robot. Social signals that are lightweight for in-person interactions

are more difficult in a media space. For example, signalling availability (regulating

solitude) is done with nuanced facial expressions, tones of voice, hand and posture

signals, and environmental cues like a door leaned shut. This is all possible in

video media spaces, but is currently awkward instead of natural and blunt instead

of nuanced.

Boyle et al. [36] continue by arguing that privacy risks are unavoidable with

technology. A privacy risk has both probability and severity. Privacy risks are only

worth it if counterbalanced by some reward; the technology must provide a com-

parable benefit. Just as for other personal rights, privacy rights need protection

by policing, which includes real punishments for violations and warrants the for-

mulation of privacy rules. This is especially true for situations with an imbalance

of power, such as when one person can access (i.e., see and hear) another person’s

space via a one-way connection. We can restore balance through reciprocity, which

is when person A can do to person B what B can do to A.

The authors also distinguish between access control over who can use the media

space and content control over what users can see and hear [36]. Content control

is often provided by filters. For example, the eigen-space filter by Crowley et al.

[53] ensures that only images from a socially-acceptable set will be displayed. Ex-

treme examples of filtering include the availability indicators (e.g., green means

available, red means busy) used in instant messaging applications. This brings up

concerns about the minimum amount of fidelity needed for some task, and also
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about data integrity, i.e., that the video feed is faithfully modified before it reaches

the recipient. Finally, the authors mention evidence that mandatory media space

usage causes social changes among the users over time [36]. One could speculate

that robot usage will cause even more drastic changes.

Privacy is also a topic of conversation within the subdiscipline of ubiquitous

computing. Weiser [254] defines ubiquitous computing, or “ubicomp,” as, “the

method of enhancing computer use by making many computers available through-

out the physical environment, but making them effectively invisible to the user.”

Hong and Landay [104] claim that “privacy is easily [ubiquitous computing’s] most

often-cited criticism.” One major principle that has emerged from this conversa-

tion is to consider privacy issues during product design instead of just making rules

to fit the products. Bellotti and Sellen [27] introduce some “design for privacy”

principles with respect to the RAVE media space environment at EuroPARC, in-

cluding some specific design suggestions that demonstrate what design for privacy

is all about. Langheinrich [136] gives six principles for privacy in ubicomp: notice,

choice and consent, proximity and locality, anonymity and pseudonymity, secu-

rity, and access and recourse. Here, “proximity and locality” means using location

information to enforce access rules based on where the accessor is; “access and

recourse” means users should be able to access their personal information and see

how it has been used by others (i.e., via usage logs).

Lederer et al. [139] promote a so-called “situational faces” metaphor for pri-

vacy settings in ubicomp environments. Users, they argue, need adequate notice

that describes the “situation” to the point where they can consent to the appro-
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priate “face” (like a user profile; e.g., “secure shopper,” “anonymous,” “hanging

out with friends”). Each “face” could cover multiple situations. Their focus on

notice and consent comes from the fair information practices, which also include,

e.g., access, security, and redress. The authors also cite the Boundary Principle,

which says to place privacy notices2 at the boundaries between different ubicomp

environments. The same authors have explored two factors, inquirer and situation,

via a questionnaire-based study [140]. Their study addressed the question, e.g.,

of whether a person would change “face” if the same inquirer requests access to

personal information in two different situations.

Langheinrich [137] and Hong and Landay [104] propose specific architectures for

handling privacy issues in ubicomp environments. The architecture in Langhein-

rich [137] is based on the six principles given by Langheinrich [136], and uses the

“machine-readable format for privacy policies on the Web (P3P)” described by

Reagle and Cranor [189]. Hong and Landay [104] developed “Confab, a toolkit for

building privacy-sensitive ubicomp applications.” User needs were assembled from

a variety of interviews, papers, and other sources, and then summarized into four

categories, including plausible deniability (i.e., ability to give an excuse without the

system proving you a liar) and special exceptions in emergency situations—namely,

sacrificing privacy for safety.

Closely related to ubiquitous computing is the concept of the Internet of Things

(IoT), which focuses more on objects (artifacts) imbued with computing power and

2Some researchers are seeking to improve the privacy notices themselves. See Kelley et al.
[123] for an example inspired by the nutrition labels required by the U.S. Food and Drug Ad-
ministration.
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network connectivity. Atzori et al. [16] survey the topic and lists a few privacy-

protection strategies being considered, including anonymization of data collected

by sensor networks and use of privacy brokers between users and services. Weber

[252] gives a legal scholar’s perspective of security and privacy issues with the IoT,

including a short survey of technical requirements for a privacy protection system

as well as some existing privacy enhancing technologies. The author also evaluates

the role and actions of the European Commissions with respect to security and

privacy in the IoT up until late in 2009.

2.3 Why Privacy matters for Human-Robot Interaction

How can a robot threaten somebody’s personal privacy? This section examines this

question in terms of two human-robot interaction paradigms: autonomous robot

behavior and robot-mediated presence. We then consider the question of whether

these privacy risks are unique to robotics technologies or shared by similar things

like virtual avatars, Internet of Things (IoT) devices, and dolls.

2.3.1 Can Autonomous Robots threaten our Privacy?

Autonomous robots can certainly threaten our information privacy inasmuch as

they can collect, process, and transmit personal information about us. A robot

could also threaten other types of privacy such as territory and solitude, too,

although it probably depends on the extent to which it is seen as a social actor.
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The degree to which a robot is seen as a social actor can vary. HRI researchers

have operationalized social actorhood in several different ways, including the social

facilitation effect [211], responses to a robot’s greeting and other linguistic factors

[73], cheating deterrence [103], and the act of keeping a robot’s secret [118]. Other

HRI studies have also tapped related constructs, such as anthropomorphism [22]

and theory of mind [147]. Several such constructs might relate to privacy in HRI,

and studying this connection requires the expertise and close involvement of social

scientists.

2.3.2 Specific Privacy Concerns raised by Autonomous Robots

Ryan Calo, a law professor, wrote the “Robots and Privacy” chapter of Robot

Ethics [45]. He identifies three specific privacy risks posed by robots: surveillance,

access to living and working spaces, and social impact. The worry about access

is worsened by the work by Denning et al. [59] wherein the authors demonstrate

security vulnerabilities on several toy robots. Calo divides his concerns about social

impact into three parts. First, having robots everywhere could make solitude hard

to find. There is some push for this to happen; the South Korean government, for

example, officially intended for a robot to be in every household by 2015. Robots

can also act as information extractors and persuaders, perhaps better than humans

can. Over a decade ago, the ELLEgirlBuddy was deployed to advertise Elle Girl

Magazine to teenagers, from whom it also harvested marketing information via

instant messaging [45]. Calo also introduces the idea of settings privacy, or concern
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that the way you personalize your robot could be sensitive information about you;

what before was kept to yourself is now datafied and stored onboard the robot. This

is especially concerning in light of David Levy’s 2007 book Love + Sex with Robots

[149]. As robots become increasingly amenable to customization, and also able

to learn from their experiences and interactions, an increasing amount of personal

information may become embedded in our robots. In this case, lawmakers should

be concerned about the “third-party doctrine,” under which individuals can lose

Fourth Amendment protection for information they voluntarily give to some third

party [45]. As it stands in US law, you may lose your claim over any personal

information that your robot learns about you.

Additional robot-specific privacy concerns have been proposed at We Robot,

an annual conference about robotics law and policy. Thomasen [240] discusses

the possibility of robotic interrogation. Bankston and Stepanovich [19] discuss

the interception of email messages by the US National Security Agency (NSA),

arguably by web-crawling robots that make decisions about the data. Hartzog [99]

points out that robots in particular can be unfair or deceptive to consumers. The

issues raised by all these authors demand two responses: study of the real privacy

phenomena by HRI researchers and technologies that can be implemented on real

robots to help protect user privacy.
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2.3.3 Robot-Mediated Presence and Privacy

In the robot-mediated presence paradigm, personification is natural because the

robot really is (representing) a person. One simple form of robot-mediated presence

is that of Remote Presence Systems (RPSs, already mentioned above). These

robots present a video chat interface with the addition of a mobile base so the

remote operator can look around and even drive from place to place. One can see

how this is very much a remote presence, as one could even participate in a tour

or meet-and-greet from afar. Examples of RPSs include the InTouch Telemedicine

robots [111], the Beam RPS [229], and the VGo robot [246]. See Lee and Takayama

[141] and Beer and Takayama [26] for two evaluations of RPSs in realistic scenarios.

Robots could also be mediators, or even full-body surrogates, for persons with

severe motor disabilities (see Chen et al. [49]).

It seems clear that remote presence systems, like autonomous robots, cause

concerns about privacy. Without the mobile base, RPSs are essentially video

media spaces, which have a slew of privacy problems themselves (see Boyle et al.

[36] for a review). Moreover, adding the mobile base adds new privacy concerns

[20]. RPSs can be driven into private spaces, or used to look around at things

against the will of the local user(s). With video chat software like Skype, the local

user controls the direction of the webcam; with RPSs, the remote operator has

this control.
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2.3.4 Are the Privacy Concerns presented by Robots Unique?

Robots share characteristics with some other classes of devices (e.g., personal com-

puters, Internet of Things devices), which raises the question: why do we need to

study privacy in human-robot interaction as a separate effort? Why not consider

it part of IoT privacy, for example? We think robots (which we see as a general

category that includes androids, mobile robots, robotic toys, drones, and several

other subcategories) have a unique combination of properties even though they

share each of these properties with at least one other type of device. The one

exception is easy to overlook: the label “robot,” which has been given particular

meanings by different cultures, especially from the influence of science fiction.

Besides being called “robots,” robots share their distinguishing, privacy-relevant

properties with other types of devices. Robots are controlled by computers, so they

can store, process, and transmit data just like computers can. Robots are similar

to smart phones, other smart devices, and some wearables and IoT devices inas-

much as they have onboard sensors. Some robots can move from place to place like

remote controlled vehicles, although robots are often autonomous to some extent.

Robots are also similar to AI agents like chatbots inasmuch as they can interact

with users via text, and other robots are like AI personal assistants (e.g., Cortana,

Siri, and Alexa) inasmuch as they can use voice. Some artificial agents can even

use nonverbal communication via a virtual body, but robots have the extra impli-

cations of physical bodies [184]. Note that these different modes of communication

enable a robot (or similar device) to be attributed a “personality” by users. Fi-
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nally, robots can do actions to change things in the real world, a property they

share with animatronics (which are not interactive), some IoT devices (which can-

not move around the room, although neither can some robots like SPRITE and

KeepOn), and non-robotic industrial automation (e.g, a piston that actuates every

10 seconds; these use little or no onboard sensing).

Each of these properties has implications for privacy. Since robots can move

around without being carried or worn by a human, they can enter someone’s ter-

ritory without permission. Robots can also switch between taking measurements

from a fixed position (e.g., the kitchen) and tracking an object of interest like a

person or group of people. Being able to take physical actions includes touching,

grasping, and manipulating objects, including personal objects. Robots could also

touch people’s bodies. Finally, robots can be socially interactive and even affec-

tive, so they can evoke behaviors from people. For example, a robot could try to

use its embodiment, voice, simulated emotions, and so on to build up trust with

someone and then extract personal information or evoke embarrassing behaviors.

Our conclusion from this short discussion is that privacy research for human-

robot interaction should draw from findings about privacy in interactions with

related types of devices, but should also be studied separately because robots have

a unique combination of characteristics. Also, the words people use to talk about

different devices can be important, and the word “robot” (as well as words like

“android,” “drone,” and “cyborg”) have special meanings.
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2.4 Introducing “Privacy-Sensitive Robotics”

2.4.1 Definition

We use the term “privacy-sensitive robotics” to describe work on designing, pro-

gramming, and using robots in a way that considers users’ privacy. This includes

work on understanding privacy in human-robot interaction as well as on algo-

rithms, design processes, and other techniques for protecting it. Privacy-sensitive

robotics work can be thought of as a subset of work on human-robot interaction

[91]. Although privacy is a social value (i.e., concerning interaction between peo-

ple) a robot does not need to be intended for social interaction (like the robots in

Fong et al. [75]) to be relevant to privacy.

2.4.2 Published Work thus far

A few studies have been published besides ours that we would consider privacy-

sensitive robotics research3. Syrdal et al. [232] studied disclosure of personal in-

formation and Caine et al. [43] studied privacy-enhancing behaviors. Wong and

Mulligan [256] studied what concept videos can communicate to potential users

about privacy. Denning et al. [59] demonstrated security vulnerabilities in com-

mercially available robots. Lee et al. [142] studied users’ perceptions of privacy

with a social robot in the workplace. Hubers et al. [108], Butler et al. [40], and

3Work must have privacy considerations as at least one of its main goals for us to call it
privacy-sensitive robotics work. Mentioning privacy concerns, finding something about privacy
in some data, or suggesting privacy protection as an unintended benefit of a new technology
doesn’t count, although of course we pay close attention to such work.
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Klow et al. [127] studied the trade-off between filtering the robot’s video feed to

protect user privacy and keeping it unfiltered so the remote operator can use the

robot effectively. Wagner [249] presents an architecture for automatically detecting

private objects and locations. Tonkin et al. [243] studied the effects of embodi-

ment, and Vitale et al. [247] of transparency on privacy judgments. Also, Krupp

et al. [132] studied what privacy concerns people have about telepresence robots.

There has also been some theoretical work in privacy-sensitive robotics. Legal

scholar Calo’s chapter on privacy in Robot Ethics [45] identifies three ways that

robots present new privacy concerns: direct surveillance, increased access, and so-

cial meaning. Another paper by Calo focuses on how drones [44] might prompt

changes in U.S. privacy law, and legal scholar Kaminski comes to a similar con-

clusion in her discussion of home robots and privacy [119]. Kaminski et al. [120]

present several categories of potential privacy harms by robots, then some tech-

nological as well as legal solutions. Lutz and Tamò call for a new class of jobs to

bridge the divide between privacy regulators and engineers [154], and have also ar-

gued for the usefulness of actor network theory (ANT) in their analysis of privacy

in healthcare robotics [155]. Shulz and Herstad [215] apply the privacy framework

by Palen and Dourish to a mobile robot in the home; similarly, Sedenburg, Chuang,

and Mulligan [217] apply the Fair Information Practice Principles (FIPPs) as well

as research ethics to the development of therapeutic robots in the home. Finally,

Ishii [112] discusses legal frameworks for privacy regulation in the EU, US, Canada,

and Japan with a focus on Privacy by Design (PbD).

We now move to an outline of our contributions to this area of research.
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2.5 Preview of Contributions

When we began researching what we now call “privacy-sensitive robotics” we didn’t

even know the extents of the topic—i.e., what all is meant by the word “privacy”

and how it could relate to human-robot interaction. This motivated an ambitious

literature review. As we were reading privacy literature we also became curious

about how well-equipped society is to address privacy concerns (assuming we knew

what they were) in terms of the needed technology. The findings from this extra

search form our first contribution in this dissertation (Chapter 3). Specifically,

we searched for technologies that could provide constraints on the perception,

navigation, or manipulation of a robot to protect users’ privacy. We found a few

technologies that were designed for privacy protection (Section 3.2) and many more

that could potentially be used for privacy protection (Section 3.3).

Our next three contributions are findings from empirical studies. Our first

concern was visual privacy—i.e., objects, areas, and people that someone doesn’t

want others to see. We defined an objective metric for visual privacy: are all the

objects, areas, and people that have been marked as “private” completely obscured

(e.g., blurred) in the robot’s video feed at all times? This approach works well if

(1) some objects, areas, or people are inherently private, like tax forms or naked

bodies—simply detect and obscure them automatically; (2) users specify their pref-

erences manually for every object, area, and person; or (3) a compromise between

options 1 and 2 wherein users specify their preferences over categories of objects

and an automatic classifier decides which objects in the video feed belong to which
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of these categories. Following option 2, our first experimental contribution (Chap-

ter 4) evaluates different interfaces for tagging objects as private—in particular,

whether physical interfaces make this process easier than on-screen interfaces do.

As we finished this first study, we began to think about what might cause

privacy preferences to change. In many cases, for example, objects are private

not because of what they are in themselves, but because of a person’s unique

relationship to that object (e.g., objects with sentimental value). Taking this

a step further, sometimes privateness is not fully explained even by the person-

object relationship—in fact, Nissenbaum’s theory of “contextual integrity” [172]

stresses that privacy rules change based on the situation.

Following these thoughts, we argued in our second experimental contribution

(Chapter 5) that contextual “frames” are a major influence on how people feel

about their privacy. We conducted four online surveys to look for differences

in how people interpreted a scene when the “frame” was changed. In the final

survey participants watched four video clips of different parts of a human-robot

interaction scenario, and we began to test for any effects of their adjusting to the

robot’s presence over time. Although these initial results hinted that time was

indeed having an effect, we wanted to look at this over longer periods of time and

in a more natural setting.

Pursuant to this new goal, our third study lasted six weeks and happened in a

public place: a hallway on campus outside a yoga classroom. Instead of measur-

ing privacy concerns directly we became interested in how people form a mental

model of how the robot works, which we see as one of the main inputs to the
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process of making privacy judgments. We interviewed six participants repeatedly

throughout the study to learn about mental model formation. Our fourth contri-

bution (Chapter 6) is a report of the key findings and recommendations from those

interviews.

We think of these early, pioneering contributions we have made to privacy-

sensitive robotics as a journey or story. We first chose a broad definition of privacy

and found the state of the art in privacy protection for robots. We then chose

for our first study a rather narrow problem with a practical outcome—how should

users tag objects as private?—and then expanded our focus in the second and

third studies by removing two big assumptions: what if the situation is framed

differently? and, how about when users’ mental models of the robot change as they

interact with it? Because of our desire to get other researchers involved in privacy-

sensitive robotics work, our fifth and final contribution is a set of recommendations

for the future of research in this emerging area. We hope that the collaborations

we describe and the roadmap we lay down will guide and inspire the choices made

by a new wave of privacy-sensitive robotics researchers.
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3 Perceptual and Behavioral Constraints that could Protect

Users’ Privacy

This chapter was adapted from a paper by Rueben and Smart [195] that was

presented at We Robot 2016.

3.1 Introduction

Roboticists usually conceive of robot behavior as a list of “do”s: do pick up the

cup, do go to the other room, do locate the red object. Along with each “do,”

or goal, however, comes a host of “do not”s, or constraints. Do not drop or crush

the cup; do not hit anyone on your way to the door; do not stare at people or

they’ll feel uncomfortable. In many robotics applications, the proper constraints

are apparent from the outset, or they become apparent as a natural part the design

process. They can be hard to ignore—e.g., for an urban delivery robot it is obvious

and urgent that it should stay on the sidewalk to avoid becoming the victim of a

traffic collision. It should also be obvious to designers of, for example, a robotic

receptionist for a museum or hospital that it should not interrupt or speak rudely

to users, and that movement should be constrained if someone gets too close.

Some constraints, however, require special attention to ensure they are not

forgotten or ignored. For example, constraints to uphold values like safety, ac-
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cessibility, etiquette (e.g., Takayama et al. [235]), transparency1, and our value of

interest: privacy. There are several reasons why the proper constraints to protect

user privacy might be left out of a robotic system. First of all, they might not

be so obvious to designers—e.g., it might be hard to predict when a social robot

might cause subtle harms to someone’s close relationships. Designers might also

not be motivated or encouraged to address certain privacy concerns, so they simply

ignore them. For example, a security robot might pass too close to people or stare

at them creepily, but the building owners who hired the robot service might not

care. Lastly, robot manufacturers could even make money or gain an advantage

by exploiting people’s privacy, e.g., by harvesting people’s data for targeted adver-

tising. These problems may seem minor or speculative now, but we believe they

will become much more serious as robotics technology improves and becomes more

ubiquitous.

Our first contribution to privacy-sensitive robotics research addresses these

issues by focusing on how to constrain robots so they respect people’s privacy.

In particular, we have surveyed the technology literature and assembled a list

of existing technologies that could be used to implement the proper constraints.

We also present some work that has already suggested or implemented privacy

constraints for robots. The purpose of this first contribution is to understand

what is the state of the art in privacy protection technology for robots.

1By transparency we mean that the robot’s appearance, behaviors, and interface make it clear
what is going on inside the robot.
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3.2 Constraints for Privacy-Sensitive Robots

We will need to restrict what the robot sees (Section 3.2.1), where it goes (Sec-

tion 3.2.2), and also what it touches (Section 3.2.3). What a robot (or robot

operator) actually does with the data it collects or in the spaces it occupies is not

being considered here, although data usage and robot behavior will impact users’

privacy expectations.

It should be remembered that constraining a robot can draw extra attention

to private objects or areas. If a remote operator can see that an object is being

redacted in a video stream, he or she might wonder what is being hidden; if the

robot conspicuously avoids an area or object, local users might become curious.

If a remote operator is malicious, or even just curious, he or she might move the

robot to try to see past a filter or manipulate a filtered object. Perhaps additional,

fake restrictions can be added to make the real ones less interesting by comparison.

In any case, good privacy-protecting robot constraints should ultimately be tested

against malicious users to ensure they are robust to tampering. If a constraint that

is perceivable by remote operators or local users would attract too much attention,

that constraint might have to be made imperceivable or removed altogether.

3.2.1 Constraining Perception

Many robots are equipped with cameras. Here we will consider how to limit what

a robot can see. Some robots can hear, feel, or even smell, but it is more difficult

for these senses to violate someone’s privacy than it is for vision. We have said that
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privacy can be informational (which includes seeing and hearing private things) as

well as spatial. Some of the most basic privacy issues are visual: seeing someone

without their clothes, for example. Also, many informational privacy violations

among humans are visual: intellectual property is stolen by reading a document

or seeing a product. Even spatial privacy may have a significant visual portion, as

indicated by the trope of blindfolding outsiders as they are led through a secret

area.

It is important to note from the outset that image manipulation is only im-

portant if the vision system actually captures privacy-compromising data. For

example, Zhang et al. [262] present a computer vision system to detect if an older

adult has fallen down. Their work points out that certain sensors—here, a depth

camera—can function without compromising a person’s identity. They also use

an RGB camera, which, by collecting color image data, affords much less pri-

vacy protection. It becomes clear that, when a user is beyond the range of the

depth camera, a decision needs to be made as to whether to use the RGB camera,

which compromises the user’s identity, to continue providing functionality. Once it

is decided that privacy-compromising data will be collected, image manipulation

techniques may be employed to mitigate the privacy violation.

Templeman et al. [238] present a classifier for deciding whether an image was

taken in a private area such as a bathroom or bedroom. The classifier attempts

to match landmarks in the image stream with landmarks in sample images of the

private areas. The authors focus on first-person cameras for humans, but their

work probably extends to cameras onboard robots. This becomes unnecessary for
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robots that can localize themselves with high confidence in a map with the private

areas labeled; the classifier remains useful for robots that do not localize or do so

with too much uncertainty.

Forsyth et al. [76] present a technique that detects whether one or more naked

people are in an image and, if so, provides a mask of the offending region. Privacy-

sensitive robots could use a nudity detector to avoid naked humans in some con-

texts (e.g., upon opening a bedroom door and seeing the occupant in the middle of

changing his or her clothes, the robot could decide to leave immediately) and, in

other (e.g., medical) contexts, to cover the naked bodies with an image filter (see

next section for examples) before the images reach the remote operator. It seems

that most people regard certain of their body parts to be private—i.e., off-limits for

viewing by others—when uncovered. A nudity detector would help robots respect

this aspect of privacy. It appears that the state of the art has a long way to go

if robots are to reliably respect this form of privacy. Difficult unsolved problems

include automatically deciding whether a partially-dressed person is “decent” (i.e.,

has all the private body parts covered) and differentiating between, e.g., a swim-

suit, underwear, and lingerie, each of which could evoke a different set of privacy

rules. Context also matters—e.g., when a woman is breastfeeding an infant it

might be acceptable to expose more than usual.
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3.2.1.1 Image Manipulation Techniques: Descriptions.

Many techniques can be found in the graphics and animation literature for post-

processing images. Note that these techniques only use the information available

within the image itself; outside help from the artist or from additional (e.g., depth)

sensors is not being considered. Some image manipulations are intended to obscure

parts of the image. These methods include pixelating, blurring, redacting, and

replacing either the entire image or just certain regions (see pictures in Boyle et al.

[35], Hubers et al. [109], Raval et al. [188], and Zhao and Stasko [263]). Only a

few works are discussed here, as representative examples.

Perhaps the simplest way to simplify a digital image is to reduce its resolution.

This makes the image appear blocky, hence the moniker, “pixelation.” Naive

pixelation preserves low-detail regions but obscures high-detail regions of an image.

For example, in Figure 3.1b the subject’s eyes, nose, and mouth are difficult to

discern, but his clothing remains discernable as a suit and tie. With more intelligent

pixel grouping, it becomes easier to discern the eyes, nose, and mouth, and arguably

without making the subject’s identity more recognizable (Figure 3.1e).

Blurring and redaction are also common methods for obscuring images, espe-

cially on post-processed television. Blurring smooths an image by allowing each

pixel’s value to be influenced by the values of the pixels around it. Including a

larger neighborhood (“kernel”) of pixels around each target pixel makes the image

blurrier. Redaction is simply removing pixels from an image, yielding the familiar

black box over the objectionable part of the image. Redaction benefits from an
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Figure 3.1: Reproduction of Gerstner et al. [85, Figure 1]. Original caption reads:
Pixel art images simultaneously use very few pixels and a tiny color palette. At-
tempts to represent image (a) using only 22 x 32 pixels and 8 colors using (b)
nearest-neighbor or (c) cubic downsampling (both followed by median cut color
quantization), result in detail loss and blurriness. We optimize over a set of su-
perpixels (d) and an associated color palette to produce output (e) in the style of
pixel art.

intelligent way to select objects in an image; one such method is GrabCut [193],

which uses a partial classification of foreground and background pixels to intelli-

gently divide the image in two along the object boundary. GrabCut has recently

been extended to use depth as well as color information [245].

Korshunov and Ebrahimi [130] show the possibility of morphing images of faces

so they are unrecognizable and don’t need to be blurred or redacted altogether.

Building on that initial work, the method proposed by Nakashima et al. [166]

preserves facial expressions and is shown to work on a few realistic images.

Replacement is like redaction, but uses something more purposeful than a black

box to cover the redacted areas. A familiar example is the use of a chroma key or

“green screen” technique to replace the background of a movie set or news studio

with a computer-generated, moving environment. If we know what sort of thing
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has been selected, we can do specialized replacements. For example, if a person

detector returns the positions in the image of a person’s joints, we could cover the

person with a generalized cartoon in the same pose. Replacing an object with what

“would be behind it” as described by Hubers et al. [109] requires knowledge that

a camera cannot give, since the object occludes that area. One way to circumvent

this is to use the other information in an image to paint over the object such

that it’s hard to tell that the image has been altered. This is the strategy of so-

called “inpainting” or “image completion” techniques like those by Sun et al. [230],

Cheung et al. [51], Bugeau et al. [38], and Herling & Broll [102]. Cheung et al. [50]

apply inpainting to surveillance video. The key idea here is that, in order to

perform inpainting, one must somehow know what is behind the target object

without actually seeing it. For certain scenarios, this will be impossible without

more information.

That additional information could be recorded beforehand if the environment

does not change much over time. Recently, sensors that fuse color and depth

information have made it possible to build colored 3d maps; using a mapping

framework like OctoMap [105] with simultaneous localization and mapping as in

RGB-D SLAM (demonstrated by Endres et al. [64]) could very well provide the

knowledge for intelligent image replacement in semi-static environments.

Whereas our goal thus far has been to review methods for obscuring objects in

images, most graphic artists have different goals in mind. They seek to make images

simpler and less busy [134], or more attractive [153], or easier to understand [56, 57].

Nevertheless, the techniques they present could also be useful for protecting user
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privacy in robotic systems.

Such techniques are typically categorized as non-photorealistic rendering (NPR),

as opposed to techniques that focus on fidelity to photorealism. So-called “painterly”

techniques (e.g., by Lu et al. [153]) use a variety of different brush-stroke effects

to make images look more artistic, incidentally removing identifying details in the

process. Image abstraction techniques seek to retain the gist of an image and dis-

card the distracting details. Kyprianidis [134] uses the anisotropic Kuwahara filter,

which aims to provide a consistent level of abstraction across different levels of de-

tail while also being robust to even higher-contrast noise. Human faces are still

quite recognizable (as intended) after applying this filter. DeCarlo and Santella

[56] add definition to an abstracted image by introducing certain of the detected

edges that were removed during abstraction. The particular implementation by

DeCarlo and Santella is not so practical for our purposes because it requires users

to designate which areas need more definition. In fact, these areas are designated

implicitly via eye tracking. One cannot help but wonder: would it be effective

to do the opposite by starting with all the edges and subtracting the important

ones in order to obscure features of interest? Conversely, perhaps removing color

(and, therefore, textures) could also protect privacy. DeCarlo et al. [57] present a

way to represent 3d models of objects using only the surface contours and some

“suggestive” extensions of those contours. The technique is automatic and can

yield recognizable renderings of the models, but extending it to 2d images without

depth information might yield results that are less satisfactory.

Artists, like magicians, are masters of attention control. They possess an arse-
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Figure 3.2: Reproduction of Lu et al. [153, Figure 8]. Original caption reads:
Placing emphasis via controlled stroke density.

nal of ways to make the viewer focus on something, or (since we are talking about

privacy concerns) to not focus on something else. Cole et al. [52] present several

methods for subtly manipulating which regions are emphasized in 3d drawings.

This could be thought of as indirect obscuration, as the regions not emphasized

experience dramatic reductions of detail. Of course, if obscuration is the goal, any

user control over the “gaze direction” would have to be limited. Another com-

pelling illustration (no pun intended) of emphasis control—here, by controlling

stroke density in a painterly filter—is shown in Figure 3.2 (reproduced from Lu

et al. [153]).

3.2.1.2 Image Manipulation Techniques: Evaluations.

From the standpoint of privacy, the primary goal of image manipulation is to

obscure private objects. Depending on the application, the secondary goal could

be either to maximize the fidelity of the rest of the image (e.g., so the user can use
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the image feed for some purpose or task) or to hide the fact that manipulation has

occurred, or both. From the standpoint of non-photorealistic rendering, however,

the primary goal of image manipulation is to enhance or simplify the image; privacy

is not necessarily being considered there, and the goals may conflict. Here we

review some evaluations of how image manipulation impacts image perception by

humans.

We frame this section with the model of (visual) privacy loss proposed by Saini

et al. [207] for multi-camera surveillance systems. They define privacy loss as

the product of “identity leakage” (i.e., the probability of being identified) and a

“sensitivity index” (i.e., how sensitive the information is that you’re being identi-

fied with). Their model considers not just facial recognition, but also the “what”

(clothes, gait, behavior), “when” (daily schedule), and “where” (location) as ad-

ditional inference channels for identifying a person. The authors also discuss some

privacy implications of who exactly is seen by a multi-camera surveillance system;

e.g., if the same three people are always visible, it becomes easier to discern their

identities because there are fewer possible identities to choose from.

Early evaluations of image manipulation to protect privacy are on simple fil-

ters in video media space applications. Zhao and Stasko [263] present five filtering

techniques and evaluate them on short video segments in a privacy context. The

filters were pixelization, edge detection, and three other techniques that were basi-

cally abstractions. All filters appeared to make the actors more difficult to identify

without making it much more difficult to discern what they were doing. Subjects

made an interesting comment: actors may be easily identified by shirt color even
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after heavy image filtering.

Boyle et al. [35] are also concerned with filtering short video clips for privacy.

Two filters—blur and pixelize—are each used at 9 different fidelity levels. It is

shown that, for each filter type, there was an appropriate fidelity level for which

privacy was protected and some basic awareness information (e.g., number of peo-

ple in the room) was preserved.

Schiff et al. [213] focus on reliable tracking of color markers that people wear

in order to have their faces obscured in a video feed. They test their system

at a construction site using high-visibility vests and hard hats for markers. The

robustness of their system to lighting conditions and partial occlusions is examined.

Korshunov et al. [131] present a crowdsourcing approach to evaluating privacy

filters using Facebook. These online results are validated against an in-person,

laboratory study. The study itself shows that privacy is most preserved by a

redaction filter, followed by a pixelation, and least of all by a blur filter.

Halper et al. [96] provide our introduction to the psychology of how people

perceive NPR images. First, separating foreground from background is facilitated

if everything in the foreground is rendered with one style of NPR and everything

in the background is rendered in another. Perhaps private objects could be de-

emphasized by rendering them like the background, and key objects could be

intentionally emphasized by the reverse process. Second, people tend to perceive

sketchy renderings as more open to change, and want to explore areas with a

higher level of detail. These findings appear useful in mapping, both for visualizing

(un)certainty about different regions and for guiding a user to key places (and away
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from irrelevant places, thereby protecting some privacy). Influencing the viewer’s

attention might only protect privacy for cursory viewings, though; stronger image

filters might be needed to protect against ill-intentioned viewers or viewers who

spend more time scrutinizing the scene.

If we use NPR to remove private details or replace private objects seen by a

remote presence system (RPS), will users still be able to complete their tasks?

That is, will users still accurately interpret the scene? It is crucial to see the

difference between artistic renderings, in which different users are expected to

interpret the product in different ways, and functional renderings such as are found

in technical manuals, which seek to communicate the same things to everyone [90].

NPR provides a “functional realism” that is well-suited for the latter purpose, but

several studies have shown how non-photorealistic environments can distort user

perceptions of a scene. Gooch & Willemsen [90] demonstrate that people typically

underestimate distances in NPR immersive environments, e.g., while walking down

a hallway. In a more extensive study, Phillips et al. [183] compare a NPR virtual

environment to a highly realistic one and confirms that a lack of photorealism

in particular seems to cause the distance judgment error. The authors draw on

earlier findings to make a non-intuitive point: it wasn’t the reduction of detail that

caused the misjudgments, but (so it appears) the reduction of photorealism itself.

It seems, then, that using NPR to protect privacy could inhibit tasks for which

distance judgments matter.

Perhaps the most important consideration for using NPR to protect privacy

is how it affects the discernability of objects; that is, whether an object is there,
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what sort of object it is, and whether it’s real or virtual. Fischer et al. [71] address

the last of these questions. The authors test a promising strategy: if an image

containing both real and virtual objects is uniformly stylized, does it become harder

to discern between them? Yes, the results showed that users had more trouble

discerning virtual objects from real ones with this “stylized AR” technique. This

is promising both for immersive, realistic AR and for convincing object replacement

in a privacy protection system.

Several papers directly address using NPR to protect privacy. Erdelyi et al. [65]

compare a cartooning (i.e., abstraction) filter to blur and pixelation filters in terms

of privacy protection and utility. Abstraction provided the most utility and the

least privacy, followed by blurring, then pixelation. The same authors present a

modified version of their technique [66] as an entry into the MediaEval 2014 Visual

Privacy Task (see Badii et al. [18]). Images containing people were abstracted once,

then additional abstraction and pixelation filters were applied to just the faces.

The filter performance was evaluated by crowdsourced survey responses. Output

images were rated in terms of intelligibility, privacy, and pleasantness, and scored

near the median performance for the competition.

3.2.2 Constraining Navigation

Robot navigation must be constrained if we are to prohibit the robot from entering

certain areas. For example, bedrooms or children’s play areas might be private in

many circumstances and therefore off-limits for mobile robots. Several methods
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for enforcing these constraints are discussed below.

3.2.2.1 Motion Planning and Obstacles.

Motion planning algorithms typically use a model of the obstacles in the world to

restrict the valid planning space for the robot. In this framework, the “configu-

ration space” includes all valid configurations of the robot such that it is not in

collision with or too close to an obstacle (see Ch. 4 of LaValle [138]). This can be

readily adapted to include areas that are private in the sense that the robot must

not enter or pass through them; those areas can simply be designated as virtual

obstacles. This will have predictable effects on the plans produced by the chosen

planning algorithm. The new privacy “obstacles” blot out part of the search space

and paths become either (a) less optimal, (b) invalid, or (c) the same as they would

be otherwise. If the search space includes a temporal dimension, we can also model

obstacles that toggle on and off or change size over time. For example, the bedroom

may be off-limits only at night, or a morning person might desire more personal

space in the early hours of the day. Besides the added dimension, the planning

problem stays the same conceptually with the addition of time information; that

is, as long as the time spent planning is trivial.

What if these private regions are not defined beforehand, or what if they change

periodically? Here we can use algorithms for mapping and planning in an unknown

environment. When the obstructed space changes (i.e., when a private region is

turned on, turned off, or moved), the robot will have to use techniques summa-
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rized by Russell & Norvig [201], Ch. 12.5–6, such as plan monitoring, replanning,

and continuous planning. Private regions that move around, such as the personal

spaces of people, might warrant the use of “differential” planning constraints (see

Ch. 13 of LaValle [138]), which regulate velocity and acceleration in addition to po-

sition. Obeying these constraints becomes more difficult for more complex robots,

and frameworks such as the “whole-body control framework” for humanoid robots

presented by Sentis & Khatib [218] become necessary for planning natural, stable

motions.

3.2.2.2 Semantic Maps.

The maps used for constraining navigation in the above discussion were metric

maps. Metric maps are to-scale, cartesian representations of a space. Time could

be added as an additional dimension, but the map remains purely quantitative.

The problem is, humans don’t typically think about their environments in terms

of numbers. With the exception of temporal information (e.g., “between the hours

of 9 and 11 A.M.”), people typically use qualitative labels to refer to objects, not

spatial coordinates. For example, “the document on my desk” is used in lieu of,

“the 8-1/2in x 11in rectangular object of nominal RGB color value (113, 7, 24)

located at (x,y,z) = (1.2m, -0.2m, 0.8m) from the. . . .” This suggests the utility

of adding higher-level conceptual information to metric maps to form semantic,

or meaning-laden, maps. The robot could store meaningful labels for persons,

places, and things in the world. These labels could then be compared, grouped
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into hierarchical categories, and used to inform a robot’s decisions.

Galindo et al. [83] present a semantic mapping framework. In the authors’

language, conceptual entities in the conceptual part of the map are “anchored”

to locations, areas, or objects in the spatial part of the map. Some semantic

labels can be assigned automatically, such as grouping spaces into “rooms” and

“corridors” based on connectivity. The system can then make inferences such

as, “this room with a bed in it must be a bedroom.” This framework makes

robot navigation easier by allowing commands like, “go to the kitchen.” It also

makes robot localization faster with inferences like, “I see a TV set, so I must be

somewhere in the living room.” Galindo et al. [84] show this same framework used

in a series of robot task planning experiments. The semantic map framework allows

the robot to make inferences from the state information and to shrink planning

problems by raising the level of abstraction. Of special note is the robot’s ability

to intelligently handle commands that are too specific; e.g., when told to go to the

bedroom, the robot reasons that all the rooms it has found are candidate bedrooms

and proceeds to search for discriminating evidence. This ability to generalize

commands when unsure about their meaning is promising for privacy applications.

Semantic maps may be created without manual labeling by a human. Rusu et

al. [202] present a system for creating semantic maps automatically from 3d point

clouds. That same system is implemented autonomously in a kitchen environment

with a PR2 robot by Goron et al. [93]. The robot is able to explore, generate a

hypothesis map, and then interact with appliances to verify and revise the map.

These semantic mapping frameworks are promising for embedding privacy settings
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in the robot’s model of the world, which can then be honored by avoiding certain

actions.

3.2.2.3 Rules for Moving amongst Humans and other Robots.

Privacy can be thought of as including personal space, since violating one’s personal

space violates both one’s solitude and one’s control over access to oneself. The

robotics community has addressed personal space in mobile robot navigation via

the notion of proxemics, introduced by Hall [95] almost sixty years ago. Since

proxemics was originally defined as being between humans, a new array of studies

is needed to discover any differences in the human-robot interaction scenario. Such

work exists; for example, Butler & Agah [41] studied what types of approach

behaviors make humans uncomfortable, and Takayama & Pantofaru [234] included

some human traits as factors when they studied this in more detail. Findings from

such work will inform the ways we constrain robots to respect personal space.

Several robot behaviors have already been implemented with personal space in

mind: standing in line [167], following a person [89], and passing a person in the

hall [151, 152]. Some other relevant but older studies include that by Asama et al.

[15] for robot-robot passing behaviors and another by Kato et al. [122] for handling

human-robot traffic through passageways and workspaces.

When a robot passes a person using standard approaches to navigation, it often

violates personal space by passing too close, possibly without slowing down. Lu and

Smart [151] change the standard costmap implementation in several ways (further
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techniques are explained by Lu et al. [152]) to incentivize the path planner to give

the human more space. Also, constraining the robot’s gaze direction matters in

this scenario. Lu and Smart predict that the robot needs to look at the human at

least once to acknowledge that his presence is accounted for, but a constant stare

is “creepy.” The user study concluded that the costmap manipulation increased

passing speed for humans, but that an intermittent eye contact policy did not;

gaze effects seem to be more complicated than they thought.

3.2.3 Constraining Manipulation

We have said that being sensitive of privacy restricts what the robot should see,

where it should go, and also what it should touch. We now turn to that last

element, perhaps the least-explored of the three: how can we restrict the robot

from touching things in ways that would violate privacy? This could include

touching personal possessions, objects in a person’s territory, or even a person’s

body. Also, touching is too narrow here; some things may be inappropriate to pick

up but OK to touch, whereas other things might be inappropriate even to reach

towards or point to. All these actions fit within robotic manipulation, or at least

motion planning for robot arms.

During autonomous operation, applying privacy constraints to robotic manip-

ulation could mostly be handled either by modeling private objects as obstacles

(see Section 3.2.2.1) or by labeling them appropriately (e.g., “NoTouch” or “No-

Grab”; see Section 3.2.2.2). In the first case, a typical trajectory planner would
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plan around the private object. In the second case, a high-level, semantic planner

would reject plans that include illegal actions (e.g., “Touch the Book that has label

NoTouch”).

During teleoperation, an obstacle-based approach could still be used to simply

take away the user’s control whenever some action would violate privacy. This

does not, however, give much feedback to the user. Perhaps an improved method

would use a haptic device to deliver force feedback to the user when the robot

nears a restricted area. The privacy boundary could exert an increasing amount of

normal force via the haptic device as the user nears the boundary’s edge. Rydén

presents a relevant framework called “forbidden-region virtual fixtures” in his doc-

toral dissertation [205]. His work enables remote touching of moving [203] objects

that considers both the position and orientation of the remote toucher [204]—in our

case, a robotic end effector. Perhaps this system could be used in assistive robotics,

where humanlike robots might need to touch and move patients while dynamically

maintaining appropriate hand positions. It should only be used, however, when

it is acceptable for the teleoperator to know about the presence and location of

private regions, as is probably the case for private body parts—otherwise, it could

be used maliciously to find the things people want to protect!

3.3 Existing Work on Constraints for Privacy-Sensitive Robots

We also found some work on constraints that was already specifically applied to

robots and focused on protecting users’ privacy. Although we could not find very



80

much that has been published so far, we present three categories of early work

below.

3.3.1 Visual Privacy

Some work has focused on implementing and evaluating tools for protecting visual

privacy by obscuring things in the robot’s video feed. An initial concern has been

the tradeoff between visual privacy and utility, or usefulness of an interface for its

intended purpose. Jana et al. [114] present a privacy tool for simplifying videos

to only the necessary information. Although no user study is conducted, the tool

is shown to preserve utility and protect privacy through a simple analysis. Raval

et al. [188] present two more video privacy tools. One uses markers to specify

private areas, and the other uses hand gestures for the same purpose. Butler et al.

[40] coin the term “privacy-utility tradeoff” and test a pick-and-place task with

the PR2 robot; Hubers et al. [109] did similar tests for a patrol surveillance task

with the Turtlebot 2 robot. Both studies found it feasible to complete the tasks

with effective privacy filters in place.

Rueben et al. [198] report on a user study comparing three different interfaces

for specifying visual privacy preferences to a robot. This study is presented as our

second contribution in the next chapter (Chapter 4).
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3.3.2 Proxemics

We have already referenced several works in Section 3.2.2.3 that constrain the

robot’s movements to respect people’s personal space (e.g., Lu and Smart [151]).

There have also been several proxemics studies in human-robot interaction. These

count as privacy-sensitive robotics when the goal is to understand how robots

can move and position themselves to promote human comfort and acceptance—

positioning optimally for performing a cooperative task with a human does not

count by itself. Publications include work by Mumm and Mutlu [165] on both

physical and psychological distance, as well as by Okita et al. [176], Joosse et al.

[117], and Henkel et al. [101].

3.3.3 Territoriality

Territoriality is a construct of great interest in the social sciences (e.g., in Altman

[10], discussed above in Section 2.2.3.1), but has been studied very little in the HRI

domain. One work, by Satake et al. [208], develops and tests a model of territory

in front of shops. The authors show that people preferred chatting with a robot

that understands which territory belongs to the store. We believe that much more

exploration of territoriality is warranted in HRI.
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3.4 Summary and Areas for Future Study

In general, we have seen that technologies exist for constraining robot perception,

navigation, and manipulation that could be used to implement privacy protections

on robots. If you want to prevent your robot from seeing something, driving

somewhere, or touching something some tools exist that you could start with.

Image manipulation techniques seem especially well-developed and diverse.

We have also seen, however, that our focus on “constraining perception, nav-

igation, and manipulation” left out some important categories of technology that

will be needed for building privacy-sensitive robots. We conclude this contribution

by recommending that technologies that could help in these areas be identified or,

if they do not exist, invented. We propose five such areas:

1. User interfaces will be needed for specifying users’ privacy preferences to

robots. Preferences might be vague, abstract (e.g., “don’t bother me when

I’m thinking”), or complicated. Preferences will also refer to objects, contexts

(e.g., don’t collect any pictures “when I haven’t done my hair yet”), rooms,

and times. People might need to communicate any or all of these types of

preferences to a robot via its user interfaces.

2. Cognitive frameworks will be needed for reasoning about these privacy

preferences once they are communicated to the robot. We will need ways

to represent privacy preferences, prioritize them, decide between conflicting

preferences, and pay attention to contextual factors like the time of day,

situation (e.g., whether two friends are fighting or joking), or location (e.g.,
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room in a house).

3. Privacy-sensitive robots might also need to recognize or at least guess

what’s private—including situations, objects, conversations, embarrassing

states, and rooms—without users specifying it beforehand. A mixture of

prior knowledge from the robot’s programmers and learning from experience

might be necessary for a robot to even begin understanding such an abstract

concept.

4. Privacy filters for non-visual sensor data will also be important. This

will include sound, depth (e.g., from a LIDAR or Microsoft Kinect sensor),

and touch (the robot can touch people and objects with its end effectors, and

can also feel when people touch it if it has sensors in its skin). Filters might

also be necessary for simpler sensors like wheel encoders if they are used

to create more abstract data products—for example, the average distance a

robotic vacuum has to drive before hitting a wall could be used as a proxy

for the size and therefore the value of a house.

5. Tools for constraining robots to respect the different types of psychological

and social privacy presented in our taxonomy (see Section 2.1.3). Some of

the proxemics technologies that we have already discussed in this chapter

might be useful here, but we will also need to control gaze behavior, which

conversations the robot is part of, and other social behaviors.
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3.5 Choosing our Next Contribution

The next three contributions are all findings from empirical studies relevant to

privacy-sensitive robotics. We present findings from a variety of areas, including

interfaces for specifying privacy preferences (Chapter 4), the factors that influence

people’s privacy concerns (Chapter 5), and how people come to understand the

robot’s behaviors and sensing capabilities (Chapter 6).

Our next (second) contribution focuses on visual privacy—we assume there

are things that the user does not want to be visible in the robot’s camera feed.

This could include objects like personal electronics or toys or furniture; areas like

certain rooms or the space around a person; and people, especially people’s faces.

We also assume that people have a set of preferences that specify for each object,

area, or person what type of filtering would be appropriate to address their privacy

concern. Levels of filtering could be as heavy as turning off the camera altogether

or as light as a mild blurring effect, or things like abstracting color or texture from

images and displaying a diminished image like a map or the outlines of obstacles.

Given these assumptions, we proceed with a broad research question: how can a

person’s privacy preferences best be communicated to a robot?
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4 Evaluation of Physical Marker Interfaces for Protecting Visual

Privacy from Mobile Robots

This chapter includes work by Rueben, Bernieri, Grimm, and Smart [198]

published in the Proceedings of the 25th IEEE International Symposium on Robot

and Human Interactive Communication (RO-MAN 2016).

Abstract— We present a study that examines the efficiency and usability of three

different interfaces for specifying which objects should be kept private (i.e., not

visible) in an office environment. Our study context is a robot “janitor” system

that has the ability to blur out specified objects from its video feed. One interface

is a traditional point-and-click GUI on a computer monitor, while the other two

operate in the real, physical space: users either place markers on the objects to

indicate privacy or use a wand tool to point at them. We compare the interfaces

using both self-report (e.g., surveys) and behavioral measures.

Our results showed that (1) the graphical interface performed better both in

terms of time and usability, and (2) using persistent markers increased the par-

ticipants’ ability to recall what they tagged. Choosing the right interface appears

to depend on the application scenario. We also summarize feedback from the

participants for improving interfaces that specify visual privacy preferences.
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4.1 Introduction

As mobile robots and remote presence systems become more common in our daily

lives, we must address the privacy concerns of the people that share a physical

space with these systems. In particular, visual privacy becomes a concern because

people are worried about what is being viewed or recorded. Users may want to

control what the robot (or its remote operator) sees, much as they would put away

or hide valuables or pictures before a stranger visits. This paper presents a user

study that explores three different methods users might use to specify what they

want hidden. The context for the study is a naive user’s first experience with an

autonomous robot janitor that works in an office setting. Since we are working

with an actual physical space and real objects two of our methods are physical,

i.e., they involve pointing at, or placing markers in, the physical environment.

We compare these two physical methods with a traditional GUI interface using

efficiency, usability, and task performance metrics.

4.2 Related Work

Research has revealed that humans often interact socially with machines. This

phenomenon is often stated as “Computers Are Social Actors” (CASA) [168]. Any

robot, then, can function as a social actor during a human-robot interaction. Broad

discussions of privacy issues that are specific to robotics are only recently beginning

to be published, especially outside of the robotics discipline. Calo [45] gives a good

overview as well as some newer insights.
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Privacy is important in all human cultures [11], although different cultures have

different norms for privacy and different mechanisms for enforcing those norms. If

robots can function as social actors in whichever human culture they inhabit, we

want to study how we can enculturate robots with respect to our privacy norms.

We call research that studies these questions “privacy-sensitive robotics.”

Studies of privacy in video media spaces are relevant to robotics, especially

teleoperated robots and remote presence systems (RPSs) [126, 36]. Several studies

consider using filters such as pixelation, blurring, and other techniques to retain

some scene information but hide private details [263, 35, 85]. Moving beyond just

video media spaces, Jana et al. [114] filter images using edge and motion detectors

in several different contexts. Raval et al. [188] address the problem of specifying

user-specific privacy preferences using gestures and a special border for use on flat

surfaces. This paper explores that same specification problem in a human-robot

interaction via a detailed user study.

Privacy is rarely the main focus of human-robot interaction studies. Evalu-

ations of remote presence systems for elderly users have revealed some privacy

concerns [33, 26]. Denning et al. [59] have raised concerns that commercially-

available robots could be hacked by malicious persons and create new privacy risks

for users.

Two early studies in privacy-sensitive robotics are concerned with the privacy-

utility tradeoff, i.e., how much task performance is sacrificed for a given increase in

privacy protection [40, 109]. The goal is to preserve utility while protecting privacy.

These studies also show that privacy preferences differ between individuals [37]
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and are complicated, so privacy-sensitive HRI research needs to study real people

to be useful. It can also be important to study user behavior rather than just

asking people questions (e.g., in surveys), as people have been shown to self-report

wrongly in certain situations [171]. Along these lines, this work focuses less on

privacy protection technology per se and more on the interaction between that

technology and real end users.

Qualitative user feedback from this study has already been reported, includ-

ing written responses to survey questions as well as conversations between the

experimenter and each participant about interface usability [197].

4.3 Research Questions

Our focus in this contribution is on the comparison of a traditional GUI interface

to two different physical interfaces in the context of specifying that certain objects

should be “private.” Fundamentally, we are interested in the effect of (1) leaving

a persistent tag on the object and (2) physically moving close to the object to tag

it. We now briefly describe the three interfaces (details are in Section 4.4) that

operationalize these properties and then present and justify hypotheses about their

relative performance on five different measures.

Our three interfaces are (1) The Marker Interface: the user physically places

a persistent marker directly on objects; (2) The Pointing Interface: the user

physically touches objects with a “wand” tool; and (3) The Graphical Inter-

face: a traditional on-screen graphical interface where the user clicks on objects.
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Interfaces (1) and (2) are collectively referred to as the physical interfaces. In all

three cases a monitor situated next to the objects showed the robot’s view of the

world with the objects marked as “private” blurred out.

Our five measures of interface performance are presented here in our hypothe-

ses. These measures cover interface efficiency (H1), usability (H2, H3), and task

performance (H4, H5). A description of how these constructs are operationalized

is in Section 4.5.6.

H1 The physical interfaces will take less time to use for first-time users than

the graphical interface will.

H2 The physical interfaces will be perceived as more enjoyable and engag-

ing than the graphical interface will.

H3 The physical interfaces will be preferred to the graphical interface.

H4a The physical interfaces will promote more confidence that privacy set-

tings are honored than the graphical interface will.

H4b In particular, the marker interface will promote more confidence

than the pointing interface will.

H5a The physical interfaces will make it easier to later remember which

things are selected than the graphical interface will.

H5b In particular, the marker interface will promote better memory than

the pointing interface will.



90

Most users are familiar with point-and-click graphical interfaces, and clicking seems

quicker than physically moving to each object. Then again, a physical interface

should take less time to learn, especially for users with poor technical skills.

Our general assumption is that user memory is influenced by (1) whether tags

are persistently visible on the objects themselves or only on the monitor, and (2)

whether the act of tagging the object is physical or virtual. Physical markers

could give users a better mental image of the tagged object, thusly improving

both memory and confidence that the right objects were tagged when the user

leaves the area. Physically tagging the objects could also aid memory by invoking

proprioception. Further, we believe that remembering which objects were tagged

will enhance a user’s trust and confidence in the system.

Two potential confounds in our system are (1) quality of the interface – i.e.,

does it appear shoddy or well-designed and (2) responsiveness of the system – i.e.,

are tagged objects immediately and reliably blurred out and does that blurring

persist without flickering?

4.4 Interface Implementation

All three interfaces, illustrated in Figure 4.1, were implemented on a Willow Garage

PR2 robot using the Robot Operating System (ROS) [186]. To reduce tracking

issues with both the wand and the physical markers the only lighting was the

fluorescent lights (the window blinds and door were closed). The robot remained

in the same position in the room, with the head (and cameras) always directed at
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Figure 4.1: The three interfaces used in the study. Top left: marker interface. Top
right: pointing interface. Bottom: robot video feed used with a mouse cursor for
graphical interface.
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the same part of the desk. The automatic gain and white balance on the head-

mounted Asus Xtion Pro camera were disabled.

For all three methods object selection consisted of specifying a 3d location

(“tag”) in the robot’s camera frame. A 10cm axis-aligned cube was then centered

around that point. All image data inside the projection of that cube was blurred.

The corners of the cube were projected onto the screen, with the color indicating

the interface method. This approach (over identifying and tracking objects) was

chosen to increase reliability. The cube size was selected to cover the largest object

without spilling substantially over to other objects. Some participants asked if it

was acceptable if the blur partially covered other objects or a big object was not

completely covered; this was clarified by the experimenter as being acceptable.

The Marker Interface – The markers used in this study were standard-sized

bright green sticky notes. Unlike the wand used in the pointing interface, the

markers were identified as tags as soon as they were detected, and tracked persis-

tently.

The Pointing Interface – A so-called “magic wand” tool was given to users for

pointing. The wand was a paper cylinder about 27cm long and 3cm in diameter.

The final 5.5cm of the length was bright pink, while the rest of the length was

white. If the software detected that the wand tip stayed in approximately the

same place for two seconds, a tag was added at that location as described above.

An object could be untagged by pointing at it again.

The Graphical Interface – In the graphical interface users clicked directly on

the robot’s video feed in order to tag objects. User clicks were projected into 3d
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coordinates in the camera coordinate frame using the PR2’s depth camera. An

object could be untagged by clicking on the tag again.

4.5 Methods

Each participant tried all three interfaces in turn, first practicing by tagging five

objects and then tagging six additional objects designated by the experimenter.

This was followed by a freeform task where the participant was asked to tag objects

using any combination of interfaces or to physically hide them from the robot’s

camera to create a “private” office.

The procedure is given in further detail in Section 4.5.7, but first we describe

the experimental design and materials.

4.5.1 Study Design

Each participant used and evaluated all three interfaces. This formed a within-

subjects design with three conditions, one per interface. To eliminate the confound-

ing effects of order and sequence we counterbalanced the order in which subjects

used the interfaces.

4.5.2 Recruitment

Participants were recruited via a flier in a public library and an advertisement on

Craigslist. Recruiting on campus was avoided so as not to saturate the sample with
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Figure 4.2: Study environment from experimenter’s perspective. PR2 robot with
gaze fixed on the desk and whiteboard. The 23 target objects were placed through-
out the robot’s field of view. Participant sat at monitors on the left.

demographics typical among university students. Participants were compensated

US$20 for their time (about 1 hour).

4.5.3 Environment

The study was conducted in a single-occupancy office belonging to a faculty mem-

ber in the College of Engineering. Only the participant, the experimenter, and

a PR2 robot were present in the office during the study. Figure 4.2 shows the

relative positions of the PR2 robot, computer monitors, and objects. The image

was taken from the experimenter’s perspective; the participant sat to the left, in

front of the monitors. After the study, the participant and experimenter left the

office and moved across the hall to a vacant classroom (here, “testing room”) to

complete the four post-activity surveys. This was to remove the participant from
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the office before administering the memory test.

4.5.4 Objects to be Tagged

Twenty-three objects, listed in Table 4.1, were placed on the desk, cabinets, mon-

itors, and whiteboard (always in the same locations). Five objects were selected

for timed tagging practice for each interface. These practice objects were chosen

for their mundanity and presumed lack of privacy concern. Six additional objects

for each interface (18 total) were chosen for tagging after the 5 practice objects.

These were chosen from several object classes that we thought would pose privacy

concerns (see Table 4.1 for categories). All objects could theoretically be tagged

with any of the three interfaces, as well as hidden from view manually.

4.5.5 Other Stimulus Materials

Scenario Description – Participants were told that the robot functions as a janitor,

cleaning offices each night after the employees leave. The robot was described

as completely autonomous, and its ability to record video was mentioned as a

potential privacy concern.

The Cleaning Video – Participants watched a 70-second video of the PR2 robot

cleaning the office. Our goal was to provide a realistic mental image of the robotic

janitor scenario to engage participants and help them answer our questions about

privacy. The robot makes frequent eye contact with the video camera to evoke
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Object Interface Category
Mug All (practice) –
Rubber Duck All (practice) –
Pink Eraser All (practice) –
Hand Sanitizer All (practice) –
Robot Drawing All (practice) –
Pill Bottle Markers Embarrassing
Black Purse Markers Valuable
Kid’s Drawing Markers Family/Romantic
Credit Card Markers Personal Info
Suggestive Pop-Up Markers Embarrassing
Family Photo Markers Family/Romantic
Embarrassing Note Pointing Embarrassing
Bible and Tract Pointing
Junk Food Pointing Embarrassing
Cell Phone Pointing Valuable
Romantic Note Pointing Family/Romantic
Brown Wallet Pointing Valuable
Watch Graphical Valuable
Cash Money Graphical Valuable
Personal Info Graphical Personal Info
Tax Forms Graphical Personal Info
Checkbook Graphical Personal Info
Car Keys Graphical Valuable

Table 4.1: Objects used in the study, showing which were used in the practice
task and which were the memory objects for the three interfaces. Most objects are
also given subjectively-assigned categories, e.g., valuable, financial, personal. Note
that the robot drawing and personal info were on the whiteboard, the suggestive
pop-up and romantic note were on computer monitors, and the kid’s drawing was
taped to a cabinet above the monitors.
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a social reaction. The video also features playful and old-fashioned background

music.

“The Nod” – The robot made approximate eye contact with the participant, gave

a slow, sagely head nod, and then fixed its gaze down onto the desk for the rest of

the trial.

The Instructional Videos – Each interface condition was preceded by an instruc-

tional video of 30–60 seconds that demonstrated to the participant how to use the

interface.

Prompt Sheets – Prompt sheets of objects to tag contained a photo and nickname

for each object. Each object was photographed in its nominal position on the desk

with a rectangle drawn around it for clarity.

Video Feed on Monitor – Throughout the tagging tasks, participants were provided

with a live video feed from the Asus Xtion Pro RGB-D camera mounted on the

robot’s head. As the participant added tags, the tagged objects were blurred on

the same monitor (see Section 4.4).

4.5.6 Dependent Measures

Many user studies have relied heavily on self-report measures. Such measures are

only accurate if subjects are truly able to introspect on the processes in question.

Nisbett and Wilson have famously argued that people only appear to do this

introspection, and will answer wrongly when their true responses are not what they

would have expected a priori [171]. To address this potential problem, an effort
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was made to validate self-report measures with behavioral measures for several of

our hypotheses, as we describe below.

Demographics – We used three surveys to measure individual differences be-

tween participants. The first was a custom survey that asked for age, sex, edu-

cation completed, experience with both robots and household pets, and typical

usage of cell phones and social media applications. We also used the Negative

Attitudes toward Robots Scale (NARS) developed by Nomura et al. [173] and

the three scales about Online Privacy developed by Buchanan et al. [37]. This

information was primarily intended to help explain participants’ responses to the

private objects and to the robot itself, which are not analyzed in this work.

H1: (Efficiency) Time – We timed each participant tagging the same five prac-

tice objects with each of the three interfaces. This time included asking questions,

reading the list of objects on the prompt sheet, moving to each of the five practice

objects, placing a tag, and confirming that the object was blurred on the monitor.

For the graphical interface, participants did not need to move between the objects,

but were not restricted from looking at the real objects if they were hard to find

in the video feed. This yielded three time measurements per participant, one per

interface.

H2: (Usability) Enjoyment – At the end of each interface condition participants

were asked for feedback via a questionnaire. First, they were given eight items,

each with a five-point Likert-type response format anchored at “not at all” and

“very much so,” as shown in Table 4.2, items 1-8. Example questions are, “Using

this interface was tedious,” “I felt that the instructions for using this interface
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FEEDBACK SURVEY ITEMS FOR EACH INTERFACE

Item No. Question (paraphrased) Group
0 Which interface did you use?
1 Easy to use

Enjoyment, α = .83
3 Fun
4 Tedious*
5 A pain to use every week*
6 A chore*
2 Instructions could be improved
7 I used it correctly

Mastery, α = .60
8 Could teach to an elderly person
9 Estimate your practice time

* Reverse-scored item

Table 4.2: Data reduction results for interface feedback.

could use some improvement,” and, “How confident would you feel about teaching

an elderly person with poor computer skills to use this interface?” We also asked

participants to estimate their elapsed time for the tagging practice task.

H3: (Usability) Preference – After using all three interfaces, participants were

asked which interface they would choose to protect their privacy if, “a robot cleans

your office every day.” This was our primary measure of preference, but did not

measure how much the participant preferred the chosen interface over each of the

other two interfaces. To measure this, a separate question asked the user to assign

a dollar value they would be willing to pay to purchase the interface (normalized

against the cost of the robot). This measured a participant’s willingness to pay

(WTP) for each interface [6]. The differences between the WTP numbers were

intended to measure a user’s relative preferences between each pair of interfaces.
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H4: (Task) Confidence – Users’ confidence that the system would protect their

privacy was first measured using the freeform tagging task (described in detail in

Section 4.5.7). The user was given the following options for each object: tag it

with one of the three interfaces, protect it some other way (e.g., hiding or erasing),

or leave it unprotected. This was primarily intended to measure which objects

were considered private, but it also indirectly measured the user’s confidence that

the interface would protect the object’s privacy.

This behavioral measure was supplemented by three post-activity survey items.

Each item was of the form, “Imagine that you used one of the three interfaces to

tag these items: mug, stapler, whiteboard, computer monitor, car keys. How

confident would you feel *right now* that those items are reliably blurred out by

the robot. . . using the Pointing interface?” This question was asked three times

consecutively, once per interface, in the same order each time. Responses were of

a five-point Likert-type format anchored at “not at all” and “completely.”

H5: (Task) Memory – We measured each participant’s ability to recall the 6

extra objects tagged with each interface, as well as which interface was used for

which objects. Participants were given a sheet of paper with four empty boxes

labeled, “Physical Markers,” “Physical Gestures (the Wand),” “Graphical User

Interface (on the screen),” and, “I don’t remember which interface I used to tag

this object.” Participants were given 5 minutes to write down as many objects as

they were able to in the boxes. The practice objects were not part of this test, and

were listed to the participant out loud by the experimenter so that they would not

be confused for the objects in question. Correctly recalling objects and associating
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them with the correct interface should tap how memorable the tagging experience

was with that interface.

4.5.7 Procedure

The participant was escorted into the office (see Figure 4.2) and seated at the

desk. Consent conversation took place with participant sitting in the desk chair.

Three pre-activity surveys were administered, which ask about (1) general demo-

graphics; (2) attitudes towards robots; and (3) attitudes towards online privacy.

The participant was introduced to the janitorial robot scenario via the script and

cleaning video. The researcher cued the robot to nod at the participant, which

was described beforehand as a “greeting.” The robot’s head was pointed at the

objects on the desk and remained there, stationary, for the remainder of the study.

For each interface, the participant was taught how to use the interface via

a short instructional video. In the graphical interface session the researcher also

added additional information about the particularities of the RViz implementation.

Once this instruction ended, the researcher started the stopwatch for that inter-

face’s training session. The tagging prompt sheets guided the participant through

tagging the five practice objects. Participants were reminded to check that tagged

objects actually became blurred in the robot’s video feed on the computer moni-

tor. When the participant reported being done, the researcher recorded the elapsed

practice time and administered the second prompt sheet with six additional items

to tag. When the participant had tagged all eleven objects, the researcher admin-
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istered the interface feedback survey and cleared all the tags before continuing to

the next interface.

After all three interfaces had been used, the participant was briefed on the

freeform tagging task. The participant was given five minutes to tag or arrange all

of the objects mentioned so that he or she felt the desk was acceptably private for

an overnight cleaning by the robot. They were told they may use one (or more)

of the interfaces and move or change the objects, as long as they didn’t damage

anything.

After tagging was complete the participant was escorted to the testing room

across the hall. Four post-activity measures were administered: (1) the interface

confidence survey; (2) the memory test; (3) a survey that asked about the specific

objects the participant tagged (not discussed in this paper); and (4) a survey

about user impressions of the robot and study scenario (also not analyzed here).

After this, the participant was debriefed, thanked, paid, and dismissed. Debriefing

cleared up any misconceptions that may have been formed about the robot; namely,

we made it clear that the robot could not really clean a room on its own, was

not recording anything during the study, and was not being remotely controlled

by anyone. The objects were reset to the same nominal locations for the next

participant.
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4.6 Results

4.6.1 General Demographics

Twenty-seven people (12 female and 15 male) participated in this study. Their

ages ranged from 18 to 70, with a mean of 35.2 years. All but three had experience

living with pets, and experience with robots varied widely. Level of education,

social media usage, and cell phone usage were diverse, indicating different levels of

competency and acceptance of newer technologies.

4.6.2 Practice Times (H1)

Since participants used all three interfaces, a repeated measures Analysis of Vari-

ance (ANOVA) was used to determine whether they differed significantly in the

time spent with each. As mentioned in Section 4.5.1, our conditions were coun-

terbalanced for order, so none of our interface effect checks could be confounded

by an order effect. Elapsed times for each interface are summarized in Figure 4.3.

There was a significant effect of interface on time (N = 27, F (2,52) = 34.4, η2partial

= .570, p < .001). The graphical interface took significantly (p < .001) less time

to use (M = 36.4s, SD = 21.6s) than both the pointing interface (M = 71.6s, SD

= 17.6s) and the marker interface (M = 62.2s, SD = 19.5s). These results were

significant even when the two-second delay between placing tags with the pointing

interface was removed from those practice times.
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Figure 4.3: Mean practice times with 95% confidence intervals. Significance levels
were calculated using a repeated measures ANOVA with the conservative Bonfer-
roni adjustment for multiple comparisons. There was also a significant order effect
(not shown in this figure): the first interface took longer than the others.

4.6.3 Enjoyment and Engagement (H2)

Table 4.2 paraphrases each item on our survey. We combined five items to assess

“enjoyment” (Cronbach’s α = .83) and two items for “mastery” (α = .60) be-

cause they were too highly correlated to report as independent findings. Reports

of enjoyment and mastery were not significantly correlated (r = .16, p = .158).

Although the three interfaces did not differ in perceived mastery of them, there

were differences in enjoyment (N = 27, F (2,52) = 6.55, η2partial = .201, p < .005).

Figure 4.4 displays the mean level of enjoyment across the three interfaces. Overall

enjoyment was high but subjects enjoyed using the graphical interface more than

each of the others (Marker M = 4.22, SD = 0.732; Pointing M = 4.07, SD = 0.767;

Graphical M = 4.55, SD = 0.515).
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Figure 4.4: Mean enjoyment values with 95% confidence intervals. Significance
levels were calculated using a repeated measures ANOVA with the conservative
Bonferroni adjustment for multiple comparisons.

The perceived practice times were only slightly correlated with the actual times

(r = .24, p = .030) and showed no significant correlation with enjoyment data (r

= -.07, p = .534). This suggests that the perceived practice times did not measure

enjoyment in this study.

4.6.4 Self-Reported Interface Preference: Simple Vote (H3)

Self-reported interface preference was first measured as a simple forced choice be-

tween the three interfaces. A chi-square analysis revealed that preferences were

significantly different (two-tailed χ2(2) = 6.22, p < .05). In particular, the graph-

ical interface was preferred by over half of our participants (Marker 26%, Pointing

19%, Graphical 55%). None of our demographic variables impacted this preference.



106

Figure 4.5: Mean willingness to pay (WTP) for each interface with 95% confidence
intervals. Significance levels were calculated using a repeated measures ANOVA
with the conservative Bonferroni adjustment for multiple comparisons.

4.6.5 Self-Reported Interface Preference: Willingness to Pay (H3)

Results for willingness to pay, our second measure of user preference, are shown in

Figure 4.5. The interface effect was significant (N = 27, F (2,52) = 9.13, η2partial =

.260, p < .001). Participants were willing to pay more for the graphical interface

than for the two physical interfaces (Marker M = $113, SD = $147; Pointing M

= $87.8, SD = $94.7; Graphical M = $248, SD = $277). Examining the relative

WTP responses for each participant did not reveal a clearly-preferred runner-up

to the graphical interface.
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Figure 4.6: Mean interface confidence with 95% confidence intervals. Significance
levels were calculated using a repeated measures ANOVA with the conservative
Bonferroni adjustment for multiple comparisons.

4.6.6 Self-Reported Confidence in the Interfaces (H4a,b)

Self-reported confidence scores are shown in Figure 4.6. The interface effect was

significant (N = 27, F (2,52) = 6.78, η2partial = .207, p < .005). The graphical and

marker interfaces were each rated with more confidence than the pointing interface

(Marker M = 4.19, SD = 0.786; Pointing M = 3.67, SD = 1.00, Graphical M =

4.33, SD = 0.555). Note that the correlation between confidence and willingness to

pay (WTP) was appreciable, although low enough to conclude that they measured

different constructs (r = .328, p < .01).
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4.6.7 Freeform Tagging Task (H4a,b)

The freeform tagging task afforded users the opportunity to first choose which

objects were private enough to protect in some way, and then to choose an interface

or another means for protecting it. Of the 23 objects, an average of 9.2 were

protected in some way by a given user, of which 6.6 on average were tagged with

one of the three interfaces as opposed to being hidden from view. We computed

the fraction of protected objects that were tagged with each interface (Marker M

= 23.1%, SD = 38.6%; Pointing M = 14.0%, SD = 30.6%; Graphical M = 35.6%,

SD = 42.4%), but no significant difference was found between the interfaces.

The pointing interface did not work on the two whiteboard objects, and no users

tagged either of those objects with that interface. We checked whether objects were

tagged with the interface that was easiest to use on that object (especially whether

the markers were avoided for objects that did not offer an easy place to attach the

sticky note), but this did not appear to be the case.

4.6.8 Memory of Object Tagging (H5a,b)

For the memory test we counted how many objects were listed in the box for the

correct interface. Here we ignored User 12, for whom we accidentally swapped the

prompt sheets for the markers and graphical interfaces. The interface effect was

significant (N = 26, F (2,50) = 25.5, η2partial = .505, p < .001). Figure 4.7 shows

that the six objects tagged with the marker interface were remembered more than

those tagged with the pointing and graphical interfaces (N = 26; Marker M = 3.08



109

objects recalled, SD = 1.47; Pointing M = 1.08, SD = 1.38; Graphical M = 1.38,

SD = 1.39).

We were able to use our data to address some possible confounds. In particular,

we realized that the 18 non-practice objects ought to have been randomly assigned

to the conditions so that object saliency could not confound any effect of interface

on recall. We checked whether object saliency could have caused the apparent

interface effect, e.g., if the most salient objects happened to be in the marker

interface group. Upon inspection of Table 4.1, however, the objects seem to be

well-distributed in terms of saliency. Nevertheless, we tried removing the most-

remembered object from each group, and the interface effect remained stable.

We also checked the freeform task results to see if it interfered with the memory

test, but results from the two tasks appeared to be uncorrelated. Finally, we

checked for a sequence effect, e.g., whether tagging with the last interface was

easiest to remember. This did not appear to be the case, and would have been

dealt with by the counterbalanced order of conditions anyway.

4.7 Discussion

We theorize that practice times were driven largely by the amount of bodily motion

required to physically perform the tagging task. The marker and pointing interfaces

required whole-arm motions, standing up, and walking to the whiteboard, while

the graphical interface required much smaller motions with the computer mouse.

This would mean that practice times would vary differently by interface in different
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Figure 4.7: Mean true positive rates from the memory test with 95% confidence
intervals. Significance levels were calculated using a repeated measures ANOVA
with the conservative Bonferroni adjustment for multiple comparisons.

scenarios. For example, the two physical interfaces might require less time if the

objects were all within arm’s reach. Also, we made the graphical interface easier to

use by placing all the objects within the robot’s field of view; it might take much

longer if the robot had to be teleoperated around the room or even multiple rooms

to do the tagging.

The pointing interface consistently failed to tag the two objects on the white-

board. Participant feedback from debriefings indicates that user confidence and

preference were impacted by this malfunction. We think this caused the interface

effect found in the Likert-type interface confidence questions (shown in Figure 4.6).

It could have also reduced user preference for the pointing interface shown, e.g.,

in Figure 4.5. This emphasizes the importance of studying the impact of technical

failures on user confidence, which we discuss as future work below.
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Some participants noted that the marker interface was unique because the

markers could be placed without the robot being present. Those same participants

had the insight to worry that, if the robot needs to look at the target objects

before they are blurred for the pointing and graphical interfaces to work, then

the user’s privacy could already be compromised if a remote person is watching

through the robot’s cameras. Some participants said this impacted their interface

preferences, and it may have impacted the preferences and confidence ratings of

other participants, too.

4.7.1 Design Implications

Performing this study yielded several best practices for designing privacy specifi-

cation interfaces:

Feedback – When using the two physical interfaces, people did not like having

to look at the monitor to confirm each tag. Add feedback to the tagging tool by

placing lights or speakers on the marker or wand, or by having the robot project

something onto the scene.

Size and Occlusion – Marker detection should be done in the real, three-

dimensional frame instead of image space. This will allow for checking whether a

marker candidate is of the appropriate size, regardless of range. Also, 3d sensing

and mapping could enable line-of-sight checks so that the system will not erro-

neously remove a tag that has simply been occluded by a person or other obstacle.
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Detection Range – When markers are far away, they are too small to confirm

as valid blobs. Since this means we cannot guarantee that no new tag has been

placed beyond the effective marker detection range, perhaps the system should

blur or redact all pixels beyond a specified range horizon. This would require a

depth sensor. In that same vein, larger markers are better as long as they are not

easily occluded.

Choice of Marker – Color markers are not robust to lighting conditions, occlu-

sion, or other things of the same color. ARTags are another option, but must be

quite large in order to be detected reliably, have a limited viewing angle, and are

difficult to distinguish between for humans. We argue that a privacy specification

interface would require a much more reliable marker-detector combination in order

to be acceptable to users.

Gesture Timing – Participants found that touching each object for two seconds

with the wand tool felt tedious. Future interfaces should reliably detect tagging

gestures even if those gestures are very brief.

4.7.2 Limitations and Future Work

We received many reports about the negative impact on confidence caused by the

limited range of the pointing interface. This suggests that future work should

study the impact of technical malfunctions and limitations on user confidence

about privacy protection. For example, one could design a study that manipu-

lates the fidelity of the privacy tags—e.g., by flickering the blur effect—coupled
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with a Wizard of Oz technique if needed to guarantee the absence of uncontrolled

malfunctions.

Feedback from the robot seemed to be critical to whether users trust the system.

This feedback could express when tags are added or removed, as well as which filters

are in effect. Examining different modes of feedback and the trust (even the false

trust) they instill in users would be novel and important future work.

The apparent quality of each interface (i.e., whether it appeared shoddy or

well-designed) may have impacted user confidence that it actually worked. A

future study could manipulate the perceived quality of an interface by varying its

appearance and the way it is described by the experimenter. This could reveal an

important effect of apparent quality on user confidence.

People often choose between products without having tried them, sometimes

using only television commercials or other advertisements to make a choice. Our

study only tested our hypotheses on (first-time) interface users, but neglected two

other populations: non-users who are given only a description of the interfaces,

and long-time interface users. Understanding how these populations might differ

and communicate could give nuanced insight into the social acceptance of privacy

specification interfaces.

4.8 Conclusions

We hypothesized that physical markers are a better solution for specifying user

privacy preferences than GUIs. Our controlled user study has shown that the
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reality is more complex.

H1 was reversed – Physical interfaces took more time to use than the graphical

interface did.

H2 was reversed – Physical interfaces were perceived as less engaging and fun than

the graphical interface was.

H3 was reversed – Physical interfaces were not preferred to the graphical interface;

instead, the reverse was true.

H4a was split, but H4b was confirmed – The marker and graphical interfaces pro-

moted more confidence that privacy settings are honored than the pointing inter-

face did.

H5a was split, but H5b was confirmed – The marker interface made it easier to later

remember which things were tagged than the pointing and graphical interfaces did.

This suggests that persistence serves as a significant memory aid.

The graphical interface seems best for applications wherein usability is most

important. The marker interface helped users remember what was tagged, which

we believe would increase user confidence about privacy. The marker interface

also would not require users to grant the robot an unfiltered view of an object in

order to tag it as private. The pointing interface had some technical problems that

should exclude it from consideration until they are fixed. Overall, choosing the

right interface for specifying privacy to a robot seems to depend strongly upon the

scenario.
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4.9 Lessons Learned

We hypothesized that physical markers are a better solution for specifying user

privacy preferences than GUIs. Our controlled user study has shown that the re-

ality is more complex. The graphical interface seems best for applications wherein

usability is most important. The marker interface helped users remember what was

tagged, which we believe would increase user confidence about privacy. Choosing

the right interface for specifying privacy to a robot seems to depend strongly upon

the scenario.

4.10 Choosing our Next Contribution

After completing this second contribution about communicating users’ privacy

preferences to a robot we became interested in how these preferences can change.

We treated each user’s preferences as static in the studies reported above, but

Nissenbaum’s theory of “contextual integrity” says that the rules for privacy can

change based on the situation [172]. We therefore began to search for factors

that might have an especially large influence on privacy preferences. During this

search we remembered being especially struck by Darling’s demonstration [54]
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that giving a personal name and back story to a robot changed the way people

thought about it. This phenomenon is called contextual “framing” by scholars

[24]. It seemed like changing the “frame” within which a person experiences an

interaction might do more than just incrementally change their level of privacy

concern—it could suggest a completely different interpretation of the situation. We

wondered whether framing might be one of the main factors to consider—perhaps

even comparable in importance to the morphology of the robot—for understanding

how people perceive interactions with robots.

By bringing contextual frames into our research program we wanted to expand

our model of privacy preferences to be more realistic than the simple one we used

in this chapter. When we began this (the second) contribution we thought about

people as if they have a single, unchanging preference about visual privacy pro-

tection for each object or class of objects, like “blur out all tax documents” or

“it is OK not to blur that photo.” For this reason, our implicit representation

of a person’s visual privacy preferences was a list of objects with a filtering level

next to each object. If our new understanding of the importance of contextual

frames was correct, however, each object’s privacy sensitivity—one could almost

say its identity in the eyes of the observer—could depend on the current frame.

This would mean that a robot could no longer predict someone’s privacy prefer-

ence for an object just by knowing what category of object it is. The next (third)

contribution explores whether this is really the case.
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5 Framing Effects on Privacy Concerns about a Home

Telepresence Robot

This chapter includes work by Rueben, Bernieri, Grimm, and Smart [199]

published in the Proceedings of the 12th ACM/IEEE International Conference on

Human-Robot Interaction (HRI 2017).

Abstract– Privacy-sensitive robotics is an emerging area of HRI research. Judg-

ments about privacy would seem to be context-dependent, but none of the promis-

ing work on contextual “frames” has focused on privacy concerns. This work

studies the impact of contextual “frames” on local users’ privacy judgments in a

home telepresence setting. Our methodology consists of using an online question-

naire to collect responses to animated videos of a telepresence robot after framing

people with an introductory paragraph.

The results of four studies indicate a large effect of manipulating the robot

operator’s identity between a stranger and a close confidante. It also appears

that this framing effect persists throughout several videos. These findings serve to

caution HRI researchers that a change in frame could cause their results to fail to

replicate or generalize. We also recommend that robots be designed to encourage

or discourage certain frames.



118

5.1 Introduction

Unique to HRI research is the human’s interpretation of a scenario; human per-

ceptions and behaviors around robots are unpredictable given only the external,

physical facts about the scenario. This work focuses on the impact of frames—

i.e., “structure[s] of expectation” [237] within which actions and words will be

interpreted differently. It is our intuition that the frame surrounding a given in-

teraction could have comparable or even larger effects on judgments about that

interaction than the independent variables typically studied in HRI research, e.g.,

robot morphology, behavior, environmental factors, and individual differences be-

tween subjects. We suspect that even a well-designed HRI can make a bad impres-

sion if it is framed such that observers interpret the robot’s behaviors negatively;

on the other hand, understanding framing effects might be a more efficient way

than modifying robot appearance and behavior for reducing or reversing nega-

tive reactions to robots. Groom et al. [94] observe that “[HRI] researchers have

largely ignored studying framing as an independent variable.” We seek to reverse

this trend: the studies presented in this paper use framing to manipulate each

subject’s relationship with the robot operator via short operator biographies in

(uniquely) a telepresence scenario.

Our study of framing effects is motivated by privacy concerns in HRI. Privacy

is important in all human cultures [11], although different cultures have different

norms for privacy and different mechanisms for enforcing those norms. We use

the word “privacy” to describe a bundle of constructs related to perceived control
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over informational, physical, psychological, and social aspects of one’s life [196].

It seems clear that telepresence robots, like autonomous robots, cause concerns

about privacy. Telepresence robots are essentially video media spaces, which have

a slew of privacy problems themselves (see Boyle et al. [36] for a review), but

also mobile, which adds new privacy concerns. Telepresence robots can be driven

into private spaces, or used to look around at things against the will of the local

user(s). Our broad research focus is on how privacy judgments work in robot-

mediated communication; we suspect that framing is among the main factors.

The goal of our research is to answer the question, “how does framing impact

privacy judgments?” We have run four human-subjects experiments in rapid suc-

cession to gather the first measurements of these effects. Our approach is to use

some text to frame a scenario presented via an animated video, to which sub-

jects respond via a questionnaire. We recruit subjects using Amazon Mechanical

Turk for quick development and turnaround, beginning with simpler scenarios and

variables and then progressing to the privacy concerns that motivate our research.

Each study builds on the previous ones. Study 1 tests whether we can measure a

framing effect with our approach. Study 2 expands upon the first one to include the

effect of re-framing people partway through the study. Study 3 tests whether our

findings generalize to a new video and whether different demographic subgroups are

differentially affected by framing. Study 4 uses a suite of high-fidelity animations

specifically designed to evoke privacy concerns and is our first direct measurement

of privacy constructs.

This is the first study we know of about framing effects on privacy judgments



120

in a HRI. Just a few studies have been done in privacy-sensitive robotics; although

two [40, 109] focus explicitly on remotely-operated robots, none focuses on the

effects of framing or on the way the robot’s actions appear from a third-person

perspective instead of from its video feed. Past studies of framing in human-robot

interactions focus on, e.g., user perceptions of the robot’s social role and degree of

anthropomorphism, but not privacy, and we are unaware of any framing studies of

telepresence robots.

5.2 Related Work

5.2.1 Privacy

Privacy is important in all human cultures [11], although different cultures have

different norms for privacy and different mechanisms for enforcing those norms.

Prominent theories that describe privacy include Altman’s [10] and Nissenbaum’s

[172]. We use a privacy taxonomy compiled from the literature [196] to divide “pri-

vacy” into component ideas: (1) Informational privacy, over personal information,

includes (a) Invasion, (b) Collection, (c) Processing, and (d) Dissemination; (2)

Physical privacy, over personal space or territory, includes (a) Personal Space, (b)

Territoriality, and (c) Modesty; (3) Psychological privacy, over thoughts and val-

ues, includes (a) Interrogation and (b) Psychological Distance; (4) Social privacy,

over interactions with others and influence from them, includes (a) Association,

(b) Crowding/Isolation, (c) Surveillance, (d) Solitude, (e) Intimacy, (f) Anonymity,
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and (g) Reserve. We used this taxonomy to define the extents of the idea of pri-

vacy so we can work towards covering it all in our research program (i.e., towards

content validity). The small amount of work so far on “privacy-sensitive robotics”

includes Hubers et al. [109], Butler et al. [40], and Rueben et al. [198].

5.2.2 Privacy Concerns about Telepresence Systems

Robot-mediated communication has become possible for doctors, workers, bosses,

and visitors to older adults [157]. These telepresence robots create interactions

that differ both from face-to-face interactions [36] and from purely virtual systems

like avatar-based telepresence [28, 29, 141]. Even video media spaces change the

privacy situation because the remote operator’s actions are seen outside his/her

context and dissociated from his/her identity [36]. Giving the remote user a physi-

cal (robot) body raises additional normative questions, like whether it is acceptable

to rest one’s feet on the robot’s base [141]. Several studies on telepresence robots

for older adults have identified privacy concerns [26] and behavior changes due to

feeling watched by the robot [43]. The paradigm shift expected from the advent of

telepresence robots may even prompt changes to U.S. privacy law [119]. This ap-

pears the be the first study that focuses on both privacy concerns and telepresence

robots (in Section 5.7).
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5.2.3 Animations for Studying HRI

Several studies have compared human-robot interactions over video to live ones.

Woods et al. [258] have shown a strong agreement in general between being ap-

proached by a real robot and by a robot in a video. The same authors also cite

findings by developmental psychologists, however, that “while babies happily in-

teract with their mothers via live video, they get highly distressed when watching

pre-recorded or replayed videos of their mothers (as it lacks the contingency be-

tween mother’s and baby’s behaviour)” [257]. We were careful not to use our

videos to study scenarios that normally require interaction.

Powers et al. [184] compared interactions with an animated computer agent

against interactions with a real robot over a video feed. They found that engage-

ment was higher and positive personality traits were more strongly associated with

the real robot, but also that people remembered what the agent said better than

what the robot said. Also, McDonnell et al. [160] compared emotive actions per-

formed by a human actor to the same actions mapped onto animated bodies. They

found that the perception of emotions in the actions was mostly the same across

body conditions.

Our methodology resembles the one used by Takayama et al. [236], which pro-

totypes robot behaviors as animations and shows the videos to a large sample of

people online. We use Amazon Mechanical Turk (MTurk) to recruit our subjects—

consult Mason and Suri [159] for some studies that compare MTurk users to labo-

ratory subjects. Performing a study with animated robot behaviors allowed us to
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provide consistent experiences for each of the study participants, to test a variety

of task domains, and to engage a geographically diverse set of study participants.

In terms of design research, using animations allowed us to test the behaviors we

would like to build before locking in the design a robot would need to physically

perform the behaviors.

5.2.4 Framing

A frame is a “structure of expectation” [237] within which actions and words will

be interpreted differently. Framing language is metacommunicative; it tells one the

frame in which to interpret subsequent communications [24]. Bateson [24] gives

the example of monkeys engaged in a playful fight; the monkeys know that the bite

that would normally be aggressive is fun in this context. Here the frame is “play”,

and “this is ‘play’ ” would be framing language. Tannen [237] reviews the idea of

a “frame” as well as the related terms “schema” and “script” across disciplines.

Groom et al. [94] cite some studies of existing expectations about robots, but

observe that “researchers have largely ignored studying framing as an independent

variable.” Their study manipulates the role of a robot, an instance of framing,

in a search and rescue context. Howley et al. [106] also manipulate the robot’s

social role, whereas Fischer et al. [72] have a robot issue a greeting to frame the

interaction as social. Paepcke and Takayama [177] manipulate user expectations

about the robot’s capabilities, a framing that is very relevant to the concerns

of Richards and Smart [191]. Darling [54] uses a narrative about the robot to
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manipulate how much users anthropomorphize it. We consider all these studies to

use framing. The studies presented in this paper use framing to manipulate the

familiarity of the robot operator to the participant via short operator biographies

in (uniquely) a telepresence scenario.

5.3 Approach

We use the same five-part methodology for each of the four studies reported here.

(1) We frame our participants by having them read a paragraph of text. This

text describes the occasion of the interaction and introduces the robot operator,

whose identity we manipulate in our experiments. Our goal was to provide enough

context for the video to make sense but leaving the robot’s actions ambiguous

enough to require interpretation.

(2) Next, we present our main stimulus, which is an animated video of a PR2

robot performing some actions inside a home (see Figure 5.1). We chose the PR2

because it has a mobile base and two arms for performing human-like manipulation

tasks as well as a head and obvious eyes so users can follow its gaze, but lacks a

screen for showing imagery of the remote operator—something that would intro-

duce many variables we don’t want to deal with yet. The animated videos were

made in Blender. We chose to use animation so we could specify the layout and

appearance of the home, and also so that the robot could perform natural-looking

actions that are not only beyond the state-of-the-art for autonomy but also difficult

to do using teleoperation.
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Figure 5.1: Representative thumbnails from the animated videos used for the stud-
ies presented in this paper. See Sections 5.4–5.7 for video descriptions.
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(3) Responses are gathered using a questionnaire. We expect subjects to inter-

pret the videos from within the contextual frame we’ve given them and respond

accordingly.

(4) We interpret what is being measured by the survey responses using principal

component analysis (PCA).

(5) We iterate on this process by using the results from one study to re-design

our survey for the next study. Successive studies can act as (at least partial)

replications that contribute to a meta-analysis. Iterating is made easy by the

response speed on Amazon Mechanical Turk; our studies typically complete within

a few hours of being launched. Also, all the elements of our studies are easy to

change quickly: a paragraph for framing, an animated video for the main stimulus,

and a questionnaire for the response.

5.4 Study 1: Opening the Fridge

Our first study tested whether the framing effect is measurable, and if so how

large it is (RQ1-A). In all four studies our two frames manipulate the subject’s

familiarity with the robot operator within the hypothetical scenario.

5.4.1 Methods

Frame. This study used a between-groups design with two framing conditions.

The manipulated variable was the familiarity of the respondent’s relationship with
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the robot operator in the hypothetical scenario. The operator was “your sister”

in one framing and “a home appraiser” whom “you have spoken with. . . once over

the phone, but have never met. . . before in person” in the other. In both cases we

used the name Lisa. A general motivation was provided for each character so the

scenario was not confusing: the sister is seeing your remodeled kitchen for the first

time, whereas the home appraiser is checking that it’s up to code.

Main Stimulus. The video (16s long) shows an animated PR2 robot in the

kitchen. The robot opens the refrigerator, looks inside, and closes it again. The

camera perspective is from the next room over, the living room.

Survey Items. We created seven items about trust, comfort, and acceptabil-

ity to measure respondents’ concerns about each scenario. They all used a 7-pt

Likert-type response format. Two open-ended questions checked for attention and

understanding of the two scenarios. No demographic information was collected in

the survey.

We recruited 64 people total—31 saw the “sister” condition and 33 the

“stranger” (i.e., home appraiser) condition. Subjects in each of the four stud-

ies were paid approximately $10 per hour ($1.50 per HIT for this study based on a

predicted duration of about 9 minutes) and we always ensured that nobody took

the same survey twice.
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5.4.2 Results

Data reduction via principal component analysis (PCA) yielded 2 dependent vari-

ables: 6 items were combined whereas 1 remained separate, namely, “I think it’s

important for me to be at home while this is happening.” The 6-item composite

we named Comfort (α = .95); the other item we will call ShouldBeHome for short.

Correlation between these two dependent variables was r(62) = -.37.

Respondents were more comfortable and felt less need to stay home in the

“sister” condition (RQ1-A). Two-sample t-tests showed these framing effects to be

statistically significant with medium-high effect sizes (on Comfort: t(62) = 3.39,

d = 0.847, p = 0.00123; on ShouldBeHome: t(62) = -3.16, d = -0.790, p = .00245).

Many people described the home appraiser’s behavior as “nosy” in the open-

ended responses. We decided to use this word in future versions of the survey

because it fits the sorts of concerns we tried to evoke in our scenario; apparently

many respondents also found it apt.

5.4.3 Discussion

These initial results show that the framing effect is present, sizable, and able to

be detected via an online survey with text prompts and an animated video. The

next 2 studies measure additional variables while replicating and generalizing the

framing effect.
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5.5 Study 2: Fridge (Within Subjects)

The second study aimed to test what happens when a person switches between

interpretive frames. We did this by re-framing our subjects in the middle of the

experiment, resulting in a repeated measures design. First, we sought to replicate

the framing effect we detected in Study 1 (RQ2-A). Second, we wondered whether

showing both frames in series would reveal any carry-over effects, such as a halo

effect that would make judgments more similar or a contrast effect that would

make them more different (RQ2-B).

5.5.1 Methods

In this study, each subject saw both framing conditions. The framings and video

were the same as for Study 1 except that the home appraiser is now a home “in-

spector” named “Alice” (your sister is still named “Lisa”). The order of conditions

was counterbalanced. In between the two conditions we showed a text note that

told respondents that an entirely new scenario will now be presented, but with the

same video.

Survey Items. We used the same questions as in Study 1 with some minor

wording changes as well as the addition of two new questions about whether Lisa

was being “nosy” or “rude,” inspired by some open-ended responses in Study 1. We

also moved the open-ended items from the end of the questionnaire to its beginning

to encourage respondents to think about what they saw before responding to the

other items. We added a more explicit manipulation check after both conditions—



130

“In one sentence, describe the difference between the two scenarios”—to make sure

respondents read and understood the framings.

We analyzed responses from 41 people after omitting 5 for failing the manip-

ulation checks—of the 41, 22 saw “sister” first and 19 saw “stranger” first. Eight

had also participated in Study 1.

5.5.2 Results

Unlike for Study 1, data reduction here yielded a single dependent variable

(α = .95). We named this single, 9-item dependent variable Comfort, but it con-

sisted of different items than in Study 1. This data reduction remained stable even

when responses were split by condition or order except for one interesting excep-

tion: ShouldBeHome was more strongly correlated with BeingRude and BeingNosy

in the “stranger” condition than in the “sister” condition.

Respondents were more comfortable with the “sister” condition (RQ2-A). Ac-

cording to an ANOVA, this within-subjects framing effect on Comfort was statis-

tically significant with a large effect size (F (1,40) = 18.4, η2p = .315, p < .001). We

also checked for an order effect on Comfort, but it was not statistically significant

and was much smaller in magnitude (F (1,40) = 1.34, η2p = .033, n.s.).

Regarding the carry-over effect, subjects’ Comfort ratings were more sensitive

to framing when the “sister” condition was viewed first (RQ2-B). A two-sample

t-test on the differences in means between the two framing conditions, however,
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revealed that this effect was not statistically significant (mean difference in Comfort

for “sister” first: 1.73, for “stranger” first: 0.98, t(39) = 1.16, p = .253).

5.5.3 Discussion

This study successfully replicated the large framing effect from Study 1. The

effect size may be different depending on which condition comes first, but more

evidence is needed to confirm this. We continue counterbalancing the order of

conditions in our subsequent studies to prevent order from confounding our framing

manipulation, as well as to continue measuring any difference in effect size based

on which frame is presented first.

5.6 Study 3: Playing Chess

We next test whether the framing effect generalizes to a different video and scenario

description (RQ3-A). We also conduct a second test of whether the framing effect

is moderated by which frame comes first (RQ3-B) and a first test of whether

the name of the operator matters (RQ3-C). Finally, we report on the range of

subjects’ sensitivity to the change in frames (RQ3-D) and test whether some basic

demographics are correlated with our dependent variables (RQ3-E),
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5.6.1 Methods

Main Stimulus. The video we used for this study shows a new scenario. The PR2

is now with the observer in the living room; it drives around a chess board to face

the observer, looks down at a chess board, and makes a move.

Frame. The framing paragraphs that precede the video were rewritten to fit

the new scenario, but still manipulated subjects’ hypothetical familiarity with the

operator: the operator is either a friend you play chess with frequently or a stranger

you’ve only met on a chess website. Also, we counterbalanced the assignment of

the operator’s name (Lisa or Alice) to each framing condition (sister and stranger).

Survey Items. After each showing of the video, 17 items with Likert-type

response formats were presented (paraphrased in Figure 5.2). Of these, 7 were

adapted from the 9 items in Study 2; 10 were new, many of which were tailored to

this scenario (e.g., “I think using a robot like this is a good idea for improving the

online chess experience.”). Here we began using a 9-pt response format instead of

a 7-pt one to combat floor and ceiling effects.

Next we asked 20 demographics questions. These included general information

such as age, sex, and education level as well as items about experience with robots

and living situation (e.g., “I am used to sharing my living space with other people

such as friends, family, roommates, and guests.”).

The 14 NARS items by Nomura et al. [173] were presented next, but they were

adapted to be about telepresence robots (e.g., “If robots had emotions, I would

be able to make friends with them” became “If robots could express emotions
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for someone far away, I feel I could become friends with that person”) and we

clarified some wordings to address the comments by Syrdal et al. [233]. We will

refer to these items with “NATS”, which stands for “Negative Attitudes about

Telepresence (robots) Scale.”

We analyzed 61 out of the 66 responses after excluding 5 people for failing our

manipulation checks.

5.6.2 Results

This sample comprised 38 men, 22 women, and 1 person who left that question

blank. Most respondents (72%) were white. Mean age was 32.5 years (SD: 9.2

years). Everyone had completed high school and only 4 were unemployed or unable

to work. 89% had at least seen a video of a robot before, and 43% had driven a

remote controlled vehicle. 75% reported that they use social media daily and 85%

that they use a smartphone. Only 36% live alone and only 16% live with children.

We chose to reduce our 17-item video response survey into 3 dependent variables

named PositivePresence (7 items, α = .92), WasNotTooFast (5 items, α = .86),

and PilotEtiquette (9 items, α = .94). Figure 5.2 shows the items included in each

variable and their factor loadings. Correlations between these variables range from

r(120) = +.69 to +.84.

All three variables were higher in the “friend” condition than in the “stranger”

condition (RQ3-A). An ANOVA revealed that these framing effects were large and

statistically significant (PositivePresence: F (1,57) = 88.2, η2p = .607, p < .001;
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Figure 5.2: Table of factor loadings for data reduction of 17-item video response
survey in Study 3. From left to right, we named these PositivePresence, WasNot-
TooFast, and PilotEtiquette. Items placed in each composite are underlined.
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WasNotTooFast: F (1,57) = 79.9, η2p = .584, p < .001; and PilotEtiquette:

F (1,57) = 86.8, η2p = .604, p < .001).

As in Study 2, the framing effect was larger when the “friend” (previously “sis-

ter”) framing came before the “stranger” framing (RQ3-B). Yet again, however,

this effect was not statistically significant (it was largest for WasNotTooFast: dif-

ference in means for “friend” first = 1.58, for “stranger” first = 1.07, t(59) = 1.47,

p = .146).

Statistically significant name effects were found for PilotEtiquette

(F (1,57) = 5.82, η2p = .093, p = .019) and almost for WasNotTooFast

(F (1,57) = 3.54, η2p = .058, p = .065), but these turned out to be due to a

breakdown of random assignment1 (RQ3-C). None of the three order effects was

statistically significant (all ps > .1) and observed effect sizes were relatively small

(all η2ps < .04).

There were notable individual differences in sensitivity to the framing manip-

ulation (RQ3-D). For example, PositivePresence ratings changed by a mean of

1.53 points between framing conditions, but a few respondents changed not at all

or in the opposite direction. Upon inspection, it looks like many of these peo-

ple did not demonstrate their understanding of the conditions very well in the

open-ended questions. Manipulation checks like these are crucial for gauging ex-

1Subjects assigned to the group with Lisa as the friend responded more affirmatively to the
item, “I really dislike it when people enter my bedroom without my permission.” This imbalance
mattered because subjects who responded more affirmatively to that item were also more sensitive
to the framing manipulation. Thus, part of the framing effect appeared to be a naming effect.
Adding that demographic variable to the ANOVA caused all naming effects to lose statistical
significance.
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perimental validity in online surveys. Most people were affected by the framing in

the expected way, however; the 95% confidence interval for the mean sensitivity of

PositivePresence only spans from 1.20 to 1.86 points.

We kept 13 of the 14 items in the NATS and call it the NATS-13 (α = .91).

The last item in the scale, which reads, “I feel that in the future society will

be dominated by robots”, only correlated at r(59) = .19 with the rest of the

scale. Since it seems to measure a belief that could be relevant to judgments

about our scenario, however, we chose to keep it as a single-item variable called

SocietyWillBeDominated.

The NATS-13 was especially strongly correlated with our three dependent vari-

ables (PositivePresence r(59) = -.71, r2 = .50; WasNotTooFast r(59) = -.73,

r2 = .53; PilotEtiquette r(59) = -.71, r2 = .50), accounting for half of their vari-

ance (RQ3-E). Actually, this was a stronger effect than the framing manipulation

itself; moving up one point on the NATS-13 was about equivalent to switching

the frame from “friend” to “stranger.” These correlations were statistically signif-

icant even after a conservative Bonferroni correction to account for the heightened

risk of Type I error from checking the correlations between 17 of our demographic

variables and each of the 3 dependent variables.

Many of our other demographic variables besides the NATS-13 were also corre-

lated with ratings of PositivePresence, WasNotTooFast, and PilotEtiquette (e.g.,

“In general, I enjoy having guests over to where I live”) (RQ3-E). A few were cor-

related with sensitivity to the framing manipulation (e.g., “I really dislike it when

people enter my bedroom without my permission”). It is interesting that these
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two things don’t always occur together (e.g., the “enjoy having guests” example

above was not strongly correlated with sensitivity to the framing manipulation).

5.6.3 Discussion

Our results support the conclusion that the framing effect generalizes to the chess

scenario. This study has also yielded much more information than the first two did,

including demographic profiles of participants, correlations between demographics

and our dependent variables, and first looks at sensitivity and effects of operator

name. We now turn to our constructs of interest in the realm of privacy.

5.7 Study 4: Tour before a Party

This study uses four videos made to evoke different privacy concerns on our tax-

onomy [196] as well as survey items to measure these privacy concerns. Our main

research question is whether the framing effect replicates in this domain (RQ4-A).

We are also interested in several types of order effects. First, do respondents get

used to seeing a robot poking around their house after watching the four videos,

causing privacy concerns to be lower in the next condition (RQ4-B)? Second, is

the framing effect moderated by which frame comes first (RQ4-C)? Third, does a

frame wear off as respondents watch the videos (RQ4-D)? After all, the videos do

not show the operator’s face or any other explicit cues that he is telepresent.

We will also take another look at whether the demographics we have targeted
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are correlated with any of our privacy variables (RQ4-E), as well as at how sensitive

these new variables are to the framing manipulation (RQ4-F). Also, we want to

know how much of the framing effect is attributable to changes in trust of the

operator (RQ4-G). Finally, we look at which of the four videos is most (or least)

concerning with respect to privacy (RQ4-H).

5.7.1 Methods

Frame. The scenario is that you have invited some people to a party in your home,

but one person can’t attend except by logging into the robot. That person is either

a close friend whom you see weekly or a stranger whom you met for the first time

today. We used male names this time: Will and Chris.

Main Stimulus. The main stimulus for this study was divided into four new

animated videos with survey items presented after each video. This way, partici-

pants could answer questions directly after watching a certain part of the scenario.

The videos were more photorealistic than those used in the previous three studies

(see Figure 5.1). They range from 21–34s long. Each is designed to evoke certain

privacy constructs in order to cover as much of the taxonomy (see Section 2.1.3

[196]) as possible: e.g., Surveillance and Psychological Distance in the “gaze” video

(the robot makes eye contact with you), Invasion and Territoriality in the “desk”

video (looks in your desk drawer), Anonymity in the “photo” video (picks up a

family photo), and Modesty in the “bedroom” video (sees your messy bedroom,

including some women’s underwear).



139

Survey Items. We used all new items for the video response survey. These

were designed to target the privacy constructs evoked by the videos, as well as ask

some more general questions. All 22 items are paraphrased in Figure 5.3. They

all use a 9-pt Likert-type response format. Note that these items, as in the other

studies, are context-sensitive; they might tap different constructs if we used them

in a different scenario.

Immediately after reading each framing paragraph, participants took a 7-item

trust questionnaire. Six items were adapted from the Specific Interpersonal Trust

Scales (SITS-M and SITS-F) [115] and one item, shown last, we created: “I trust

[Will/Chris].”

The demographics questions were the same as in Study 3 except that the NATS

was modified slightly and reduced to 8 items for brevity.

At the very end of the survey we asked our respondents to rank our four videos

by how concerning they were with respect to privacy.

This study was counterbalanced for the order of the two framings, for the

order of the four videos according to a Latin Square design, and for which name

was assigned to which framing as in Study 3. We analyzed 65 responses after

discarding one that failed the manipulation check.

5.7.2 Results

Of the 65 responses we analyzed, 40 were males and 25 were females. 62% marked

“white” as their ethnicity. The mean age was 32.0 years (SD: 8.8 years). All our
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respondents indicated that they had graduated high school, and all but 18% are

(self-)employed. 49% had at least driven a remote-controlled vehicle before. 63%

use social media every day, and all but 1 owned a smartphone. Only 29% live

alone; another 29% live with children at least sometimes.

Data reduction was performed on all 22 video response questions at once to

look at how the different privacy constructs might relate. Using a PCA we chose 4

composite variables for reporting (Figure 5.3). Each composite variable combines

items that were meant to tap different privacy constructs, indicating either that

those constructs overlapped in our respondents’ minds or that our items failed to

discriminate between them. WorriedAboutLikenesses (7 items; α = .89) includes

items about dissemination of personal information, anonymity, and psychological

distance; DontMessWithMyStuff (5 items; α = .87) includes items about invasion

of personal information and territory; EmbarrassedByMess (5 items; α = .90)

includes items about collection and processing of information, namely a messy

room that could cause someone to judge you; HardToBeAlone (3 items; α = .91)

includes items about solitude, intimacy, and surveillance. Intercorrelations between

composites ranged between r(128) = +.60 and +.73.

Two items, one designed to tap surveillance and one for modesty, didn’t cor-

relate much with any of the others (all |r(128)| < .22). After analysis, we believe

that they were not good measures of any relevant constructs to this study, so we

do not report on them further here2.

2Neither item had any statistically significant framing effects, which were very large for the
rest of our dependent variables, or any statistically significant correlations with our demographic
variables. The item texts were “I would feel comfortable doing some small tasks to prepare for
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Figure 5.3: Table of factor loadings for data reduction of 22-item video response
survey in Study 4. From left to right, we named these WorriedAboutLikenesses,
DontMessWithMyStuff, EmbarrassedByMess, and HardToBeAlone. Items placed
in each composite are underlined.
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The framing manipulation effect was always in the predicted direction for

our four privacy variables: higher privacy concerns for a stranger than for a

friend (RQ4-A). An ANOVA revealed that these effects were all large and statis-

tically significant (WorriedAboutLikenesses: F (1,49) = 91.8, η2p = .652, p < .001;

DontMessWithMyStuff: F (1,49) = 45.5, η2p = .481, p < .001; EmbarrassedByMess:

F (1,49) = 79.4, η2p = .618, p < .001; HardToBeAlone: F (1,49) = 38.9, η2p = .443,

p < .001).

The effect of acclimatization (i.e., first condition vs. second condition) was

only statistically significant for DontMessWithMyStuff (F (1,49) = 4.71, η2p = .088,

p = .035) and almost for HardToBeAlone (F (1,49) = 3.04, η2p = .058, p = .088).

These were both in the expected direction as well: concerns about the operator

messing with your stuff or making it hard for you to be alone were lower in the

second condition, suggesting that respondents became complacent as they got used

to the scenarios (RQ4-B). The name (Will or Chris) of the operator was also

included in the model, but was not found to have any statistically significant

effects.

Just like in Studies 2 and 3 we checked whether sensitivity to framing was mod-

erated by which frame came first. There was a consistent effect: the relationship

effect was larger on all 4 composites when the respondent saw the “stranger” frame

first (RQ4-C). This is in the opposite direction, however, as it was in Studies 2

and 3. To test for statistical significance, we ran two-sample t-tests for each of

the party knowing that Will could drive by and look at me like this” (“gaze” video) and “I
wouldn’t be as upset if the clothes basket contained t-shirts instead of underwear” (“bedroom”
video).
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the 4 composites between two groups: those who saw “friend” first (n = 31) and

those who saw “stranger” first (n = 34). This difference was only statistically

significant for DontMessWithMyStuff (mean sensitivity for “friend” first = -0.77,

for “stranger” first = -1.56, t(63) = 2.41, d = 0.601, p = .019).

In this study we tested whether the effects of a frame wear off as the respon-

dents watch the four videos. For each video (e.g., “desk”) within each frame (e.g.,

“friend”) we ran a MANOVA (8 total) that tested whether that video’s position in

the order of videos (e.g., 3rd of 4) predicts the responses to the items that go with

that video. None of these 8 tests was statistically significant; it appears that our

two frames remained active for the extent of each condition, and perhaps could

have for much longer, or until a significant distraction occurred (RQ4-D).

We chose 5 out of the 8 NATS items (the “NATS-5”; α = .81) for a measure

of negative emotions about telepresence systems. The remaining three we kept as

single-item variables. The first was “If robots could express emotions for someone

far away, I feel I could become friends with that person” (correlations with the

other 3 variables were all |r(63)| < .43). The other two were written to figure

out why the item that said “I feel that in the future society will be dominated

by robots” didn’t fit into the rest of the scale in Study 3; one reads, “I feel that

in the future robots will be everywhere in our society”, and the other reads, “I

feel that in the future society will be controlled by robots.” The “society will be

controlled” item appears to be the misfit: it was not correlated with the NATS-5

(r(63) = -.04). The “robots will be everywhere” item was negatively correlated

(r(63) = -.46) with the NATS-5, so it appears that discomfort with telepresence
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was linked in our sample with a belief that robots will not become ubiquitous

anytime soon.

Some of our demographic variables were correlated with our privacy DVs (RQ4-

E). The largest correlation was r(128) = +.40 between a composite of CleanUpBe-

foreGuests and CloseDoorsBeforeGuests (α = .49) and EmbarrassedByMess. Also,

the NATS-5 was correlated with WorriedAboutLikenesses at r(128) = +.36 and

also the other 3 main composites, but those correlations—and, in fact, all other

IV-DV correlations—were not statistically significant when we protect for Type I

error from checking all possible correlations. Note that the NATS items account

for much less variance here than in Study 3, wherein the 13-item NATS composite

accounted for half of the variance of the dependent variables.

We also looked at how sensitive our respondents’ privacy concerns were to the

relationship manipulation (RQ4-F). In this study, the variable with the most indi-

vidual differences in sensitivity was HardToBeAlone—its 95% confidence interval

spanned from a sensitivity of -1.99 to -1.02. None of the confidence intervals for

our 4 composite privacy variables crossed zero. There were also some sizable corre-

lations between demographic variables and these sensitivities, especially with the

living situation and NATS variables, but none reached statistical significance after

protecting for Type I error.

According to a PCA, the 7-item scale about trusting the operator measured

a single dimension, which we called “Trust” (α = .95). It is interesting to note

that although the SITS [115] from which we drew all but 1 of the items claims to

measure multiple dimensions of trust, with slightly different dimensions between
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men and women, our items only appear to have measured one construct for both

sexes in this study. We propose that this is because the respondents do not know

much about the robot operator in either framing condition, so their judgments

about him are not as complex as they might be for, e.g., a close friend in real life.

We can validate our composite measure of Trust by testing whether it is ma-

nipulated by the difference in frames (“friend” vs. “stranger”) and not by the

difference in names (“Will” vs. “Chris”). Matched-pair t-tests supported the va-

lidity of our Trust measure (relationship effect: t(64) = 13.2, d = 3.31, p < .0001;

name effect: t(64) = 0.349, d = 0.871, p = 0.729).

Higher Trust ratings do appear linked to decreased privacy concerns (RQ4-

G). Correlations are statistically significant with both WorriedAboutLikenesses

(r(128) = -.50) and HardToBeAlone (r(128) = -.35). So Trust is a significant me-

diator of the effect of hypothetical familiarity on privacy concerns, but there are

probably other significant ones to be discovered: at most Trust accounts for 25% of

the variance (WorriedAboutLikenesses) or at least a mere 7.5% (DontMessWith-

MyStuff and EmbarrassedByMess).

Respondents ranked the “desk” video as most concerning (votes: most 45—12—

6—2 least), followed by “bedroom” (most 14—43—6—2 least), then “photo” (most

4—4—33—24 least), then “gaze” (most 2—6—20—37 least) (RQ4-H). It makes

sense with our gut intuition because “desk” and “bedroom” are more invasive, we

think, than mere “gaze” or touching a “photo.”
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5.8 Discussion

5.8.1 Implications for Design

All four studies show a large effect of framing the relationship of the local user

with the robot operator. This suggests that robot designers should think about

how frames like these could be encouraged via robot appearance, what the robot

says, and how the robot is advertised. Designers should also consider how different

contexts and cultural factors, like the popular media and even other people, could

impose unwanted frames over a user’s interaction with a robot.

We are beginning to understand some details of how framing works. We see,

starting in Study 2, that people can be prompted to switch between interpretive

frames relatively easily. Some frames may “stick” better than others, though, even

changing the way framing information is interpreted. Study 4 suggests that certain

privacy concerns decrease as time passes or as people experience different frames.

We believe people simply get used to the concerning behaviors and lower their

guards, although an alternative explanation is that experimental realism begins

to decrease with the second framing. An understanding of how privacy concerns

about robots change with long-term usage is crucial; if concerns wear off or change

in type after a few hours or days then robots will need to transition smoothly

between these two phases.
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5.8.2 On Methodology

It is surprising that the framing effect was large even with no signs of the opera-

tor’s presence beyond the framing text. It was even present (and large) between

subjects, when there were no hints about a contrast between the two frames. We

would hypothesize that adding signs of the operator’s presence would prolong or

even increase framing effects as long as they agree with the frame. On the other

hand, we are interested in what happens when conflicting information about the

frame is presented to an observer, e.g., if the observer is told the robot is being

used to inspect a leaky pipe but instead starts picking up your personal items.

We chose a methodology that uses animated video stimuli, quantitative data,

and quick, online recruitment. We believe the animated videos are useful for

studying experiences that are difficult to produce in the laboratory, which includes

anything from natural robot gestures to scenarios in outer space! Also, shorter

studies can operate like pilot studies when aspects of the methodology are not

well-established, helping you fix problems before wasting months on a large, one-

off experiment. Similarly, taking quantitative data yields early effect size estimates

so we can choose proper sample sizes.

Some qualitative methods can also be short and easy to iterate on, such as

focus groups. Showing our framings and videos to a focus group would be another

way to explore which variables are important. Although we would not get effect

size estimates or the type of insight into relationships between variables offered

by PCA, a focus group conversation could explore a much broader selection of
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concerns and use nuanced follow-up questions to greatly increase our confidence

that participants’ responses mean what we think they mean.

5.8.3 Future Work

Future work should concentrate on which frames have the largest effect sizes on

privacy concerns. We have only looked at the difference between a familiar person

and a stranger operating the robot in these first 4 studies. Here are some other as-

pects of the frame one could manipulate: the level of control the operator has over

the robot’s action (full teleoperation vs. supervision); how invasive the operator’s

actions are expected to be based on his/her role (police officer vs. tourist); mor-

phology of the robot; robot nonverbal behavior (e.g., smoothness of movements,

posture); or the operator’s social presence (via a face on a screen or operator name

tag). Knowing which aspects of the context most influence user perception of pri-

vacy risks (as in Hancock et al. [97]) will help researchers and robot manufacturers

know what to focus on.

The framing effect itself should also be studied. How is the frame encoded

and then used to interpret subsequent information? How much longer does it

last beyond the four videos and 22 survey items in Study 4? What happens,

exactly, when people switch framings? Also, studying the individual differences

(e.g., personality traits) that moderate framing effects would help identify groups

that are especially sensitive.

We are motivated by privacy. Understanding framing will help us avoid privacy
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violations. More research could help us discover how privacy judgments are differ-

ent in HRI; we want to identify what type(s) of privacy exactly will be problematic

and which people to target with our solutions.

5.9 Lessons Learned

The findings presented in this chapter suggest that privacy concerns are not as-

sessed on the raw actions people take (e.g., making eye contact with you or opening

the drawer of your desk) but on the user’s interpretations of these actions. For

example, if the robot makes eye contact with the user, it could be interpreted

as friendly interest, a creepy stare, or a variety of other things depending on the

context. The level of privacy concern might therefore be quite difficult to predict

using just the objective facts of the robot’s actions, the objects that are involved,

and other details about the surrounding environment.

This suggests that people sometimes have privacy concerns about activities that

require higher-level interpretation to identify. Consider a few examples that are

especially laden with privacy implications: “sneaking,” “spying,” “eavesdropping,”

“[computer] hacking,” and “stalking.” Each of these contains more interpreted

meaning than other, more neutral words for the same sort of activity. For example,

compare “eavesdropping” to just “listening,” or “stalking” to just “following.” One

can imagine a user’s expression of a privacy preference: “I don’t mind if the robot

looks at me, as long as it doesn’t stare,” or, “I want the robot to pay attention to

me, but not to stare at me.” To predict which of these higher-level interpretations
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will be made by users, a privacy-sensitive robot would need to know the frame

within which they are interpreting their experiences. It could be difficult for a

robot to detect a user’s current frame, or to model all the possible frames and

what causes transitions between them. If it did these things, however, it could test

or even learn techniques for influencing the current frame itself.

5.10 More on Measuring Privacy

“Privacy” can be difficult to measure because it can be used in multiple different

senses in English, and even when a single definition is agreed upon (see Section

7.2.7 for some scholarly attempts) it remains multidimensional. This section is

about my experiences trying to measure privacy concepts (or “constructs”) for my

second and third contributions. My purpose is to give privacy-specific advice to

others who follow in my path.

5.10.1 Choosing what to measure

It seems unlikely that many researchers will want to measure nonspecific “privacy

concern” or other attitudes about “privacy” in general, where “privacy” is taken to

include everything in the taxonomy we presented in Section 2.1.3—everything from

protecting your personal information to how close the robot stands. Instead, it will

usually be appropriate to choose from among the lower-level facets of privacy. The

first choice you will have to make is which facet(s) you care about, and at what
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level of abstraction. This latter consideration is important: do you want to measure

information privacy in general, for example, or just the part about the collection of

information? If you choose to measure all of a construct that is multidimensional

(like information privacy concern), be sure that your measurement instrument

covers all of its component dimensions. You will also need to decide whether to

report your results as a single, combined construct or several distinct ones.

It is important to be clear about what target you are asking participants to

describe or rate in a self-report measure. There are a lot of different things to ask

about in human-robot interaction research. You could ask people to respond to

something about this robot, this model of robot (e.g., Roombas), this class of robots

(e.g., vacuum cleaning robots), or robots in general. If you are asking about the

robot they are interacting with, you have further choices to make: besides asking

about the robot in general, you can also ask about a certain feature of behavior of

the robot, a certain part of an interaction, or an entire interaction. Finally, you

could ask a participant about him- or herself. The target that you are asking your

respondents about should be clear, both to the respondents and to the readers of

your published reports.

It is also important to be clear whether you want to measure a “dispositional”

construct or a “situational” construct. A dispositional construct is a relatively

stable “trait”, whereas a situational construct is more like a “state” that varies

more with time and circumstance. If you are measuring someone’s concern about

being seen by the robot while changing clothes, for example, you should be clear

about whether you mean their level of concern right now (or averaged over the
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duration of an interaction) or the extent to which they are the sort of person who

usually feels worried or shy about changing in front of others. This distinction is

important both for questions about the respondent (how they feel right now vs.

their predisposition towards feeling that way) and about the robot (how the robot

was in this interaction vs. how it is in general).

Once you have clearly specified your construct in these ways, make sure you

can also articulate an operational definition—i.e., a description of what phenom-

ena you would observe at different levels of the construct—before proceeding to

measurement. For example, heightened concern about surveillance might cause a

person to glance at the robot more often and say they felt like it was “watching”

or even “monitoring” them. If you don’t know what would be observably different

about a person at different levels of a construct then you can’t measure it.

5.10.2 Choosing a measurement instrument (or several)

There are several types of measurement to choose from. Self-report measures are

perhaps the most popular in HRI, and work well for internal states (e.g., attitudes,

desires, thoughts, and feelings) that are hard to observe externally—but only if

participants can describe them clearly and accurately. See Furr and Bacharach

[81] for an introduction to measurement theory (“psychometrics”) and especially

self-report measures like scales and interviews. If participants cannot be trusted

to give unbiased responses, researchers could use physiological measures of things

like heart rate, galvanic skin response (GSR), and eye gaze [242]. You could also
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design the study scenario such that a certain, observable behavior is unambiguously

indicative of the target construct, but also so that the participant is unaware

of this and therefore largely incapable of “faking it.” These carefully designed

observational measures as well as physiological measures can be especially useful

when mentioning privacy in an interview or questionnaire could make respondents

more worried about privacy than they might have been otherwise.

5.10.3 Validating your measurement instrument(s)

Validation of measurement instruments—i.e., making sure they are working properly—

is always an important step [81, 60]. Validity should be thought of as a property of

the way researchers interpret the output of an instrument: “validity is ‘the degree

to which evidence and theory support the interpretations of test scores entailed

by the proposed uses’ of a test” [81]. So validating a measure of (supposedly)

information privacy concern, for example, helps us decide whether it is valid to

interpret a certain reading or score from that measure as indicating a certain level

of information privacy concern and not something else.

There are multiple facets of validity—Furr and Bacharach [81] list five (see

Ch. 8)—that are each measured in different ways. A simple check is to compare

your measure with other measures of the same construct—they should be strongly

correlated. Since privacy is so complex and multidimensional, however, it will also

be very important to make sure you are measuring the right privacy construct

and not a related one. To do this you will need a taxonomy that shows the
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hierarchical relationships between privacy constructs like the one we present in

Section 2.1.3. You can then estimate the validity of your measure as follows.

Conceptually, a particular privacy construct in the taxonomy is more similar to

its “parent” construct than to other constructs at that level of abstraction (i.e.,

“aunt/uncle” constructs), and it should also be distinguishable from constructs

at its own level with the same “parent” (i.e., “brother/sister” constructs). We

can estimate the strengths of these relationships by inspecting the correlations

between measures of the different variables. For example, to validate a measure

of concern about personal space you might check that it correlates more strongly

with general measures of physical privacy concern than with general measures of

information, psychological, or social privacy concern; you could also check that it is

not too strongly correlated with measures of a sibling construct like concern about

territory, for example. In more technical terms, these checks help you estimate the

convergent and discriminant validity of your measure [81].

5.10.4 Common mistakes to avoid

We have learned several other lessons over the last few years about measuring

privacy constructs:

• Don’t place any special confidence in a “validated” scale if you’re

going to change it or use it in a new way. Validated scales exist to

measure related constructs about, e.g., Internet privacy. These scales might

have useful items that you could borrow and modify to fit your purposes.
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Even if you use the entire scale and only change the word “Internet” to

“robot”, however, you can no longer make strong statements about the scale’s

performance based on previous validation studies. In terms of your confidence

that the scale measures what you want it to measure, think of it as starting

from scratch.

If no existing scale measures exactly what you want to measure, then it’s

usually better to write your own (taking inspiration from existing scales is

recommended, though). Just make sure to adequately test a new scale before

using it, and also to monitor its performance in each study to make sure it

works as you intended.

• Be careful not to create or inflate privacy concerns by asking about

them. It can be difficult to measure someone’s current level of privacy

concern without changing it. Some people might not have thought at all

about privacy until you mention it to them in an interview or survey question.

Be aware that this could influence their responses to that question as well

as future questions. You might do this intentionally, however, if it helps

you answer your research question—e.g., bringing up privacy to brainstorm

solutions with a focus group.

• Don’t use words like “privacy” that can have multiple meanings

without making sure you know which meaning people are respond-

ing to. One way to do this is to specify what you mean to try to control how

people interpret your prompts; you might instead leave it ambiguous, how-
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ever, if you want to get responses to multiple different interpretations. Either

way, you should try to measure how each person interpreted your words so

you can correctly interpret their responses. In an interview you might ask

follow-up questions, or in a scale you might make sure the responses are

unimodal and strongly correlated with the other items.

5.11 Choosing our Next Contribution

For our next (fourth) contribution we had several methodological goals for getting

beyond the limitations of our first two studies. First, we wanted to do a longer-

term study to observe participant behaviors after they get used to the robot—i.e.,

to avoid only recording novelty effects. Second, we wanted to venture outside a

controlled, laboratory (or online) setting to places where people already spend

time. Lastly, we knew that self-report measures like questionnaires come with the

risk of response biases such as answering so as to please the experimenter (i.e., in

response to “experimenter demand”) or to be “socially acceptable.” We decided

to protect against these biases by including observations of participant behaviors

in our measures for the next study.

For our construct of interest we chose mental models—i.e., the description of

a robot that a user builds up in their mind. Inspired by the findings of Lee et al.

[142], we were especially interested in how people figure out whether a robot can

record video or audio when cues are ambiguous or absent. We hypothesized that

understanding this is fundamental to predicting and manipulating people’s privacy
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concerns about interacting with the robot. For example, robot designers might be

able to predict that users will ignore or forget about a certain sensor; they could

then choose to make it more obvious to help users make better-informed decisions

about their privacy. By studying multiple interactions between the same person

and robot over several weeks, this next (fourth) contribution will also speak to how

designers might need to address privacy concerns differently at different stages of

the user-robot relationship.
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6 Forming a Mental Model of the Mobile Shoe Rack: a

Long-term, Qualitative, in-the-Wild Study

The work presented in this chapter had not been published at the time of writ-

ing, but it was not done alone. Jeffrey Klow served as the “wizard” and did most of

the equipment setup. Madelyn Duer, Eric Zimmerman, Jennifer Piacentini, and

Madison Browning helped to design and run the study, as well as to manage all

the data. Frank Bernieri, Cindy Grimm, and Bill Smart supervised my work and

served as mentors (as they did for the other two experimental contributions, too).

Abstract– Most people don’t have direct access to knowledge about the inner work-

ings of robots—instead, they must develop mental models to explain and predict

robot behavior. Despite being at the core of how people understand robots, this

process of forming mental models is not well-understood. We report findings from a

long-term, in-the-wild, qualitative, hypothesis-generating study that was designed

to identify some characteristics of the mental model formation process for further

research. Participants of diverse ages had multiple interactions with the robot over

six weeks in a non-laboratory setting. A novel, non-anthropomorphic robot was

created for the study with a realistic use case: storing people’s shoes while they

are in yoga class. The robot’s behaviors were varied systematically to study how

people would account for abrupt changes.
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This paper reports findings from a case study analysis of 28 interviews con-

ducted over six weeks with six participants. These findings are organized into

five themes: (1) variability in duration of mental model development, (2) types of

reasoning and hypothesizing about the robot, (3) borrowing from existing mental

models and use of imagination, (3) attributing sensing capabilities where there

are no visible sensors, (4) judgments about whether the robot is autonomous or

teleoperated, and (5) experimenting with the robot. Specific suggestions for fu-

ture research are given throughout. This work demonstrates the fruitfulness of

long-term, in-the-wild studies of HRI, and we provide recommendations for mak-

ing them more efficient and focused. It also represents an early study of mental

model formation about robots, a foundational topic for understanding and design-

ing human-robot interactions.

6.1 Introduction and Motivation

Not everybody understands robots. The people who design, build, and program

a robot understand it because they have insider knowledge about its intended

functions and inner workings. They know what it can sense, how it thinks, the

rules governing its behavior, its learning capabilities, and its connectedness to other

computer systems. Some people understand the robot because they made it, but

they cannot pass this understanding on to users directly. Instead, users typically

rely on what Don Norman calls the “system image” [174]: the parts of the system

that are observable by users, including how it looks and behaves. Users then use
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Figure 6.1: Reenactment of a typical hallway scene during the study.

these observations to develop a “mental model” of the robot that explains and

predicts its behaviors [174]. This mental model can include the user’s perception

of what the robot can sense [142], how it processes information (including memory

and learning) [69], how it behaves (including its “personality”, if applicable) [259],

its role in its setting [162], what it knows [143], and other abilities and attributes

[48].

Understanding how people form mental models of robots is critical for a num-

ber of applications. When working with robotic teammates, for example, we will

need to understand what they know and what they intend to do next [124, 212].

Designers will need to understand how to make a robot and its user interface in

a way that helps people figure out its sensing capabilities—this is important, for
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example, for making judgments about personal privacy [209]. It will also be useful

to influence users’ mental models to encourage them to like the robot and accept

it for long-term use [55].

It is not fully understood how people form mental models of robots. Very

few published HRI studies have measured mental model formation over time, and

those that do (e.g., Stubbs et al. [228]) seem to focus on quantifying the changes in

the mental models instead of describing the process governing those changes. Our

study focuses on the process instead. We analyze how people use their pre-existing

mental models as well as observations from multiple interactions with a robot to

develop a mental model for it over time.

This paper reports findings from analysis of 28 interviews conducted over six

weeks with six of the participants who interacted with our robot, the “mobile

shoe rack.” An overview of our data is presented in Section 6.7. Our study took

place “in the wild” [206]—specifically, in the hallway outside a yoga classroom on

a university campus. Our analysis considered multiple aspects of the interviewees’

mental models, including what the robot can sense and infer, its rules of behavior,

and how connected it is to humans (specifically, whether it was being remote

controlled by members of the study team). Our particular focus was on what

they noticed about the robot and how they reasoned about these observations

and used them to update their mental models. To capture this process we did a

qualitative analysis of the interviews to extract chronological descriptions of the

interviewees’ thought processes. Each interviewee’s responses were first analyzed
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as a case study; we then performed a cross-case analysis to identify themes using

all six interviewees’ responses.

Findings are organized into five themes in Section 6.8, including how people

reason and hypothesize about the robot’s behaviors, borrow from existing mental

models and use their imagination, and judge whether the robot is autonomous or

teleoperated. Our report contributes early documentation of phenomena from our

study that we recommend as high priorities for HRI research. We also contribute

in Sections 6.9 and 6.10 new questions about mental model development that

were generated as part of the data analysis process. Besides providing data-driven

research questions for researchers, this work should also appeal to designers as

a key case study for grounding the design of robots and their behaviors in the

experiences of real users in realistic use cases. We hope to help designers better

understand how to shape a user’s mental model through the design of the robot’s

appearance and behavior.

6.2 Background: Mental Models

“Humans construct internal representations, or models, of objects in the environ-

ment, such as other people, animals, and machines. . . ” [182]. These mental models

are “the conceptual frameworks that support people’s predictions and coordination

in a dynamic world” [125]. Mental models are often “incomplete” and “not accu-

rate”; also, “Previous research suggests that people hold sparse, primitive mental

models of unfamiliar objects, technologies or ideas with which they have little ex-
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perience” [182, 87]. People then change their mental model of something based

on their interactions with it to make them more useful for achieving their goals

[175]. Note the difference between a mental model of a robot and a “knowledge

estimate” of what it knows [124]. A mental model is also different from a “shared

mental model”, which is one agent’s model of its team and of the team’s task.

Several ways to measure someone’s mental model of a robot have been docu-

mented. One strategy is to ask direct questions about the robot and its behaviors:

e.g., “Describe the robot’s task.”; “Why does the robot stop?”; “Why do its lights

flash?” [259] The language someone uses to describe the robot and its actions can

also be informative. For example, saying “it is an aggressive robot” implies it has

personality traits and saying “the robot is angry” implies it has emotional states,

whereas “the robot hit me” implies neither [82]. It may also be possible to measure

a person’s experience of “cognitive conflict” or dissonance when they encounter the

differences between a real robot and their preexisting notions about robots, e.g.,

from science fiction and the news media [148]. This tension, which Levin et al.

operationalize as self-reported difficulty answering questions about robots, could

indicate when people are reconsidering or changing their mental model [148].

6.3 Background: Novelty and Habituation Effects

Characteristics of the early stages of interaction with a robot do not always gener-

alize to later interactions when people have gotten used to it. An early forewarning

of this problem was documented with studies of “video telephones” at Bellcore in
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the early 1990’s wherein usage dropped off after a few days [74]. A clear example

on a robot is documented for the case of “Valerie the roboceptionist.” People were

still using “Valerie” 9 months after “she” was deployed, but the duration of time

each person spent with “her” was much higher during the first week [88]. The

authors called this a “novelty effect”—i.e., the fact that the robot was new caused

a temporary increase in people’s interest levels [88]. Lemaignan et al. [146] have

proposed a theoretical model that explains the novelty effect on anthropomorphism

by how people borrow and adapt their existing mental models to understand the

robot.

A related phenomenon is the “habituation effect”, in which the effect of some

aspect of the robot on the interaction changes as people get used to the robot. It

was observed in one study that participants allowed “the robot with mechanoid

appearance to approach closer than the robot with humanoid appearance” in the

first interaction, but this effect faded with subsequent interactions [128]. This

shows how important it can be to run a long enough study to see whether an effect

remains stable over time.
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6.4 Related Work in HRI

6.4.1 Mental Models of Robots

6.4.1.1 Expectations

Some of the prior work on mental models in HRI is related to people’s expectations

about a robot’s abilities and how these expectations can be influenced by first im-

pressions. For example, one study [143] found evidence that someone’s expectation

of what the robot knows is influenced by information about where it’s from—e.g.,

a robot from New York City is expected to know about New York City landmarks.

Several groups have called attention to the mistakes people make when inferring

robots’ abilities from their actions [48, 133, 221]. One study [48] found evidence

that manipulating a robot’s apparent speech capabilities can change someone’s

perception of its physical capabilities even though the two are often unconnected in

robotic systems. Richards and Smart [221] have argued that this will be especially

true for humanoid robots, and early experimental results seem to agree [133].

The importance of cues people use to guess sensing capabilities was highlighted

by a study of privacy concerns about “Snackbot” [142]. Very few of the people

who were interviewed could identify what sorts of sensors it had—they were espe-

cially surprised to learn about the omnidirectional camera—or guessed that it was

recording audio and video.

Our study also looks at the expectations people have about a robot from pre-

existing stereotypes or from cues given by the robot. In addition, our study is
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long-term, qualitative, and conducted outside of a laboratory setting, which is

rare in prior work.

6.4.1.2 Experimentation

There have been several studies of how first-time users of a robot have to figure

out what it can sense and what it responds to. Three different studies report that

participants experimented with the robot by touching it, talking to it, waving, or

snapping their fingers [162, 177, 210]. We were wondering whether people would

do this in our study, wherein we too avoid telling our participants how the robot

works or making the sensors too visible.

6.4.1.3 Mental Models of Robotic Furniture

Our robot design was inspired by a series of robotic furniture designs [220, 260,

162, 227]. Mental models are at the fore for robotic furniture because there’s no

obvious analog—you can think of an AIBO as a dog and a Nao as a person, but how

do you interact with a moving sofa, for example? Interestingly, some people have

attributed sophisticated abilities robotic furniture; see, e.g., the report that “people

[created] mental models of the trash barrel as having intentions and desires” [260].

The robotic trash barrel also induced some people to borrow from their existing

mental models. One person, for example, treated it like a dog: “[He] called the

trash barrel over by whistling and making kissing noises while waving chopstick
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wrappers like a dog treat. And after he had disposed of the wrappers and the trash

barrel acknowledged the trash with a wiggle, he happily noted to his colleagues,

It’s wagging its tail!’ ” Our study will be the first that follows a group of robotic

furniture users over many interactions to see how their mental models of the robot

develop.

6.4.2 Long-term HRI Studies

Some studies have deployed robots for longer periods of time to measure how

interactions evolve. Sung et al. [231] in 2009 listed eight longitudinal HRI studies:

two each in offices, schools, hospitals, and the home. Four years later, Leite et

al. [145] published a survey of long-term studies of social robots in particular—

they listed 23 total studies: five in health care and therapy, eight in education, five

in work environments and public places, and five in home environments.

Some long-term studies use ethnographic methods, like the study by Fink et

al. [70] wherein they placed a Roomba vacuum cleaning robot in each of nine

households in Switzerland for six months. Their methods included home visits, a

home tour, qualitative interviews, and cleaning diaries. They included additional

activities in the interviews like Bubble Talk, the Day Reconstruction Method,

drawing, and tinkering [70]. In our study we mainly used short (most were 10–

20 minutes) interviews to keep things simple and minimize the burden on our

participants’ schedules.

In some long-term studies the robot’s behaviors change over time. For example,
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in one study [92] the DragonBot personalized its actions to individual children

over a two-month evaluation. To keep our study more controlled, we chose not

to adapt the robot’s behavior to individual participants. Instead, our participants

experienced two abrupt changes in the robot’s behavior that were intended to

resemble unannounced software updates.

6.4.3 Long-term HRI Studies about Mental Models

There are very few published reports of long-term studies that focus on changes

in people’s mental models of robots. One example is a study of “agent migration”

cues that looks at some complex intervention scenarios [128]. Another example

is the study by Stubbs et al. [228]. They did multiple interviews of museum

employees who interacted with the educational robot PER every day. They seem to

only perform a quantitative analysis, though, to quantify changes in participants’

mental models. We instead perform a qualitative analysis to study how (i.e., by

what process) people update their mental models of the robot using the things they

notice during interactions. We do share with Stubbs et al. a focus on “unmediated”

interactions, though, in which participants are not instructed about how to interact

with the robot beforehand, nor does anybody guide them during the interaction.
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6.5 Study Goals and Approach

See Table 6.1 for a summary of our research questions and study goals. This section

describes them in more detail.

6.5.1 Rationale for Qualitative, Hypothesis-Generating Approach

Most HRI studies up until now seem to take a hypothesis-testing approach. They

pose a particular hypothesis about certain variables—these are first operationalized

and then measured to test whether the data make the hypothesis seem unlikely.

This works well when you have a theory you are trying to extend (e.g., from

human-human interactions to human-robot interactions) or refine.

On the other hand, mental model development in human-robot interaction

is relatively unexplored, and lacks a theory to test hypotheses about. Instead

of making speculative theories from behind our desks to give us something to

test, we first immerse ourselves in the real-world phenomena we are studying by

simply asking people for detailed descriptions of their experiences with the robot.

We reason that it is better for us to let the specific research questions, variables

to measure, and (eventually) theories arise from a systematic analysis of data

collected in a natural setting than to try to guess them ourselves. Our approach

is qualitative because we do not attempt to estimate the numeric values of any

variables from our interview transcripts, as well as hypothesis-generating because

our goal, besides discovering the interesting phenomena involved in this process,

is to produce data-driven research questions for targeted testing in future work.
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This approach has several other advantages besides being well-suited for early,

exploratory research. Qualitative methods tend to focus on uncovering a process

instead of accounting for the variance of certain variables. Since qualitative meth-

ods emphasize how two events are linked and not the magnitude of the relationship,

they are well-suited for uncovering the causal chain and making recommendations

for how to improve something (e.g., a human-robot interaction). Finally, qualita-

tive methods tend to focus more on individual people and their specific contexts

instead of on differences between group averages. This can help researchers identify

new, unexpected phenomena.

6.5.2 Venue and robot application

We wanted to do a realistic robot deployment “in the wild” (i.e., outside the lab)

for multiple weeks. We chose a classroom setting because we wanted to observe the

same group of people at least once per week, and we wanted there to be relatively

few absences to minimize missing data. We targeted courses for faculty and staff

instead of undergraduate courses to get a wider age range of participants.

We also thought it was important for the robot to have a useful role in our

chosen setting, as we have noticed that some participants (and spaceowners) are

no longer happy to “play along” with the experiment when the robot does a useless

task, does its task very poorly, or makes life more difficult in any other way. These

participants seem to get stuck focusing on their criticisms and become resentful

towards or dismissive of the robot. Instead of this, we wanted our participants to
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Table 6.1: Summary of our research questions and study goals. Each goal is
matched with the aspect of our study methods that fulfills it. See Sections 6.5 and
6.6 for details.
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be relatively willing to interact with the robot so that their mental models would

develop over time.

6.5.3 Robot appearance and behavior

We wanted the robot to have a novel appearance and function so people would

not be able to just apply an existing model they had for something else. Instead,

we wanted people to struggle a little and undergo a more lengthy and complex

learning process. We also wanted to minimize obvious clues about the robot’s

sensing abilities and connectedness to humans. We avoided anthropomorphic cues

(e.g., eyes, ears, a head) and sensors (cameras, microphones) that are visible and

easy to identify. We also kept the robot wireless so it’s ambiguous whether it’s

being remote controlled or sending sensor data to a human. We wanted to avoid

making things obvious so we could measure how people used their preconceptions

and made inferences from their observations of the robot’s behaviors.

These behaviors were designed to be deterministic and not stochastic so the

robot always did the same thing given the same situation. This was intended

to make the robot seem more “robotic” and to cover our tracks so people would

be less likely to suspect that the robot was not autonomous. In reality we were

remotely controlling the robot using the Wizard of Oz technique to keep the robot’s

behaviors very consistent (i.e., no unexpected errors) and deal more intelligently

with unanticipated circumstances. We designed the robot’s behaviors to be realistic

for a present-day autonomous robot.
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6.5.4 Measurement Goals

We chose to use semi-structured interviews for two reasons. First, we wanted

a method based on self-reports so we could ask detailed questions about mental

phenomena like thoughts and beliefs. This would be difficult to extract from simply

observing participant behavior, for example. Second, we chose semi-structured

interviews instead of (fully structured) questionnaires so we could ask follow-up

questions to interesting responses.

We avoided asking people direct questions about the robot’s capabilities be-

cause we did not want them to pay an unnatural amount of attention to the robot,

or to be artificially motivated to try to figure out how it worked. If some par-

ticipants interact with the robot multiple times without ever considering whether

it can hear, for example, we do not want to spoil our ability to record that phe-

nomenon by asking about hearing earlier in the study. Instead, we chose general

questions about their interactions with the robot—what they did, saw, heard,

thought, and felt, as well as their impressions of it.

We were also careful not to suggest certain answers to the interviewees or lead

them down a certain mental path. Instead, we asked open-ended questions like,

“Tell me about your experiences with the mobile shoe rack today” and to use the

interviewee’s words when asking for more details: “You mentioned that it has a

‘motion sensor’—could you talk more about that?”
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6.6 Methods

We deployed a “mobile shoe rack” in the hallway outside of a yoga classroom on

a university campus during class time.

6.6.1 Venue and Population

The yoga class we chose is attended by faculty, staff, and graduate students. People

who attend must remove their shoes before entering the classroom, but there is

no good place to put their shoes—they cause a mess in the classroom and are not

allowed in the hallway. A robotic shoe rack gives people an approved place to

leave their shoes in the hallway, and can even drive up to people to collect them.

Its movement was restricted to a taped-off area around a bench where people take

off their shoes (see Figure 6.1). It turned out that students rarely talk to each

other in this setting, which suggests that our focus on individual instead of group

phenomena was a good fit.

Participants were recruited for interviews by e-mail and in person. Also, any-

body who stepped inside the taped-off area was captured on video and audio, as

explained by signs posted on the walls. This second group of participants included

some students from other classes happening before or after our target class. Our

class ran from 12 to 12:50pm on Mondays and Wednesdays.
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6.6.2 Video and Audio Recording

A video camera was mounted high up on the wall opposite the taped-off bench

area where the study took place. The camera was positioned so its field of view

ended at the tape border and extended high enough to see participants’ faces (see

Figure 6.1). The camera was configured to record for the entire time when the

mobile shoe rack was inside the taped-off area. The camera was pointed up when

it was not recording so that it could not see anyone.

6.6.3 The Robot

6.6.3.1 Appearance

The mobile shoe rack was built on the Turtlebot 2 platform. Figure 6.2 shows how

it looked to participants. The top surface of each shelf was covered by paper with

pale orange shoeprints painted on it to suggest that it’s intended for shoes. Besides

this, the robot had no nametag or instructions posted on it. It was identified as

a shoe rack, however, by two signs at the edges of the taped-off area as well as

during an announcement by the author (i.e., Matthew Rueben) in the yoga class

and in e-mails to people with offices in the hallway.
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6.6.3.2 Networking

The wizard’s computer was connected to the robot’s netbook over 5 GHz Wi-Fi.

We had network connection dropouts—short (approximately 1-15s) times when

the wizard either couldn’t drive or couldn’t see any video from the robot. During

these times the robot stopped. This was most conspicuous in Condition #1 (see

Section 6.6.4 below) when the robot happened to be in the act of driving across the

taped-off area or turning around. It was less conspicuous when the robot was in the

home position in Conditions #2 and #3 because the robot only moved occasionally

in that situation. Sometimes this happened as often as once per minute or two.

6.6.3.3 Sensors

A webcam with a built-in microphone was mounted underneath the front edge of

the shoe rack, pointing forward to give the wizard a video feed to drive by. Audio

was recorded from the microphone, but not piped to the wizard. We intended to

be able to hear people talking about the robot using this microphone, but there

was a lot of noise from the robot’s motors, wheels, and from people walking on

the creaky floors that made it very difficult to hear most conversations. We could,

however, hear the robot’s beeping noises in the recordings to confirm that the

wizard had triggered them at the right times.
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Figure 6.2: Closeup of the “mobile shoe rack” robot. Webcam is visible under the
right edge of the shoe rack. Foam was wrapped around the four corners of the shoe
rack to prevent hurting people if the robot bumped into them (or vice versa) even
though the robot drives pretty slowly. An orange circle capped each foam tube
to make it possible to automatically track the robot’s pose from the wall-mounted
webcam.
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6.6.4 (Simulated) Robot Capability conditions

The robot’s behaviors were manipulated to produce three conditions. Each con-

dition consisted of a set of behavioral rules that were designed to simulate a set

of sensing and processing capabilities. During each condition the robot was con-

trolled by a human wizard according to that condition’s behavioral rules. Each

condition lasted for two weeks. The robot capabilities for each condition consisted

of the capabilities from the previous condition plus some new ones. All sounds

made by the robot were custom-made by the study team using the free software

Audacity. See Figure 6.1 for an overview of the study area.

6.6.4.1 Condition #1

• Abilities: The robot can detect obstacles. It can also detect people as

different than inanimate objects.

• Sounds: We created a “bee-boop” sound to get people’s attention and signal

that the mobile shoe rack is ready to receive (or return) their shoes. The

two tones were a higher pitch followed by a lower pitch in quick succession.

The “car horn” sound was based on the sound made by an impatient driver

on a car horn: two medium-length blasts in quick succession.

• Behaviors: The robot drives repeatedly along the length of the bench. It

stops and makes the “bee-boop” sound when someone is on or right in front

of the bench. It also stops for obstacles, and behaves differently for human
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obstacles than for inanimate objects. The robot would steer around inani-

mate objects using clunky 90-degree turns. Humans received the “car horn”

sound—if the person doesn’t move after a few seconds, the sound is given

again. If this also fails, the robot would steer around the person like it does

for inanimate objects.

6.6.4.2 Condition #2

• Abilities: The robot can do everything from Condition #1, plus distinguish-

ing between individual people and remembering who it has visited within the

entire taped-off area. It can also tell when shoes are added to or removed

from the rack, but only after it makes the “bee-boop” sound and is waiting

for an interaction.

• Sounds: The “sad sound” was designed to make the mobile shoe rack sound

disappointed. Two tones were used as for the ”bee-boop” sound, but these

were longer, and each fell in pitch.

• Behaviors: Starting in this condition, the robot does not waste time driving

back and forth when there are no people to serve; instead, it waits in a “home

position” in the middle of the hallway near the edge of the box that’s farther

away from the yoga classroom. The robot’s camera side faced down the hall

towards the classroom, watching for people to enter the taped-off area. Every

10 seconds or so, the robot turned slightly to one side and then to the other to
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look for people. If the wizard saw through the robot’s webcam that someone

enter the taped-off area at any point, he chose that person as his target and

began driving straight towards them—this was the first condition in which

the robot drove diagonally. If the robot’s path to its target was blocked by

anything, whether person or object, it would stop and drive around it without

honking and with smoother maneuvers than in Condition #1. If someone

stepped right in front of the robot and caused it to stop suddenly, however,

it gave the “car horn” sound. The robot also issued the “sad sound” if it

reached its target, issued the “bee-boop” sound, and waited several seconds

without experiencing any exchange of shoes.

6.6.4.3 Condition #3

• Abilities: The robot can do everything from Condition #2, plus detecting

when someone is making eye contact with the robot. It can also detect when

its current target is in the process of taking off their shoes.

• Sounds: The “blabber” function was designed to make it sound like the shoe

rack was talking, albeit in a robot language of electronic beeps. We created

a library of 12 audio clips ranging from 0.4-1.1s long that each sounded like

a single word or short phrase; each “blabber” action by the robot would

randomly play one of these clips. The beeps varied in length and timing to

mimic the cadence of human speech.
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• Behaviors: The robot mostly behaves the same as in Condition #2 except

that as it is driving towards a target person, it does a “blabber” if that

person looks at it. After a cooldown period of about 5 seconds, the robot

will “blabber” again if the person glances at it, or has been staring at it.

Hence, if someone stares at the robot while it is engaged with him or her, it

will “blabber” once every 5 seconds. In this condition if the robot comes up

to someone while they are taking off their shoes it will wait until they finish

and place their shoes on the shoe rack before looking for another person to

approach. The robot also follows a smoother trajectory instead of always

stopping to turn in place.

6.6.5 The Wizard

The mobile shoe rack was remotely controlled by Jeffrey Klow, another graduate

student on our study team. He practiced our robot behaviors at the chosen venue

for four weeks interacting with students from two different classes before the start

of the main study. He became quite consistent, although he still deviated from

the behavioral protocol sometimes. This included: (1) driving closer to or farther

from the bench in Condition #1, (2) forgetting to play the correct sounds at the

correct times, especially when there was a lot going on like in the more advanced

conditions; and (3) imprecise timings—e.g., for the 10 seconds between looking to

either side in the latter two conditions, or for the 5-second “blabber” cooldown.
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Error 2 in particular probably made it harder for those participants who saw it to

figure out the patterns in the robot’s behavior.

6.6.6 The Wizarding Interface

The robot and wizard were both running the Indigo release of the Robot Operating

System (ROS [186]). The wizard’s driving interface was a custom version of the

keyboard teleoperation interface available in the turtlebot teleop package in ROS.

The only changes were the addition of keys that trigger the robot’s four different

beeping behaviors: the bee-boop, sad sound, car horn, and blabber. The wizard

had access to two camera views: one from the forward-facing webcam on the

Turtlebot and the other from the wall-mounted webcam that recorded participants’

behaviors.

6.6.7 A Typical Class Time (Procedure)

The author carried the mobile shoe rack to the venue and placed it in the “parked”

position at around 11:35am. This experimenter was sure to leave quickly without

talking with anyone. The robot then began driving at around 11:40 or 11:45am

by driving away from its “parked” position against the wall and beginning the be-

havioral protocol for whichever condition was active during that two-week period.

The previous class was scheduled to end a few minutes later at 11:50am, and our

class began at 12 noon. The robot continued to drive until 12:05pm, 5 minutes
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Table 6.2: Study schedule and diagram of participant attendance and participation
(i.e., whether they entered the taped-off area or put their shoes on the robot), as
well as when the interviews happened and when the robot conditions changed. On
the 4th Monday the robot was out of battery and is labelled as “DEAD!” (see
Section 6.6.8). Bill and Frankie were the instructors, and traded places midway
through the 3rd week.

after class began, to catch any students who came late. The robot then parked

until 12:40pm, 10 minutes before our class got out, but video and audio were still

being recorded from the wall-mounted camera in case people interacted with the

robot while it was parked. The robot then began driving again to return people’s

shoes using the exact same behaviors as before class. When the robot parked itself

at about 1:05pm, an experimenter came up to collect the robot.
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6.6.8 Timeline of Study Activities

Table 6.2 shows the study schedule, including the three behavioral conditions and

the dates of all the interviews with each of the six participants who volunteered to

be interviewed.

Study activities began with an announcement by the author during the first

yoga class of the term. Students were told to expect the “mobile shoe rack” before

and after class, and that they could put their shoes on it if they wanted to. No

study activities happened that Wednesday; trials started the following Monday

and spanned six weeks (12 class times) total. Classes continued after the end of

the study for three more weeks before the term was over.

These six weeks were divided evenly into three conditions of two weeks each.

Transitions between conditions were done all at once and without warning the

students—on the first day of a new condition, the robot starts doing its new be-

haviors as soon as it starts driving.

One day was an exception; Monday of Week 5, during Condition #2, the

robot was accidentally left unplugged overnight and had a dead battery, so it was

placed in its “home position” (see condition details above) and left there, now

an “immobile shoe rack”, for the entire time that the robot was usually in the

taped-off area.

Interviews were done about once per week. We targeted days when we thought

interviewees would have more to say: the first day of a new condition when the

robot’s behavior has suddenly changed, and the last day of a condition when par-
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ticipants have had two weeks to observe it. Interviews did not always conform

to this schedule, though, especially for the two participants we named “Elsie”

and “Donna” (see Section 6.6.12 below) who only attend class—and only did

interviews—on Wednesdays.

6.6.9 Interviewee Questionnaire

All interviewees completed a questionnaire to help us gauge the diversity of our

sample. The questionnaire begins with demographics: age, gender, race/ethnicity,

major (if they attended any college), year in school (for graduate students), de-

partment (for faculty), and education level (for faculty and staff). The rest of the

questionnaire is about technology usage and expertise, as well as attentiveness to

one’s surroundings. The items were intended to measure openness to adopting new

technologies, experience with computers and robots, interest in robots, cell phone

and social media usage, ability to figure out how things work, and tendency to

notice details around oneself.

6.6.10 Interview protocol

The author did all the interviews except for several that were done by study team

member Eric Zimmerman. Interviews were recorded on a handheld audio recorder,

and interviewees were compensated $10 at the end of each interview for their

participation.
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Interviews were semi-structured: interviewers were given a list of carefully-

designed questions to ask, but were also trained to give encouraging prompts and

ask follow-up questions. The full interview guide is included in Appendix A at the

end of this dissertation.

The first part of the interview was meant to get the interviewee’s account of ev-

erything they noticed about the mobile shoe rack since the previous interview. We

wanted specific details, so we asked follow-up questions to get the exact sequence

of actions done by both the robot and the interviewee.

The second part of the interview asked more general questions. Some examples

include, “What is your overall opinion of the mobile shoe rack?”; “If you could

make it better, what would you change?”; “Describe all the shoe rack’s behaviors

as best you can”; and, “Would you want the mobile shoe rack in your home? Why

or why not?” We also asked, “Do you have any questions about the mobile shoe

rack?”, but the interviewer did not answer these until after the final interview.

At the first interview, the interviewer also asked about the expectations that

the interviewee had about the mobile shoe rack after first hearing about it, and

how these expectations compared to their first impression when they actually saw

it.

After the last interview, the interviewer asked direct questions about the inter-

viewee’s mental model of the mobile shoe rack. The questions were specific and

covered a wide variety of capabilities: “Can it see? How far? Can it distinguish

people from inanimate objects?”; “Can it hear?”; “Does it remember that you’ve

already put your shoes on it?”; and several others.
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After these direct questions, the interviewer revealed that the study was focused

on how they figured out the robot’s capabilities. A description was given of what

the robot’s capabilities were in each condition. It was also revealed that the robot

was driven remotely by a human. Interviewees could react and ask any questions

they had about the study.

6.6.11 Interview Analysis

All the transcription and analysis of the interview recordings were done by the

author. Each interviewee’s experiences were analyzed as a separate case study.

Interview responses were placed in chronological order to form a coherent story

for each interviewee. The analysis focused on how each interviewee used their

actions and observations to form a mental model of how the robot works. The

case studies were then reviewed all together in a cross-case analysis to identify

emergent themes. Whenever an interviewee’s response was unclear or seemed to

contradict the robot’s typical behaviors the video recordings were reviewed to find

out what really happened.

6.6.12 The Interviewees

All interviewees were recruited from the faculty-staff fitness yoga class that the

mobile shoe rack was serving. Six people volunteered to interview with the study

team. We have changed their names for confidentiality. “Adam” is a male in his
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30s who does STEM outreach education and professional development for teach-

ers. “Bill” is a male in his 60s and the main instructor for the faculty-staff yoga

class, but left for vacation after the 3rd Monday of the study. “Courtney” is a

female graduate student in her early 20s studying marine resource management.

“Donna” is a female in her 70s who was faculty in the College of Pharmacy and

then worked at Student Health Services—she only attends class on Wednesdays.

“Elsie” is a female in her 40s who works as a licensed psychologist for Counseling

and Psychological Services—she also only comes on Wednesdays. “Frankie” was

the substitute yoga instructor for “Bill”, so her first day was the 3rd Wednesday

of the study; she identifies as gender non-binary and is in her late 20s. Table

6.2 shows which days each interviewee attended class, and when the interviews

actually happened.

6.7 Overview of Interview Data

This section is an introduction to the relatively large set of interview data collected

during this study. We present some statistics of what was collected and then

describe some characteristics of the interviewees’ responses that will set the stage

for the findings presented in the next section.
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6.7.1 Interview Data Collected

We did 28 interviews in total (see Table 6.2). Adam and Courtney each did seven

since they were present for the whole study; Donna (who did four) and Elsie (who

did three) volunteered partway through. Bill did three before leaving on vacation

and one after returning (and after the study ended); Frankie, who replaced him,

did three interviews. All but the final interviews lasted around 5–20 minutes except

for one with Adam that was almost 30 minutes. The final interviews lasted longer

because of the direct questions about mental models as well as the debrief; most

were around 30–40 minutes, although Adam’s was over an hour long.

6.7.2 General Observations about What People Said

6.7.2.1 Interviewees learned to focus on the robot’s behaviors

For the first one or two interviews the types of responses were more varied, ap-

parently because different interviewees had different beliefs about the purpose of

the experiment. Some, like Frankie, focused on evaluating the mobile shoe rack’s

design and performance, giving suggestions for improvement. Others, like Elsie,

focused more on their subjective impression of the robot, calling it “cute” and

“fun.” By the end of the study, though, the interviewees seemed to have noticed

that the interviewer was most interested in descriptions of what the robot did and

why. On the 4th Wednesday Adam even began his interview on a topic we wanted
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without being prompted at all: “The shoe rack, interestingly enough, on Monday,

was not on.”

6.7.2.2 Use of uncertain language

We noticed during transcription of the audio files that the interviewees used a

lot of disclaimers like “I think” and “maybe.” In context, these did not always

seem to indicate true uncertainty, but rather something like humility or careful

skepticism. Interviewees rarely made statements with certainty; this could have

reflected a real uncertainty, but they also could have been intentionally trying not

to seem overconfident, perhaps so as to save face if their answers turned out to be

wrong. Some displays of uncertainty we took more seriously, especially when an

interviewee took a stance on something rather confidently and then, realizing some

flaw in their reasoning, questioned themselves or even changed their position.

6.7.2.3 Interviewees did not observe the same robot behaviors

It also became clear during the interviews that each interviewee had a unique set of

experiences with the mobile shoe rack. Several factors contributed to this. First,

the robot’s behaviors could change from day to day within a condition because it

reacted to people around it. For example, in Condition #1 someone needs to be

sitting on the bench for the robot to stop and beep at them; if nobody is on the

bench, the robot will never stop or make the “bee-boop” sound. Second, intervie-
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wees did not always attend class, and spent different amounts of time observing or

interacting with the robot (see Table 6.2). Some interviewees would walk quickly

past the taped-off area and barely glance at the robot; others would pause just long

enough to take off their shoes. For those who put their shoes on the mobile shoe

rack, some would sit on the bench watching the robot for a few minutes whereas

others would rush into the classroom. Bill and Frankie often arrived very early

and others sometimes arrived late—in both cases, they were often the only person

in the hallway with the robot. Other interviewees arrived during the transition

time between classes when the hallway was crowded; they saw the robot interact

with several other people.

This second factor—the amount of time and attention people gave to observing

the robot—was especially relevant for longer behaviors. For example, Adam on

the 6th Wednesday mentioned that he noticed (apparently for the first time) that

the robot visited two people in a row without returning to its home position in

between. The robot had actually had this capability for four weeks by that time,

but to observe it Adam had to be paying at least periodic attention to the robot for

a relatively long period of time in addition to being there with at least one other

person whom it had not yet visited. Another example is the robot’s capability in

Conditions #2 and #3 to recognize you as an individual—to get evidence of this,

you have to notice that the robot visits you once but then wait long enough to

see that it does not visit you again. These sorts of behaviors were less likely to be

observed (fully) by our interviewees compared to shorter, simpler behaviors.

Due to these factors each interviewee only got a sample of the full set of possible
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behaviors for the current condition on a given day. It was therefore difficult to

compare their mental model development processes to each other directly. Instead,

we treated the analysis for each interviewee as an independent case study, and then

also did a looser, qualitative comparison across all six of these to put together the

findings presented in the next section.

6.7.2.4 Interviewees varied widely in motivation to understand the

robot

Adam clearly had the highest motivation of the six interviewees to figure out how

the robot worked and what was the purpose of the study. This started with the

in-class announcement about the study before he had even seen the robot. By the

interview on the 4th Wednesday he said, “every day I try to figure out what’s going

on with it”, and later referred to the “entertainment value” of experiencing all the

behavior changes—“it’s like a puzzle and you wanna figure it out.” This extreme

motivation probably increased the amount of attention that Adam paid to the

robot, how much he thought about its behaviors, and how often he reconsidered

or revised his mental model of it.

Some of the other interviewees avoided or even ignored the mobile shoe rack

at the beginning of the study. In particular, Courtney and Donna did not put

their shoes on the robot for the first three times they saw it, and Elsie and Frankie

for the first two times (see Table 6.2). Donna did not even enter the taped-off

area during those first three class times. During her first interview on the 3rd
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Wednesday she expressed a desire to observe the robot more before answering

some of the interviewer’s questions and said she would “be more observant” the

next time, perhaps explaining her increased attention and participation from that

point forward. In fact, all six interviewees were at least using the mobile shoe rack

regularly by the end of the study. We believe this was at least partly due to feeling

obligated or incentivized to have something to say for at least 5 or 10 minutes at

the next interview.

6.8 Key Findings from the Cross-Case Analysis

The interviews for each interviewee were organized into a chronological account of

everything they said about mental model formation while they were participating

in the study. We then analyzed these six case studies for recurring themes and key

phenomena that warrant further attention and study. We have organized these

findings into eight categories and present them in this section.

6.8.1 Variability of How Long it took to Form a Mental Model

It seems unlikely that the amount of time it took for our interviewees to form their

mental models of the mobile shoe rack will generalize very far outside the particular

setting and robot use case of this study. We did observe, however, considerable

variance between our six interviewees. Some people noticed and had developed

explanations for new robot behaviors after one or two days of experiencing a new
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condition. For example, Adam and Bill understood by the end of the 1st Monday

that the robot stops in front of each person and waits “for a second” (Bill’s words)

before moving on. Other people took more time to fully form their model—on

the same day, Courtney said it stopped seemingly “at random” and didn’t figure

out that it was stopping for people until the following Wednesday. Still others like

Elsie were still missing big parts of the robot’s behavior in their final model at the

end of the study.

Several factors could account for this variance. For example, we have already

highlighted differences between the interviewees in motivation to figure out the

robot in Section 6.7.2.4. Adam seemed to have the highest motivation, followed

by Bill, and Courtney seemed to have the lowest (although we also noted that

those with low motivation generally started participating more after their first few

interviews). This motivation might make mental model formation faster and more

accurate by increasing attention, thoughts about the robot, and how often the

mental model is reconsidered or revised.

Interviewees’ experiences of the robot also varied considerably (see Section

6.7.2.3), and could therefore be another factor accounting for how long it took to

form mental models of the robot. Differences in attendance and participation are

presented in Table 6.2. Two participants—Donna and Elsie—only attended class

on Wednesdays. Bill the instructor left partway through the study and was replaced

by a substitute, Frankie—both missed entire conditions. Also, both instructors

often arrived so early that they did not see anyone else interact with the robot

before class. Some of the interviewees reported ignoring the robot as they hurriedly
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walked to and from class on some days, whereas others sat on the bench for several

minutes watching it. As a result of missing class, ignoring the robot, or just

bad luck, some interviewees did not experience certain robot behaviors until the

condition had been active for several days. For example, it seems from the videos

that Frankie’s only opportunity to hear the “sad sound” was on the 5th Wednesday

after class—she attended class 3 times when that sound was part of the robot’s

behaviors, but the occasion never arose for the robot to play it while she was

there. It seems reasonable to assume that people form mental models of the robot

based on which behaviors they actually experience, which in our study was not

always everything in the behavioral protocol. Longer, more complex behaviors

are probably more vulnerable to being missed because they require a person to

observe them for a longer time period in order to understand what’s happening

(unless the person is able to guess the rest of an observation after observing just a

part). Interaction designers need to understand this when they are thinking about

how to teach their users about these behaviors—a longer demonstration would be

needed, or else a verbal or pictorial description summarizing it.

Other factors that could account for variance in mental model formation time

could include: motivation, memory, ability to reason about evidence, attention to

detail, or other individual differences.
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6.8.2 Reasoning about Evidence and Hypothetical Situations

When our interviewees could not answer an interview question with certainty they

often talked through their thought process so that they had something intelligent

to say. Adam reported in his final interview that the interviews helped him “reflect

back on [his understanding of the robot] and ideally make better hypotheses.” For

some questions it seemed like our interviewees didn’t reason about the evidence

or draw any conclusions before this point. Perhaps they had the observations

that would eventually point them to the model they report during the interview,

but hadn’t consciously put it together yet. Future work should investigate what

prompts a person to reason about evidence and form a conclusion instead of just

keeping the evidence in memory, unused.

Whether it happened during the interview or at an earlier time, we observed

several different ways that the interviewees reasoned about evidence—either to

draw a conclusion or to decide the evidence is inconclusive—and reasoned hypo-

thetically about events that didn’t happen but might suggest different (or clearer)

conclusions.

6.8.2.1 Drawing conclusions

The interviewees made several different types of inferences—some correct, some

incorrect—from the robot behaviors they saw.

Simple inference: A popular example: people would often notice how many

shoes were on it and make inferences about how many people used it.
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Correlation: some rather impressive connections were made between the

robot’s behaviors and the things that people thought were causing them. For

example, Courtney on the 5th Monday reasoned that she couldn’t hear the beeps

from inside class because there was only one person on the bench when she emerged,

whereas in the past there were more, and she could hear it.

False correlation: On the 6th Wednesday before class Frankie walked out of

the yoga classroom and stood barely inside the zone watching the robot, “Just to

see if the robot was maybe on a timer.” After a few seconds of waiting, the time

came for the robot to start driving, and it came up to Frankie. She said “it noticed

me”, falsely believing that her presence had triggered it.

Offering explanations for unexpected behaviors: Early in a new condi-

tion and especially at the very beginning of the study the interviewees didn’t know

what to expect, and were trying to find explanations for the robot’s behaviors.

For example, on the 4th Wednesday when the robot moved away from Courtney

before she could put her shoes on it she suggests as an explanation the fact that

there was “someone else in the box”—maybe it was trying to visit them. Why did

she choose that explanation? Perhaps because it fit with a belief she was holding

about how the robot visits people. Also, that other person’s presence may have

been more salient to her than other details like the shoes on the floor.

We find it interesting that almost nobody talked as if the robot makes mistakes—

i.e., via sensor malfunctions or computation errors. A rare exception was Bill’s

frightened thought that the robot may have “malfunctioned” when it first drove

directly towards him on the 3rd Monday. Perhaps existing theories from organi-
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zational studies about sensemaking could be applied to these sorts of bewildered

responses [253]. A few of the interviewees did talk about randomness in the robot’s

behaviors—once by Courtney on the 1st Wednesday when she had no better ex-

planation the robot’s movements and again by Adam on the 5th Wednesday to

describe how its behaviors (in Condition #3) were less predictable and more “hu-

manlike.”

Eliminating explanations: When Adam noticed the new behaviors on the

3rd Monday he quickly eliminated the possibility that they were triggered by the

fact that he was the only person in the area: “the situation didn’t seem unique,

I’ve come in late before ... so it wasn’t like, just because nobody else was there

that’s what it was doing.”

6.8.2.2 Deciding not to draw a conclusion

There were also several reasons that the interviewees gave for not drawing any

strong conclusions from an observation.

Reasoning that the evidence may not be diagnostic. Donna in her final

interview mentioned one piece of evidence that was not helpful to her. When asked

whether the robot responded when she said “muchas gracias” to it, she said, “No,

it ... it paused a tiny bit longer, but I don’t know if it would have paused had I

not said that.” I.e., the slightly longer pause did not help her decide whether the

robot responds to speech because it might have happened without it.

Considering the fact that their memory and attention are limited:
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Several times somebody noticed a behavior for the first time, but reasoned that it

might not be a new behavior—it could have been happening the whole time but

they simply did not notice it.

For example, Courtney on the 4th Wednesday admitted that she was not paying

as much attention at the beginning of the study as she is now, and is unsure

whether behaviors like “the two different beeps” (i.e., the addition of the sad

sound in Condition #2) are actually “a new thing” or if she didn’t notice them

before. Later in the interview she even doubts herself that there really are two

different beeps.

Also, when Donna finally notices the orange circles on the corners of the shoe

rack on the 5th Wednesday she considers the possibility that they were actually

there the whole time (which they were): “... I didn’t remember that it had little

orange corners prior, so I don’t know, maybe I’m just getting more observant.”

Waiting for more evidence: Donna on the 3rd Wednesday chooses not to

answer several of the interview questions because “I haven’t had enough interac-

tion” with it and “I will want to have some more time to engage what it does and

so forth” before answering. She even shows an understanding of statistical

significance during her final interview: when asked if the robot can recognize

specific people, Donna reasons that one way to tell would be to see whether the

robot always turns so her pair of shoes is easy for her to grab. Since the robot only

has two sides, though, this would happen 50% of the time even if the robot were

guessing randomly. She therefore reasons that, although the robot did present her

the correct side today it may have been “coincidental” and that she would need
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more interactions to test this properly. It is worth noting here that Donna is a

retired university faculty member.

6.8.2.3 Forming Hypotheses and Hypotheticals

When interviewees found the robot’s actual behaviors ambiguous they often brain-

stormed hypothetical situations that would be more helpful for answering the in-

terviewer’s question. These were essentially experiments—scenarios in which the

robot’s response would help them decide whether, e.g., the robot has a certain

capability.

Reasoning about what it would do in an edge case: Donna in her final

interview: “Well, so far as I know it’s got an ongoing energy source. It’s not like

if the lights go out. . . ” . . . [that the robot will turn off.]

In the same interview Donna suggests testing the robot’s idea of the boundary

between person and object by introducing “a service animal” to the situation.

Another example was in Bill’s final interview. He was unsure about one of the

questions: “I never knew if there was something else there that was an object if

it would treat it the same as a person in terms of stopping in front of it.” He

proposes putting a mannequin (“dummy”) in front of the robot to test whether it

can “know that it’s not a breathing, living thing.”

Counterfactual evidence. Some of these hypotheticals were counterfactuals—

i.e., things that did not happen. The logic for these was of the form, if [this] had

happened instead, then I would have concluded [that].
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For example, Bill on the 2nd Wednesday says, “if it knew who I was through

face recognition or something, it’d say oh! [These are] his shoes, so I’ll bring him

his shoes.”’

Reasoning about what would be observable in different situations.

E.g., Donna on the 5th Wednesday notices the painted shoeprints on the shoe

rack’s shelves: “... today I was able to see that there are actually some footprints

..., and I didn’t observe that before because it was fully loaded.”

It’s noteworthy how much reasoning people do and how sophisticated some of

it is compared to all the robot behaviors they didn’t notice or forgot. Much of

that reasoning may not have happened if not for the interviews. Inasmuch as peo-

ple do rely on their rationality to compensate for sparse and low-quality evidence,

however, their mental model formation becomes vulnerable to well-documented

heuristics and biases like confirmation bias and self-report biases like the one re-

ported by Nisbett and Wilson [171]. In general, the way people assign causes to

events they observe (such as robot behaviors) is described by theories of attribution

(e.g., by Jones [116], Ch. 3).
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6.8.3 Comparing the Robot to Humans, Animals, and Other De-

vices

6.8.3.1 Comparisons and Associations

Interviewees mentioned other things a lot when talking about the robot. Most

of these mentions were simply comparisons or associations. The most common

comparison—made by Adam, Bill, Courtney, and Elsie—was to the Roomba robot.

Early on, Adam compares it to a pet: “you feel like you’re almost calling it like

you’re calling a dog or something, like, come here shoe rack, come on!”’ Frankie

compared the blabber sounds to “songbird noises”, and Adam called them “R2-D2

type sounds.” Frankie even made a rather abstract comparison: “I want more of

a Pee Wee’s Playhouse vibe out of it, and I’m more just getting [baggage carousel]

at the airport with bags on it.” Some of these comparisons may have only been

comparisons—i.e., metaphors used to describe something about the mobile shoe

rack.

6.8.3.2 Borrowing (pieces of) other Mental Models

More significantly, though, it appears that the interviewees sometimes borrowed

from their mental models of these other entities to help them build a mental model

of the robot. Borrowing from other mental models could influence the associations

people make between different attributes and therefore the assumptions they make

and questions they ask about a new system.



203

It can be difficult to tell when this borrowing is happening in addition to a sim-

ple comparison. For example, Elsie on the 5th Wednesday makes a comparison—

“It reminded me of some of the sounds that my toy R2-D2 makes”—but then says,

“it was kind of a fun little droid.” This might have been just a metaphor, but

she may have also borrowed something from her model of a “droid” as she was

building a model of the mobile shoe rack.

Sometimes borrowing is more obvious. For example, Adam said on the very

first day that the shoe rack appears to be on a Roomba. Here he believes that the

Roomba is actually a component of the system he is trying to understand, so he

might have guessed that his model for what the Roomba can do would be a very

good model for what the base of the mobile shoe rack can do.

Later, Adam demonstrates some inference or prediction that resulted from

using part of another mental model. He predicts how much weight the mobile shoe

rack can move by reasoning, “the bottom part looks very similar to Chairbot, so

if Chairbot can move 30lbs. . . .” He later specifies some differences between one of

Dr. Heather Knight’s Chairbots and the mobile shoe rack: “. . . the Chairbots look

the bottom of them looks similar to that thing, I don’t know if they’re the same,

but those were all being controlled by remote control obviously, I don’t [think] that

there’s somebody remote controlling this, I would be very surprised if that was the

case.” He will either have to borrow just part of the other mental model or else

modify it to account for this difference.

Borrowing Structure vs. Content. It is important to specify what about

a mental model is being borrowed: just the structure, or also the contents that fill
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that structure, or both. In the first example, perhaps Adam borrowed his entire

mental model for a Roomba because he believed it to actually be a component

of the mobile shoe rack. With Elsie it’s less obvious—while it’s possible that she

also borrowed the typical attributes of a “droid”, she may have just used the

structure of the model as a framework. By a model’s structure we mean the way

the pieces of information are organized and connected. This could really matter

when using a borrowed mental model—or a combination of several—to interpret

observations and decide whether the model needs to be changed. For example,

most humans who can understand speech can also speak, and vice versa—each

ability probably strongly suggests the other one in most people’s mental model of

an adult human, and might be grouped as “language abilities.” On the other hand,

in an AI system those two abilities are not necessarily connected—it could have

a speech synthesizer but not a speech recognizer, for example, such that it could

speak about you and its environment but not understand anything you say. It

could be important to know whether someone encountering such a system begins

with their model of human language abilities as a template—if the system could

even detect this it could predict the incorrect inferences and interpretations the

person will make about its behavior and perhaps even choose different actions or

give explanations to avoid costly mistakes.

In this study we have mostly focused on the content of people’s mental models:

e.g., which sensing capabilities the robot has and what its rules of behavior are.

One obstacle to getting the whole picture is that the structure of mental models

is unknown. I.e., it is unknown how they are represented in the mind—whether as
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abstract properties with a range of possible values or as analogical connections to

other, better-understood entities, or something else. It is also unknown whether

people carry around one mental model—their favorite—or a list of possible candi-

dates, perhaps with estimates of how likely each one is to be accurate. Answering

these questions requires that methodologies for measuring the structure of mental

models are identified and validated.

Future Work. Our results suggest several other key areas of further study on

the topic of borrowing or reusing mental models.

First, it did not seem like the comparisons the interviewees made to the mobile

shoe rack were random. They seemed to gravitate towards comparing it to a

pet animal like a dog, or R2-D2. Which aspects of the mobile shoe rack (or the

environment, or the scenario) caused them to choose those objects of comparison?

Did a dog come to mind because the robot was subservient? ...social? ...of about

the right size? Again, we aren’t sure whether the interviewees who compared the

robot to a dog were also borrowing anything from their mental models of dogs. To

the extent that people do borrow, though, it will be important to predict which

mental models (e.g., a dog, a droid) they take off the shelf.

A second question for future study is, how does mental model formation change

when the robot’s appearance or behavior is designed to encourage users to reuse

the mental model from a certain entity? For example, AIBO is designed to be

doglike, so perhaps users will use their mental model for a dog as at least part of

their initial model for AIBO. We did not observe this sort of situation in our study
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since the mobile shoe rack was intentionally designed to not resemble a human or

animal or anything else that moves, at least in appearance.

Third is the question of what existing mental models people have for a robot, or

for different types of robots. Indeed, all of our interviewees referred to the mobile

shoe rack as “the robot” at times, which raises the question of what existing mental

models they might have at least compared it to. The interviewees were familiar

with robots from movies like R2-D2 as well as consumer products like the Roomba

and Amazon Echo; they may have also known something about certain robotic

toys (Adam has a 3-year-old daughter) or robots featured in news stories that

have been used to assemble cars or perform surgeries. How are all these different

devices represented in their minds? Is there a mental model for all robots, or

are they separated into (perhaps overlapping) subclasses? There is a wide variety

to account for in such a system of models—note the differences between remote-

controlled cars, dolls that can hold a conversation, assembly line robots that do

repetitive tasks, cruise control and lane-keeping systems in cars, and AI personal

assistants.

A fourth question is how these preexisting models of robots can be changed,

especially since the ones held by people who do not have in-depth experience with

a robotic system are probably rather inaccurate. Did people who interacted with

the mobile shoe rack in this study leave with a changed mental model for “robots”?

If so, was it more accurate? Or maybe their experiences prompted them to break

down the overgeneralized category “robots” into more specific subclasses: social

robots vs. non-social robots, autonomous robots vs. remote-controlled robots, and
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so on. Maybe theories from social cognition about stereotyping processes would

apply here—sometimes researchers need to “borrow”, too.

6.8.3.3 Intentionally Projecting Attributes onto the Robot

When she was asked to list the robot’s capabilities Frankie makes a distinction.

On the one hand, she says, “when we talk about the robot and the things we want

it to do, we assign [animal or human] characteristics to it.” She often thought of

it as a small dog and gave it different names like “Percy.” She emphasizes the

difference, though, between these assigned characteristics and what it really is:

“a shelf on wheels that has a sensor on it.” If people often hold both of these

two sets of beliefs, then it seems crucial to distinguish between them in theory,

measurement, and practice.

On the one hand people have their mental models of what the robot can really

do. This is based on thinking about the robot as a mere mechanism—pieces of

plastic and metal controlled by computers to do things according to the designs of

a human software engineer.

On the other hand people might also imagine or project additional characteris-

tics onto the robot that they know aren’t really there. This might just be an extra

ability (e.g., pretending your dog understands what you say), a certain role or

relationship (e.g., talking to the robot as if it is your butler), or even a whole new

identity (e.g., when a robotic Mickey Mouse toy becomes the real Mickey Mouse).

Designers often encourage users to imagine a particular personality for the robot
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by making the robot look and act in a way that suggests that personality. When

users do this, it influences the way they interact with it—they act and talk as if

these imagined characteristics are real.

Again, Frankie is a good example of this: “I think of it kind of like one of my

small dogs, like, “hey, guy!”” Also, even though she knows that this “animatizing”

is “just in my mind”, she appears to still use her schema for a dog as a template for

her projected mental model of the robot: “So I guess I think of this shoe rack like

my dogs. . . ” (i.e., she uses her dogs as a template for the shoe rack) “..., like you

tell ’em you’re there, and then you go sit down and wait for them to come to you,

essentially” (i.e., she is mapping her script for interacting with her dogs onto her

interactions with the robot). Or, put in different words, she evaluates whether the

robot looks and acts in a way that makes it easy for her to “think of it like a dog”:

“. . . it doesn’t really respond to someone sitting down in the way that an animal

or something small that’s alive would respond to someone sitting down.” So while

Frankie does have a mental model of the robot’s actual capabilities and behaviors,

she also wants to pretend that it is a small dog. This certainly will influence

her behavior around the robot, but might also influence the way she forms her

non-imaginary mental model and talks about the robot to experimenters.

Perhaps HRI researchers should begin trying to distinguish between these two

parts of a user’s mental model—sincere beliefs about how the robot really works

and projections that people know aren’t real. It does seem like people know when

they are pretending, at least when it is brought to their attention (they may have

been pretending without realizing it). Presumably you could ask a person about
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each mental model separately: the real life one without any pretending, and the

one with imaginary stuff added on. People know the difference between a question

about an actor wearing a Mickey Mouse costume and a question about Mickey

Mouse the character.

6.8.4 Attributing Sensing Capabilities without Visible Sensors

Bill, Donna, and Elsie came to believe that the robot could sense distance or

motion even though they had not noticed any visible sensors on the robot. Perhaps

they inferred this from the robot’s behaviors, but if they had seen the sensor and

recognized it as a video camera perhaps they would have attributed more vision

capabilities to it. This suggests the importance of “sensor transparency” [209] in

robot design—among other things, so that people can ask well-informed questions

about their privacy before consenting to interact with a robot.

On the other hand, Adam, Courtney, and Frankie all assumed that the robot

could not hear. Why not? Perhaps they could account for all the behaviors we gave

the robot using only vision or motion sensing, and were content with that simpler,

more parsimonious model. Perhaps it was because the robot doesn’t resemble a

human or animal, nor did it have anything resembling ears. Future work should

work to discover why people attribute some sensing capabilities but not others to a

robot, even without obvious cues to help them. In cases wherein people are unlikely

to make the right attribution, robots could be designed to help. For example, the

mobile shoe rack did not use the webcam’s microphone for any of its behaviors,
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but it was still recording; if it had a display indicating sound levels that might

remind people about the microphone.

6.8.5 Judging whether the Robot is Autonomous or Teleoperated

An important aspect of one’s mental model of a robot is whether it is autonomous

or teleoperated. Participants were divided over this in the robotic trash barrel

study [162]: of the 28 people who commented on whether it was autonomous, 16

thought it was (often commenting that it was “clumsy”) and the other 12 thought

it was not (often describing its actions as more calculated or purposeful).

We tried to make our robot seem autonomous, but worried that people might

suspect that there was a man behind the curtain. On the contrary, all six of the

interviewees were surprised to hear during the debriefing that the robot was being

operated by a human. Donna was the only person who ever suspected anything: on

the 5th Wednesday she mentions that she knows “there is both visual and auditory

that’s being captured”, and says it’s possible that “somebody is actually remotely

doing something” even though her best guess is that there is “some kind of sensing

device on the robot itself.”

The other five interviewees never suspected that there was a human operator.

Some of them even got hints that could have caused them to suspect it.

Adam was the best example. He said he “never expected” it, but was also

the most suspicious interviewee. He said that every time he came to class he was

trying to figure out what we had changed about the robot. He actually thought
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he might have become “hypersensitive” to small changes in the robot’s behaviors:

“am I actually picking up on things that are happening, or is my mind just doing

these things?” He even develops what he calls “conspiracy theories” by the end

of the study. For example, on the 6th Wednesday he noticed that the robot did

not visit a certain young man sitting on the bench. He began to suspect that

he had been “planted there” by the study team, and then became “more and

more” suspicious of this as he noticed certain people who were “kind of out here

consistently.” He even admits that his experience with one of Dr. Heather Knight’s

Chairbots on campus should have made him suspicious because the “the bottom of

the Chairbot looks just like the bottom of this robot”, he “saw people controlling

them remotely”, and he even asked one of them, “can it move autonomously?”

and got the response “no, not yet.” He admits he should have concluded that, “if

they didn’t do it with these chairs [i.e., the Chairbots] how could they do it with

the shoe rack?”

Courtney also saw a Chairbot on campus and thought, “‘oh, there’s a person

driving,’ but I assumed this one wasn’t that way? Possibly because I didn’t see

anyone [driving the shoe rack].” She also on the 3rd Monday suggests adding a

remote control function, apparently without suspecting that it already has one.

When the interviewer mentioned that the wizard sometimes drove closer to the

bench than normal, Bill said, “I noticed that”, but also that he did not become

suspicious that the robot was being remote controlled.
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6.8.5.1 Why didn’t anybody suspect a teleoperator?

Adam thought that nobody guessed the robot was being teleoperated because

“people have this idea of what a robot can do and can’t do, and the functions that

you picked were well within the realm of what a robot could do.” “If you had it

do some sort of crazy functions [like] recognizing you and [saying your] name or

something like that I’d be like, ‘ehh. That’s not real.’ Or, ‘that’s less likely to be

real. . . ’.” Frankie makes a related point in her final interview—that her mental

model was limited by her understanding of technology: “I think the abilities I

assume the robot has are within my limits of what I could do with a robot I could

create.”

Our interviewees mentioned their existing knowledge about technology when

talking about the robot. Adam and Courtney, for example, showed that they

understand that computers can learn to classify things into different categories

based on many training examples. Bill understood that the robot has “got a

clock” that is probably “synced someplace.” Adam even draws an analogy about

the robot using another technology he knows about: “Yeah, so you never know,

you could have a shoe rack like this that has a very innocuous job holding on to

people’s shoes but it could be keeping track of many other things. It’s like license

plate readers in intersections: nobody knows that they’ve gone through and their

license plate’s been scanned, but these things can scan tons of license plates at a

time, and so you just never know that it’s happening.”

Users’ understanding of what is easy, hard, and impossible with modern technology—
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whether they are right or wrong—could impact their judgments about whether a

robot is autonomous or teleoperated. We hypothesize that robots will be suspected

of being teleoperated when they do things that people think are impossible to do

autonomously.

Adam also described the robot’s behavior as “realistic”: “I think the way you

had it in a very automated way that it went seemed very robotic to me.” We

intentionally designed the robot’s behaviors to be robotic, especially at first: it

drove in straight lines according to a simple, repeating pattern and typically only

did one thing at a time. It will be important to understand each user’s schema of

how robots act—i.e., of what robotlike behavior looks like—and develop ways to

control how robotic a robot acts, especially if it has a large influence on whether

people believe it is autonomous.

A third possible explanation is that people didn’t suspect a teleoperator be-

cause they didn’t see one, nor did they see a wire or antenna that obviously hinted

at one. This could pertain to the way we perceive social entities: perhaps we are in-

clined to attribute independent autonomy to bodies that are self-contained and not

connected to another social actor. By this theory, a remote-controlled car would be

easier to consider autonomous than a prosthetic arm would, and a robot connected

to an operator’s computer by a thin wire would present a border case. Wireless,

remote control would cause dissonance between our unconscious impressions and

our conscious understanding. Further study to test this hypothesis could help HRI

researchers understand how people estimate the degree of connection between a

robot and the people who might be operating or supervising it.
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6.8.6 Experimenting with the Robot

In general, the six interviewees did not actively experiment with the robot very

much; they mostly just watched it. When they were asked a question in an in-

terview for which they didn’t have an answer, they were quick to make guesses

based on reasoning from what they had observed passively and from their mental

models. They rarely took actions that were just to test the robot. Adam, for

example, notes that although he had “opportunities”, “I never tried to test out

the limits of the robot, it just never really occurred to me. . . .” In fact, Adam on

the 4th Wednesday says: “I’ve probably never actually touched it [i.e., the body

of the robot], I just touch my shoes, right?” He contrasts this with his 3-year-old

daughter, who he says would be “exploring it with her hands”—“she’d definitely

want to sit on it”, “She would probably try to pick it up”, she would “grab” and

“pull on” the sensor. This exposes a limitation in our sample of interviewees: none

of them were as comfortable experimenting with the robot as a young child might

be. Future work could focus specifically on how young children experiment with

novel robots.

When the interviewees did experiment with the robot we noticed some con-

nections between their experimentation and their mental models. For example,

Adam on the 2nd Wednesday came to class late, after the robot had parked. He

“tried to wave in front of where the shoe rack was” “to see if it was moving”

“but it didn’t move.” He then interprets the results of his experiment based on

his mental model: “maybe I didn’t hit the trigger or whatever”, which also shows
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that his intention—to “hit the trigger”—was driven by his understanding that the

robot has a “trigger” to hit. Hence, your mental model can inform how you create

experiments as well as how you interpret the results. Presumably, someone also

might design an experiment to help them decide between multiple possible models

that they have brainstormed. If the result cannot easily be explained by any of the

possible models, that person might brainstorm one or more new models that do

explain it. Choosing not to experiment can also be motivated by a mental model.

Frankie in her final interview, for example, said she assumed it can’t hear, “so I

didn’t say anything to it.”

6.9 Limitations

Participants might pay less attention and do less thinking about the

robot in a purely observational study. Several of our interviewees admitted

to changing their behavior because they knew they would be interviewed about it.

If an interviewee came to their first interview and didn’t have much to say about

the robot, this often motivated them to spend more time watching the robot or

interacting with it. For example, Courtney on the 4th Wednesday says, “It’s kind

of just been a progression in paying attention to it more, because I know we’re

doing these interviews so I pay attention to it more, I guess, instead of in passing.”

Elsie on the 5th Wednesday says she put her shoes on the robot when she might

not have otherwise: “. . . I noticed the shoe rack and it was pretty full, but I decided

I was going to use it anyway because I knew we were going to be talking about it,
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. . . .” So at least some of our interviewees would have probably behaved differently,

especially later in the study, if there were no interviews motivating them to make

clear, detailed observations of the robot.

Conversations between people about the robot could be much more

important in other scenarios. People didn’t interact with each other much

during our study. Very few of the yoga students knew each other, and most

people kept to themselves while in the hallway before and after class. This means

that there weren’t many opportunities for people to share observations or beliefs

about the robot. If Donna had mentioned the possibility of someone remotely

influencing the robot’s actions to Adam, for example, he might have become much

more suspicious of a remote operator than she did. It could be important to

understand how these and other phenomena like rumors (which might change as

they spread) and a group-constructed persona for the robot (e.g., assigning it a

name and personality) could influence mental model formation.

Introducing people to a new robot could include more initial expla-

nation or training. Our participants were told almost nothing by the study team

about how the mobile shoe rack looks and operates. Adam, at least, was aware of

this when asked at the end of the study about how he formed his mental models

of the robot: “. . . so all these [hypotheses about how the robot works] have come

from just the observations and my interactions with it. . . .” We did not want to

give participants too much help forming their mental models, but in reality peo-

ple often see television ads, YouTube videos, or news stories about robots before

they first interact with them. They might also read written descriptions, see still
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photographs, or hear about the robot from a friend or colleague. This initial in-

formation about the robot could be received as authoritative (e.g., if it’s from the

robot’s manufacturer) or not so much. It could be important to understand how

this information sets up initial expectations of the robot1 and how people reconcile

observations with rumors when the two don’t match.

Limitations in demographics of interviewees. The interviewees who

volunteered for this study were relatively well-educated people, several of whom

worked in academia. Perhaps they were therefore more likely to hypothesize expla-

nations for the robot’s behavior and to evaluate these explanations in light of their

observations. They might also have been more likely to avoid being seen treating

the robot as a person or animal if other people might see that as childish or ignorant

of the fact that robots are not really alive. Our interviewees were also relatively

open to new technologies according to their responses to our questionnaire items.

The choice of a university campus in a small town with low crime rates might

have influenced how much people paid attention to the robot and noticed details

about it. This hypothesis was suggested by Frankie, who was surprised by how

many people did not “look up” at the robot or talk about it. It seems she expected

them to be more alarmed by a “weird shelf moving around” and to at least ask

somebody else what it was. She theorizes that people in this area “just don’t

notice their surroundings” compared to people from her home town, where “their

surroundings aren’t always perceived as safe.” The extent to which people are

1Prior research on the effects of these expectations includes the work by Paepcke and
Takayama [177].
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suspicious of the robot (or its operators) or are worried about their safety or

privacy around it could influence the way they form a mental model of what it is

and how it works.

6.10 Additional Suggestions for Future Research

The previous two sections, which present our findings and the limitations of our

study, contain many ideas for future research that arose—perhaps for the first

time—from this study. This section presents several more suggestions that have

not already been mentioned.

6.10.1 Additional Research Questions

What about nondeterministic behaviors? Although the wizard sometimes

made mistakes, the robot’s behaviors were supposed to be completely deterministic

and predictable. It would be interesting to study how people reason about robots

with more stochasticity (randomness) in their behaviors, or that change their rules

of behavior more gradually over time (e.g., via learning). It seems from our results

that people might be slow to notice that a robot’s behaviors are changing, especially

if they only observe it for short periods of time. Future work could explore how

people make this judgment—what cues they look for, and how they reason about

it.

Is there a way to present behaviors to control mental model forma-
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tion? Presumably it matters which behaviors people see and which order they

see them in when building a mental model of the robot. Is it possible to unveil

a robot’s features in a certain order to increase the accuracy of the final mental

model, or help people develop mental models more quickly? For example, it might

be a bad idea to show a sophisticated ability—e.g., like if your robot can speak—in

the first interaction because people might infer other abilities that your robot does

not have [221]. Note that this is different than teaching someone about simpler

behaviors first to make the more complex behaviors easier to understand—here

we are talking about what each behavior might imply about the robot’s abilities,

thereby influencing mental model formation. Future work should include multi-

interaction studies in which we manipulate the order in which the behaviors in

the robot’s repertoire are revealed. Maybe the robot would also reveal negative

behaviors, too: it could intentionally fail to do something or otherwise show what

is not in its repertoire. Understanding the impact of these manipulations would

help designers control mental model formation.

6.10.2 Lessons Learned about Study Design

If we were to change the methodology used for this experiment and run it again,

we envision taking it in one of two directions:

1. We would loosen some of our experimental controls and do more active ex-

ploration. We realized when the robot ran out of battery for the 4th Monday

that when things don’t go according to plan it is also an opportunity to see
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how our participants react to abnormal circumstances. We think it would

be fruitful to actually plan intentional malfunctions or failures to see how

participants handle them—real robots do malfunction, after all.

We would also consider improvising some interactions to test the limits of a

particular person’s mental model of the robot. For example, if they currently

believe that the robot is autonomous, we could try to find behaviors that

would convince them that it is teleoperated. Or, if they believe the robot

cannot hear, we could try responding to sound in different ways until they

believe that it can. This would be a more active, targeted approach to

understanding what influences specific elements of a mental model.

2. Alternatively, we would attempt a more direct comparison between partic-

ipants by controlling which behaviors they experience. One way to do this

would be to keep it to one participant encountering the robot at a time. We

would probably not try to control which behaviors they notice, but would

instead measure that carefully and adjust for it in the analysis.

We could also control some parts of the mental model formation process

to make the study more focused. For example, we could try to encourage

a certain template model for the robot by designing the its appearance and

behaviors to evoke people’s existing mental model of a particular thing, like a

pet dog or a human butler. Pilot studies would be required to make sure that

this desired impression is made clearly and uniformly across participants.

Controlling this source of variance might help provide a clearer picture of
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other parts of the mental model formation process such as updating based

on interactions with the robot. On the other hand, findings from such a

study might not generalize to robots that suggest different templates or that

do not suggest a template at all.

We also learned how influential the design of the robot’s appearance and behav-

iors is to how participants respond to it. In future work it will become important

to produce robots that target a certain phenomena of interest by evoking a certain

response in participants with high precision and consistency. For example, you

might want a robot design that ambiguously suggests two different mental model

templates—e.g., either a pet dog or a human butler—to study how people choose

between them. Or, you might want to design two slightly different behavioral

modes for the robot that are activated based on some feature of the environment,

and see how long it takes people to connect the behaviors to that environmental

feature. Future studies of mental model formation will require design experts on

the research team so the robot and its interactions can be better aligned with the

research goals in this way.

All of these recommendations are intended to make longitudinal, in-the-wild

studies—which are often avoided because of how long they take and their lack of

focus—more targeted and efficient.
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6.11 Summary of Findings and Recommendations

We have presented findings from the first long-term, in-the-wild study of mental

model formation about a novel robot. We analyzed 28 interviews of six participants

during six weeks of interactions with a “mobile shoe rack” working outside a yoga

classroom. We can summarize our findings in two main conclusions:

1. Different people can experience a new robot very differently, es-

pecially over multiple interactions. Each participant had a different set

of observations: out of the robot’s list of possible behaviors, only a subset

were triggered while a particular participant was watching, and only a subset

of these were noticed. Each participant also had a different preconception

of what is technically possible for an autonomous robot. Finally, partici-

pants varied widely in motivation to figure out the robot, and took different

amounts of time to form their mental models.

2. Mental model formation is a complex process consisting of multiple

components and sometimes yielding surprising results. A mental

model of a robot might start from an existing mental model that is used as

a “template.” Given some observations of the robot, participants then use

a variety of types of reasoning to draw conclusions—we documented eight

different types. Inferences can be indirect, like inferring the presence of a

sensor without actually seeing it by using the robot’s behavior. Participants

also make predictions about the robot’s behavior and design experiments to
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test their mental models, although they do not always run these experiments

when given the opportunity.

We documented a few of our participants’ specific beliefs that warrant fur-

ther study on their own. For example, we speculate about how none of our

six interviewees suspected that the robot was actually teleoperated despite

receiving clear hints to suggest this. We also gave a report of someone know-

ingly maintaining a make-believe persona for the robot alongside the real

one.

All of these findings demonstrate the fruitfulness of long-term, in-the-wild stud-

ies, and we end by giving study design recommendations for making them more

efficient and focused. Our research topic—mental model formation—is funda-

mental to many important areas of HRI research, such as user interface design,

human-robot collaboration, trust, safety, and privacy. We hope this report will

serve to bootstrap more research on how people form mental models of robots.
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6.12 Lessons Learned

This work has confirmed to us the importance of studying privacy phenomena in

HRI over multiple interactions to get past novelty effects and in natural settings

to enhance experimental realism. We recommend that this be part of the standard

of rigor for privacy-sensitive robotics research.

When we designed this study we were interested in issues of sensor transparency

(i.e., how obvious the robot’s sensing capabilities are to users) as the main point

of relevance to privacy concerns. We reported some findings about this in Section

6.8.4. Some people attributed motion or distance sensing capabilities to the robot

without actually seeing the sensor (a webcam), whereas other people assumed

there was a lack of hearing ability without doing a comprehensive search for a

microphone. It appears the robot’s behaviors (or perhaps also its appearance)

were enough to imply a likely set of capabilities to users.

Perhaps more striking is the fact that none of our six interviewees suspected

that the robot was teleoperated. It seems it is relatively easy to watch people over

a live video feed without causing suspicion. Note also that the robot was very close

to these people, many of whom were taking off outer layers of clothing or emerging,

sweaty, from an hour of exercise. Despite this, none of our interviewees reported

feeling uncomfortable when the robot was pointed in their direction, perhaps be-
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cause they did not believe there was a human watching them remotely! It seems

crucial to understand in what situations people will make themselves vulnerable to

privacy violations by assuming that nobody is monitoring a robot’s sensor feeds.

We suspect that the robot’s consistent behaviors and lack of wires leading around

the corner, along with the absence of any study team members during operation,

may have been important factors.
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7 The Future of Privacy-Sensitive Robotics Research

In addition to defining the emerging research area of Privacy-Sensitive Robotics

(Section 2.4), performing an initial literature review (Chapters 1 and 3), and re-

porting findings from a series of empirical studies (Chapters 4, 5, and 6), we now

provide some vision for the future of Privacy-Sensitive Robotics research. Planning

for the future of this new area of research is non-trivial due to its unique nature,

especially its multidisciplinarity. For one thing, it involves aligning engineering

technology with a social value that’s hard to define and operationalize, bring-

ing together two realms that are usually separate. In addition, Privacy-Sensitive

Robotics touches many different application areas, and we will need people from

many different disciplines to accomplish our goals in all those areas.

This final contribution has three parts. First, we present a roadmap for Privacy-

Sensitive Robotics research—a set of both basic and applied research directions

that we recommend as next steps. The second part came out of the first workshop

on Privacy-Sensitive Robotics, which we organized at HRI 2017. We present seven

themes chosen to cover the whole breadth of Privacy-Sensitive Robotics research by

workshop participants from a variety of disciplines. Third, we list application areas

that would benefit from robots that are more privacy-sensitive and the types of

expertise that will be needed to build them. This last part will end by emphasizing
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the importance of collaboration—including with many new collaborators who have

not yet been involved in HRI research.

7.1 A Roadmap for Privacy-Sensitive Robotics

In this section, we propose a roadmap for privacy-sensitive robotics, setting out

what we see as the most important research questions that need to be addressed.

Our recommendations have been adapted from work that was presented by Rueben

and Smart [195] at We Robot 2016. We begin with basic research that will be

foundational for any privacy-sensitive robotics application, then list some applied

research ideas that begin to approach real-world solutions for promoting privacy

in human-robot interactions.

7.1.1 Basic Research

7.1.1.1 What is Privacy? A Privacy Taxonomy for HRI.

The first question that we need to answer for privacy-sensitive robotics to move

forward, before we even begin to think about robots or the technology involved,

is what we mean by the word “privacy.” As we have said in Sections 2.1.3 and

2.1.1.4, there are many different ideas that could be described as “privacy,” from

the common notion of having information you don’t want revealed to the notions

of personal space and solitude. We propose to complete and validate the pre-

liminary taxonomy of privacy we presented in Section 2.1.3 for a human-robot
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interaction context. This would give us a well-defined language for identifying the

facets of privacy that are relevant in different application areas. Carefully defining

each concept would help researchers to operationalize it into concrete, observable

phenomena that can be measured unambiguously. Our taxonomy in Section 2.1.3

serves as a starting point for this in that it collects facets of privacy from a broad

survey of the privacy literature. The next steps are to make sure our list of facets

is complete, deal with facets that overlap or seem to belong in multiple parts of

the taxonomy, and then validate that our taxonomy matches the way people really

experience privacy.

7.1.1.2 How do People Think of Privacy? Identifying Key Factors

that Mediate Perceived Privacy Violations in HRI.

Armed with a way to talk about privacy, the next step is to determine what

people think about privacy in the context of robots. What are their concerns?

What types of privacy violations worry them? Is it even something that they have

thought about?

Indeed that is the first question: we need to look at how much value people

put on privacy protection, if they even want it at all. Many people are willing to

trade privacy violations for convenience—using location services on their mobile

phone, for example. Understanding the (perceived) cost of privacy violations in

relation to the (perceived) benefits of a privacy-violating service will further help
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us understand what we need to work on, and how important it is to people. This

will let us focus our finite resources where they will have the most impact.

When a person feels that his or her privacy has been violated when interacting

with a robot, it is important to ask which aspects of the person, the robot, or the

surrounding situation influenced that feeling. Here we are concerned with subjec-

tive or perceived privacy, not, if such a thing exists, objective privacy. There are

probably multiple factors that influence this perception for each facet of privacy;

for example, Takayama and Pantofaru [234] give experimental evidence for sev-

eral factors that impact personal space, including experience with pets and robots,

robot gaze direction, and the sex of the subject. It is important to identify what

key factors mediate perceived privacy violations so robot designers with good in-

tentions can avoid offending users. Beneficent designers like these would also want

to know what sorts of scenarios give people a false sense of privacy so as to avoid

them; an informed awareness about this would also help policymakers and judges

make better legal decisions about robots.

Answering this question would involve first taxonomizing the idea of “privacy”

as described in the previous section, then enumerating and testing the plausible

mediators for each construct. Mediators could be part of the human, such as

personality traits, experiences, or demographics; the robot, such as morphology,

behavior, or appearance; or the surrounding context, such as the task at hand, the

way the robot is introduced or framed, or environmental factors such as ambient

noise or temperature. The goal is to identify the controlling mediators for each

construct under the “privacy” umbrella. We want to be able to accurately predict
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which types of privacy will be of concern for a given HRI scenario, or, given that

we are concerned about a certain type of privacy violation, to minimize the risk of

it occurring.

7.1.1.3 How do we Evaluate Privacy? Developing Standard Scenar-

ios and Measures for Privacy-Sensitive Robotics.

Existing work in privacy-sensitive robotics (see Section 3.3) has not included much

collaboration. In particular, each of the user studies conducted thus far has fea-

tured a unique experimental design, custom-made for the specific purposes of

that one study. We know of no replications of privacy-sensitive robotics stud-

ies. The standard taxonomy of privacy terms discussed in Section 2.1.3 is crucial

for ensuring that researchers are talking about the same things, but two further

standardizations—of scenarios and of measures of privacy—will also help promote

the collaboration between researchers that is so essential.

By scenario we mean both the setting and the interaction or task being studied.

This includes the briefing given to participants, the type of space (i.e., public or

private, large or small, home or office or outdoors), the surrounding sights, sounds,

and smells, and of course the type of robot being used and its behaviors. There

are two purposes for developing standard scenarios to be reused between studies.

First, in basic research, we want to perform valid replications to confirm findings.

We also want to check whether results generalize to different types of people (part

of external validity), which requires holding the scenario constant. Second, in
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applied research, we want to make valid comparisons between privacy protection

systems. To say that system A is better than system B requires that we test them

in comparable scenarios.

A standard privacy scenario could be any human-robot interaction in which

privacy is a concern. Of course, it should be meaningful to real-world applications

and reasonably easy to replicate. An example scenario would be for a janitorial

robot to clean a bathroom that might have people in it. We could define a series

of tasks to be completed in order (e.g., clean the toilets, polish the mirrors, take

out the trash) and one or more configurations of human occupants (e.g., sitting in

a stall, washing one’s hands, walking in the door). A given scenario could be im-

plemented in a natural setting, a laboratory setting, or in a computer simulation,

perhaps with humans participating via virtual reality1. These scenarios can used

both as a series of challenges to motivate work in privacy-sensitive robotics, and

as benchmarks for performance testing like toy domains are in the field of machine

learning. We add as a warning, however, that privacy-sensitive robotics promises

to be an especially hard area for which to find replicable scenarios. Certain kinds

of privacy—territoriality and personal objects come to mind—seem to depend on

the relationships people have with spaces and objects. Controlling these relation-

ships between replications of an experiment or even between subjects in a single

experiment seems especially difficult in this area of research.

This brings us to measures of privacy-sensitivity in robots, which we hold to be

1This may be the first practical use case that has been suggested for using the restroom in
virtual reality.
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equivalent to privacy upheld and violations avoided for humans. These measures

will be common, reusable operationalizations of the privacy constructs defined by

the privacy taxonomy that we recommended above. It is important to establish

and validate measures that can be reused by multiple researchers for replication

or convenience. Objective measures will be concerned with the robot’s actions

and with the situation as it physically occurs, whereas subjective measures will be

concerned with how real people think and feel. Both types are useful, but when

constructing the latter we should first review the experimental social science liter-

ature (e.g., Nisbett and Wilson [171]) for best practices and additional techniques

that are not yet well-established in HRI research. For example, long-term stud-

ies might involve ethnographic observation and experimental settings that are less

controlled than we are currently comfortable with as a field.

We will also want to pay attention to the distinction made by [79] between

the “watcher” and the “watched,” as well as a new, third role, the robot operator,

who is probably a “watcher” but also actively controls the robot2. People in

each of these three roles could experience privacy differently in a given human-

robot interaction, so good measures will distinguish between them. It will also

be important to control the users’ level of understanding of the robot’s abilities

and lifelikeness. This is one area in which scenarios and measures converge, since

the briefing given to participants will affect what is being measured, and with

what validity. Uncontrolled framing and poorly-worded questions can easily skew

2We owe the observation that a single individual could hold several of these three roles to
Ross Sowell.
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the results, especially for experiment designers not intimately familiar with the

measurement instruments.

7.1.1.4 What are our Tools? Implementing Privacy Protection on

Real Robots.

Once we understand people’s privacy concerns and how they evolve, we can start

to map these concerns onto technology that protects their privacy. If people are,

for example, concerned with their image being seen by a remote robot operator,

we can draw on the field of computer graphics to provide visual filters (redaction,

blurring, or other more sophisticated techniques; see Section 3.2.1.1) to obscure

the sensitive parts of the image while retaining enough information for the remote

operator to complete their task. Similar techniques from other fields could be used

to address other types of privacy concerns.

These techniques will have to be implemented and combined into robotic sys-

tems with usable user interfaces. Systems integration could introduce new prob-

lems due to limited computation or memory, conflicts between different privacy

protection techniques, and security vulnerabilities. These systems will then need

to be tested to verify that they work as expected. Long-term experiments in nat-

ural settings, though time-consuming, will be important if we are to trust these

systems.
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7.1.1.5 Using a more Mature Field as a Guide.

When figuring out how privacy-sensitive robotics should grow as a new field of re-

search, it might be helpful to look for similar fields that have successfully matured

already. Perhaps the most natural comparator to consider is computer security,

as it is often mentioned in the same breath as privacy is because “privacy and

security” is a field of computer science research (though “privacy” here is typically

just digital information privacy). At first, the comparison seems to fit. Computer

security involves a core of technical research into algorithms and techniques as well

as a specialized application of these techniques in different contexts like banking,

internet browsing, and file encryption. Similarly, there are core technical elements

to privacy-sensitive robotics, such as the algorithmic blurring of faces in an im-

age stream. These elements are then applied in a particular context, such as a

telepresence system, as appropriate. Not all elements are appropriate for every

context, just as with computer security. We believe, however, that this metaphor

is ultimately misleading because security is not nearly as personalized as privacy

is. In computer security, relatively universal, standard solutions can often be suf-

ficient. Most browsers use 128-bit encryption, for example, even if the data are

not particularly sensitive. When thinking about privacy, however, we believe that

protections will need to be much more individualized, and in nuanced ways.

With this in mind, we propose accessibility as a model on which to base our

thinking about privacy-sensitive robotics. Accessibility refers to the design of ar-

tifacts and services that can be used by people with disabilities. It is not a single
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set of techniques, but a collection of designs, features, and approaches that can be

combined to accommodate any particular set of disabilities. No two people with

disabilities are exactly alike, just as no two people have the same set of privacy

concerns. There are, however, broad classes of disabilities, just as (we expect that)

there are broad classes of privacy concerns. Accessibility is improved when the

accommodations line up with the particular disabilities, just as (we claim) privacy

protections will be more satisfying when the particular technical measures align

with an individual’s privacy concerns. Finally, just as with accessibility, the final

decision about a certain feature’s appropriateness is made by the person who is

using it, not by some objective measure.

We believe that using accessibility as a model will help us think about privacy-

sensitive robotics and, in particular, how it interacts with application domains.

Privacy-sensitive robotics needs to be studied in its own right because, though

it might look different when applied to different situations, there is core, general

knowledge to be gained as well. This is why accessibility is treated as a standalone

field, and privacy-sensitive robotics should be as well. On the other hand, privacy-

sensitive robotics is barren until applied to a specific privacy construct and a

specific context. In fact, applying the general knowledge and best practices in a

context-aware way is an especially large part of privacy-sensitive robotics, just as

it is for accessibility. A deeper dive into the history of accessibility research could

help us decide how privacy-sensitive robotics should progress as a field, which might

currently be unclear due to its unique nature.
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7.1.1.6 Challenge Problem Frameworks.

Another question to consider is whether we should have large challenge problems

in privacy-sensitive robotics. In other areas, challenge problems have helped guide

the community, focus resources, and provide a common purpose. It is easy to

imagine challenge problems being useful here for some of the technical details,

such as building a faster face blurring system for image streams. Once we move

past implementation details to whole system performance in real scenarios, how-

ever, things become harder. Privacy varies from person to person—does posing

individual challenge questions even make sense? Does making the problem general

enough to pose as a challenge also rob it of its usefulness in the real world?

Part of the problem lies in the evaluation of privacy protection. In many areas

of robotics, there is an objective measure of performance by which you can compare

two systems. In robot localization, you can measure how far your position estimate

is from the actual position of the robot. In the DARPA Grand Challenge, you can

measure how long it takes for the robotic vehicles to travel a pre-specified course.

When assessing privacy protections, it is harder to have such a crisp metric that

is so easy to calculate. This makes designing challenges hard.

It is our responsibility to rigorously define what we mean by privacy protection

in a particular context, and to come up with ways to assess it. Depending on the

case, assessment could be objective or, via the use of human judges, subjective.

This highlights the need for a taxonomy of privacy terms, as we have already
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discussed above in Section 7.1.1.1. Once this taxonomy is in place, we will be

better-equipped to design challenge problems for privacy-sensitive robotics.

If challenge problems do prove useful in this field, they should account for

the fact that privacy is inherently an adversarial notion. One person is trying to

protect their privacy, while another is trying to violate it, although perhaps not

intentionally. This naturally leads us to think of privacy challenges as being two-

sided: one side trying to protect privacy in some limited, well-specified context

and the other trying to violate it by overcoming the protections. In addition to

making for a more exciting challenge, we believe that this sort of challenge would

better test our technology by exposing its weaknesses.

7.1.1.7 Re-thinking Intentionally Anthropomorphic Robots.

We often program anthropomorphic behaviors into robots as aids to human under-

standing and interaction. A robot might point its head at you to signal attention or

scratch its head while it is processing something. Those cues are easy for humans

to understand, as well as attractive and compelling. Humans like to make im-

ages of things—we are artists—including images of ourselves. But making robots

humanlike also causes a certain class of problems due to the ways robots and hu-

mans are fundamentally different. Anthropomorphic behaviors encourage people

to project human characteristics onto robots, even ones that are not the case. For

example, imagine a robot vocalizing that it is planning a path with a thoughtful,

“hmmmmm!” Just using its voice might make humans think it can speak, or even
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understand speech. Even robots that can understand and speak some words can

only do so to a very limited extent, but näıve users don’t know that, and might

assume that it understands and responds to unstructured speech. This is just one

example of how anthropomorphic behaviors—here, speaking—can cause users to

infer things about the robot that aren’t true, thereby stumbling into a misunder-

standing. Richards and Smart [191] call this mistake The Android Fallacy, and

add that it could lead lawmakers to treat robots that look or act like humans as if

they have free will or fallibility. The authors argue that we must remember that

robots are machines, and ought to be held to machine standards.

The Android Fallacy also causes problems in settings where privacy matters.

Anthropomorphic behaviors might trick users—perhaps intentionally—into believ-

ing that a robot’s sensors have the same limitations as human sensors do, or that

a robot is socially aware and privacy-sensitive when it isn’t. For these reasons,

privacy-sensitive robotics researchers should re-examine the practice of anthro-

morphization in robotics. Particularly, we are interested in the adverse effects for

privacy of framing robots as humanlike (see Darling [54]). What sorts of robot

appearances, behaviors, and descriptions cause the false inferences that constitute

The Android Fallacy? When does this become a privacy risk? In those cases, can

we think of non-anthropomorphic ways to accomplish the goals of the interaction?

This research direction can be expanded beyond the issue of anthropomorphiza-

tion. In fact, we are concerned about any wrong conception of a robot formed by

users. Perhaps the more general question is, what sort of robot appearance, be-

havior, and description encourages observers to form an accurate mental model of
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how the robot works? Is it a good idea to reuse pre-formed mental models (e.g., of

a human, a dog, a calculator, a hammer) as local approximations of what robots

are like in certain scenarios, or do we need to foster a mental model completely

unique to robots? If the latter, what might that model look like?

7.1.1.8 Can Privacy Protection Make Privacy Worse?

Many of the privacy protection methods given in Section 3.2 and in the applied

research directions below have the potential to call new attention to private objects,

regions, or people. If a robot blurs out a particular person or avoids a certain

room, onlookers and operators might begin to wonder why that person or room

is so important. If the robot avoids an object that the remote operator can’t

see, that person might even be able to infer its location. What’s worse is, these

inferences of value, presence, or location all help a malicious user to try breaking

through the privacy protection. Research is required to investigate when and how

this phenomenon occurs, and how to prevent it when possible.

7.1.2 Applied Research

7.1.2.1 Robot Transparency through Privacy Warning Labels.

We want privacy-sensitive robots to be transparent about their actions and inner

workings. This means that what the robot appears to be doing and thinking
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matches what it is actually doing and thinking. We also want to make this clear

and obvious to human observers, with a minimum of possible interpretations.

One potential transparency mechanism is a standardized labeling system to

disclose privacy risks to people that are around robots. Sometimes it’s hard to

tell what a robot is capable of; labels on the robot’s outer casing could indicate

whether the robot can record video or sound, recognize peoples’ faces, or connect

to the Internet. If the robot’s capabilities depend on which software packages

are currently active, an outward-facing screen on the robot’s body could indicate

whether, e.g., the robot is programmed to respect personal space as it speeds down

the hallway. These labels could also be broadcast to nearby devices so that people

could check their smartphones or monitors on the walls to see relevant warnings

about nearby robots. Users could also interact with the labels to disable certain

capabilities. Each label could light up when that particular capability is in use,

e.g., when the robot is looking for faces it recognizes. This system might inspire

the sort of easy dialogues we want in a privacy protection interface: users can be

warned of risks, opt in or out, and even receive notice of when preferences conflict

or certain robot capabilities are too important to disable.

Research will be required to develop a visual language for all the robot capa-

bilities and possible harms relevant to privacy. Kelley et al. [123] describe their

design process for a system that was inspired by nutrition labels—efforts to do this

for robots should consider their example and others that are similar. Prototypes

of an active privacy labeling system for robots should be tested with real users in

realistic scenarios for usability, understandability, and trust that privacy prefer-
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ences are being honored. At first glance, standardization seems like a good way to

help members of a diverse public understand a broad spectrum of robots.

7.1.2.2 Robot Transparency through Graphical Interface Elements

and Behaviors.

Besides an explicit labeling system, robots can also become more transparent

through what they make apparent to humans through graphical interfaces and

robot behaviors. This could increase user trust in a privacy protection system by

allowing users to see their preferences visualized or acted out by the robot. Users

could also see sensor data and data products to better grasp the robot’s sensing

modalities and limitations. For visualization, augmented and virtual reality (AR

and VR) devices could help immerse users in the world as seen and processed by

the robot. The robot could also project images into the environment, especially

flat surfaces nearby, such as the ground around its immediate footprint. Regardless

of display modality, visualizations help users confirm their privacy preferences and

open up the robot to increased introspection.

Robot behaviors can also make privacy protection more transparent. For ex-

ample, the robot could avoid private objects and regions more obviously, making

it clear that the privacy restriction is changing what would be the robot’s normal

behavior. Here perhaps we can apply work on legible robot motion, e.g., by Dragan

and Srinivasa [62] for manipulation and as reviewed by Lichtenthäler and Kirsch

[150] for navigation. This might be especially important for respectful manipula-
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tion, since it may be inappropriate not only to touch something, but even to reach

towards it. Research is required to evaluate the application of legible motion to

privacy protection, however, since legible reaching and respectful reaching, for ex-

ample, might be different. Other transparency-promoting behaviors might include

turning off lights on a sensor and pointing it in a useless direction to show that

privacy settings are being obeyed. Research in graphical and behavioral trans-

parency is required to find the best ways to help users understand the robot’s

actions enough to be confident about the privacy protection system.

7.1.2.3 Robust Visual Privacy Protection for Telepresence Robots.

Another future research direction is to make a robust visual privacy protection

system for telepresence robots. The goal is to allow local users to mark people,

objects, and areas to avoid, and the robot will honor those privacy settings for

all remote users. Part of this research would be on the effectiveness of different

interfaces for specifying privacy preferences. Rueben et al. [198] give some ini-

tial, qualitative findings, but many questions remain unanswered. Which types

of interfaces are easier to use over long periods of time? Which promote trust

that the privacy protection system is working? How can interfaces make privacy

settings clearer, and when are there opportunities for mistakes? If physical mark-

ers are used, can the robot robustly acquire and reacquire them in all different

circumstances?

This new research could also aim for the most complete privacy protection



243

technique: image replacement. As introduced above in Section 3.2.1.1, OctoMap

and RGB-D SLAM could be used to maintain a somewhat high-fidelity 3d color

map of the robot’s environment. This map could be built with private persons

and objects absent, and then used to provide convincing replacements when such

things are present.

It is impossible to guarantee privacy with any real system, and probably private

might be a good enough setting for some users. A probabilistic framework could be

used to provide these soft guarantees based on user preferences. Such a framework

would use the robot’s certainty about which regions of its video feed are private

to decide how aggressively to apply filters. If the position of a private object is

modeled as a Gaussian probability distribution, a privacy filter could be centered

at the mean position and inflated beyond the object’s actual size to provide the

user with more certainty. This would filter the entire screen whenever the robot is

not localized within its map, which is a rational action given those circumstances.

User studies would be necessary to answer our research questions for the re-

placement filter and also the probabilistic privacy framework. First, do they work?

Are they seamless, usable for various tasks, and convincing to the remote operator?

How does the local user know when to trust the system—does this require extra

feedback channels?
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7.1.2.4 Respecting Personal Space.

This is more complex than keeping beyond a constant distance from each person;

here we again refer to the work by Altman [10] and Burgoon [39], discussed above in

Section 2.2.3.1. Personal space preferences change with the situation. Elbows can

touch in a crowded hallway, but not in a deserted alleyway. Certain activities, like

exercising or doing delicate work, demand extra space, whereas others, like dancing

or taking in a view, invite close company. Emotional states, too, communicate

the need for space or openness to proximity. There is also evidence for various

sex differences in personal space preferences (see La France and Mayo [135] for

a review). Territoriality probably matters here as well: the situation will change

when it becomes my house, my room, my desk, or my computer. A personal

space-sensitive robot should be able to perceive all these factors, reason about the

situation, and move so as to respect the personal space of everybody present given

the context.

How, then, would the spatial preferences be implemented when we need to plan

a path to a goal? The work by Lu and Smart [151] has already been discussed

in Section 3.2.2.3 for modifying cost maps to account for personal space. More

work is needed to account for all the contextual factors. Since human actions are

difficult to predict and the situation can change suddenly, the robot might need

to replan midway through a movement; we will need an anytime planner. The

robot also needs to deal with the inevitable awkward situations when personal

space requirements conflict and violations occur. Perhaps gestures or utterances
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familiar from human social encounters would be useful here (pending the resolution

of concerns in Section 7.1.1.7), such as averting the eyes or saying “excuse me” as

appropriate.

7.1.2.5 Audio Privacy: Initial Exploration.

Personal privacy can be violated just by listening. Some conversations are private,

some sounds are embarrassing, and sometimes people don’t want to be heard.

In one sense, protecting audio privacy might seem easier than for visual privacy.

Robots can probably operate without sound in more applications than without

images, so the easy solution is to turn off the microphone in sensitive times or

areas. When this is not possible, however, audio privacy may well prove to be more

difficult than it seems to be. For instance, notice the asymmetry : a robot could

be listening to a conversation from the next room without the conversants being

able to hear or see the robot. Vision, on the other hand, is usually symmetric—

i.e., if I can see you, you can see me. Asymmetry certainly poses problems for

the transparency protocols discussed above: from the next room, the conversants

would not see the “audio recording enabled” warning label illuminate, nor would

they see the robot’s microphone extend towards the connecting doorway. Restoring

symmetry here might cause other problems: e.g., a robot that hums so loudly that

you can hear it from the next room would not only interfere with its microphone,

but would also be loud and annoying. Short of shouting a warning (“I can hear



246

you talking in there!”), we still need transparent and socially acceptable ways to

enforce audio privacy protection to minimize accidental or malicious violations.

7.2 Research Themes and Future Work

The first workshop on Privacy-Sensitive Robotics was held in conjunction with

the ACM/IEEE International Conference on Human-Robot Interaction (HRI) on

March 6th, 2017 in Vienna, Austria. The deliverable for the workshop was to

make a complete list of the various subject areas within privacy-sensitive robotics,

identify pressing research questions in each area, and compile these into a document

to help focus the efforts of this new community. The results of this process are

presented in this section.

The workshop was organized by Matthew Rueben, Bill Smart, and Cindy

Grimm from the Collaborative Robotics and Intelligent Systems (CoRIS) Institute

at Oregon State University as well as by Maya Cakmak from the Computer Science

and Engineering Department at the University of Washington. The day’s activities

included two invited speakers, a set of shorter contributed talks, and an extensive

ideation session wherein workshop participants brainstormed productive research

directions, both from their own prior work and in response to the work presented at

the workshop. The 15 participants included human-robot interaction researchers

with a variety of backgrounds as well as people from privacy and security, human-

computer interaction, and law. A full schedule is available along with the con-
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tributed papers on the workshop website3. The seven research themes presented in

the next few subsections (7.2.1–7.2.7) and the proposed research directions therein

were drawn from a paper by Rueben, Aroyo, Lutz, Schmölz, Van Cleynenbreugel,

Corti, Agrawal, and Smart [200] that was presented at the IEEE International

Workshop on Advanced Robotics and its Social Impacts (ARSO 2018).

7.2.1 Theme 1 of 7: Data Privacy

7.2.1.1 Storage and Processing

Personal information may be collected, processed, stored and shared by robots and

the people who have access to their hard drives. Robots can be divided into three

categories depending on how personal information is processed and stored:

• Onboard processing : robots such as the Roomba are able to do all their

information processing and storage within their body, without the need of

external components4. Onboard processing seems to be the best solution for

privacy, but it may offer low performance due to its technological limits.

• Local processing : robots such as Cozmo need a local computing resource like a

smartphone or PC to function, although no Internet connection is required5.

• External processing : robots such as Pepper or HelloBarbie need an external

3https://sites.google.com/oregonstate.edu/hri-2017-privacy-workshop/program
4https://www.technologyreview.com/s/541326/the-roomba-now-sees-and-maps-a-home/
5https://support.anki.com/hc/en-us/articles/236021007-COZMO-Cozmo-Basics
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resource to function6. Such resources are usually located in the cloud and

used by the company to process the data. Transmitting the data via the

Internet exposes it to additional security risks. Also, cloud servers could

be located anywhere in the world, and might be owned by a third party

company that provides cloud storage or processing as a service. Users should

be notified about which data are transmitted and stored externally and the

possible risks of doing so.

The growing field of cloud robotics raises some additional privacy concerns. One

application of cloud robotics is in remote robot learning [107], in which a robot is

controlled by a remotely located user to teach the robot to perform tasks that are

difficult to do autonomously, such as grasping. Also, some of the robot supervising

roles can be outsourced to places where more human capital is available. Both

of these aspects of cloud robotics pose increased privacy and security risks. If

unauthorized people were able to get control of the robot, they could cause physical

damage or spy on local users. Willow Garage’s Heaphy project on remote robot

learning ended partly due to these privacy and security challenges7. Privacy and

security researchers are needed to help analyze all the options discussed in this

section and especially to identify any special risks from factors that are unique to

robots, such as embodiment and mobility.

6https://toytalk.com/hellobarbie/terms/
7https://spectrum.ieee.org/automaton/robotics/robotics-software/the-heaphy-project
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7.2.1.2 Technical Enforcement

One way to enforce privacy protection is to create levels of clearance and to allow

the robot to recognize and categorize people into these levels. For example, if

the robot lives with a family all the family members could have permission to

access family-related information. If a guest comes to the house, the robot should

recognize him or her as an outsider and should not disclose that kind of information.

If new information is added to the robot, it should be stored at the strictest

clearance level by default.

Some privacy concerns can be lessened or even avoided completely via techni-

cal solutions. For example, the robot could avoid certain areas, perhaps during

specified hours of the day, in case it sees something private. Perhaps the bedroom

would be off-limits at night. A second type of technical solution relies on detection

or recognition: certain objects, classes of objects, or people might be designated as

needing to be blurred out whenever they are detected. For example, maybe a con-

cern about the robot seeing secret documents could be addressed by blurring out

anything detected as text. For security the blurring should happen at the lowest

level possible, such as in the firmware of the camera where it cannot be accessed

by the robot’s operating system. Finally, a third class of technical solutions would

take a “privacy by design” approach by mounting the robot’s camera too low to

see the tops of tables and desks where documents tend to be. There is a tradeoff

here, though, since it might need to see things up high to do certain tasks. For
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future work we recommend to implement each of these solutions on a real robot

and do exploratory testing to identify broad problems.

7.2.1.3 Data Preferences

In many situations, users will be asked to tell the robot their privacy preferences:

which data to collect, where to go, and what to filter. Users might want to adjust

these preferences on the fly as issues arise or situations change, perhaps even mod-

ifying or deleting data that has already been collected. In future work, interfaces

for specifying visual or spatial privacy preferences should be designed. Such inter-

faces could be like those evaluated by Rueben et al. [198], or they could use other

modalities like spoken dialogue, gestures, or drawing. It will be important for these

interfaces to accommodate subtle changes to privacy preferences over time.

A problem arises about how to classify information so the robot knows which

information can be shared and with whom. For example, robots might talk to hu-

mans or amongst themselves, perhaps to gain more information for learning, and

might say things that another user would have liked to keep private. A possible

solution could be to use an “opt-in” regime, so the robot won’t collect or share

certain personal information unless you explicitly give your permission (“opt in” to

it). Another approach is for the robot to recognize different contexts automatically

and respect the different privacy rules for each context as well as for moving be-

tween contexts—i.e., to use Nissenbaum’s idea of contextual integrity [172]. The

robot would just need to be able to detect each context without collecting any
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information that is private in that context. Building this sort of Nissenbaumian

framework would be completely new research for human-robot interaction.

7.2.1.4 Personalization, Learning, and Inference

Social robots might observe our behavior and adapt to it over time. This behavioral

data might even be collected in a private (e.g., home) setting. Perhaps a family’s

daily routine would be observed by the robot and examined for patterns using

machine learning techniques. Since the interpretations of the private information

collected by the robot are not only stored but embodied—e.g., if the robot begins

to mimic that daily routine—a violation of the users’ privacy could happen. Traits

and characteristics of family members or even of the whole family might be visible

in the behavior of the robot in front of visitors or strangers. Maybe the robot does

something impolite during a dinner party that it had clearly learned from a family

member. Future work could enable robots to understand which behaviors that

were learned in one context are inappropriate to display in other contexts because

of the inferences people could make. Alternatively, the robot could simply revert

to its default, unpersonalized behaviors around strangers.

7.2.2 Theme 2 of 7: Manipulation and Deception

Humans use different behaviors and personae depending on whether they are with

family, friends, coworkers, or strangers. Like humans a robot should be able to
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adapt its personality to different people and situations to improve its relationships.

For example, a social robot may act more familiarly with a friend than with a

stranger. But this also opens the door for robots to be manipulative or deceptive

by pretending to be something they are not. This is a privacy risk inasmuch as

it could give the robots supervisors access to users’ personal information. The

question is: how is this process different (if at all) for manipulative robots than

for manipulative humans?

7.2.2.1 Social Engineering using Robots

It is possible that robots could be used to trick, con, or dupe humans using social

engineering techniques [244, 14]. For example, Booth et al. [34] showed that robots

could use social engineering techniques to sneak into a campus building. Other

kinds of attacks we foresee include hijacking robots and using them to surveil an

area that can be attacked or robbed in the future, or just disabling the robot’s

cameras so a crime can occur without being recorded. Research on social robots

is still very young, so lots of work is still needed to understand which social engi-

neering techniques could be performed by robots, perhaps including new ones that

humans cannot perform.
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7.2.2.2 Security Vulnerabilities

Fast-paced development of complex systems can leave behind security holes. If

a malicious person hacks into a robot there are particularly severe privacy risks

because of both the sensors onboard and the robot’s ability to move, perhaps in a

private setting. There have been some recent examples of security vulnerabilities in

robots being exploited to violate privacy. A Hello Barbie doll was hijacked [86] and

turned into a surveillance device to spy on children—it recorded the conversations

and sends them via WiFi to the internet. Similarly, teddy bears could be used to

spy in houses or talk to children [77]. Research in this area might include designing

architectures that are especially careful to protect privacy-relevant features of the

robot such as sensor feeds, stored data, and motor control. Researchers should

also look into limiting the data that gets stored or transmitted, or transmitting

only the information that is necessary instead of full-fidelity, raw data [47].

7.2.2.3 Education

One way to mitigate the risk of maleficent deception would be to promote education

and experience with robots over time. Robots are still relatively new to our society;

when computers were still new, old types of scams were quite successful, like the

Nigerian Prince advance fee scam. Now, through education and media, the success

rate of those types of scams is relatively low—perhaps education and awareness-

raising can do the same for scams that use robots. Even the simple lesson that
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robots are built around computers and therefore could have security vulnerabilities

could prevent a lot of harm.

People should also know their rights. In the EU, all robots that collect per-

sonal data will fall under the General Data Protection Regulation (GDPR)8, which

mandates that users be informed of how their data will be used before they con-

sent to data collection. In the US, a deceptive robot could be regulated by the

Federal Trade Commission (FTC) with similar requirements [100]. Educational

programs about privacy law and risk management have been developed—e.g., by

Daniel J. Solove of TeachPrivacy9—but making these trainings specific to robots

is an almost untouched research area.

7.2.3 Theme 3 of 7: Trust

The topic of trust is closely related to privacy concerns. Richards and Hartzog

[190] have argued that we should not just focus on privacy harms, but also on how

privacy can enable trust. Rousseau et al. [194] have defined trust as “a psycho-

logical state comprising the intention to accept vulnerability based upon positive

expectations of the intentions or behaviors of another” (p. 395). Trust has several

sub-dimensions, including one’s general disposition towards trusting people (e.g.,

strangers), trust of institutions, trust towards individual people based on what one

knows about them, and the willingness to engage in a transaction based on that

8https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/

data-protection/2018-reform-eu-data-protection-rules_en
9https://teachprivacy.com
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trust [161]. With regards to robots, research has started to investigate user trust

through qualitative, quantitative and experimental methods. Hancock et al. [97]

review much of this research in their meta-analysis of which factors affect trust in

human-robot interaction.

Future research should continue looking for links between privacy concerns

and trust in human-robot interaction because trust is so important for a successful

interaction. In addition, researchers should study the factors that affect users’ trust

that a privacy-protecting system is actually protecting their privacy. Whether it’s

trust of the software, the manufacturer, or the robot itself, the privacy protection

system is not nearly as useful if people aren’t confident that their privacy is actually

being protected. Finally, future work should study how privacy concerns intersect

with trusting relationships like between a patient and a (robot) doctor or if the

robot is treated as a family member and is expected not to gossip about what

happens at home.

7.2.4 Theme 4 of 7: Blame and Transparency

One of the core questions in privacy-sensitive robotics is whom to blame when

privacy violations occur. This is especially difficult when the robot’s behavior

is at least partially influenced by a remote operator or supervisor, or the robot is

capable of learning, or has behavior that is difficult to predict for some other reason.

Here we consider several parties that could be blamed: designers/manufacturers,

owners, distributors/controllers, and the robot itself.
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1. Designers or manufacturers may be blamed for having provided improper or

faulty privacy protections on their (learning) robot. Alternatively, since the

manufacturers cannot control the stimuli from which the robot learns, one

could argue that a robot designed, produced or programmed in accordance

with privacy standards would not make the manufacturer liable for privacy

breaches resulting from a robot’s learning capacities. Future work should

study existing product liability law regimes across different jurisdictions and

whether they need to be changed to better handle robots that can learn.

2. Owners may be liable for mistakes made by their robots. Robots with learn-

ing capabilities can to some extent be compared to children or pets, for which

parents or owners are often held liable even when they committed no fault

themselves [42]. Could users be taught that they also have a responsibility

for “raising” the robot, and could manufacturers use disclaimers to escape

liability in this regard? If so, when (if ever) has the robot “grown up”, and

who is responsible then?

3. Data assembled by a robot may be transferred to a certain controlling com-

pany, especially whenever owners have consented to this transfer in general

terms and conditions. That company may sell your personal data and allow

other businesses to use the robot to give you personalized suggestions. As the

robot collects that data it is important to clarify to what extent data control-

ling companies must respect the privacy of certain information and whether

robots need to be programmed to only transfer certain kinds of information.
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4. Questions remain when and to what extent the robot itself is to be considered

a moral agent that is liable for its actions. At some point, the robot may

have reached the maximum of its learning abilities and the question can then

be asked whether owners are still liable for privacy-breaching actions at that

point.

It is also important to be transparent about who is actually watching you and

recording or using your data, especially since the answer will probably affect your

level of privacy concern. Are people more (or less) conscious of their privacy if they

know who is behind the robot interpreting the data? When a robot is autonomous,

should information about its programming be given? More ethical and sociological

research is needed here, setting up studies about how people make privacy-related

attributions in instances of shared control over robots. The results of those studies

can help us develop features that increase transparency about robotic systems that

handle personal information.

7.2.5 Theme 5 of 7: Legal

7.2.5.1 Robots as Persons or Family Members

As social robots enter the home they could be treated like members of the family

in a similar way to how pets are sometimes treated. Over time, the humans

might build up trust towards the robot so that they speak and act freely around

it, expecting that it will respect their privacy at home. This trust is a privacy
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risk if robots are subject to search by law enforcement with a proper warrant,

access by law enforcement without a warrant under the third party doctrine10, or

perhaps robots will even be mandatory reporters of any signs of domestic abuse.

This is especially problematic because robots often have the sensing capabilities

(e.g., cameras and microphones, plus the ability to move around the house) to

assemble a very detailed picture of home life. One solution would be to consider

the robot a close family member with evidentiary privilege in court—i.e., the robot

would not have to testify11 against the family. This might make sense as a way

to avoid chilling effects on expression and behavior inside the home—Australia

grants evidentiary privilege to the parent-child relationship for similar reasons

[68]. A more extreme solution would be to consider robots as “electronic persons”

as proposed by the European Parliament12 instead of as objects of search, forcing

police to go through some sort of interrogation process instead of having access

to everything stored on the robot. Research by legal scholars is needed to work

out the details for each of these options and to consider which would be the most

reasonable.

10In the US, one can have no reasonable expectation of privacy for information that has been
given to third parties such as banks or internet service providers . . . or, perhaps, robots.

11Here, “testifying” might mean having its hard drive accessed and the contents summarized
by an analyst.

12See European Parliament, resolution of 16 February 2017 with recommendations to the
Commission on Civil Law Rules on Robotics (2015/2103(INL))
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7.2.5.2 Regulating Robotics Companies

Should legal obligations be imposed on businesses to include privacy-sensitive fea-

tures in their robotic products? Is it legal to compel manufacturers to build in

privacy features limiting recording and storage capacities of robots to protect the

privacy of their owners? Privacy protection does not always align with business

interests because the features that customers want for their robots often require

collecting, processing and storing personal information. In the European Union,

the right to data protection and especially the right to be forgotten may impact

the way robots are designed—more research is needed to determine how.

An alternative to government regulation would be to incentivize businesses to

self-regulate. One possible solution would be through a technical standard created

by the International Standards Organization (ISO). Standards are adopted without

government oversight and could bring confidence that a product is safe, reliable

and of sufficient quality. Research in this area could determine the feasibility and

usefulness of creating a standard for privacy-sensitive robots.

7.2.5.3 Privacy Education for Users

Should there be a legal obligation to provide privacy education to robot users? If so,

who should be responsible for providing it? Public education plans could mandate

teachings on what to say and what not to say to robots, and could be applied to

children from a young age. Solove and Hartzog have argued that the US Federal

Trade Commission (FTC) and its equivalents in other countries may already have
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the powers to intervene in this field [224]. Research questions arise about what

ways consumer protection agencies can play a role, whether they have sufficient

intervention powers or whether their actions should be accompanied by a more

developed legal framework. The European Union has proposed the establishment

of a robotics agency playing this role13.

7.2.6 Theme 6 of 7: Private Domains

Some domains have special privacy concerns that warrant their own, additional

research efforts. Here we survey three such domains and the special challenges of

deploying robots in each.

7.2.6.1 Robotic Surgeons

Use of robotic surgeons such as the daVinci surgical system allows surgeons to

perform very precise operations inside the body [219]. Although the robotic sur-

geons being used right now are teleoperated, advancements in computer vision

and robotics may soon make it possible for the robots to carry out some repetitive

surgical tasks autonomously. One way to carry out such delicate tasks would in-

volve collecting large sets of sensitive, personal data, including images of a person’s

naked body. It is essential to have very clear imagery of the environment during

surgery, so it becomes difficult to use privacy filters like those proposed by Hubers

et al. [108] and Butler et al. [40]. Utility will supercede privacy during surgery

13European Parliament, Resolution of 16 February 2017, para 15 and onwards.
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since human lives are at risk. It is important, though, to use very secure network

connections for communication between the surgeon and the robot, as people could

break in and steal this highly sensitive data. It would be even worse if someone

were able to get control of the robot and send commands that cause it to harm

the patient.

7.2.6.2 Robotic Nurses and Caretakers

Robotic nurses and caretakers could provide a cheaper alternative to human care-

takers for providing care in hospitals or even in homes. Robots could help people

with disabilities, or older adults who want to age in place [219]. To operate, these

robots will need to collect private information such as images of the person and of

the environment, maps of the house, and medical information. This raises plenty

of concerns even outside of healthcare applications, but robotic nurses and care-

takers might be treating people who are especially vulnerable to privacy harms:

people who might not be strong enough to resist invasive behaviors or mentally

sound enough to understand what is happening. This could include infants and

children. Plus, patients might be embarrassed about their appearance or the med-

ical procedures they undergo, so it is more likely that these robots will capture

information that should be kept private. Note that many of these same concerns

apply to robotic toys designed for children.
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7.2.6.3 Robots in the Home

Denning et al. [59] conducted a study exposing security vulnerabilities on three

household robots: the WowWee Rovio, the Erector Spykee, and the WowWee Ro-

boSapien V2. Domestic robots like the Roomba and Jibo offer great utility for

homes, but with their wide range of sensors they also get access to a lot of private

information. For example, the Roomba 960 vacuum robot can build a complete

map of a home and can interface with Alexa and the Google Assistant14. This

integrated network of home devices could be useful, but also more vulnerable to

privacy and security threats. What if the companies that manufacture these robots

were to sell this private data to other companies that you don’t trust? There is

also ambiguity about the use of this data; for example, what happens when the

previous owner of a house decides to sell their Roomba’s map of the house to

someone else without the consent of the current owner?

7.2.7 Theme 7 of 7: Theories and Perceptions of Privacy

We need to understand privacy if we are going to build privacy-sensitive robots.

Several systematic reviews have been published recently about privacy research

in the social sciences [21, 23, 129] and more particularly in communication and

information systems [222]. This section is dedicated to the areas of general privacy

research (i.e., no robots required) that will be most important and inspirational to

privacy-sensitive robotics.

14http://www.irobot.com/For-the-Home/Vacuuming/Roomba.aspx
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7.2.7.1 Theories or Models of Human Privacy

In addition to economic and legal scholarship, privacy as a social norm has been an

important topic in sociology and communication. Prominent theories developed in

these disciplines include communication privacy management theory [181], privacy

as contextual integrity [172], networked privacy [158], and privacy by design [47],

although the latter is also connected to more technical disciplines.

These theories can help us build frameworks for privacy protection. For ex-

ample, a framework inspired by Nissenbaum’s [172] contextual integrity would use

the idea of appropriateness and distribution rules in different contexts, whereas

communication privacy management theory [181] might inspire the idea of privacy

boundaries being modeled as “thick” vs. “thin” depending on how bad it would

be if that boundary were breached. Robots equipped with theory-inspired privacy

protection frameworks could then be used to test those theories via user studies.

This sort of work should promote collaborations by HRI researchers with privacy

researchers in law, philosophy, the social sciences, privacy and security experts,

and computer scientists.

7.2.7.2 The Subjective Value of Privacy

How much do individuals value privacy relative to other things such as convenience

or safety? Research on the privacy paradox has shown that in many scenarios users

value privacy but are quick to give it up for short-term monetary or social rewards.

Dinev and Hart [61] postulate that users perform a privacy calculus by consciously
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weighing the benefits of a transaction or service against its privacy risks. Privacy

is in that sense like a commodity [46] that can be traded in against a benefit

such as access to an affordable ride through Uber or to potential dating partners

through Tinder. Despite this, people—including younger people—still value their

privacy: survey results have shown little difference between adults and minors in

their concern about privacy [158].

How much people value privacy can influence how willing they are to engage

with robots that collect personal information. Very little research has studied the

subjective value of privacy with regards to robots and their usefulness—a rare

example is the study by Butler et al. [40] that first used the phrase “privacy-utility

tradeoff” in HRI.

We would recommend future studies in HRI to look at the value of privacy from

different methodological standpoints. Ethnographic and observational studies in

natural settings could look at how users of social robots trade off privacy for other

things like dependability or personalization. Making these studies longitudinal

could complement the many studies done on the privacy paradox, which barely

look at developmental trajectories over a longer period of time. Also, theoretical

approaches such as actor-network theory (ANT) and science and technology studies

(STS) could be used to look at how robot engineers and manufacturers build their

systems so as to encourage users to prioritize certain values. Similarly to the

field experiment by Beresford et al. [31], different “invasiveness” scenarios (a robot

collecting more data or accessing more personal rooms) could be combined with
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different utility levels (a robot offering more or less useful services to an individual)

to test the privacy-utility tradeoff.

7.3 Suggested Collaborations

It should be clear from the diversity of the seven themes presented above that

privacy-sensitive robotics research will require a lot of collaboration. We see four

different types of collaboration that will be needed: expertise from other disciplines,

implementation in different application areas, synergies with related HRI research

areas, and working with industry partners to understand all the practical challenges

of real-world deployment. This section will give examples of all four types of

collaborations.

7.3.1 Collaborations with Experts from other Disciplines

• We need privacy and security experts to build architectures that prioritize

protecting personal information—and to tell us where vulnerabilities still

exist.

• User experience (UX) and user interface (UI) designers need to

create usable ways to figure out users privacy preferences to be enforced on

robots. Experts in human factors and ergonomics could contribute more

broadly to evaluations of designs for protecting privacy.

• To understand human behavior we will need social scientists such as psy-
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chologists, sociologists, anthropologists, and economists. They can draw from

theories that have already been formulated and tested, and help test whether

they still apply in new types of interactions (e.g., with robots).

• We need lawyers and policymakers who understand the laws and regu-

lations about privacy and technology. This is especially true when working

across borders, such as between the US and EU legal systems.

• The field of information science would be helpful for modeling aspects of

information privacy in particular, such as the way big data could be used to

make inferences about sensitive, personal data from a few public observations.

• Lastly, we will need to understand privacy better—privacy scholars from

fields like psychology, sociology, communication science, and law need to

study how people think about privacy and to form coherent theories and

taxonomies.

7.3.2 Collaborations with Experts who Work in Specific Application

Areas

• Privacy-sensitive robotics research should be of interest to people who de-

velop robots for private domains such as homes and hospitals. Within

these domains there are even more private subdomains such as restrooms

and bedrooms.

• Other domains could be implicated because of their secrecy, such as robots
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for industry or the military. Companies might have proprietary infor-

mation to protect, and military operations are often classified.

• Social robots will also need privacy protections. Robots that can physically

touch people need to be careful of where and how they touch. Also, some

robots encourage people to form strong social bonds with them, which is also

risky if the robot can collect data and send it elsewhere.

• Privacy-sensitive robotics researchers should also reach out to people who de-

velop robots for public spaces to address potential concerns about surveil-

lance and chilling effects on moving and speaking freely.

7.3.3 Collaborations with Experts in Related HRI Research Areas

There is synergy to be exploited between privacy-sensitive robotics and some other

areas of HRI research. For example, privacy research could benefit from findings

about concepts like trust, acceptance, transparency, explainability, theory

of mind, and common ground. The broad areas of design, machine learn-

ing, object recognition, and navigation are also involved, as are some more

specific efforts towards personalization and automated ethical reasoning.

7.3.4 Collaborations with Experts from Industry

Privacy-sensitive robotics research will also benefit in multiple ways from collab-

orations with people from industry. First of all, companies conduct market re-
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search to understand potential customers: who they are and what they want

(and don’t want). This is followed by developing experience with how users

interact with the robot as robots are tested with users, sold to users, and then

maintained via technical support. Companies usually place an emphasis on user

acceptance of and satisfaction with the robot throughout this process. Once

robots are being sold and used, companies are able to observe larger-scale and

longer deployments, often in diverse settings. Through providing technical sup-

port services for these robots, companies can learn the types of problems that

can occur in the field.
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8 Conclusion

8.1 Summary of Contributions

This dissertation has presented a program of research designed to help launch a

new research area to address the need for privacy research in human-robot in-

teraction. We call it “privacy-sensitive robotics.” We have already published an

extensive review of the relevant privacy scholarship as well as a list of tools from

computer science and robotics that could be used for privacy protection [195]. We

have also published reports on two of our experimental contributions [198, 199].

The first tested whether physical markers were better than a GUI for specifying

privacy preferences, and found the answer to be a trade-off. Specifically, the GUI

interface was faster and easier to use in the study context, whereas the physical

marker interface seemed to aid users’ memory, thereby lending itself to higher-

stakes situations. The second published study was a series of four online surveys

that consistently found a large effect of framing on privacy concerns about a telep-

resence robot in a home setting. This highlighted to designers the importance of

learning about how to set the frame for an interaction and how it influences privacy

judgments.

The report for our third study is being prepared for submission to a journal.

The study was a six week, in-the-wild deployment of a novel “mobile shoe rack”
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robot to study mental model formation. Privacy-relevant findings included: (1)

participants formed beliefs about the robot’s sensing capabilities even though we

designed them to be ambiguous; and (2) all six of our participants were fooled into

thinking the robot was autonomous.

Finally, we have made recommendations for the future of privacy-sensitive

robotics. We laid out a strategic roadmap, including key steps like developing mea-

surement tools for privacy concerns as well as community activities like announcing

challenge problems to stimulate research. We also presented seven theme areas in

privacy-sensitive robotics—data privacy, manipulation and deception, trust, blame

and transparency, legal concerns, private domains, and privacy scholarship—along

with new research ideas for each. Lastly, we recommended a lot of different col-

laborations: with other human-robot interaction researchers, people from other

academic disciplines, and people from industry. Working with people from all

these areas is part of our due diligence for addressing privacy issues in human-

robot interaction.

8.2 A Call to Action

We have seen that privacy is a key value to uphold in any human society. It’s

a big, multifaceted concept that goes beyond personal information to touch our

freedom, relationships, and personal growth. Robots promise to make our lives

better, but their actions will become increasingly privacy-relevant as they become
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more ubiquitous and social. A call to action is in order considering the current

sluggishness of progress in privacy-sensitive robotics research.

We believe there is an opportunity in the next few years to make a positive

difference if we take strategic action. We see two possibilities for the near future.

First, to a certain extent people will bend but not break—i.e., people’s privacy

expectations will lower and it will become harder to keep a higher level of privacy as

society changes. Perhaps some of this will be ethically neutral, but other parts will

not—now is the time to fight back against giving in where we should remain firm.

Second, there could also be privacy disasters in the future—events like security

breaches or exposés of long abuses, events that really harm people and generate a

public reaction in favor of more privacy protection. This backlash could be healthy

for a culture that does not value privacy enough, but we might be able to avoid the

disasters altogether if we improve our culture now and make wise decisions about

robotics technologies.

We therefore urge our readers to consider contributing to privacy-sensitive

robotics work. This is not just a call for HRI researchers to study privacy—

we also encourage privacy and security researchers to consider studying robots.

Privacy-sensitive robotics researchers should push for the development of this new

research area. This will involve the usual means: e.g., establishing a community

by organizing workshops, reaching out to other disciplines and to industry for col-

laborations, and charging forward on strategic research goals—for example, the

ones we have recommended. HRI researchers who study privacy-relevant domains

should link up with us and begin to consider privacy in their research. Prudent ac-
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tion now from a critical mass of different actors could greatly improve the outcome

of introducing robots into society.
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A Interview Guide for “Mobile Shoe Rack” Study

Here we include the interview guide used in the study presented in Chapter 6. See

Section 6.6 for a description of the interview procedure and analysis.

General Prompts

• “Let’s focus on the last time you came to class. When was that? Tell me

what you remember about the mobile shoe rack from that day.”

• (Follow-ups:)

– “Tell me about that.”

– “Do you remember what you thought about that?” “Any other thoughts?”

– “What did you notice?” “Notice anything else?”

– “Did you learn anything from [that]?” “Anything else?”

– “What stood out to you about the mobile shoe rack? What did you

notice?”

• (Prompts to make sure they’ve covered all their interactions with the “Mobile

Shoe Rack”:)

– “Did anything else happen with the mobile shoe rack that day?”
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– “Did you see any other people interact with the mobile shoe rack?”

– “Have you had any conversations with other people about the mobile

shoe rack?”

• (If this was their first experience with the shoe rack:)

– “Do you remember what you were expecting before you first saw the

shoe rack?” “How did it compare to your expectations?”

Moving beyond their experiences in the hallway . . .

• “What are your opinions about the mobile shoe rack? What do you think of

it?”

• “What are some things you like about the mobile shoe rack? How about some

things you don’t like? Do you have any ideas for how to make it better?”

• “Describe to me what the mobile shoe rack does. Describe all its actions.”

• “Pretend I’m a friend of yours who has never seen the mobile shoe rack and

you want to describe it to me. What would you tell me?”

• “Would you want this mobile shoe rack in your home?” “Can you think of

a place where the mobile shoe rack would be a really good idea?” “. . . how

about where it would be a really bad idea?” “Why?”

• “Is there anything you’d like to know about the mobile shoe rack at this

point? that you’re wondering about? . . . What else?”
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If they’ve seen the MSR more than once:

• “You’ve been around the mobile shoe rack a few times now. Have you learned

anything about it since the first time you saw it?”

• “. . . Is there anything you notice now that you didn’t notice at first?”

At the final meeting, right before debriefing them, we can ask about

our DVs more directly:

• “Give us your best guess about the mobile shoe rack’s capabilities. What

can it do?”

• (ONLY if they need more prompting should you use these prompts:)

– “Does it record/store things? Like what?”

– “Can it see? Where and how far? Hear? Where and how far? How do

you know? Understand speech?”

– “Can it distinguish humans from the furniture? Like if you put a trash

can in front of it?”

– “Can it tell when your shoes are on vs. off? If you’re in the process of

taking them off?”

– “Does it know when you’ve interacted with it?”

– “If you sat in front of it again, do you think it would know you already

gave it your shoes?”
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– “How much was it paying attention to things? Did it notice you? Other

people? How much attention to detail?”

– “Do you think it remembered you from day to day?”

– “Whether you’re late? Can it tell how you look in your workout clothes?

Whether you were awkward or clumsy or slow? If not, did you feel

awkward anyway?”

– “How did you figure that out? How long did it take you? Tell us the

story.”




