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Measurement Tool for Dynamics of Soil Cracks 14 

Abstract 15 

Shrinkage cracks in soil function as a dominant control on the partitioning and 16 

distribution of moisture fluxes in the vadose zone. Their dynamics influence moisture 17 

balance and control water availability for runoff, deep infiltration, and near-surface 18 

storage. We present a new low-cost field instrument to monitor the temporal change in 19 

crack volume as affected by shrinkage and swelling cycles. The proposed crack-o-meter 20 

is composed of a sealed impermeable bag connected by a hose to a standpipe.  An 21 

automated level logger records changes in water level in the standpipe, which correspond 22 

to volumetric changes of the crack. Results from two laboratory experiments show that 23 

the volume change observed by the crack-o-meter instruments scales linearly with the 24 

actual volume change, with an average error of 3%.  The instrument was then used in a 25 

field experiment in Chile, where it measured the closing of cracks due to soil swelling.  26 
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Introduction 27 

Expansive clay soils are characterized by spatially and temporally dynamic crack 28 

networks, which function as dominant controls on the partitioning of surface and 29 

subsurface water fluxes within expansive soils.  The presence of a crack network can 30 

increase infiltration rates and allow for faster and deeper percolation of water and solutes 31 

(e.g. Messing and Jarvis, 1990; Bronswijk et al., 1995; Greve et al., 2010), while also 32 

enhancing soil moisture evaporation rates (Weisbrod et al., 2009). As a result, crack 33 

networks affect surface, soil, and ground water quantity and quality.  34 

Capturing the dynamic nature of crack networks has been a theoretical and experimental 35 

challenge that has impacted our understanding of water movement in soils at the pedon, 36 

field, hillslope, and watershed scales. Numerous studies have attempted to characterize 37 

landscape-scale cracking behavior (e.g. Bronswijk, 1988; Arnold et al., 2005), but up to 38 

the present, field methods have been mostly limited to estimating the instantaneous 39 

volume or the shape of a crack. In addition, many of the methods have the drawbacks of 40 

being destructive, being based only on surface characteristics, or being so labor-intensive 41 

that taking multiple measurements over a period of time can be impractical, particularly 42 

during the faster wetting phase. Examples of destructive methods include sand filling 43 

(Dasog and Shashidhara, 1993); serial sectioning of soil (Lightart et al., 1993); pouring 44 

liquid latex (Abou Najm et al., 2010); and coupling spray techniques of different dye 45 

tracers (Lu and Wu, 2003; Kasteel et al., 2005) with various image analysis methods 46 

(Aeby et al., 1997; Forrer et al., 2000; Bogner et al., 2008) for visualization of 47 

preferential flow paths. Surface-based methods to monitor crack evolution include 48 

surface image analysis (Flowers and Lal, 1999; Abou Najm, 2009); observing soil’s 49 
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natural foaming (Mitchell and van Genuchten, 1993); and soil surface elevation 50 

monitoring (Wells et al., 2003; Arnold et al., 2005), which can be used to estimate the 51 

evolution of the crack network by assuming isotropy of shrinkage. Examples of labor 52 

intensive methods include a variety of crack tracing techniques utilizing thin flexible 53 

metal probes for depth detection and simple geometric assumption for volume estimation 54 

(Zein El Abedine and Robinson, 1971; Ringrose-Voase and Sanidad, 1996; Deeks et al., 55 

1999; Bhushan and Sharma, 2002; Bandyopadhyay et al., 2003; Kishné et al., 2009) and 56 

calipers for measuring crack geometry (Návar et al., 2002).  57 

In this technical note, we propose the crack-o-meter as a novel instrument for measuring 58 

transient crack-volume in the field.  This instrument is simple to construct, low-cost, non-59 

destructive, requires minimal effort to install or maintain, and allows for temporal and 60 

spatial measurements of volume changes for individual cracks.  By having all these 61 

characteristics, this instrument overcomes many of the drawbacks of the aforementioned 62 

techniques.  The instrument uses a sealed plastic bag connected by a hose to a polyvinyl 63 

chloride (PVC) standpipe which contains a water level logger. Laboratory and field 64 

experiments validated the design.  65 

Method  66 

An empty water-impermeable bag is placed into an existing crack and water is added via 67 

a standpipe until the bag has expanded to the boundaries of the crack and the water level 68 

within the standpipe has equilibrated above the hose connection (Figure 1).  An 69 

automated pressure logger is placed at the bottom of the standpipe to continuously 70 

measure the pressure head inside the standpipe (pwater). In applications where sealed (non-71 
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differential) pressure transducers are used, an additional pressure transducer or nearby 72 

weather station is needed to correct for barometric pressure (pbarometric) fluctuations.  73 

Water column height (hwater) is found by hwater = (pwater – pbarometric)/(gρwater).   74 

To reduce trapped air bubbles in the system, the bag should be free of air during insertion 75 

into the soil and the water should be introduced to the pipe slowly. Orienting the bag so 76 

that the hose is at the uppermost position can help eliminate air bubbles. At the surface, 77 

the bag can also be manually adjusted after filling to force bubbles from the system, 78 

assuming care is taken to minimize impact on crack structure.  79 

As the crack shrinks or swells, its volume changes; this causes the water-filled bag to 80 

shrink or expand equally, which in turn causes an equivalent displacement of water 81 

volume in the standpipe. This change in water level in the standpipe (Δh) is measured and 82 

converted to volumetric change (ΔV), using hrV 2

, where r is the internal radius of 83 

the standpipe.   84 

This setup was tested in a controlled laboratory experiment at Oregon State University 85 

(43°33’59”N, 123°16’50”W) in Corvallis, Oregon, and at field site in the Chilean 86 

commune of Ninhue (36°25’04”S, 72°31’05”W). Onset Corporation HOBO U20-001 (0-87 

9 m ± 0.005 m) pressure transducers were used to monitor water level within the 88 

standpipes. An additional U20 logger was used to record barometric pressure at the field 89 

site (for barometric pressure correction), while the laboratory experiment used barometric 90 

data from the National Climatic Data Center weather station at the Corvallis airport 91 

(KCVO).  92 

Laboratory Experiment 93 
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For the controlled laboratory experiment, a 0.55 x 0.42 x 0.25 m (55 liter) plastic storage 94 

bin was filled with Witham clay, a soil of basaltic origin, composed of approximately 95 

55% clay, 40% silt and 5% sand (Soil Survey Staff, 2011).  The soil was sieved while at 96 

field-saturated water content (using a 4 mm screen) and compacted using 100 strikes per 97 

layer with a 4.5 cm diameter, 1,880 g mini-sledge hammer. The hammer was hand-held 98 

and struck against the soil with moderate force. Final soil column height was 99 

approximately 0.16 m. The soil was allowed to air dry for six weeks until a large 100 

shrinkage crack formed near the center, at which point the water-impermeable bag – a 101 

1000 mL Injection IV bag (B. Braun Medical Inc.) – was installed. The IV bag was 102 

connected to a 0.0254 m (inner diameter) PVC standpipe via 0.0064 m (inner diameter) 103 

plastic tubing.   104 

The effective length (L) of the IV injection bag was approximately 0.26 m, while the bag 105 

was inserted into the crack to an approximate depth (D) of 0.082 m. Thus, assuming that 106 

the crack is V-shaped, the change in average crack width (ΔW) can be approximated 107 

using Equation 1: 108 

 LDVW /2  (1) 109 

where ΔV is the volume displacement measured by the instrument, L is the effective 110 

(water-filled) length of the bag, and D is the inserted depth of the bag.  111 

After the instrument was installed, the soil was rewetted by blowing air with atomized 112 

water droplets (provided by a Vick’s-brand vaporizing humidifier) with an application 113 

rate of approximately 1 L day
-1

 (equivalent to 0.0043 m day
-1

 of water) and by a direct 114 

application of 0.0025 m day
-1 

of water to the soil surface.   115 
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Another laboratory experiment was used to assess the measurement error of the proposed 116 

crack-o-meter. An artificial triangular shaped crack (Figure 2.a) was made from two 0.6 x 117 

0.2 m pieces of 5/8” (0.016 m) plywood, joined at one edge by two door hinges.  The 118 

artificial crack was put into a bench vise, and the crack-o-meter was installed covering a 119 

space confined between Wtop and Wbottom (Figure 2.a), using the same instrument 120 

configuration as in the previous experiment. The objective of this second experiment was 121 

to estimate the measurement error from this crack-o-meter configuration. 122 

The vice was closed in quarter-turn increments until a minimum volume was obtained, 123 

and then was reopened in quarter-turn increments until the crack was at its initial opening 124 

width.  At each step, the actual dimensions (Wtop and Wbottom) for crack width were 125 

measured across the bottom and top of the IV bag (as shown in Figure 2.a).  Actual crack 126 

volume corresponding to the space sampled by the crack-o-meter instrument was 127 

calculated by Vactual = ½(Wtop + Wbottom) x D x L, where D is the effective depth and L is 128 

the effective length of the IV bag.  For this configuration D = 0.11 m and L = 0.26 m.  129 

Measured crack volume was calculated from water level in the standpipe using the same 130 

procedure as in the previous experiment.   131 

For this experiment, the percent volume change, V(%), was calculated as percentage of 132 

the range between the maximum (Vmax) and minimum (Vmin) measured crack volumes 133 

(simulating maximum shrinkage and swelling, respectively) :

  

134 

 minmax

max100(%)
VV

VV
V i

 (2) 

 135 

where Vi is the measured crack volume at each measured increment.   136 
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Field Experiment 137 

Three crack-o-meter instruments were placed in an active research site in the Chilean 138 

Eighth Region.  The instruments were installed on January 16
th

 and 17
th

, 2011, within a 139 

single 3.5 by 11 m irrigation plot. The irrigation plot was orientated so that the long 140 

dimension was approximately in the direction of highest gradient (i.e., downslope). 141 

Installation #1 was located approximately 3 meters from the upslope edge of the plot. 142 

Installations #2 and #3 were located at approximately the center of the plot, as shown in 143 

Figure 1. The IV injection bags were inserted vertically into the cracks, reaching an 144 

average maximum depth of 0.22 m from the surface. The PVC standpipes had inner 145 

diameters of 0.0285 m. Figure 1 shows the irrigation plot, from the upslope, left corner, 146 

facing downhill. The soil was classified as clay, made up of approximately 30% sand, 147 

20% silt, and 50% clay. 148 

The plot was irrigated with four 90-minute applications over a two-day period (January 149 

17
th

 and 18
th

, 2011), with a total cumulative application of approximately 0.17 m of 150 

water. Soil moisture content was monitored with Decagon 5TM soil moisture probes at 151 

0.15, 0.30, 0.60 and 0.85 m depths.  Runoff from the irrigation experiments was captured 152 

into collection barrels to allow for calculation of runoff rates and volumes. 153 

Results and Discussions 154 

Laboratory Experiments 155 

Results from the initial controlled laboratory experiment showed that during one month 156 

of active wetting of the soil within the plastic container, Δhwater in the standpipe changed 157 

by 0.28 m, which corresponds to a volumetric change (ΔV) of 1.4 x 10
-4

 m
3 

(Figure 3). 158 
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The trend was monotonic, with some noise which was inherent to the barometric 159 

correction of the pressure readings. Approximately 70% of the total volume change 160 

occurred in the first week. Overhead photographs confirm that by the end of the 161 

experiment the crack had changed in width from approximately 0.025 m to 0.012 m, due 162 

to soil swelling (Figure 3). Figure 3 presents good agreement between actual (accurately 163 

measured from digital image analysis) and measured (using crack-o-meter) crack widths, 164 

with average error of 3%.  165 

Similarly, the simulated crack experiment showed that the relative volume change, as 166 

measured by the crack-o-meter instrument, scaled linearly with the actual crack volume 167 

(Figure 2.b), with no observed directional hysteresis. This configuration of the crack-o-168 

meter showed promising results, with an average error of 3% and a maximum error of 6% 169 

between actual and measured volume change. However, it should be noted that this error 170 

is only specific to this particular configuration and pressure sensor; different bag 171 

geometries, standpipe configurations and measurement devices would have different (and 172 

potentially smaller) magnitudes of intrinsic error.  173 

Field Experiment 174 

Figure 4 shows changes in crack volume for Installations #1 and #2 (the results of 175 

Installation #3 are not included due to instrument malfunction). In general, the field data 176 

showed significant changes in crack volume as a result of simulated rainfall.  Most of the 177 

swelling occurred during the four irrigation events, though some swelling continued in 178 

the hours between the irrigations (Figure 4.b).  The near surface (0.10 – 0.30 m) water 179 

content increased quickly following the first irrigation, from nearly dry conditions (26% 180 
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average volumetric water content) to near saturation (about 50% average volumetric 181 

water content) (Figure 4.c). The break between the first two irrigations allowed some 182 

water to percolate, thus decreasing the water content of the upper soil to about 45%. This 183 

redistribution process did not reverse the swelling, as can be seen by comparing Figures 184 

4.b and 4.c.  185 

Similarly, the overnight break between the second and third irrigations allowed for some 186 

redistribution of water, during which time the water content of the upper soil again 187 

decreased from about 50% to 45%, yet the swelling process did not reverse.  On the 188 

contrary, the swelling continued perceptibly, after irrigation stopped, for about 3 hours at 189 

Installation #2 and for about 12 hours at Installation #1.  190 

Finally, the soil saturated quickly after the third irrigation and stayed at a steady 50% 191 

water content, with no further redistribution observed. The soil showed notable swelling 192 

during the third and fourth irrigation events; little change in crack volume was observed 193 

during the last hours of observation following the fourth irrigation.   194 

The field results indicate that crack closure can become temporally decoupled from bulk 195 

soil moisture.  Assuming that the observed changes in crack volumes are primarily due to 196 

changes in crack width, the temporal trends seen in Installations #1 and #2 are consistent 197 

with the results of Návar et al. (2002), who measured crack dimensions during and after 198 

simulated rainfall events, and observed that the majority of the cracks demonstrated 199 

significant closure during the first hour of irrigation (up to 50% decrease in width), but 200 

that complete closure did not happen for three more months (until 0.450 m of cumulative 201 

rainfall had been applied). 202 
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Installation and Modeling Considerations 203 

Initial results under controlled laboratory (Figures 2 and 3) and uncontrolled field (Figure 204 

4) conditions demonstrated the capability of the proposed crack-o-meter instrument to 205 

monitor the relative changes in crack volumes through time. These measurements of 206 

temporal crack dynamics, coupled with field observations, can provide valuable inputs to 207 

existing shrinkage and crack-pattern models. Such models provide predictions of total 208 

volume change and degree of shrinkage isotropy (e.g. Bronswijk, 1988, using the 209 

shrinkage curve and an estimated geometry factor, rs), crack depth and spacing of 210 

primary cracks (e.g. Konrad and Ayad, 1997), and surface crack patterns (e.g. Vogel et 211 

al., 2005).  Likewise, these results may be used to calibrate and validate hydrological 212 

models that accommodate macropore dynamics (e.g. Jarvis et al., 1991; Greco, 2002), by 213 

comparing measured relative crack volumes to those calculated based on soil matrix 214 

water content and potential. 215 

Care should be taken when extending (scaling-up) the results from the local experiment 216 

to the entire field. For example, the crack-o-meter instrument only samples a portion of 217 

the crack volume due to the fixed geometry of the impermeable bag (as seen in Figure 218 

2.a). This can be of particular concern when shrinkage is not isotropic, such as in very 219 

dry soils where crack width has reached a maximum but crack depth continues to 220 

increase (Zein el Abedine and Robinson, 1971). Furthermore, the limited flexibility of the 221 

impermeable bags means that the instrument may be unable capture fine-scale volumetric 222 

changes when cracks possess rough, angled and/or blocky surfaces. At the same time, a 223 

sampling bias can occur because these instruments can only be installed in larger 224 

shrinkage cracks (those of at least 1 cm width).  While large cracks have been shown to 225 
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preferentially transport water and solutes (e.g. Messing and Jarvis, 1990; Greve et al., 226 

2010), Bronswijk et al. (1995) found that small, intra-aggregate cracks also contributed 227 

significantly to solute transport.     228 

One way to improve the accuracy of the method is through proper selection of 229 

representative crack spacing and crack shape models, given field-specific conditions. For 230 

example, with respect to crack-shape models, we have assumed V-shaped (triangular) 231 

crack cross-sectional geometries.  While this is a commonly assumed cross-sectional 232 

geometry (e.g., Zein el Abedine and Robinson, 1971; Elias, et al., 2001), other studies 233 

have proposed that cracks are rectangular, with parallel walls (e.g. Scott et al., 1986; 234 

Dasog and Shashidhara, 1993).  In addition, Ringrose-Voase and Sanidad (1996) 235 

concluded that rectangular geometries are most likely to be found in wide, mature cracks 236 

(no longer shrinking horizontally), whereas the triangular shape is likely more valid for 237 

horizontally-evolving cracks.  Therefore, assuming a cross-sectional shape based on the 238 

knowledge of crack’s surface conditions may help limit error in total crack volume 239 

estimates.   240 

Finally, there was some concern that the pressure head of the water within a vertical 241 

standpipe will provide resistance to the swelling soil.  In our current configuration, the 242 

water column can reach a maximum height of approximately 1.5 m (which corresponds 243 

to 15 kPa).  Laboratory experiments on swelling pressures of expansive clay soils show 244 

swelling pressures which range from 200 – 1200 kPa (Basma et al., 1995).  Therefore, 245 

even on the low end of swelling pressures the resistance due to the water column should 246 

be minor.  At the same time, future modifications to the design, such as non-vertical 247 

standpipes (to lessen the pressure head acting against the soil), specially-manufactured 248 
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bags (which can be made more flexible and in different geometries), and alternative 249 

methods of measuring the water displacement (such as weighing the mass displaced or 250 

using optical measurements) can help to both limit pressure impacts on the soil structure 251 

and to improve the overall accuracy of the instrument. 252 

Altogether, attention to installation details, coupled with proper understanding of field 253 

cracking patterns, can help improve the accuracy of the method and eliminate potential 254 

sources of error. Nonetheless, as shown by the initial results (Figures 2, 3 and 4), even in 255 

its current configuration the instrument is able to accurately capture the initial and 256 

intermediate stages of crack closure.   257 

Conclusion 258 

We present a practical “crack-o-meter”, which can be used to quantify the temporal 259 

changes in the volume of individual cracks, as demonstrated by laboratory and field 260 

experiments. All successful installations showed that swelling occurs shortly after the soil 261 

is wetted.  Furthermore, we observed continued swelling at the field site for hours after 262 

water application had ceased, even when the local bulk soil moisture content slightly 263 

declined. This highlights that (1) there is a temporal component to soil swelling, and that 264 

(2) bulk soil volume is not a one-to-one function with bulk water content.   265 

Finally, although the current experimental design allowed for the installation of only one 266 

crack-o-meter instrument per crack, it is conceivable that multiple instruments or bag 267 

compartments, connected to individual standpipes, could be used at multiple depths or 268 

spatial locations within a single crack. Such use of different configurations and 269 

orientations may lead to insight on the manner in which shrinkage cracks open and close, 270 
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which can have important implications for modeling hydrologic response and vadose 271 

zone transport.  272 
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 379 

Figure 1: Schematic of the crack-o-meter with field images showing the installations 380 

and the details of the setup. Installation #1 is located closest to the camera; 381 

Installation #2 is in the top left corner of the image; and Installation #3 is in the 382 

middle.  Notes: The orange squares surrounding Installations #1 and #3 are frames 383 

for digital crack monitoring.  The sprinkler in operation at foregrou  nd is part of the 384 

rainfall/runoff simulation irrigation system.  The attachments on top of the 385 

standpipes provided housing for a secondary water level measurement sensor 386 

(which failed to function properly during this experiment).    387 
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Figure 2: (a) Schematic of the laboratory experiment used to quantify crack-o-meter 389 

instrument error for the current instrument configuration; (b) Percent change in 390 

volume based on a simulated triangular crack.  Average error was 3% and 391 

maximum error was 6%.     392 
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 393 

Figure 3: Total change in crack volume, and corresponding crack width, as 394 

measured by the laboratory crack-o-meter instrument. Day 0 corresponds to 395 

November 8
th

, 2010. The points marked with X’s correspond to the validation points 396 

from the digital images shown in the lower part of the Figure (Note that the images 397 

from Days 3, 9 and 32 are not shown). The reference scale shows 1 cm increments.   398 
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 399 

Figure 4: (a) The four irrigation-runoff experiments showing the volume and timing 400 

of irrigation and runoff; (b) Cumulative change in crack volumes as the result of 4 401 

rainfall simulation events; and (c) average near surface (0.1 – 0.3 m) soil moisture. 402 

Time = 0 corresponds to 12:00:00 PM on January 17, 2011.   403 
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