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Dynamics of the Coastal Transition Zone Jet
1. Linear Stability Analysis

STEPHEN D. PIERCE, J. S. ALLEN, AND LEONARD J. WALSTAD

College of Oceanography, Oregon State University, Corvallis

The linear stability of a coastal transition zone (CTZ) jet is analyzed using a six-layer quasi-geostrophic
model with observed basic state velocity profiles. The velocity profiles are obtained from objectively analyzed
hydrographic and acoustic doppler data from the 1987 CTZ pilot experiment. Along-jet perturbation wave-
lengths of 260-265 km are found to be the most unstable, with e-folding growth periods of 7-11 days and along-
jet phase speeds of 4-8 km/d downstream. Energy transformation terms and energy budgets are discussed.
Both barotropic and baroclinic instability processes are important.

1. INTRODUCTION

The dynamics of the transition zones between open ocean and
upwelling regions along eastern ocean boundaries are not well
understood. The northern California example of a coastal transi-
tion zone (CTZ), with its intriguing filaments or jets, has recently
been the subject of a major observational effort [CTZ Group,
1988]. In the late spring and summer of 1987, two hydrographic
and shipboard acoustic doppler current profiler (ADCP) surveys
revealed an intense equatorward jet along the boundary between
cool and saline upwelled water and warmer, fresher offshore
water [Kosro et al., this issue]. The presence of this mesoscale jet
with energetic meanders anywhere from 100 to 400 km in size is
by now an expected feature of this region and season [Strub et al.,
this issue; Huyer et al., this issue]. Some of the dynamical ques-
tions suggested by these observations involve the nature and
structure of these jet meanders. Why does a meander grow?
What determines its wavelength? If the growth can be explained
as an instability, what source of energy feeds the instability?
These questions may be approached in a variety of ways.

Walstad et al. [this issue] take advantage of the combination of
hydrographic and ADCP data from the 1987 experiment to per-
form quasi-geostrophic data assimilation studies. Initial condi-
tions are specified by objective analysis of the May 22 data set.
The model is time-stepped forward to June 12 using boundary
conditions obtained by linear interpolation between the May 22
and June 12 observations. The four-dimensional field estimate of
the flow is obtained by varying the objective analysis parameters
until the final June 12 quasi-geostrophic solution is in best agree-
ment with the observed June 12 field. The agreement is fairly
good (see Walstad et al. [this issue] for details). The structure and
energetics of the solution are then analyzed.

The present study (part 1) regards a jet meander as a possible
linear instability of a quasi-geostrophic basic state flow. We con-
sider two-dimensional velocity sections of the jet extracted from
the objectively analyzed May 22 and June 12, 1987, data sets as
the basic states for the stability analyses. The formulation allows
for both barotropic and baroclinic instability processes. We
obtain phase speeds, growth rates, and modal structure of the per-
turbations as a function of along-jet wavelength. In addition, we
examine the transformation of kinetic and potential energy to the
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perturbations, presenting integrated energy budgets and maps of
the relevant terms in the quasi-geostrophic energy balance.

In part 2, Allen et al. [this issue] continue the stability study by
examining the nonlinear, finite amplitude behavior of the CTZ jet.
One of the basic state profiles we analyze here in part 1 is used as
an initial condition for a time-dependent, nonlinear quasi-
geostrophic model in a periodic f plane channel. The jet struc-
ture is perturbed and the evolution of the stream function, vertical
velocity, vorticity, and potential vorticity fields is examined.
Some of the results presented in part 2 use the most unstable lin-
ear mode found in part 1 to perturb the nonlinear model. The
contributions of different terms to the kinetic and potential energy
balances are also assessed in part 2.

Although the literature involving studies of the stability of
mean flows is extensive, historically the majority of it concen-
trates on one-dimensional cases, i.e., either pure baroclinic or
pure barotropic instabilities. This is not surprising since the two-
dimensional case is difficult analytically [Pedlosky, 1987, section
7.15]; the normal-mode equation is nonseparable. With increas-
ing computer capabilities, however, numerical solutions have
become viable. Important idealized studies of the mixed stability
problem include Hart [1974] and Holland and Haidvogel [1980],
which each explore parameter space using specific two-Jayer ide-
alized mean state profiles. Killworth [1980] offers a less in-depth
but broader overview of the mixed stability of many different ide-
alized profiles. The present work in some ways builds upon
Haidvogel and Holland [1978], who analyze the mixed stability
of profiles obtained from general circulation model output; we
extend their two-layer model to an arbitrary number of layers (six
for our standard case).

The emphasis of the present study is on the use of specific
observed basic state profiles to produce results relevant to the
CTZ region. Although Johns [1988] does not treat the mixed sta-
bility case, his pure baroclinic study of Gulf Stream meanders
using actual data is similar to our approach. Beckmann [1988],
who treats the mixed instability case for jet modes in the eastern
North Atlantic, also uses methods similar to the present study.

2. OBSERVED JET

Kosro et al. [this issue] provide a complete description of the
late spring and summer (May 18-27 and June 9-19) 1987 surveys;
only a brief overview of the data relevant to this study is given
here. The nominal station grid for the surveys consists of two
alongshore lines about 90 and 150 km from the coast, connected
by four cross-shore lines to form three subgrids with approxi-
mately 15-km station spacing. Hydrographic data to at least 495
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m depth were collected at 76 stations for each survey, and good
quality acoustic doppler current profiler (ADCP) data were col-
lected continuously along the shiptrack.

ADCP data at 121 m are used by Walstad et al. [this issue] to
reference the hydrographic measurements, thus determining the
absolute geostrophic flow field for the upper 500 m along the sta-
tion grid. We utilize the objective analysis of this combined data
set as presented by Walstad et al. [this issue]. This method
includes extrapolation of both the density and the velocity fields
below 500 m using historical data and the first baroclinic mode.
For each of the surveys, the correlation function for the objective
analysis is assumed independent of time and an estimate of the
density and velocity fields is made for the midpoint of the cruise:
May 22 and June 12. The reader is referred to Walstad et al. [this
issue] for the details and approximations inherent in these tech-
niques. Examples of the resulting stream function fields, at 50 m
depth, are shown in Figure 1.

For the purpose of our stability analysis, we extract one two-
dimensional vertical section of the flow field from each survey
and use this as our basic state. The locations of these sections
(Figure 1) are chosen subjectively, with an eye toward catching
the jet where it is least affected by other phenomena such as
eddies. Ideally, we want to choose a place where the jet does not
seem to be part of a mature meander. It is debatable within linear
stability theory whether it is more appropriate to use "snapshots"
such as these or some type of observational mean for the basic
state profiles. Although some sort of average might seem more
relevant than a local calculation at one point in the jet, this aver-
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age will not necessarily be related to the theoretical unperturbed
form of the flow. As discussed by Pedlosky [1987, section 7.1],
any real time average will be affected by the very perturbations
which we seek to study. Our choice is to make a best guess at the
structure of a fluctuation-free jet and to use this as our "mean"”
state. The paradigm of this flow field as a mean jet plus a pertur-
bation seems justified aposteriori by nonlinear results from part 2,
which reveal a jet retaining much the same form as the unper-
turbed flow even through the course of large meanders.

We examine the stability of the observed jet profiles over a flat
bottom, without complicating effects from bottom topography.
Although the CTZ region is located adjacent to the continental
slope, where bottom topography may affect the dynamics, obser-
vations of the jet location during 1987 indicate that the core of the
jet was mostly found offshore of the continental slope [Kosro et
al., this issue]. Within the analysis region used by Walstad et al.
[this issue], the northeastern comer of the grid does include a nar-
row strip of the outer continental slope region. Yet the remainder
of the region does not contain substantial topography. Since the
time-dependent jet is constantly altering its orientation with
respect to the local bottom topography, it is difficult to specify an
appropriate mean relative position. In addition, recall that we do
not have CTZ observations available below 500 m depth. The
stream function values below this point are obtained using extrap-
olation and available historical data and are consequently not well
determined. We feel that these uncertainties preclude the specifi-
cation of bottom topography in a meaningful manner. Thus we
assume a flat bottom for this initial analysis.

40 F 140
— -
£ aof {139 &

l"‘

5 i <
3 i -
- .|‘ =
K| 3

38t 38

MAY 22
37 A i A L i i
128.5 125.5 124.5 123.5 126.5 125.5 124.5 123.5
Longitude (°W) Longitude (°W)

Fig. 1. Stream function at 50 m from objective analysis of combined hydrographic and ADCP data from the late spring and summer 1987 surveys [Wal-
stad et al., this issue]. The contour interval is equivalent to 2 dynamic cm. The two lines drawn between small circles indicate locations of the vertical
sections extracted for the stability analyses.
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3. LINEAR STABILITY MODEL

Formulation

The linear stability model follows the development by Haidvo-
gel and Holland [1978] extended to an arbitrary number of layers.
Consider a quasi-geostrophic model with N layers of constant
density p, and undisturbed layer thicknesses H,, wheren=1,2, .

.+ N (n =1 is the surface layer). The subscript n + 1/2 denotes a
variable defined at the interface between layers n above and n +1
below. The stream function for each layer is ¥, =¥, (x, y,t) and
the geostrophic velocity components are
0]
where (x, y) are Cartesian coordinates, ¢ is time, and subscripts (x,
y, 1) denote partial differentiation. Consider the inviscid quasi-
geostrophic vorticity and density equations, on an f plane, in
terms of the stream function ¥, for layersn=1, N:

Up=—Vp, Vo=V »

V’v_, + J(¥,, vz" )+ foH, 2 (Wapyz = W) =0, (2)

(Yo =¥t = J ¥ = ¥Ys1s Yors2) = Basina f- Waazs (3
= Haut - HI p
hee Vs = HytHpy " Hy+Hpy Yot s @

and H, is layer thickmess (total depth H=H,+ H,+---Hy),
82 = 8(Pns1 — Pa¥po is reduced gravity, f, is the Coriolis
parameter, and J is the Jacobian operator. Vertical boundary con-
ditions are w,,, = wy,,, =0atz=0,—-H .

Combine (2) and (3) to form equations for potential vorticity
conservation: for the top layer,

D H
o |V + g Riln-nill=o0, (5a)
forr =2, (N—l),
“ {V’V +q {F V1 = ¥) = Foy (¥, =¥, )1} =0, (5b)
and for the bottom Iayer,
H
D—f { Voy - . FyalYn=-¥y,11=0, (5¢)
N

D, d d )

'E;_Bf-H“'a -I-v,,ay.

To simplify the stability problem to a tractable one, we assume
that the basic state flow is two-dimensional and independent of
time. Consider a channel of width L with coordinates (x,y)
along-channel and cross-channel, respectively, and v, as the basic
mean state ¥,(y) plus a small perturbation y ¢,(x,y,?), ie.
v, =¥, (y) + 7 ¢.(x, y,1), where y « 1. Linearize (5b) about the
basic state in the usual way:

where F, = fi/gi.H and

4+, %){V’m

H
(3 + H_, [F-('u-l-l _’u]_Fn-l('u _‘n-l.)]]

= $uclUppy + 2 FoUais = U= FpalWp = Up )} =0, (©)
where U, = -¥,,. Equations (5a) and (5c) are linearized in simi-
lar fashion. In subsequent equations, the range of n=1, N and
the simplified formulations for the n =1 and n = N cases will be
implicit.

‘We consider solutions to (6) of the form

¢, = Re[#,(y)e* ], )
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where the wavenumber k is taken to be real, but ¢ and ¢, are
complex. Substitution into (6) yields

(U= ) fyy — K24, +H£. [(Falfust = 2) = Foi($0 = 601}

— Uy + Hi [FoUnt =Un) = Fas(Up=U, )]} =0. (8)

For the domain 0 <y < L, the boundary conditions for (8) are
4.(0)=¢,(L) =0, forming an eigenvalue problem for §, with
eigenvalue ¢. For ¢ = ¢, + ic;, solutions with ¢; >0 indicate tem-
poral instability with exponential growth rate kc;.

Using a centered second-order finite difference approximation
in y, we solve the above problem numerically. Defining §, ; as ¢
of the nth layer at the jth grid point in y, we form the generalized
complex eigenvalue problem,

cA¢=Bg, ®

wlmiistheeigenvecmrwmpmedofi,.hmﬁlj and A and B
are NM x NM matrices of coefficients. Equation (9) can be
solved using an algorithm by Kaufman [1975], or a slightly modi-
fied IMSL version (routine gvccg). For a given basic state flow,
we seek solutions for the eigenvalue ¢ and eigenvector structure ¢
over a range of wavenumbers k. The algorithm was verified
through reproduction of stability results from Killworth [1980]
and Holland and Haidvogel [1980].

Walstad et al. [this issue] choose a six-layer scheme to resolve
the vertical; we use the same for consistency, although we later
investigate the effect of increasing the number of layers (see sec-
tion 6). Both the May 22 and June 12 standard six-layer basic
states use the same values for layer depths and reduced gravities
(Table 1 and Figure 2). The model N? profile is also shown (Fig-
ure 2a), N? = gl,2/(Z, = Zas1), Where z,, is the mid-depth of layer
n. The two basic states in Figure 2 are similar, although the June
12 jet is more intense than the May 22 one, with maximum speeds
=0.9m ™! rather than =0.5ms™. The two cases provide a
useful range within which most examples of a jet would probably
lie. We concentrate on the results from the May 22 case since the
smaller values of horizontal and vertical shear are less likely to
give overestimates of instability processes for the jet in general.

Local Rossby numbers U,/f calculated across the jet reach
maximums of about 0.2; this is within the range where quasi-
geostrophic dynamics remains a useful approximation. The first
baroclinic Rossby radius of deformation calculated from the six-
layer observed jet is R; = 24.6 km. To estimate cross-jet length
scales, we fit a Gaussian analytical form U = U, exp(—=y*/L?) to

TABLE 1. Six-Layer Basic State Characteristics

=2

Layer Thickness, m gAplpg, m 8
1 (surface) 100

1.0655x 1072
2 100

3.3704 107
3 100

3.6904 %1072
4 400

4,6926x 1072
5 800

3.9488 x 107
6 (bottom) 1672

The Rossby radius for the first baroclinic mode, Ry = 24.6 km.
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Fig. 2. Standard six-layer basic state profiles: (a) layer thicknesses and N> profile, which are the same for both cases; (b) May 22 and (c) June 12 veloc-
ity profiles versus cross-jet distance y for layers 1-6; and (d) velocity profiles vs. depth at the core of the jet (y=85 km). The dashed lines which nearly
coincide with the layer 1 profiles in Figures 2b and 2c are Gaussian fits to the horizontal jet. These are examples of the fits used to estimate a cross-jet

length scale (half width) of L=29+1 km.

the horizontal profiles (Figures 2b and 2c, dashed lines) and
obtain an estimate of L=29+1 km (half width). Since the ratio
R4/L = O(1), parameter studies such as Killworth [1980] predict
the possibility of mixed instability.

The linear stability analysis uses 175 km for the model channel
width. Figures 2, 12, and 14 indicate this 175-km-wide channel.
Figures 6-9 show a jet centered within a wider 350-km region.
The wider channel is shown for clarity and for consistency with
the presentation of some of the finite amplitude results of part 2;
all of our results in part 1 are calculated using a 175-km channel

width. Model grid spacing across the channel is 5 km, resulting
in 36 grid points in the across-channel coordinate y. The tajls of
the velocity profiles (10-15 km in length) at the y boundaries
were smoothed exponentially to zero. Experimentation with dou-
bling the horizontal resolution in y did not change the results sub-
stantially; results for the maximum growth rate of the fluctuation
were within 1% of the basic case. We also investigated the effects
of using a full 350-km-wide channel for selected cases, and the
results were not qualitatively different. As expected [e.g., Beck-
mann, 1988], the increased cross-jet scale allowed for slightly
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(=5%) larger growth rates. For simplicity and computational effi-
ciency, we retain our choice of the 175-km-wide region.

Energetics

The energetics governing the growth of a perturbation in a cur-
rent with both vertical and horizontal shear, as in the present case,
are especially interesting. The energy transformations of both
barotropic and baroclinic instability processes are occurring
simultaneously; even the signs of the energy terms will be uncer-
tain a priori, as discussed by Pedlosky [1987, section 7.15].

We derive the quasi-geostrophic kinetic energy balance for the
perturbations by multiplying (6) by —¢,H, and rearranging terms
to yield

S (V80 V8), = B -0.98,)+ H¥y 3 (V8,- V80,

_Hnﬁm’nyq‘m + an i ["u‘l‘uy(vﬁn)x + ’n'u‘PmJﬂ]
= fo Wa-uz a2t fo Wasuz $narn

+[fo

T Wassa@am $) +fo g Wi #0] - (10)

The potential energy equation is derived in a similar fashion.

Multiplying (3) by fo(#,—@a) and rearranging terms, at the
n + 1/2th interface we obtain

1 f 1l = | — ’ -' iﬂfl
0 (¢ _’ ) = [ > ( n '+]) ]x Wy
fO

r] (’u = Pns1 )('Pu r ‘i‘u-l-l)y'nﬂ!z == fo“’u-mz(’u = Pas1) (11)
B+

In Table 2 we briefly interpret and label symbolically the terms
in the energy balances (10) and (11), following for the most part
the notation of Pinardi and Robinson [1986). If we consider an
integral over a wavelength 2#/k in x and the width of the channel
L in y, several terms in the energy balance taken together inte-

grate to zero (these are denoted with asterisks in Table 2). These
terms represent redistribution of energy in the field but do not
contribute to the growth of the perturbation.

The remaining terms represent either advective or pressure
work processes which reveal interactions between the growing
perturbation and cither the horizontal or vertical shear of the basic
state (Table 2). These terms indicate the relative sizes and charac-
teristic structure of the energy transformations leading to the
growth of the perturbation. The spatial patterns of these terms
will develop asymmetries. Integration over 2x/k in x and the
channel width L in y provides a box model type summary of
energy transformations [e.g., Haidvogel and Holland, 1978].

We will later find it convenient to use the following notation
for integration and summation operations:

L 2=k
<KP'>=?.[ b[ KP,dxdy , (12)
(KP) = g <KP,>, (13a)
(AP] = r:Z-:: AP g > s (13b)

4. BASIC STABILITY RESULTS

Before presenting the results of the stability analysis, we con-
sider the relevant necessary conditions for instability given our
basic state flow. One of the necessary conditions for the instabil-
ity of an inviscid, zonal flow U(y, z) is that the potential vorticity
gradient must be positive within some subregion of the (3 2)
plane and negative in others. We define the quasi-geostrophic
potential vorticity of the basic state

H
Qn =_UHJ' * F [Fn(‘}’n _.Pﬂl) - Fn-l("Pn-l _\Pn)] (14)

TABLE 2. Perturbation Energy Equation Terms

Symbol Physical Meaning Term
R, time rate of change of kinetic energy % Hy(Ve,- Vo)
AFL* horizontal pressure work divergence involving acceleration HY - (¢aVen)
KP, conversion from basic state X, to perturbation K, —Hpnx by ¥y
AFen® horizontal advection of kinetic energy HY,, % (Vén - Vénu)x
AFg, * horizontal press. work div. involving momentum transport H,V - [, ¥y (V80)x + PnbncVryy AN
) f,, transfer of K, out of layer ninto layersn—1and n+1 —foWn-120a-12 + SoWas12Pas12
b, conversion from 4y, and A, to R, fo HL Wati12(8n = Pns1)

nt Hapy

o g Wa-ua(#a-i = $n)

2
7 e time rate of change of available potential energy [-]2- :fu (Pn = Pns1 )3],
En+uz
2
AP conversion from basic state 4,4, 0 perturbation A4y = .f e et ) & A )y$n+iiz x
172
2
AcFpniia * horizontal advection of available potential energy [% ;fo (¢ — 'n'l-l)z]x‘i'uﬂﬂ ¥
Entir2

baiins conversion from K, and K,,; t0 Ay, —foWnsi2($n — ne1)

*Does not contribute to a net energy conversion when integrated over a wavelength 2x/k and the width of the channel in y.
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The first term on the right-hand side of (14) is the portion of Q,
due to the horizontal shear alone, while the remaining terms of
(14) are referred to as the vortex stretching terms. An examina-
tion of the potential vorticity and potential vorticity gradient (Q,,)
of the basic state (shown for the May 22 jet in Figure 3) indicates
ripe possibilities for both barotropic and baroclinic instability pro-
cesses. The components of O, and Q,, due to horizontal shear
alone and those due to vortex stretching alone are also plotted in
Figure 3. Q,, within each layer changes sign at least twice across
the jet, raising the possibility of barotropic instability. Q,, also
changes sign along most vertical profiles through the jet, indica-
tive of possible baroclinic instability. The complexity of the
structure of Q,, for this mixed instability case with U(y, z) from
observations makes prediction of the details of the stability char-
acteristics difficult, prior to actually carrying out the calculation.
We turn now to our primary stability results using the standard
six-layer basic state profiles (Figure 2). Equation (9) is solved
over a range of values for the wavenumber k. We find both the
May 22 and June 12 profiles to be unstable to perturbations across
a wide spectrum of along-jet wavelengths (Figure 4). Although
the magnitudes of the growth rates (kc;) differ, the two profiles
taken from different locations and at separate times are surpris-
ingly similar in their kec; versus 2z /k structure. We note a promi-
nent maximum in ke; at wavelengths of 260 km for May 22 and
265 km for June 12, with e-folding growth periods of 11 days and
7 days respectively. Local maximums in the kec; versus 2x/k
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Fig. 3. Polential vorticity @ (left) and potential vorticity gradient Q,
(right) for the May 22 basic state; top panels are for layer 1, second row
for layer 2, etc. The bold line is the total Q and @, for each layer, the
lighter line is the Q and @, due solely to the horizontal shear, and the
dashed line is the Q and Q, from the vertical vortex stretching terms.
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Fig. 4. Phase speeds c, (top) and growth rates kc; (bottom) versus along-
jet wavelength 2x/k of the perturbation for the May 22 (bold line) and
June 12 (lighter line) cases.

curve also occur at about 70, 130, and 180 km. The growth rates
diminish gradually for scales larger than the maximum at 260-265
km. The calculations were continued out to a maximum wave-
length of 800 km (not shown). The maximum growth rate
decreases smoothly for the May 22 case from 0.067 d™* at 400 km
t0 0.023 d! at 800 km.

Growing perturbations propagate with phase speeds ¢, which
are almost always positive, i.e., downstream (Figure 4). The June
12 case exhibits the largest phase speeds (0.34-0.35 ms™)
between 110 and 130 km wavelengths. The May 22 case has a
similar region of maximum phase speed (0.12-0.13 ms™') from
105-150 km. In general the phase speed results seem organized
into distinct regions, with steps between them. These same
regions can be identified in the kc; plots with the local maximums
mentioned previously. At the wavelengths corresponding to the
most unstable modes for June 12 and May 22 (260-265 km),
phase speeds are 0.09 and 0.05 m s™' respectively. With increas-
ing wavelength from this point, ¢, gradually decreases. The only
substantial region where we see negative phase speeds is from 50
to 85 km in the May 22 case. The June 12 case, however, exhibits
moderate positive values (0.22 m s™') within this same range of
wavelengths. Note that all of the phase speed results, both posi-
tive and negative, lie within the velocity range of the basic state
(Figure 2), as expected. For the reasons stated in section 3, we
concentrate on the May 22 profile and present additional results
for this case. The June 12 results are similar.

The wavelength 2x/k for which kc; is a maximum yields the
along-jet scale of the most unstable mode. In this normal mode
approximation, the implication is that this mode will probably be
the first one to emerge from a background mixture of small-
amplitude disturbances. It is plausible, however, that prominent
modes other than the most unstable one will be seen as well (see
part 2). For this reason we seek to better understand the nature of
the instability not only for the growth rate maximum at 260 km
but also for large local maxima at 135 and 185 km for the May 22
case. Figure 5 presents kc; results for the six most unstable



PIERCE ET AL.: DYNAMICS OF THE CTZ JET, 1, LINEAR STABILITY ANALYSIS

0.12 g ’ ) '
)
2 e —
_g - - .'""'-..
S ™ .- -
E Y -.-‘
g : := ...' ".
. e *
; o.ol‘ | - l' I.‘
o . .."-.
3 s, "0, TT"tesanly
& ml.‘"'ﬁ no-q:....“.“ !
kzul....._..::-c:ﬂ.*!!!!:ﬁ'
0.00 : : ‘
b 200 300 400

WAVELENGTH (km)

Fig. 5. Growth rates versus along-jet wavelength for the six fastest grow-
ing modes at each 2x/k value, May 22 case.

modes at each 2z/k value rather than only the most unstable
mode. It is apparent that the shape of the kc; curve in Figure 4 is
a result of the superposition of several different growth rate
curves which are present throughout a wide range of wavenum-
bers but take turns in being the most unstable mode. The suspi-
cion that these modes of instability are qualitatively different
from one another will be confirmed shortly upon examination of
the eigenvector structure.

The solution to the linear stability problem provides no infor-
mation regarding the actual magnitude of the perturbation veloci-
ties. Nevertheless, it is helpful to impose an arbitrary size for a
perturbation velocity in order to illustrate the structure of the
instability and in anticipation of the move to finite amplitude. For
this reason we arbitrarily set a size for the perturbation, choosing
the maximum velocity of «, in the surface layer perturbation to be
1/3 of the corresponding basic state velocity U, at the same y
value. The same scaling is used throughout; the relative structure
of the perturbation in different parts of the flow is unchanged.
This arbitrary scaling of the perturbation will remain constant for
all results presented in this study.

The maps of perturbation stream function ¢,(x, y) (Figure 6a)
show a characteristic shape where the center of the disturbance is
displaced upstream relative to the flanks (termed the "banana”
shape by Holland and Haidvogel [1980]). This slant of the per-
turbation streamlines into the horizontal shear of the basic state
(Figure 2), giving the impression that it is attempting to decelerate
it, is indicative of a barotropic instability process [Pedlosky, 1987,
section 7.3]. Figure 6b shows y¢,(x, y) added back into the basic
state W, (y). This presentation is somewhat artificial, since the
maps will change depending on how we choose the strength of
the perturbation. It is useful, however, to gain some understand-
ing of what form the complete flow field might take and to easily
see where the peaks and troughs of the meander occur.

The perturbation vertical velocities w,,,,, (Figure 7a) are most
intense at the core of the jet, with the largest magnitudes found
about halfway between the locations of the crests and troughs in
the flow field of Figure 6b. The vertical velocities exhibit a char-
acteristic structure that involves positive(negative) w,,,,, for fluid
motion from(to) troughs and to(from) crests. This structure of the
W42 field is consistent with the form of the perturbation vorticity
field V2¢,, (Figure 7b). The vortex stretching term in equation (2)
implies the development of positive vorticity in the troughs of the
perturbation and negative vorticity in the crests, as seen in the
center of the jet in the perturbation vorticity field. The oppositely
signed vorticity at the flanks of the jet reflects perturbations in
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Fig. 6. Maps of (a) perturbation stream function and (b) basic state + per-

turbation stream function, for the May 22 case (260 km along-jet wave-
length). Solid/bold/dashed lines indicate positive/zero/negative contours.

vorticity associated with growth in amplitude of the unstable
wave.

We also extract vertical sections from our results and plot con-
tours of modal structure (Figure 8) in the (y, z) plane, as Beck-
mann [1988] and others do. This presentation helps clarify the
vertical structure of the different modes corresponding to the local
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maxima in ke; seen at along-jet wavelengths of about 140, 180,
and 260 km. We show both the fastest and the second-fastest
growing modes at these three wavelengths. Referring to Figure 5,
note that the second mode at 180 km appears to be part of the
same branch that becomes the first mode at 260 km, and vice-
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versa. Examination of the structure of the modes at many differ-
ent wavelengths verifies this crossover. The effect can be seen in
Figure 8; mode 1 at 180 km is similar to mode 2 at 260 km, while
mode 2 at 180 km is similar to mode 1 at 260 km. The former
pair shows a surface-intensified amplitude field while the phase
has more depth independence and a maximum value at depth.
The latter pair exhibits more depth independence in amplitude.
Mode 2 at 140 km and mode 1 at 180 km are also similar. The
structure of the phase of mode 1 at 260 km has the largest vertical
change of those presented; the perturbation leads from the bottom
(also apparent in Figure 7a), indicating baroclinic conversion of
energy from the basic state to the perturbation,

5. ENERGETICS

Examination of the variation of kc; with along-jet wavelength
and the modal structure of the perturbation does not by itself
reveal the balance of energy sources for the mixed instability,
although we have noted indications of both barotropic and baro-
clinic instability processes. We now investigate the relative sizes
and structure of these energy transformations. From the develop-
ment in section 3, we are able to calculate maps of the relevant
terms in the kinetic and potential energy balances. The character-
istic patterns seen in the maps of the energetics can be usefully
compared to similar maps from the nonlinear finite amplitude
studies of part 2.

We focus initially on the May 22 case for the wavelength of
maximum ke; (260 km). Figure 9 displays maps of all the terms
from the kinetic and potential energy equations which represent
net transformations of perturbation energy from one form to
another, rather than simply a redistribution of energy within the
same field (refer to Table 2). The time rate of change of both per-
turbation kinetic energy and available potential energy is positive
(columns 1 and 2 of Figure 9). The complexity of the structure of
R, and A, is due to the combination of different energy trans-
formation processes taking place, displayed in the remaining five
columns of Figure 9.

The term KP, is the Reynolds stress source term for barotropic
instability, representing the cross-jet component of the divergence
in the advection of kinetic energy. It contains the perturbation
momentum flux u,v, which interacts with the horizontal shear of
the basic state, yielding a measure of the transformation of basic
state kinetic energy (K,) to perturbation kinetic energy (K,).
KP, develops into cross-jet pairs, periodic with x-wavelength half
of 2n/k, concentrated where |U,, | is greatest (column 3 of Figure
9). The asymmetries in values of highs and lows, with the high
values dominating, indicates a net transformation of K, to K,. A
small asymmetry is also apparent in the cross-jet sense; the more
intense patterns along the bottom flank of the jet correspond with
the asymmetry of the basic state, which has larger horizontal
shear on this side. Layers 1 and 4 exhibit the most intense KP,
activity.

The AP, is the analogous source term for baroclinic insta-
bility, indicating the transformation of basic state available poten-
tial energy (A,.,,) to perturbation available potential energy
(Ansu2). AP,y represents the rate of work accomplished by the
Reynolds heat flux (¢, — @ n41)¢ 0412 - gainst the cross-jet gradient
of basic state density. AP,,,, (column 4 of Figure 9) is centered
along the jet axis where the basic state vertical shear is greatest.
The asymmetries which develop imply a net conversion of A,,,,
to A,,,,. The asymmetries and thus conversions at interfaces 1.5
and 4.5 are particularly strong.
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Columns 5 and 6 of Figure 9 present two views of the buoy-
ancy work energy flux. This is the conversion process internal to
the perturbation which allows its kinetic energy to increase at the
expense of its available potential energy, or vice-versa. The 5,,,,,
fields at interfaces 4.5 and 5.5 indicate the largest amounts of
A2 being lost to K,. The maps of —5, in turn indicate that lay-
ers 4, 5, and 6 are the beneficiaries of the largest amounts of K,
from this conversion process. The patterns of buoyancy work
seem to exhibit a less symmetrical cross-jet structure among the
lower layers as opposed to the upper ones.

The rightmost column of Figure 9 maps the vertical pressure
work term & f,,. This represents the conversion of K, from one
layer to another. The patterns of & f,,, are periodic at half of 277k
rather than a full wavelength. Layer 1 exhibits the most intense
highs and lows, although it is not clear that much net transfer in or
out of layer 1 occurs.

By integrating each of these terms across the channel and over
a perturbation wavelength 2x/k, we obtain a sense of the overall
importance of different energy transformations. The absolute val-
ues of the resulting numbers will have no meaning but their rela-
tive sizes provide a convenient summary of the relative impor-
tance of the different energy transformations. Figures 10a-10c¢
follow in the tradition dating back to Phillips [1956] in presenting
a box model view of the integrated energy fluxes < KP, >,
< AP,p2 >, < bppyyy >, and <8 £,, >. The values are arbitrarily
normalized such that the conversion KP, = 1.00. The thickness
of an arrow is proportional to the indicated energy transfer. Capi-

tal letters inside rectangles are used to represent the basic state,
while lowercase letters within ovals symbolize the perturbation.

The energy summary for the maximum growth rate (Figure
10c), confirms at a glance what we have already guessed at; both
barotropic and baroclinic energy transformations are important to
the growth of the perturbation. Figure 10c¢ provides a synopsis of
the same information contained in Figure 9. Both the < KP, >
and the < AP,,,, > terms are feeding the perturbation at all
levels. The dominant transfers are from the mean to perturbation
kinetic energy in layers 1 and 4 and the mean to perturbation
potential energy at interfaces 4.5 and 5.5; the other energy fluxes
are insignificant.

From the kc; versus wavelength characteristics (Figures 4 and
5), the phase speed behavior (Figure 4), as well as the modal
structure (Figure 8), it appears as if the local growth rate maxi-
mums observed at about 130 and 180 km are associated with per-
turbations that are distinct features, different in nature from those
at 260 km. We present the global energetics at 130 and 180 km in
Figures 10a and 105, and the qualitative differences between
these features are again clear.

At 130 km (Figure 10a), the barotropic instability processes
are dominant, especially within layers 1 and 4. Interestingly, the
potential energy of the perturbation is actually flowing in the
"wrong" sense, back into the mean. Haidvogel and Holland
[1978] also present such a case in one of their linear stability anal-
yses. They suggest that as the perturbation grows to finite ampli-
tude, the sign of this transfer will change back to the "right" direc-
tion (also discussed by Veronis [1981]). Finite amplitude results
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Fig. 9. Maps of the energy transformation terms (see text and Table 2 for definitions) for the 260-km along-jet wavelength May 22 case

(solid/bold/dashed lines indicate positive/zero/negative contours).

involving this behavior are found in part 2. The other notable fea-
ture of the global energetics at 130 km is the tendency for kinetic
energy in the perturbation to be transferred down into the lower
layers through the < & f," > terms, especially within layers 1-4.
Much of the energy coming from the KP, process is actually
flowing down the water column and supplying lower layers.

At 180 km (Figure 10b), barotropic instability processes are
still dominant within layers 1 and 4. The conversion in layer 4 is
now the largest, rather than that in layer 1. The baroclinic pro-
cesses are nearly neutral, contributing little in either sense. The
vertical transfer of kinetic energy downward via < § f,, > is even
stronger in this case than at 130 km.

As a measure of the overall volume-integrated importance of
baroclinic versus barotropic instability processes for the perturba-
tion we consider the ratio {AP}/{ KP}, using the notation of (13).
Figure 11 shows the ratio {AP}/{KP) over the range of alongjet
wavelengths. For wavelengths less than =90 km, the instabilities
are almost entirely barotropic in nature. From =110-190 km,
barotropic instability processes still dominate; the negative values
of ([AP}/{KP] are due to {AP} <0 and {KP]>0. The flow of
potential energy is from perturbation to mean, but the barotropic
conversion process is large enough to maintain the instability.
Both the 130 and 180-km cases discussed previously fall into this
category.
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a 130 km c 260 km

Fig. 10. Graphical presentation of the integrated energy fluxes at (a) 130
km, (b) 180 km, and (c) 260 km along-jet wavelength (2a/k) for May 22
case. The thickness of the shaft of an arrow is proportional to the relative
size of the indicated energy transfer, which is also given a numerical
value. The energy fluxes are normalized such that the transformation of
basic state kinetic energy to perturbation kinetic energy in layer 1 is 1.00.
Capital labels inside rectangles symbolize the basic state; lowercase labels
inside ovals symbolize the perturbation.

With wavelength increasing from =200 km, both baroclinic and
barotropic instability processes contribute significantly to the
growth of the perturbation. A gradual tendency toward a more
baroclinic instability occurs with increasing wavelength. The

{AP}/{KP}

0o 100 200 300 400
WAVELENGTH (km)
Fig. 11. The ratio of the relative importance of baroclinic/barotropic
A, instability processes ({ APJ/{ KP]) for the standard May 22 case, as a func-
KE 6 0.01 .., tion of along-jet wavelength. Negative values of {AP}/{KP} are due to
{AP] <0 (energy flow from perturbation to mean) and {KP} > 0.
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processes are of nearly equal importance for the fastest growing
mode.

6. VARIATIONS

Increased Vertical Resolution

Orne of the points made by Beckmann [1988] as well as others
is the importance of using sufficient layers in the vertical to avoid
the well-known short-wavelength cutoff often noted in idealized
studies. This effect is seen, for example, among the two-layer
idealized jet linear stability results of Holland and Haidvogel
[1980]; their growth rates go rapidly to zero with decreasing
wavelength from about 200 km. Walstad et al. [this issue] inves-
tigate the use of a 12-layer model and conclude that the six-layer
model is sufficient for this region. We test the use of the same
12-layer model, which is equivalent to our six-layer May 22 basic
case (Figure 2b) except for the increased vertical resolution. The
12-layer basic state is described in Table 3 and Figure 12b. In

TABLE 3. Nine-Layer Basic State Characteristics

—2
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addition, we create a nine-layer equivalent case by combining the
bottom six layers of the 12-layer model into three layers. The
nine-layer basic state is described by Table 4 and Figure 12a.
The growth rates and phase speeds for the equivalent six, nine,
and 12 layer models are quite similar (Figure 13). The kc; maxi-
mum for the 12-layer case now occurs at 250 km rather than 260
km for the six-layer case. The nine-layer case splits the differ-
ence between them fairly neatly. From roughly 170 to 250 km,
notice that with decreasing numbers of layers, the kc; curve shifts
slightly to the right. This is the extent of the short-wavelength
cutoff phenomenon in this case, and the differences are minor. In
the 12-layer case, the local maximum in growth rate at =180 km
is no longer present, but the magnitude of the growth rate here is
comparable to the six-layer case. The differences among the
curves for 2z/k < 170 km are not too substantial but more diffi-

TABLE 4. Twelve-Layer Basic State Characteristics

-2

Layer Thickness, m gAplpg, m 8
1 (surface) 48
6.0443x 1073
2 60
7.0874x 1072
3 84
3.2294x 1072
4 102
2,0391 x 1073
5 138
2.0422 x 1072
6 176
2,.0965x 1072
7 232
1.7234x 10
8 296
1.6041x 1073
9 392
1.5863 % 1072
10 504
1.3437x 107
11 572
1.0390 x 1072
12 (bottom) 566
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Fig. 12. Basic state profiles for the (a) nine-layer case and (b) 12-layer
case, both from May 22.
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Fig. 13. Phase speeds and growth rates for the 12-layer case (bold line),
nine-layer case (normal line), and standard six-layer case (dashed line), all
from May 22.
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cult to interpret. In the 130-km region, the 12-layer local maxi-
mum in kc; is about 30% smaller than the six-layer case. The
three curves converge again with decreasing wavelength from this
point. For simplicity and for consistency with Walstad et al. [this
issue] and part 2, we use the six-layer model for our primary
results and interpretation.

One-Dimensional Cases

As another approach to the question of the importance of
barotropic versus baroclinic processes in this region, we thought it
would be instructive to investigate the corresponding one-
dimensional cases. We create a pure baroclinic model, with
strictly vertical shear, by averaging the May 22 horizontal jet pro-
file over y while retaining the same layer structure in the vertical
(resulting velocity profile listed in Table 5). Similarly, we create a
pure barotropic case, with only horizontal shear, by averaging
(weighted by layer thickness) all six layers vertically into a single
layer model (Figure 14). The asymmetry of the basic state (which
has always been present) is particularly evident in Figure 14. The
stability analysis is accomplished using almost exactly the same
methods as previously outlined, with straightforward simplifica-
tions of the formulas.

The results (Figure 15) are satisfying in that they offer addi-
tional clues as to the structure of the mixed stability case. The
pure barotropic case exhibits a kc; maximum at 110 km, while the
pure baroclinic has maximum kc; at 285 km. Results for ¢, are
similar for all cases except for a 105-195 km region where the
mixed case perturbation propagates roughly twice as fast as the
others. For wavelengths smaller than =170 km, the pure
barotropic and the fully mixed cases are similar, although the
mixed case is usually more unstable., For wavelengths larger than

TABLE 5. Pure Baroclinic Model

Layer Basic State Velocities, m s~
1 (surface) 0.24
2 0.17
3 0.14
4 0.10
5 0.04
6 (bottom) -0.01

Layer thicknesses and g’ values are listed in Table 1.
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Fig. 14. Basic state profile for the May 22 pure barotropic, single-layer
case.
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Fig. 15. Phase speeds and growth rates for the pure baroclinic instability
case (bold line), the pure barotropic instability case (normal line), and the
standard six-layer mixed instability case (dashed line), all from May 22.

=170 km, the pure baroclinic results are close to the mixed ones,
although less unstable for shorter wavelengths and more unstable
for longer ones. The mixed case is substantially more unstable
than the pure barotropic one at larger wavelengths. These results
are consistent with some findings of Seng [1971], who performs
similar comparisons for a variety of idealized situations. From
the point of view of a barotropic jet, the addition of vertical shear
tends to destabilize at all wavelengths. If horizontal shear is
added to a pure baroclinic problem, on the other hand, it has a
destabilizing effect for shorter wavelengths but a stabilizing effect
at longer ones. Note, in general, that the multiple peaks in growth
rate seen in the mixed stability case are not present in the one-
dimensional cases; the complexity of the mixed case is evidently
related to the combination of different instability mechanisms
occurring simultaneously.

The one-dimensional results are consistent with our analysis of
the energetics of the mixed case (section 5). We found that the
instability at 260 km was characterized by nearly equal contribu-
tions from barotropic and baroclinic processes. Figure 15 indi-
cates that purely barotropic and baroclinic instability mechanisms
produce roughly comparable growth rates. The dominance of
barotropic energy transformations around the secondary maxi-
mum at 180 km (Figure 11) also agrees with these results, since at
this wavelength the pure baroclinic case has very small kc¢;. The
pure baroclinic case illustrates well the cutoff at short wave-
lengths mentioned above. In Figure 15, the increasing relative
importance of baroclinic processes as we move to longer wave-
lengths is also consistent with the energy analysis of the mixed
case; at 260 km the {APJ/{ KP| ratio from the global energetics is
0.90, while at 400 km this ratio has increased to 1.18 (Figure 11).

Nonzonal Cases and the Beta Effect

The linear stability model was developed on an f plane, for
simplicity and also for consistency with part 2 of the study. We
calculate for layer 1 the dimensionless parameter
B =LA =0.029 (B=1.8x10" m™ 57!, Uy=0.53 ms™,
L =29 km), which is small, so the beta effect is probably minor.
For this type of analysis, however, the extension to the beta plane
and to arbitrary basic state orientation (for the two-dimensional
parallel mean flow which we consider here) tums out to be
straightforward numerically [Robinson and McWilliams, 1974].
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Fig. 16. Phase speeds and growth rates for the May 22 case with the beta
effect for a westward flowing jet (bold line), eastward flowing jet (big
dashes), and southward flowing jet (normal line), compared to the stan-
dard f plane case (small dashes).

While maintaining the coordinate system aligned with the mean
state orientation, we now define both a f*) = f, and a g = f,.
Adding these terms to our development, (8) now takes the form
(dimensional)

127°W 126°W 125°W 124°W 123°W
..... lt.-.b-?‘ 4 "W [ S S sy
41°N |
40°N -
39°N -
38°N |-
37°N N [l " PR [P WA Y | I— PR |
127°W 126°W 125°W 124°W 123°W

Fig. 17. ADyspo/g (m), the dynamic height of the sea surface relative to
500 dbars, normalized by g, over the complete survey grid for the 1987
summer cruise [Kosro et al., this issue]. The dashed line is drawn to help
make a rough estimate of a meander wavelength, which is =250 km.
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+2nhP=0, as)
and may be solved as before. The resulting differences in growth
rates and phase speeds for our standard May 22 case are shown
for three choices of basic state orientation (Figure 16): eastward
(B9 =0, B9 = B), equatorward ()= B, " =0), and westward
(B¥ =0, B =- B), where f=1.8x 107" m™! s™'. For an equa-
torward flow, which is the general orientation of the CTZ jet, the
most unstable mode has an inverse growth rate of 11.4 days rather
than the 11.0 days in the case without the beta effect. The beta
effect is slightly stabilizing in all cases except for a westward
tending mean flow, where it is slightly destabilizing. If we choose
a mean flow aimed directly to the west, the inverse growth rate of
the most unstable wave is 10.0 days rather than the 11.0 days of
the case without the beta effect. The results for all of the cases in
Figure 16 are qualitatively similar. We conclude that the beta
effect has a relatively minor influence on the linear stability of the
jet profiles.

7. SUMMARY

We take advantage of the combined hydrographic and ADCP
data from the 1987 CTZ experiment to perform a quasi-
geostrophic linear stability analysis of a CTZ jet using observed
profiles, The basic state flow fields are somewhat idealized, but
they retain much of the complexity of the real ocean and yield
richly structured results. We primarily apply well-tested linear
stability analysis techniques to the coastal transition zone region.
Additional motivation for the linear analysis is to provide neces-
sary information for the finite amplitude nonlinear study in part 2.

We treat the fully mixed linear stability problem (with both
horizontal and vertical shear), with relatively fine resolution in
both y and z, using basic state profiles from objectively analyzed
data. We examine the behavior of the growth rates, phase speeds,
and eigenvector structure as a function of along-jet wavelength,
We also analyze the energetics to determine the degree to which
baroclinic and barotropic instability processes are important and
the structure of the energy transfers. The application of similar
techniques to the extensive 1988 CTZ data set is currently being
explored.

One of our major results is the identification of the fastest
growing instability with an along-jet wavelength of =260 km.
The characteristic inverse growth rate of this meander is 7-11
days, and the propagation speed of the perturbation is 0.05-0.09
m s~ downstream, using the differences between our May 22 and
June 12 results as a measure of uncertainty. The comparison of
these results to actual meanders seen in either modeling or obser-
vations will always be problematic; the linearized theory is only
valid for infinitesimally small-amplitude perturbations. It is
remarkable how fruitful the linear theory has been, however, and
even mature fluctuations will often be approximately explained
well past the formal limits of the theory [Pedlosky, 1987, section
7.3].

With the preceding caveat, then, consider the flow field of Fig-
ure 17 from Kosro et al. [this issue]. This is the complete June
survey dynamic height field. We only considered the southern
half of the array previously (see Figure 1), following Walstad et
al. [this issue]. A look now at the full survey reveals a large
meander extending from about 38°40'N to 41°N. Although irreg-
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ular in shape, the length of this feature is still fairly well defined.
If we consider the AD=0.9 contour and draw a straight line such
that the line is bisected by the contour, we obtain a rough estimate
of 250 + 20 km for the wavelength. The persistent maximum
seen at a wavelength of =260 km throughout our linear stability
results is consistent with the size of this observed meander.

The phase speed results of the model imply a 4-8 km/d propa-
gation of a perturbation downstream. This propagation of the jet
meander is difficult to identify even qualitatively from the obser-
vations, given the available data and the complexity of the flow
field. In the northern region of the 1987 CTZ experiment, off of
Cape Mendocino, phase propagation is not clearly evident (see
e.g., Kosro et al. [this issue]). In the southern region of the Wal-
stad et al. [this issue] grid (south of about 38° N, our Figure 1),
the jet features do appear to translate roughly 50 km downstream
from May 22 to June 12. The linear stability results predict a
larger shift of 80-160 km over this same time period. The results
from part 2, however, indicate that the propagation velocities of
finite amplitude meanders are, in fact, generally smaller than the
linear stability values.

Finally, our analysis of the energetics of the meander growth
verifies that the instability is a mixed one, with conversions from
both the basic state kinetic energy and basic state potential energy.
We go on to provide detailed energy balance information. The
primary result is that unstable solutions over a range of wave-
lengths from 200 to 400 km are all characterized by substantial
contributions from both barotropic and baroclinic instability pro-
cesses, and these two sources of energy are of nearly equal impor-
tance for the fastest growing fluctuation.
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