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Behavior of Large Waterdrops in Shear Flow 
D. R. CALDWELL AND W. P. ELLIOTT 
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Nondimensionalized equations of motion for waterdrops, not necessarily obeying Stokes's 
law, are derived and used to calculate the response of various size drops to changes in hori- 
zontal wind speed. We find that (1) cloud drops respond almost instantaneously to changes 
in wind speed, whereas raindrops require considerable time to adjust, (2) one can ignore the 
dependence of drag coefficient on Reynolds number in small shear, and (3) the probability 
of collision between raindrops and cloud drops is likely to be increased very slightly by the 
presence of wind shear. 

Waterdrops of different sizes falling through 
a fluid will respond differently to vertical shears 
in the horizontal mean flow, and their sub- 
sequent trajectories will differ from those in a 
uniform flow. The_ problem of determining the 
responses is fairly simple if the drop size is in 
the Stokes law region but bec. omes more compli- 
cated for larger drops. Fuchs [1964] presented 
some equations for aerosol motion at high 
Reynolds number in still air that require graphi- 
cal solution. We have reformulated the prob- 
lem and solved the nonlinear equations numeri- 
cally. The equations show that vertical and 
horizontal motions are coupled unless the drag 
is a linear function of air speed, as it is in the 
Stokes law regime. 

The shear flow problems examined in this 
report are confined to linear wind speed gra- 
dients. The special case of raindrops falling 
through a logarithmic wind profile near the 
ground was examined in another paper [Cald- 
well and Elliott, 1971]. In the present study we 
include drops ranging in size from the Stokes 
law region (maximum radius of ~0.004 cm) 
through large raindrops, and we consider specifi- 
cally the Reynolds number dependence of the 
drag coefficient. All the pertinent physical data 
are from List [1966], and thus it is assumed 
that the drag coefficients are not affected by 
accelerations. Ogden and Jayaweera [1971] 
have found experimentally that for very large 
accelerations the drag coefficient of a waterdrop 
appears to be about 20% less than the unaccel- 
erated value. This decrease in drag would affect 
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these calculations only quantitatively and would 
be significant only for shears much larger than 
those likely to be found in natural atmospheric 
conditions. We have ignored the effec.ts of •he 
transfer of momentum from drop to air that 
can make small changes in the assumed profiles, 
as shown by Caldwell and Elliott [1972]. 

We present numerical solutions to the general 
equations for several velocity profiles and an. 
approximate solution in which the variation of 
drag coefficient with air speed is neglected. The 
shears chosen for these examples are those that 
might be found in the mean flow but do not 
represent the extreme shears over short dis- 
tances that might be encountered in turbulence. 
The same method is applicable to those larger 
shears. 

MODEL 

We consider a drop of mass rn, radius r, den- 
sity pa, and cross-sectional area a to be falling 
in the z direction with speed w. The air is 
moving in the positive x direction with speed v, 
and the drop is moving in the x direction. with 
speed u: thus the drop is moving horizontally 
through the air with speed u -- v, and the total 
speed of the drop through the air is 

c = [(u- v) 2 -'l- w2] •/• (1) 

The forces on the drop consist of the gravity 
force mg and the drag force 

d•, = 0.5paC•)c•a (2) 

where pa is the air density and C. is the drag 
coefficient, which is a function of Reynolds 
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number and so of c. Figure 1 shows these speeds 
and forces. 

The equations of motion for the drops are, in 
Cartesian form, 

m du/dt -- --0.5p•CDac •' sin 0 

m dw/dt = --0.5p•CDac •' cos 0 + mg 
where sin 0 and cos 0 are (u - v)/c and w/c, 
respectively. By dividing both sides of (3) by 
mg and noting that 

mg- (0.5)p•C•'awt 

where C•' is the drag coefficient at the terminal 
speed w,, (3) can be put into nondimensional 
form: 

•U/•T = --•(U -- V)C 

dW/dT = I -- I•CW 

where W -- w/w,, U --u/w•, V - v/wt, C- 
c/w•, and T -- gt/wt. The quantity fi repre- 

mg 

Fig. 1. Speeds and forces: (a) u -- v represents 
the horizontal speed of the drop relative to the 
air, w represents the vertical velocity, and c 
represents the total air speed; (b) mg represents 
the force due to gravity, and df represents the 
force due to drag of air on the drop. 

6273 

sents the ratio C•(c)/C•(w•). The independent 
variable can be changed to the dimensionless 
length of fall Z, defined as gz/wf (=WT). 
Equations 4 then become 

u/z = u - v)c 

WdW/dZ = I -- I•CW 

The above scaling for z by wf/g is most con- 
venient unless there is a length scale in the ve- 
locity profile, say h. In that case we make 
Z' = z/h, and equations 5 become 

w, v) 
(5') 

w,2• dW •-] W --- = 1 -- •CW dZ' 

Equations 5 or 5' are sufficient to find the 
motion of a drop when the velocity profile is 
specified and fi is given as a function of C. 

The quantity gh/wf is the profile length scale 
divided by the natural length scale for drop fall 
(it is also the inverse of the particle parameter 
as defined by Davies [1966] ). If gh/wf is small, 
a shear over distance h looks like a step change 
in velocity to the drop. If oh/wf is large, the 
motion of the drop reaches equilibrium with the 
shear. 

If C deviates far from W, we must take 
variations in C• with C into account. The 

variations of C• with Re -- 2rc/r can be ap- 
proMmated by 

C,= 0.411 + (60/Re)•/•] • (6) 
where the constants have been chosen to fit 

Stokes's law for small Re. For Re • 500, C, changes very little •th Re, and a constant 

value can be used (i.e., fi - 1). For smaller 
drops, where • may be different from 1, we use 
the approximation 

• = [1 + (•/C)1/•]•[1 + •1/2]--2 (7) 
where y -- 30v/rw,. 

Equations 5 or 5' and 7, together with the 
distribution of V and the appropHate initial 
conditions, can be used to solve for the motion 
of a drop. Consider the distribution 

v= 

V=O z>h 
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The initial conditions at T -- 0 are V -- U ---- 
V,,, z/h -- O, and W -- 1. 

The solutions involve three dimensionless pa- 
rameters: V•, the dimensionless magnitude of 
the wind speed change; gh/w?, the depth of 
the shear layer divided by the natural length 
scale of the falling drop; and the Reynolds 
number. Since w, is a known function of r, one 
needs then only to choose the drop size, the 
distance h, and the velocity change over dis- 
tance h to specify the problem. 

The procedure is to follow the drop down- 
ward by using the equations (AZ' is positive) 

v(z' + xz') = u(z') 

c(z'). [u(z') - v(z')]. 
-- •./ •(Z') ß •, • (8) 

•(Z'+ •Z') = •(z') 

[• - •. c(z'). •(z')]. zxz' 
+ •(z') ß •, • 

where/? is calculated at Z'. 

AN APPROXIMATION 

If we assume that U - V is much less than 

W so that C ----- W and /? • 1, (5) can be 
written as 

av/az =-(v- .) 

dW/dZ = (1 - 0 
(9) 

SO 

a(v - v)/az 

= --(U-- V) -- dV/dZ (10) 
If we further assume that dV/dZ is constant, 

U -- V = (w,2/gh) Vh(1 -- e -z) (11) 
if U -- V -- 0 at Z -- 0 and V• is velocity 
change over distance h. From (11) we can see 
that after the drop has fallen far enough that 
Z >> 1, then U - V --• (w,•/gh) ß V,• = 
(w,2/g)/(V•/h), and so in dimensional form 
u- v -- (w?/g) dv/dz. 

RESULTS 

Figure 2 displays the result of integrating 
(8) for a total •near wind speed change of 1 
m/sec over distances • -- 1 meter (Figure 2•) 
and • -- 10 meters (Figure 25). The wind is 

presumed to be constant below z/h = I in 
both cases. The abscissa is u, the horizontal 
speed of the drop through the air; the ordinate 
is the distance fallen by the drop. For the con- 
ditions of Figure 2a (a shear of I m/see/m), 
drops with a radius less than 0.01 cm (100/•m) 
follow the wind almost exactly save for a small 
effect at the beginning. If the shear is much less, 
as it is in Figure 2b, drops smaller than 0.03 
cm follow the wind. We conclude from this find- 

ing that cloud droplets almost always follow 
the wind with very little lag even for large 
shears. However, large raindrops (r > 0.1 c.m) 
still would have half their speed left after fall- 
ing a distance 4. h for Figure 2a conditions and 
about h for Figure 2b conditions. 

To display the results in a simple fashion, 
equations 8 are integrated with /? = 1 for a 
range of linear wind changes. Figure 3 shows the 
results. The abscissa is w•'/gh, and the ordi- 
nate is V•, the magnitude of the change of wind 
speed. Isopleths of W are shown in Figure 3a 
and of (U -- V)/V,• in Figure 3b. Although a 
wide range of values of IV is shown in Figure 
3a, simple calculations show that it would be a 
very unusual situation for IV to be less than 
0.95 in the free air. 

In Figure 3a we see that drops for which 
w?/gh is a little more than I have their relative 
vertical motion slowed the most. Small drops 
(w?/gh << 1) adjust so rapidly that their air 
speed is never much different from w•. They ex- 
perience little additional drag, and so w changes 
little. Large drops (w,•/gh >> 1) carry so much 
momentum that only a small relative change in 
terminal velocity occurs. (This conclusion is in 
agreement with Davies [1966], who used a 
quite different method.) 

Large values of w.,'/gh require large drops and 
small h. A 0.19-cm drop with h = I meter 
would give w,•/gh = 4, but this would require 
V• of about I to achieve IV = 0.95. The V• = 1 

implies a shear of over 6 m/sec/m. A drop of 
0.025 cm would require a shear of 5 m/sec/m 
to achieve IV = 0.95. Thus one can conclude 

that most drops will have vertical velocity 
essentially equal to their terminal speed. 

Figure 3b shows the deviation of the hori- 
zontal speed of the drop from the wind speed. 
As is true in Figure 3a, most cases will fall in 
the lower left-hand part. 
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Change in velocity of drops caused by linear velocity gradients. The horizontal air 
velocity is reduced by 1 m/sec in vertical distances of (a) I meter and (b) 10 meters. 

DROP COLLISION 

Raindrops falling through a population of 
cloud droplets will collide with some of them 
and grow larger. It is pertinent to ask whether 
the opportunities for collisions might be en- 
hanced if the drops experience large shears. We 
are here considering velocity changes over 
meters of vertical fall and not the extreme 

shears that may be encountered over small dis- 
tances in turbulence. (Jonas and Goldsmith 
[1972] have presented some evidence that small 
drops (Stokes's law) can collide more readily 
than current theory predicts for the large shears 
that might be present in a turbulent cloud.) 

The question is whether shear flow can result 
in drop speeds appreciably different from termi- 
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Fig. 3. (a) Isopleths of W at the bottom of a linear shear layer of depth h and hori- 
zontal wind velocity change V• of drops of terminal velocity w,. (b) Isopleths of (U -- 
V)/V• for the same conditions. The 'dashed line is the locus of points for which C -- 1.1.. 
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nal speeds, i.e., whether C is different from 1. 
The following considerations will show that this 
difference is unlikely to occur in most cases. 

We can use Figure 3 to determine the con- 
(titions under which C might be expected to be, 
say, 1.1. For this to be true, if we assume that 
W -- 1, U -- V must equal 0.46. The dashed 
line in Figure 3b shows this particular condi- 
tion. The changes in wind speed over depths 
of a meter necessary to attain these values for 
large drops would seldom be encountered in the 
atmosphere, and small drops follow the wind so 
quickly that they will almost never reach large 
values of U -- V. Furthermore, small drops 
have such small terminal speeds that large 
percentage deviations are unlikely to be impor- 
tant. 

As a large drop falls into a region of shear 
containing a number of small droplets moving 
with the wind speed, the large drop will have 
a relative horizontal motion through the drop- 
lets. Thus the effective path length of the large 
drop will be greater than the vertical distance 
through which it falls, and it will encounter 
more small droplets than it would in still air. 
However, the relative path length of the large 
drop will rarely be increased by more than 10% 
if total path lengths of more than •/• meter are 
considered. Thus it appears unlikely that the 
differential air speeds developed within a popu- 
lation of different drop sizes will greatly in- 
crease the number of collisions except possibly 
in the first few centimeters of an abrupt change. 
(It is well to note in. this connection, however, 
that Jonas and Goldsmith were not able to 

account for the increase in collision efficiency 

that they found by calculations of relative drop 
trajectories.) 

One possible effect on collision-coalescence 
processes should be pointed out. A large drop 
falling into a shear zone with smaller droplets 
will approach them at a slight angle rather than 
vertically. It seems possible that the angle 
between the axis of symmetry of the wake of 
the drops and gravity may have some effect on 
the capture of the smaller droplet in the wake 
of the larger one. Whether this has any signifi- 
cant effect on the growth of clouds and rain- 
drops will have to be investigated further. 
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