ORHRATIMG CHARACTERISTICS OF A TYPR B PEDRRAL AIR OLASSIRIER

by
JAMMS OWRN ORNIBRS

A THESIS
submitted to
OREGON STATE COLIBGE

in partial fulfillment of
the requirements f or the
degree of
MASMER OF SCTENOE
June 1948

APRROVED:

Head of Department of Chemical mgineering

Chairman of School Graduate Committee

Associate Dean, Graduate Division

ACKNOWLEDGITETSS

The author wishes to express appreciation to Professors J. S. Walton and J. Schulein for the helpful suggestions and constructive criticisms given throughout the course of the thesis.

TABLA OP CONPTMTIS

Page
INTRODUCTION 1.
APPARAKUS 5
GXPRRIMENTAJ PROCEDURE 7
RESULES 10
CONOLUSIONS 14
BIBKIOGRAPHY 50
Fig. 1. Particle Size Distribution of Filtrol 15
Fig. 2. Weight percent of Filtrol to intermediate fiask at constant V-valve settings and varying $\mathrm{H}-\mathrm{valve}$ settings 16
Fig. 3. Weight percent of Piltrol to reject flask at constent V-valve settings and varying H-valve settings 17
Fig. 4. Average diameter of particles at V-valve setting of 5 18
Fi.g. 5. Average diameter of particles at V-valve setting of 10 19
تig. 6. average diameter of particles at V-valve setting of 15 20
Fig. 7. Average diameter of particles at V-valve setting of 20 21
Fig. 8. Average diameter of particles at V-valve setting of 25 22
Mig. 9. Average diameter of particles at V-Valve setting of 30 23
Pig. 10. Particle size range of intermediates and fines 24
Tig. 11. Particle size distribution of Aerooat 25
Fig. 12. Weight percent of Aerocat to intermediate flask at constant V-valve settings and varying M-valve settings 26
Fig. 15. Weight percent of Aerocat to reject ilask at constant V-valve settings and vary- ing M-valve settings 27
Fig. 14. Average diameter of partioles at V-valve setting of 5 28
Fig. 15. Average diameter of particles at V-valve setting of 10 29
Fig. 16. Average diameter of particles at V-valve setting of 15 30
Fig. 17. Average diameter of particles at V-valve setting of 20 31.
Fig. 18. Average diameter of particles at V-valve setting of 25 32
Fig. 19. Average diameter of particles at V-valve setting of 30 33
Pig. 20. Rarticie size range of innes for Aerocat. 34
Hig. 21. Particie size range of intermediates for Aerocat 35
Fig. 22. Particle size range of rejects for Aerocat 36
Tig. 23. Comparison of area for equal weights of Aerocat and Filtrol 37
Pig. 24. Diegram of Federal Air Classifying Unit B 38

LIST OP 险ABLES

Page
Table 1 39
Table 2 40
Table 5 45
Table 4 44
Table 5 45
Table 6 48

INHRODUCTION

The preparation of this thesis has been concerned with the classification of two substances, Aerocat produced by American Cyanamid Company and Piltrol produced by the Miltrol corporation. These two substances are used as fiuid eatalysts in the petroleum industry. Filtrol is a refined form of a natural occurring substance; Aerocat a synthetic catalyst. Both of these catalysts are composed mainly of aluminum silicate with a small amount of iron oxide.

These two substances were chosen in order for one to determine the operating oharacteristics of the air classifier, because of the large amount of work being carried on in the investigation of the physical properties of these catalysts.

A perfect classifier might be defined as one that would take a feed and separate it into two portions, the finer of which contained no particles coarser than a given size and the coarser of which contained no particles finer than a given size (2,161).

The problem was to determine by varying conditions what degree of separation could be effected by the Pederal Air Classilier. The method of particle-size measurement was by the use of a microscope equipped with a filar
eyepiece. Bven with the inherant errors involved in the use of a microscope in measuring particle size, this method proved to be the most satisfactory one.

APRARATUS

The Federal Air Classifier used in this experiment consisted essentially of an 8-inch oyclone, 12-inch cyolone, blower, motor, screw, conveyor, half-gallon hopper for feed. two 1000 ce ball flasks, six cloth bags. and a 4-inch copper manifold for the cloth bags. The 8-inch cyolone is referred to as the classifier and the 12-inch cyclone as the oollector. Migure 24 gives a diagram of the unit.

The oatalyst was introduced to the half-gallon hopper secured above the screw conveyor. The $5 / 8$-inch conveyor is designed to carry $1 / 5$ of a cubic inch per revolution. One finds it possible to reduce the rate of feed by the use of cone inserts constructed from enamel stock paper. The screw conveyor discharged the sample into the $1 \frac{1}{2}$-inch conveying pipe entering the 8 -inch diam meter classifier tangentially, the nipple being connected to direct the air in a counter-clockwise direction. The primary intake of this $\frac{1}{2}-i n c h$ pipe was fitted with a graduated pressure ∇-valve which adapts the instrument to products of any specifle gravity (3,1).

Air used to control the particle size of the sample which was delivered to the intermediate flask entered the classifier through a graduated mesh M-valve applied to
direct the air in a clockwise direction. Both the $1-$ and V-valves were graduated from 1-30. The M-valve regulated the maximum size of particles sent to the intermediate flask. No material reduced to 200 mesh or any greater mesh is too fine to be conveyed and classified with this unit. Because of the numerous articles written on the theory of cyclone performance and referred to in the bibliography the writer feels it necessary to mention here only the fundamental idea of cyclone operation.

Bxperimental investigation of oyclones has shown that flow within the oyclone is composed in the main of an outer downward spiral and an inner upward spiral of higher veloaity. The rotational velocity at any point in the cyolone below the exit duct varies inversely as the square root of the radius. Priction 10 saes in the cyelone vary as the square of the inlet velocity, and for a given velooity friction varies directly as the height of the inlet and the inlet width and inversely as the square of the exit diameter (4,972).

If for any reason in the future it is desired to duplicate the results of this thesis, Table 1 gives the
velometer ${ }^{2}$ readings taken at the V-vaive setting of 15 , an operation which determined whether the pressure drop through the apparatus was the same. The pressure drop is determined in this apparatus according to the amount of material colleoted in the bags.

There are various methods for determination of average particle size. The method selected is dependent upon the material under consideration. When the particles are confined to small limits of size, screens of microscopic methods of direct measurement may be used. on the other hand, when the distribution is over a wide range of sizes, indirect methods such as sedimentation and centrifuging are used (2,59).

When the writer determined the particle size of the rejects, intermediates, and fines, a monocular microsoope with a filar eyepiece was used. All measurenents were made using the $44 X$ objective, and $10 X$ eyepiece.

The filar eyepiece is composed of lens, scale, and moveable oross-hair attached to a micrometer. The crosshair is made to traverse the field by reans of a screw
$\mathrm{I}_{\text {The }}$ velometer is an instrument for measuring the velocity and pressure of air. In appearance it is quite similar to an electrical meter. The air enters the left hand port and leaves through the right hand port. The to tal cubic feet of air per minute is equal to the product of the velometer reading and the total free intake area.
provided with a micrometer thread, the amount of movement being indioated by the number of revolutions of the graduated micrometer drum attached to the sorem head. Beiore using the midoroscope assembly, it was necessary to calibrate the Pilar eyepiece, Table 4 shows results of this operation. Calibration was done as follows: A standard aram tube setting of 160 man was used; a standard slide with a seale 2 mm in length divided into 200 parts was placed below the objective; the standard scale and the filar eyepiece soale were brought in line to determine the momer of aivisions of the miorometer scale required to move the orosshair saross a given number of divisions on the standard sale.

GXPERIMOBMAL PROCSDURE

Bach run with the classifier was made using a 1000gram sample of eatalyst which was placed in the half-gallon hopper. The V-valve was set at the desired setting. The M-valve was stepped up in easy stages at a constant V-valve setting. Each setting of the 1 -valve constituted a run. At the completion of each run the weight of rejects and the weight of intermediates were recorded. The weight passed over to the cloth bags was obtained by difference. When the setting of the M-valve was increased, the greater intake of air to the classifier increased the quantity of sample forced up through the top exit of the classifier and over to the collector. Figures 2, 3, 12, and 13 indicate the percent by weight of the catalyst that passed to the intermediate and reject flasks at the constant V-valve setting and varying M-valve settings. In order for one to prevent contamination, the approach was made from fine to coarse material, a fact which entailed starting at low H-valve settings. If the sample failed to flow readily from the colleotor, the frame had to be rapped after the motor was eut out. When the classifier was in operation, only two precautions were necessary. Neither the reject nor intermediate flasks could be removed while the machine was in operation or the coarse material would
be carried over. The blower was always started before starting the screw conveyor.

Each run made with the olassifier produced three samples to be analyzed for average particle size. The three samples are the rejects, intermediates, and fines. (See Fig. 24.)

Considerable time was spent determining the most satisfactory procedure in preparing slides. Dry slides were very unsatisfactory because the particles did not separate from one another. The use of collodion solution, alcohol, and benzene as dispersing agents all proved to be unsuccessful. The best method found was the use of several arops of water to disperse the sample over which was placed a cover glass. Great care had to be taken to assure even distribution of the partioles under the cover glass; otherwise erroneous results would be recorded.

The method of counting the number of various sized particles in a given area was dispensed with in favor of measuring all the particles under the field of vision. All the detectable particles were measured, the writer being fully aware that there were particles below the visible range.

From each sample 100 partieles were counted. This may not appear to be a sufficient number of partieles
measured for each sample, but beeause of duplication of sample veights at other settings of the M- and V-valves sufficient cheoks were obtained to verify all measurements made. Table 2 exhibits how the diameter measurements were recorded.

RRSUIAS

Higure 2 indicates the particie size distribution of piltrol. It shows that approximately 75 percent of the partioles are below ten microns. This substance had a great tendency to aggiomerate both in the classifier and under the microscope, facts which caused undue overlapping of particles in the intermediates and rejects.

Higures 2 and 3 represent the percent by weight of the Filtrol that entered the intemediate llask and reject Aask respectively. It was noted that beyond the M-valve setting of 20 the trend was toward no separation. This trend carried on throughout with both substances.

Migures 4-9 were constructed for each constant V-valve setting. At a setting of 5 the separation was not satisfactory but as the V-valve setting was increased. the effect of changes in the M-valve were more pronounced. and gave better separation.

The material that passed to the bags consisted entirely of particies below 5 miorons. The distribution of visible particles whether it was snall or large in quantity was always the same. This is shown by the straight line in each case for the average diameter of the fines. Table 3 shows how the average diameter was obtained from the data. There are other statistical
average diameters that could be used in compiling the data, but beoause the average diameter was needed for a basis of comparison only, the arithmetic average was used. This arithmetic average is termed "no. average" on the graphs. The weighted average diameter was included to show that the trend is the same regardless of the statistical diameter caloulated.

For Piltrol, V-valve settings of $20-30$ gave the best results for classification. Between M-valve settings of 3 and 35 the greatest degree of separation was obtained. At low l-valve settings the fine particles appearing in the intermediate cut were relatively free of large particles, but as the M-valve setting inoreased, the frequency of largemarticle occurrence inereased. The rejects in all cases contained fine particles. This was caused by the agglomerating tendenoy of Piltrol. When the rejects were regycled the line particles oould be removed almost entirely (5,1).

Mgure 20 shows the maximum and minimam-sized particles that occurred in the fines and intermediates. The maximum-sized particles follow the number-average diameter curve very well.

Table 5 and 6 give the weight of intermediates, the average diameter of the intermediates, and the weight
of fines to the cloth bags for both Filtrol and Aerocat. The partiole-size distribution curve for Aerocat had the very same curvature as it did for Piltrol. The difference between the two substances lay mainly in the fact that the smallest particles of Aerocat ran around 6 microns with nothing below 5 microns while riltrol ran 75 percent below 10 microns. Pigure 11 indicates the particle-aize distribution of Aerocat.

Aerocat particles were all spherical in shape, which facilitated measurement of the diameters. Filtrol particles were partially spherical, but also contained random-shaped particles. When the area of the catalysts was calculated, a sphere was assumed in both cases. This calculation is only an approximation in the case of Piltrol. Pgure 23 shows a comparison of the areas of Miltrol and Aerooat.

Mgures 12 and 13 exhibit the weight percent of the Aerocat that appeared in the intermediate and reject flasks respectively. Both substances gave similar ourves for the relation.

As with Riltrol, the V-valve setting of 5 gave a poor degree of separation with Aerocat. When the V-valve setting was increased, satisfactory results in olassification were obtained as shown in figures 14-19.

The maximum- and minimum-siz ed particles appearing in the fines, intermediates, and rejeots is shown in figures 20, 21, and 22. Appearance of fines in the rejects was very small in comparison with Miltrol.

conclusions

Wrom the work done in completing this thesis the following has been concluded:

1. The Federal Air Classifier serves well in eliminating large particles and outting out the fine particles from the two catalysts.
2. For both Piltrol and Aerocat V-valve settings of 20-30 appeared to give the best results for classification.
3. The M-valve settings of $5-20$ were most effective in particle separation. Beyond 20 there was no separation.
4. The overlapping of particles in the intermediates and rejects was more pronounced with Piltrol than Aerocat. (See 1 igures 20, 20, 21, 22.) The overlapping dia not occur between rejects and intermediates at low M-valve settings of 3-6.

FEDERAL AIR CLASSIF YING UNIT - B

FINES

FIG. 24

TABLIS 2

VRLOMITRER TYPE 22RO JET

V-75	RRADTMG	BARO. 29.45 In . Hg
M-5	550	TPMP. $74^{\circ} \mathrm{F}$
M-7	950	-
M-10	1350	
M-12	1800	
M-15	2200	
M-11	2450	
M-20	2700	
14-25	2700	
M-30	2700	

TABSS 2

gun ins

170.	DIVISIONS	MICROMS	NO.	DIVISTONS	MICRONS
1.	150	32.9	21.	54	11.8
2.	50	11.0	22.	26	5.7
3.	78	17.1	23.	20	4.4
4.	62	13.6	24.	45	9.4
5.	50	11.0	25.	63	13.8
6.	41	9.0	26.	45	9.9
7.	27	5.9	27.	25	5.5
8.	23	5.1	28.	32	7.0
9.	48	10.5	29.	37	8.1
10.	50	11.0	30	47	10.3
11.	21	4.6	31.	15	3.3
12.	100	21.9	32.	40	8.8
13.	72	15.8	33.	19	4.2
14.	31	6.8	34.	22	4.8
15.	40	8.8	35.	57	12.5
16.	55	12.1	36.	58	12.7
17.	31	6.8	37.	50	6.6
18.	150	32.9	38.	40	8.8
19.	80	17.5	39.	25	5.5
20.	28	6.1	40.	24	5.3

TABLS 2 Cont.

RUN D-9

V-20, M-13 Wt. Sample $758.5 \mathrm{~g} \quad$ Wt. Rejects $18 \% .5 \mathrm{~g}$

NO.	DIVISTONS	MICRONS	NO.	DIVISIONS	MICRONS
41.	75	16.5	62.	25	5.5
42.	44	9.7	63.	27	5.9
45.	38	8.3	64	27	5.9
44.	27	5.9	65.	72	15.8
45.	42	9.2	66.	22	4.8
46.	17	3.7	67.	30	6.6
47.	51.	11.2	68.	32	7.0
48.	100	22.9	69.	41	9.0
49.	61	13.4	70.	32	7.0
50.	29	6.4	71.	50	11.0
51.	41	9.0	72.	51	12.2
52.	55	12.1	73.	37	8.1
53.	47	10.3	74.	25	5.5
54.	85	18.7	75.	55	12.1
55.	43	9.5	76.	30	6.6
56.	34	7.4	77.	70	15.4
57.	17	3.7	78.	39	8.6
58.	40	8.8	79.	23	5.1
59.	65	14.3	80.	47	10.3
60.	28	6.1	81.	49	10.7
61.	27	5.9	82.	21.	4.6

TABIE 2 Cont.

RUN D-9

TABLE 3

RUN D-9

SIZR GROUP MIGROMS	MRAN OR	NO. OP PARTIGLBS
SIZR GROUP		

$\mathrm{Dw}=$ = weighted average diameter
Dav. = arithmetic average diameter

2 A 2054

MTOROSOORT CAKIBRASTOE

Galibration of pilax Fepiece for liagnitication of 440 x . Merometer Divigions

Bquivalence
2xial (2)
228.0

Division $=\frac{50}{228.0}=0.219$ MLorons
mriai (2) $227.5 \quad$ Division $=\frac{50}{227.5}-0.22$ Marons
Trial (5) 227.C Diviaion $=\frac{50}{22 \% .0}=0.22$ Miorons
2rial (4) 227.0 Diviaion $\frac{50}{225.0}=0.22$ Mierons
Trial (5) 228.0 Diviston $\frac{50}{228.0}=0.219$ Marons

The above alibxation was aone with aid of standard geale with whioh the diviaione to aroas 5 aivialong on the standard seale was the basis.

Diviston of Standexd Scale $=0.01$ Mine $=10$ Mierons 5 divisions $=0.05 \mathrm{MH}_{\mathrm{s}}=50$ Marons

- One (2) division on RLax \#yepiece mioromoter seale $=0.2195 \mathrm{microng}$ at 440 x .

TABLT 5

PILTROL

5	5	182.5	8.44	30.5
"	10	685.0	12.40	21.0
*	15	677.0	12.60	28.5
*	20	660.0	11.60	30.0
"	25	662.5	11.94	24.0
*	30	677.0	11.80	34.5
10	5	95.0	6.15	15.0
*	6	135.0	6.105	33.5
n	$6 \frac{1}{2}$	177.0	6.350	28.5
\%	7	246.0	7.595	27.5
*	82	380.5	9.050	30.5
"	9	534.5	10.425	25.5
n	10	719.5	11.43	, 31.0
15	5	11.0	5.1	44.0
\%	6	18.5	5.4	46.5
\%	7	74.5	5.45	37.5
w	8	158.0	7.225	26.0
*	9	195.0	7.42	35.5

TABLE 5 Cont.

FITHROL

20	5	10.5	3.4	42.0
"	6	20.0	4.50	44.0
"	7	32.0	4.95	61.0
"	8	101.5	6.05	27.0
"	9	169.0		48.5
"	10	200.0	7.05	58.5
"	11	248.5	7.30	54.5
"	12	550.5	8.80	57.5
"	13	758.5	9.48	54.0
"	15	819.0	9.80	50.0
"	20	920.0	11.23	63.0

25	5	14.5	4.44	35.0
"	6	20.5	4.50	44.0
" 7	7	32.5	4.95	46.5

TABLE 5 Cont.

RITMROL

TABKE 6

ARROCAT

TABLI 6 cont.

A.RROCAT

BIBLIOQRAPHY

1. Dalla Valla, J. H., Micromeritios, Chicago, Pitman publishing Corporation, 1943.
2. Dorr, J. V. N., Hine Grinding and Classification. Transactions American Institute of Mining and Metallurgical Bngineers 112:161, 1934.
3. Federal Classifier Systems Inc. Chicago, Bulletin 50.
4. Shepperd, C. B. and Lapple, C. B. MYow Patterns and Pressure Drop in Cyclone Dust Collectors. Industrial Tngineering Chemistry 31:972-84, Sept. 1939.
