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Neurons are characterized by an electric potential which is established between their inside 

and outside media. They exhibit specific voltage fluctuations, in response to strong enough 

current impulses, called action potentials. 

In this work, a bang-bang controlled bilinear system (BLS) is derived to approximate 

the generation of a simple neuron's action potential. The shape of the response, as well as 

the timing seem to be useful for experimental planning and interpretation to neural physi-

ologists. The BLS-model has the potential to aid the design and fabrication of commercial 

neural networks for communication, control and computing. 

In this manner, a variable-structure membrane impedance, such as exhibited by a 

stable focus and a saddle point in state space, and/or other modes, arises naturally. Added 

positive and negative stimuli, such as from other neurons, have the capability to alter the 

voltage across the inside and the outside media of the neuron and elicit an advanced or 

delayed response in the action potential. Such latency is significant as noted above, and is 

an active area of experimental research. 

The response shape and the timing with respect to some other event(latency} are 

related to experimental data. This simple model is compared to the complex and highly 

celebrated Hodgkin-Huxley model for the squid giant axon. The bang-bang feedback control 

is given a biological interpretation of sodium and potassium ion channels in this axon, that 

yields a variable-structure membrane impedance. 

Redacted for Privacy



©Copyright by Youcef Yahiaoui 

June 7, 1999 

All rights reserved 



Bilinear System Model of the Action Potential of a Single Neuron. 

by 

Youcef Yahiaoui 

A THESIS 

submitted to 

Oregon State University 

in partial fulfillment of 
the requirements for the 

degree of 

Master of Science 

Completed June 7, 1999 
Commencement June 2000 



Master of Science thesis of Youcef Yahiaoui presented on June 7, 1999 

APPROVED: 

Major Professor, representing Electrical and Computer Engineering 

Chair of the Dep ment of Electrical and Computer Engineering 

I understand that my thesis will become part of the permanent collection of Oregon State 
University libraries. My signature below authorizes release of my thesis to any reader upon 
request. 

Youcef Yahiaoui, Author 

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



ACKNOWLEDGMENT 

This work has been done at the Oregon State University in the Electrical and Com­

puter Engineering Department. It came together with the help of many talented and sup­

portive people. 

Special thanks to both Professor R. Mohler and Professor G. Mpitsos for their guid­

ance and their continuous help and advice. I am also indebted to Professor M. Shor and V. 

Stonick who provided me with help whenever I asked for it. I am very happy to express my 

gratitude to all the ECE Professors for all I learned from them and for their perseverance 

and dedication. 

I can not forget to direct my special thanks to the ECE administration staff for their 

good care and attention to the students. 

Finally, I am grateful for the partial support of this research by NSF Grant No. 9530917. 



TABLE OF CONTENTS 

1. SOME BASIC NEUROBIOLOGY 

1.1. Introduction ............................................................ . 

1.2. The Classical Neuron ................................................... . 

1.3. Neural Electrical Behavior .............................................. . 

1.3.1. The Membrane Potential . ....................................... . 
1.3.2. Hyperpolarization ............................................... . 
1.3.3. Depolarization .................................................. . 

2. SOME MATHEMATICAL MODELS OF NEURONS ......................... . 

1 

1 

2 

4 

4 

5 
5 

7 

2.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.1.1. Membrane Impedance............................................ 7 
2.1.2. Nernst's Equation.......... ............ .. . ............... ..... ... 8 
2.1.3. Direct Measurement of Ionic Currents in Axon Membranes. ...... 9 
2.1.4. Voltage-Clamp Method.......... .... . ...... ........ ....... ... .. .. 9 

2.2. Hodgkin and Huxley{HH} Model.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 

2.2.1. Hodgkin and Huxley Conventions.......... . . . . . . . . . . . . . . . . . . . . . .. 12 

2.2.2. Ionic Currents.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
2.2.3. HH-model Equations............................................. 16 

3. A SIMPLE BANG-BANG CONTROLLED BILINEAR MODEL .............. 17 

3.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 

3.2. Background on Second Order Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

3.2.1. Stable Focus.... ..... ... ....... ... .. . .... . ................. .. . ... 20 
3.2.2. Saddle Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 

3.3. Neuron Properties.. ............... ..... ..... . ........... ..... ........... 24 

3.3.1. Pulse Timing... .................... . .... ........................ 24 
3.3.2. I/O properties of single Neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 

3.4. Inductance Effect in the Ionic Channel.. .. ... ................. ....... .... 27 

3.4.1. Inductive feature of a neuron membrane... ..... .. ... .... ......... 27 
3.4.2. General Model of an Ionic Channel .............................. 27 
3.4.3. Latency Experiments on a Simple Second-Order System....... .... 30 

4. SINGLE NEURON MODEL .................................................. 32 

4.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. 32 

4.2. Refractoriness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 



TABLE OF CONTENTS (Continued) 

Page 

4.3. Threshold Determination. . . .. . . . . . .. . . . .. . . ... . . .. . .. . .. .. . . . . . . . . . . . . .. 32 

4.4. Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

4.5. Coefficient Determination Based on The HH-Action Potential. . . . .. . . . ... 36 

4.5.1. Stable Focus . ........................................ " . . . . . . . . . .. 36 
4.5.2. Saddle Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 38 

4.6. Model Parameter Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 

4.6.1. Recursive Parameter Identification Using RPM/RLS ... ........... 40 
4.6.2. Optimal Parameter Determination of the Coefficients in the Three 

Spike Regions. .................................................... 42 
4.6.3. Estimated Parameter Values ...................................... 45 

5. CONCLUSION AND PERSPECTIVE ........................................ 49 

BIBLIOGRAPHY ................................................................ 53 

APPENDICES ................................................................... 56 

A Continuous System Identification. . . . . . . .. . . . . . .. . . . ... . . . .. .. ... .. . . . ... 57 

B Latency Curves From a Stable Focus System with a Lead Term. . . . . . . . . . 72 

C Simulink Model of Hodgkin and Huxley Equations.................. ..... 79 

D Simulink Implementation of the BLS-model with Dual Stable focus Equi-
librium Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 80 



LIST OF FIGURES 

1.1 Generic neuron cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.2 The synapse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.3 A micro electrode used to measure the electric properties of a cell. ......... 5 

1.4 Electrical response of the neuron to stimulation[2]. . . . . . . . . . . . . . . . . . . . . . . . . 6 

1.5 Electrical response of the neuron to stimulation[2]. . . . . . . . . . . . . . . . . . . . . . . . . 6 

2.1 Membrane conductance increase during propagated action potential. Time 
course of the action potential is given by the dotted line for comparison. 
(From Cole & Curtis[3]) .................................................. 8 

2.2 Three Voltage-clamp methods[4] ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 

2.3 Recorded voltage-clamp currents with a hyperpolarizing and depolarizlng 
pulses. ([4],ch4, page109). ................................................ 11 

2.4 Separation of ionic currents in squid giant axon by ionic substitution 
method. ([4],ch4, page110). .................. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 

2.5 Hodgkin and Huxley model equivalent circuit.... ..... ................. .... 13 

3.1 Voltage spike and m, hand n variations during the excitation of HH model 
with a short current impulse. ............................................. 18 

3.2 Sodium and Potassium conductances-HH model- versus time during the 
spiking. .................................................................. 19 

3.3 a and b regions for stable node and saddle point............... ........ .... 21 

3.4 State space representation of the switching process........................ 22 

3.5 Spike obtained from the bilinear system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 

3.6 Perturbation of a neuron cell by hyperpolarizing and depolarizing impulses[5] 25 

3.7 Three superimposed simulation sweeps[5] ................................. 26 

3.8 Latency (I/O) curve shapes[5] ............................................ 26 

3.9 Impedance plots of a neuron membrane under subthreshold conditions. 
They are obtained by simulations of HH-model[5] ......................... 28 

3.10 Equivalent circuit of a membrane channel. ................................ 29 



LIST OF FIGURES (Continued) 

3.11 Latency simulations..... ............. ............... ..... ....... ......... 30 

3.12 Depolarization and Hyperpolarization latency curves. Ai are the ampli-
tudes of the perturbing impulses. ......................................... 31 

4.1 Block diagram of the Switching circuit.. .......... ... ... . ......... .. ...... 34 

4.2 Phase plot illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

4.3 Time trajectories of the model output for different input frequencies. . . . . .. 36 

4.4 HH-spike used for a rough parameter determination. ...................... 38 

4.5 Comparison of the HH-spike and that produced by a bilinear system(fit 
not optimized). .................... .. .............. ...... . .......... ...... 39 

4.6 HH-neuron input and output for identification. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 41 

4.7 Identified four parameters throughout the spiking process using RPMjRLS 
method ................................................................... 42 

4.8 HH-neuron spike divided into three piecewise constant parameter regions. 43 

4.9 Superposition of the HH-spike with the reconstructed version using opti-
mally determined parameters. ............................................ 46 



LIST OF FIGURES (Continued) 

LIST OF APPENDIX FIGURES 

5.1 Output model of a system H(s) .............................................. 58 

5.2 Variance of the estimation error vs K[6] ...................................... 59 

5.3 Mobile horizon in the reinitialized partial moment computation.[6]. ....... .. .. 60 

5.4 Simulation set-up for system identification.. . ................... . ............. 63 

5.5 Step input with a PRBS and the system output . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 64 

5.6 The 4 identified parameters. ................................................. 65 

5.7 Output reconstructed using the identified parameters. It is superposed on the 
original contaminated output signal. .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

5.8 Latency Simulation Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

5.9 Simulation Parameters: Solver............................................... 74 

5.10 Simulation Parameters: Workspace. .......................................... 75 

5.11 Simulation relay block ....................................................... 76 

5.12 Simulation Pulse Generator(Input Primary Pulse): ........................... 77 

5.13 Simulation Pulse Generator1 .......... ..... . ..... ..... ....................... 78 

5.14 Simulink implementation of the HH-model ................................... 79 

5.15 Simulink implementation of the BLS Model........... .... ........ ........... 80 



LIST OF TABLES 

4.1 Optimal parameters for curve fitting the action potential in three regions.. 45 

4.2 Control variables for changing the membrane structure during the spiking 
process. .................................................................. 47 



LIST OF APPENDIX FIGURES 

Figure Page 

5.1 Output model of a system H(s) ......................................................... 58 

5.2 Variance of the estimation error vs K[6] .............................................. 59 

5.3 Mobile horizon in the reinitialized partial moment computation[6] ......... 60 

5.4 Simulation set-up for system identification ......................................... 63 

5.5 Step input with a PRBS and the system output .................................... 64 

5.6 The 4 identified parameters ............................................................. 65 

5.7 Output reconstructed using the identified parameters. It is superposed 

on the original contaminated output signal ......................................... 66 

5.8 Latency Simulation Set-up ............................................................... 72 

5.9 Simulation Parameters: Solver ......................................................... 74 

5.10 Simulation Parameters: Workspace .................................................... 75 

5.11 Simulation relay block .................................................................... 76 

5.12 Simulation Pulse Generator (Input Primary Pulse) ............................... 77 

5.13 Simulation Pulse Generator1 ............................................................ 78 

5.14 Simulink implementation of the HH-model ........................................ 79 

5.15 Simulink implementation of the BL5-model ........................................ 80 



To my wife Lorna and My new son Jesse Voujemaa, 

With love to my mother, to my brothers and sister Rosa, 

To my new baby niece Ania and her parents, 

In the memory of my father and my grandmas Thawaamarats and Setsihwa. 

To all those who militate in favour of freedom, love, peace and progress in the world. 



OBJECTIVE OF THE THESIS 

The objective of this work is to model the electrical behavior of a single neuron. 

This work is based on using piecewise linear systems combined through switching into 

what is commonly called bilinear system (BLS). The model is compared to the Hodgkin­

Huxley (HH) model [1] and should implement two features which seem to be important in the 

biological nature of the communication between nerve cells as well as produce the temporal 

shape of the the neuron action potential. One of these features is the natural insensitivity 

to inputs while the neuron is in the process of firing-spiking-after being excited. This 

is referred to as the neuron refractoriness. The sensitivity progressively regenerates during 

the settling of the neuron's voltage around its resting potential. 

The second feature is related to the effect different perturbing excitations, distributed 

in time, have on the timing of an action potential. Here, the cell's voltage is driven to a 

point where an action potential is produced by a just strong enough input current, the 

time of which 'also defines a reference for subsequent spike occurrences. Depending on the 

amplitudes, the relative time positions, and the presentation time of different perturbing 

excitations presented to a neuron in conjunction with the reference input current, the voltage 

of this reaches the firing level-threshold-at different times (latency) accordingly. 

The complexity of HH-model makes it very difficult to perform any analysis on it 

because the coefficients of its first order differential equation themselves are solutions of 

another set of coupled first order differential equations of quantities raised to different 

powers. 

It seems that switching between piecewise linear systems having different equilibrium 

points can provide enough flexibility to generate a model which would satisfy the features 

mentioned above. This would benefit from the technology of intergration of electronic 

circuits (switching circuits) and from its simplicity to build neuron models that would link 

biologists and engineers as to what is happening to the neuron membrane at rest or during 

activation. 



PREFACE 

This work is organized into five main chapters. The first chapter provides a brief 

biological description of a neuron and its different constituent elements. It introduces the 

electrical behavior of the neuron membrane. 

The second chapter covers the concept of the membrane. selective permeability to 

different ions in light of the types of the involved ions. This chapter contains three main 

parts: the first of which deals with the fundamentals of the membrane theory and the 

description of the membrane potentials. The second part presents different means used 

to measure the different membrane currents which are the bases in the development of the 

Hodgkin and Huxley model for the squid giant axon. The third part describes the HH-model 

itself. 

After a brief review of second-order systems, the third chapter briefly mentions the 

inductance equivalent effect from average impedance plots obtained from simulations of the 

HH-model. This chapter ends by some latency curves carried out on a second-order system 

characterized by a stable focus as its equilibrium point and having a lead term noted in the 

impedance plots. 

Chapter four presents the bang-bang bilinear model which is built step by step in 

order to satisfy some different features that real neurons (e.g. squid giant axon) exhibit. 

Two important features discussed here are refractoriness and latency. The absolute re­

fractoriness translates the duration of complete insensitivity of the neuron to the incoming 

input current stimuli while its in the process of producing an action potential. Relative 

refractoriness, however, refers to the period which follows the absolute refractoriness during 

which this sensitivity is progressively recovered. To start with, a bilinear system is built to 

show the possibility to regenerate the spike shape by switching between two linear systems 

characterized by different types of equilibrium points. The two systems interpret the state 

of the membrane impedance depending on the voltage across it and its derivative. 



On one hand, a saddle point is used to represent the sudden increase of the membrane 

action potential after a current excitation is applied. A stable focus,on the other hand, is 

used to model the fall of the membrane potential after this has reached the switching level. 

Later in this chapter, it is shown that adding another stable focus to account for the 

sudden variation in the dynamics towards the tail of the spike helps improve the precision 

with which the HH-model spike is approximated. 

Finally; chapter five concludes this work with a conclusion, comments and some per­

spectives. Appendix A outlines a tool which transforms a constant coefficient linear differ­

ential equation into a linear integral equation. This latter is suitable for use with a recursive 

least square method (RLS) in order to estimate the model parameters when the input and 

the output are collected from a real neuron. Some useful matlab codes and simulink models 

are also included in the Appendix. 



Bilinear System Model of the Action Potential of a Single Neuron 

1. SOME BASIC NEUROBIOLOGY 

1.1. Introduction 

Neuron or nerve cells are the elementary computing units of the nervous systems. 

The mammalian brain contains lots of them. The human brain contains between 1010 to 

1011 neurons perhaps more being able to cooperate in an effective way. Some neurons in 

the human brain receive on the order of hundreds to thousands of connections from other 

neurons, making about 1015 connections. This number is much smaller than the number 

that would result if each cell is to be connected with every other cell. 

Other types of cells also exist in the nervous system. Glia (glue) cells, which are 

known to perform important support functions, are the most common of these cells. 

Neurons being highly mechanically sensitive (they respond to pressure), the central 

nervous system is mechanically protected by extraordinary means. The brain is encased in 

a hard skull. Since soft tissue can easily be damaged by being in contact with hard bone, 

the brain is floated in a cerebrospinal fluid, which provides a hydraulic suspension system. 

Neurons are metabolically very active. The human nervous system consumes about 25% of 

the body's energy. Being only 1 % to 2% of the body weight, it requires more energy than 

any other tissue. Apparently the electrochemistry of neurons requires high metabolic rate. 

Elaborate metabolic means are used to regulate brain chemistry and to insulate it from the 

rest of the body which is less sensitive to bad molecules. The blood-brain barrier is the 

term used to describe this kind of filtering mechanism, which allows only a small number 

of molecules to enter the nervous system from the blood. It is believed that the glia plays 

an important role in this function. 
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1.2. The Classical Neuron 

Neurons are cells; they have nucleus and the related metabolic apparatus. Figure 1.1 

is a diagram of the generic neuron. In this standard picture, dendrites receive inputs from 

other cells, the soma and dendrites process and integrate the inputs, and information is then 

transmitted via the axon to the synapses whose outputs will be inputs to other neurons or 

to effector organs. 

As in all animal cells, the neuron is surrounded by a thin membrane with remarkable 

properties. Its function is to separate the inside of the neuron from its outside which 

are chemically very different. The concentration of sodium ions (N:) is as much as 10 

times greater outside than inside. Potassium ions (K+) are equally out of balance, but the 

concentration is higher inside than outside the cell (for the squid giant axon experiments). 

Particular ions can pass through the membrane pores (channels) into or out of the cell. The 

pores can change their conformation under either electrical or chemical control so that ion 

flow can be regulated; that is, the permeability of the membrane is under the control of the 

chemical and electrical environment. This mechanism of variable ionic conductance forms 

the basis for the electric properties of neurons. 

Using a patch clamping technique, it is possible to demonstrate and to investigate 

the properties of single ionic channels. This technique consists of using a hollow glass 

microelectrode to capture a small piece of a membrane at its tip. This piece actually covers 

the opening of the microelectrode, and might contain only one or two ionic channels. Then, 

the ionic and electrical properties of the single channel can be investigated in detail just 

by studying the minuscule currents passing through it. The channel is seen to open in an 

on-or-off fashion. 

Figure .1.1 shows a generic picture of a neuron in which three main parts can be 

distinguished. These parts are the soma, the axon and the synapses. The soma, also called 

the cell body, is the central processing unit element. The hair like processes that emerge 

from the soma are called dendrites. Besides increasing the surface area for the converging 
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,Axon 

Soma: Cell Bod.v-----!l----' 

Terminal arborization 

Synapses 

FIGURE 1.1: Generic neuron cell 

synapses from other neurons, the role of dendrites in inter-neuron communication is actively 

under investigation. 

The axon is a transmission line of the cell which transports propagated signals from 

a neuron to another or from a neuron to a muscle tissue. Axons reach their destinations 

by splitting into several branches referred to as synapses. These terminations broaden into 

bulges called boutons. 

The boutons generally do not make a direct contact with the destination membrane; 

a cleft, however, separates the two. As shown in figure 1.2, boutons contain small pockets 

which, under excitation, can release chemicals called neurotransmitters. These chemicals 

act as mediators in the transfer of activity from the axon to a soma. They modify the 

permeability of the membrane to different ions in different ways. If the resulting change 
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Synapse cleft 

FIGURE 1.2: The synapse 

in the potential is positive, it is called an excitatory postsynaptic potential (EPSP) and if 

negative an inhibitory postsynaptic potential. 

1.3. Neural Electrical Behavior 

In order to understand the information abilities of the neurons, one must be able to 

interpret the electrical events that take place in it. We have mentioned that the neuron has 

a thin membrane, and that large electrical and chemical differences exist between the inside 

and the outside of the cell across this membrane. 

1.3.1. The Membrane Potential 

Figure 1.3 shows one of the ways biologists are able to measure the membrane poten­

tial. A microelectrode, filled with a conducting solution, is used to measure the potential 

difference of about -75 m V across the axon's membrane. Although this potential might 

appear to be very low, an electric field of about 100, 000 V / em is established across the 

membrane since it is approximately only 70 AD thick. 
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Microelectrode Microelectrode 
with conducting solution with conducting solution 

II Axon (I Axon 

FIGURE 1.3: A microelectrode used to measure the electric properties of a cell. 

1.3.2. Hyperpolarization 

The membrane is said to be hyperpolarized if its voltage is caused to become more 

negative than the resting potential by a stimulus current that flows across it. As it is 

illustrated by figure 1.4, the response of a the membrane to a series of hyperpolarizing 

square current pulses resembles a simple charging and discharging capacitor response. 

1.3.3. Depolarization 

The membrane is said to be depolarized if its voltage is caused to become more 

positive by a current stimulus. Figure 1.5 shows the response of a depolarized membrane 

to a square depolarizing current wave[2]. It can be seen that after exceeding a certain level 

of the input current (threshold), the membrane potential exhibits a special shape called a 

spike or an action potential. The potential suddenly increases to a maximum value then 

drops relatively slowly back to its resting equilibrium potential after an undershoot. The 

action potential shape is different from one type of neurons to another. The mechanism 

behind the action potential seems to be a regenerative feedback process involving changes 
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FIGURE 1.4: Electrical response of the neuron to stimulation[2] 

Omv ------------------------------------- ----------. 

-60mv 

Time 

Current Stimulus 

Depolarization 

FIGURE 1.5: Electrical response of the neuron to stimulation[2] 

in the membrane impedance for particular ions. Hodgkin and Huxley, in their studies on a 

squid giant axon ([7], [8]), were able to explain many features of the action potential based 

on the permeability change selectively for sodium and potassium ions. The Hodgkin and 

Huxley equations provide an elegant mathematical model of the action potential although 

the physical significance of some variables is not quite clear. 
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2. SOME MATHEMATICAL MODELS OF NEURONS 

2.1. Introduction 

In 1902 the physiologist Bernstein[4] stated that the nerve membrane is selectively 

permeable to potassium ions at rest. Bernstein established that the concentration of K+ 

is higher inside the cell than outside and therefore these ions would tend to diffuse out, 

removing positive charges from the inside of the cell and setting up a negative internal 

potential. This potential would grow until it is large enough to oppose the further net efflux 

of K+ (diffuSion and electric forces completely cancel). As it will be seen in the subsequent 

sections, Nernst's theory[4] is used to calculate the equilibrium potential corresponding to 

each type of ions. 

2.1.1. Membrane Impedance 

Figure 2.1 shows the property of the membrane impedance change during activity. 

Cole and Curtis[3] placed an active squid giant axon between two electrodes in an alternating 

current impedance bridge in order to look for the changes of the membrane resistance and 

capacitance associated with action potential. They observed a significant fall in the mem­

brane impedance soon after the first sign of depolarization. The decrease in the impedance 

lasts for some milliseconds after repolarization of the membrane begins. 

The time course of the membrane conductance increase in a squid giant axon is 

measured by the width of the white band photographed from the face of an oscilloscope 

during the action potential. The band is drawn by the imbalance signal of a high-frequency 

Wheatstone bridge applied across the axon to measure the membrane impedance[9]. 

In this work we are interested in how action potentials can be described using system 

theory and observation of the measurements rather than being too much concerned with 

cellular anatomy and the details of ionic channels which form the basis of Hodgkin and 

Huxley models. 
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rnsec 0 2 3 4 5 6 7 8910 

FIGURE 2.1: Membrane conductance increase during propagated action potential. Time 
course of the action potential is given by the dotted line for comparison. (From Cole & 
Curtis [3]) 

Most nerve models are based on Nernst's equation that determines a cell membrane 's 

potential from the ion concentrations near it. This is first discussed in the following section 

before a brief description of Hodgkin and Huxley model is given. 

2.1.2. Nernst 's Equation 

The basis for Nernst's equations is the assumption that ions in a solution act like 

gas molecules [2] . Therefore, the movement of ions i.e. from inside the cell to outside of it 

is equivalent to gas expansion from volume V1 to volume V2 with ionic concentrations C1 

and C2 respectively. Under this approximation, Nernst's equation is obtained by equating 

the work done by ions moving down the concentration difference and the work done by the 

same ions moving against their electrical gradient[2] and is given by 

kT C1 
Eion = - log -c 

q 2 
(2.1) 
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Equation 2.1 shows how to compute the membrane equilibrium potential, Eion , once 

the ion concentrations inside and outside are known. q is the charge on each ionized molecule, 

k the Boltzman constant and T the temperature in degrees Kelvin. 

Applying this, independently, to each individual type of the involved ions, particularly 

sodium (Nt) and potassium (K+) diffusing inwards and outwards respectively, results in 

an approximation of the corresponding equilibrium potentials given below: 

kT CNa 
-log-O- = 55mV 
q cNa 

2 

(2.2) 

kT C K 
-log-O- = -75mV 
q Ci

K 
(2.3) 

Where C:;i is the sodium concentration outside/inside the cell and C!:;i is the potas­

sium concentration outside/inside the cell. 

2.1.3. Direct Measurement of Ionic Currents in Axon Membranes 

Hodgkin and Huxley[1] used a voltage clamp method to measure ionic currents asso­

ciated with different ions in the membrane. Using this method, they developed a kinetic 

description of the voltage and time dependence of ionic permeability changes in squid giant 

axon membranes. 

2.1.4. Voltage-Clamp Method 

This method consists of monitoring the voltage across the membrane. Its voltage is 

kept constant in order to eliminate displacement currents due to the equivalent membrane 

capacitance which appear in the membrane equation 2.4. 

(2.4) 

As shown by the arrangements depicted in figure 2.2, this is done by means of sensing 

the difference between the membrane and the reference voltages using a feedback amplifier, 

then injecting the necessary current to counterbalance ionic currents arising from the change 
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FIGURE 2.2: Three Voltage-clamp methods[4] 

in the membrane permeability. The first curve of figure 2.3 shows the total measured current 

obtained using a hyperpolarizing impulse. The second curve shows that obtained using a 

depolarizing impulse. 

The objective of the method is to calculate the permeabilities to different types of 

ions from the measured currents. Individual ionic currents must then be known. This is 

done by using ionic substitution method. By altering the ionic constitution of the bathing 

solution, Hodgkin and Huxley were able to separate the total membrane current into its 

main ionic components IK and I Na. 

Curve (A) in figure 2.4 shows the measured current of a portion of a membrane 

immersed in normal sea water. Curve (B), however, illustrates the ionic current with a 
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FIGURE 2,3: Recorded voltage-clamp currents with a hyperpolarizing and depolarizing 
pulses. ([4], ch4, page109) , 

bathing solution poor in sodium. It , hence, corresponds to a current IK caused by the 

movement of potassium ions, The difference between these two curves suggests the course 

of the component corresponding to the flow of sodium ions, 

2.2. Hodgkin and Huxley (HH) Model 

Many attempts to describe a nerve cell's electrical behavior have been based on elec-

trical circuit analogies, Hodgkin and Huxley[lO] and FitzHugh ([ ll], [12], [13]) are among 

those who have taken this approach, The Hodgkin-Huxley model provided a major break-

through; they formulated a mathematical model that was closely related to experimental 

data on the squid giant axon membrane, 

Using clamping experiments shown in figure 2,2, Hodgkin and Huxley found a simple 

equivalent electrical circuit , figure 2,5, to model the axon membrane, Their model is in-

strumental in suggesting and understanding a variety of important experiments , although 

most neurons are much more complex than squid giant axon, 

In figure 2,5 , the membrane current consists mainly of the portion which charges the 

membrane capacitance and a portion associated to the ionic currents, Ionic currents are 
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FIGURE 2.4: Separation of ionic currents in squid giant axon by ionic substitution method. 
([4], cM, pagellO). 

subdivided into three distinct components, a sodium current INa, a potassium current IK 

and a small leakage current h which is primarily carried by chloride ions. Equation 2.5 

describes the behavior of the circuit shown in figure 2.5. 

(2.5) 

Here em is the membrane capacitance, Vm is the intracellular potential (membrane poten-

tial), lion is the net ionic current flowing across the membrane, Iext is an externally applied 

current, Isynapse is the synaptic current fed by neighboring cells. Synaptic current is ignored 

in the model of a single neuron. 

2.2.1. Hodgkin and Huxley Conventions 

In equation 2.5 lion and Iext have opposite sign conventions[14]. As this equation is 

written, positive Iext will tend to depolarize the cell (i.e., Vm more positive), while negative 
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lext will hyperpolarize it (i.e., make Vm more negative). This sign convention is sometimes 

referred to as the physiologists convention which states that an inward flow of positive ions 

into the cell is considered a negative current[14]. 

2.2.2. Ionic Currents 

The total ionic current is the algebraic sum of the individual contributions from all 

participating ion types. 

lion = L Gk(Vm - Ek)' 
k 

(2.6) 

Where Gk is the conductance, the inverse resistance Gk = 1/ Rk, associated with component 
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ionic component h. As described above, in HH-model there are 3 types of these ionic 

components, hence; 

(2.7) 

In order to explain their experimental results, Hodgkin and Huxley postulated that 

G Na and G K both change dynamically with the membrane voltage. It is proven today that 

this voltage dependence can be related to the biophysical properties of the membrane that 

control the flow of ions across the membrane. 

Today,. it is scientifically believed that the cell membrane contains ion-selective paths 

which are called channels. These regulate the flow of ions through the membrane by closing 

or opening depending on the value of the membrane potential. 

Although Hodgkin and Huxley did not know much about these channels at the time 

they developed their model; the validity oftheir assumptions and the results of many modern 

experiments enable us to describe their model in terms of these ionic channels. 

The macroscopic conductance Gk of the HH model can be thought of as aris­

ing from the combined effects of a large number of microscopic ion channels 

embedded in the membrane. Each individual ion channel can be thought of 

as containing a small number of physical gates which regulate the flow of ions 

through the channel. An individual gate can be in one of two states, permissive 

or non-permissive. When all of the gates of a particular channel are in the per­

missive state, ions can pass through the channel and the channel is open. If any 

of the gates are in the non-permissive state, ions cannot flow and the channel is 

closed ([14], page:37). 

In HH- model, the ionic conductances are assumed to be functions of the membrane volt­

age by stating that the probability for an individual gate to be in the permissive or non­

permissive state depends On the membrane voltage. i.e. for a specific gate i the associated 

probability to be in the permissive state, is Pi which ranges from 0 to 1. Large number 

of gates rather than an individual one could be taken into account using the fraction of 
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gates in that population that are in the permissive state and (1 - Pi) as the fraction in the 

non-permissive state. Hodgkin and Huxley assumed that transitions between permissive 

and nonpermissive states obey first order kinetics: 

(2.8) 

Where ai and {3i are voltage-dependent rate constants describing the "non-permissive to 

permissive" and "permissive to non-permissive" transition rates, respectively[14]. If the 

membrane is clamped to a certain value V, then the fraction of gates in the permissive state 

will eventually tend to a steady state value with dpddt = 0 as t tends to 00: 

(2.9) 

The time constant of the exponential representing the time course for approaching 

this equilibrium point is given by 

1 
Ti (V) = ai (V) + {3i (V) (2.10) 

An individual channel is considered open when all the gates in that channel are 

open. When a channel is open, it contributes with a small fixed percentage to the total 

conductance and zero otherwise. The macroscopic conductance associated with a large 

population of channels is proportional to the number of channels in open state, and hence 

to the probability that the associated gates in their permissive state. Therefore it is just 

fear to say that the macroscopic conductance Gk due to channels of type k, with constituent 

gates of type i, is proportional to the product of the individual gate probabilities Pi: 

(2.11) 

In equation 2.11, 9k is a normalized constant which represents the maximum conduc-

tance when all the channels are open. 

The variable Pi in equations 2.8- 2.11 is the generalized notation that could be applied 

to a variety of conductances. In the HH-model, this variable is replaced by other variables 

which take the names of the associated gate types. For instance, the HH-model models the 
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sodium conductance using three gates of type labeled "m" and one gate of type labeled 

"h". Hence, 

G - 3 - 3h Na = gNaPmPh = gNam (2.12) 

Similarly, the potassium conductance is modeled with 4 gates of the same type "n" 

(2.13) 

2.2.3. HH-model Equations 

The following is the summary of the HH-model equations: 

dm 
a m (Vm)(l - m) - ,Bm(Vm)m, (2.15) -

dt 
dh 

ah(Vm)(l - h) - ,Bh(Vm)h, (2.16) = dt 
dn 

a n(Vm)(l - n) - ,Bn(Vm)n, (2.17) - = dt 

The experimentally observed values of a's and ,B's are represented approximately by 

smooth mathematical functions. The functions for squid axons at 6.3°C are 

am = 
O.l(Vm + 40) (2.18) 

1 - e-(Vm+40)/10 

,Bm 0.108e-Vm / 18 (2.19) 

O.Ol(Vm + 55) 
an = 1 - e-(Vm+55)/10 

(2.20) 

,Bn = 0.0555e-Vm / 8O (2.21) 

ah 0.0027e-Vm / 2O (2.22) 

,Bh 
1 

(2.23) = 1 + e-(Vm+35)/lO 

The constant parameters which appear in equation 2.14, used in simulating the HH­

model in this research, are [4] ENa = 50mV; gNa = 120mmho/cm2
; Ek = -77mV; gk = 

36mmho/cm2 EL = -54.387mV; gL = 0.3mmho/cm2
; em = 1J.LF/cm2

. 
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3. A SIMPLE BANG-BANG CONTROLLED BILINEAR MODEL 

3.1. Introduction 

Most of the physical behavior of the squid giant axon seems to be adequately approx­

imated by the Hodgkin and Huxley (HH) model ([1], [8], [10], [15]). This model basically 

represents an electrical equivalent circuit of a neuron membrane. The equivalent circuit 

takes into account the membrane capacitance, the membrane voltage dependent potassium 

and sodium conductances with their respective equilibrium voltages. In addition, a leakage 

branch is included to account for other types of ions involved. Figure 3.1 shows the action 

potential and the gate parameters which result from simulating HH-model equations 2.14-

2.23. Of particular interest in this work is the membrane voltage graph which shows an 

action potential. The aim is to reproduce the shape of this spike using bang-bang switching 

between two second-order systems. Figure 3.2, on the other hand, shows the variable sodium 

and potassium conductances over the spike duration. These are obtained from simulations 

of equations 2.12 and 2.13 respectively. 

It can be seen that the HH-model, depicted by figure 2.5, is a variable-structure 

impedance model. The impedance that the membrane presents to the flow of ions changes 

depending on the voltage across it. This structure change can be approximated by a piece­

wise linear structure called a bang-bang feedback control or a bilinear system (BLS) with 

constant piecewise constant coefficients. 

In the HH-model, the sodium and potassium conductances are continuously controlled 

by the corresponding ionic feedback. However, the feedback ion-gate model components 

are quite complex and not physically satisfying, but mostly generated to fit the data. The 

present work intends to generate a simple and somewhat physically meaningful model based 

on a variable-structure impedance to sodium and to potassium ion currents. Hence, basic 

system theory is used to simulate the apparent features of two jointly-linked linear structures 

to form a bang-bang controlled bilinear system. These features are obvious when observing 

the membrane potential spike after it is excited with a current impUlse. 
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In this chapter, the membrane spike-signal shape is first approximated using switching 

between two second-order systems. One of which exhibits a stable focus as an equilibrium 

point and the other a saddle point. Then, introducing a third linear system, with a stable 

focus equilibrium point, will improve the approximation of the spike shape. 

60 
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FIGURE 3.1: Voltage spike and m, hand n variations during the excitation of HH model 
with a short current impulse. 

By observing the response of a neuron to an EPSC (excitatory postsynaptic current), 

we can easily deduce that the spike acts as if produced first by a second-order system 

with a saddle point which switches to another second-order system with a stable focus 

equilibrium point with a relatively high damping ratio and appropriate natural frequency. 

In this chapter, we will show how the model helps approximately reproduce a spike shape 
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FIGURE 3.2: Sodium and Potassium conductances-HH model- versus time during the 
spiking. 

similar to the experimentally observed one. 

3.2. Background on Second Order Systems 

Assume we have the following two linear differential equations: 

(3.1) 

(3.2) 

The system described by the differential equation 3.1 is to have a saddle point at the 

membrane voltage inflection, where the voltage starts to shoot up. Whereas the system 
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described by the second differential equation 3.2, is to have a stable focus at the equilibrium 

potential, since after firing, the potential falls back to settle around the rest potential after 

a small undershoot. 

3.2.1. Stable Focus 

For the system described by equation 3.1 to have a stable focus, its characteristic 

polynomial S2 + alS + bl = 0 should have 2 complex conjugate roots with a negative real 

part. The two roots are given by the following, 

S - -al ± J ai - 4bl 
1,2 - 2 

The conditions for the stable focus equilibrium point are then, 

(3.3) 

(3.4) 

(3.5) 

The region for the selection of a and b to satisfy these two conditions is shown by the 

shaded area in figure 3.3 

3.2.2. Saddle Point 

For the system to have a saddle point, the characteristic equation should have two 

distinct-in-sign real roots. The condition for this to occur is that the product of Sl and S2 

given by equation 3.3 is negative. Hence b is negative as shown by figure 3.3. 

In the state space representation of this system, notice that the eigenvalues are just 

the slopes of the two lines representing the eigenvectors for v vs v. This is shown in the 

following. 

If we let Xl = v and X2 =:h then 

(3.6) 

(3.7) 
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FIGURE 3.3: a and b regions for stable node and saddle point. 

Which, with X = ( Xl ) , can be written as X = (0 1) X 
~ -b -a 
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If V1 = ( Vll ) and V2 = ( V21 ) are two eigenvectors corresponding to Sl and 
V12 V22 

S 2 respectively, then, their components are related as in the following relationships, 

V22 = S 2V21 (3 .9) 

Hence one can change the values of the eigenvalues to adjust how fast the spike will 

shoot up towards the switching point. As to the stable-focus system, both the natural 

frequency and the damping ratio are altered to achieve the desired overshoot. 

Figure 3.4 shows an example of state space solution of a system obtained by switching 

from a saddle point at point (0, 0) to a stable focus at (-0.5, 0). The switching occurs 
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FIGURE 3.4: State space representation of the switching process 

at a predetermined value of the membrane potential representing the sodium equilibrium 

voltage VNa' The system obtained from combining both equations 3.1 and 3.2 forms a 

bilinear system[16]. 

(3.10) 

with bang-bang control 

u={ (3.11) 
+1 else 

These are obtained using ( = 0.707 and Wn = .j(2) for the stable focus (al = -0.5, bl = 

-0.5) and SI = -2 and S2 = 2/3 for the saddle point (a2 = 4/3, b2 = -4/3). 

Figure 3.5 shows that the bilinear system can explain the shape of the neuron spike, 

although different neurons of different species exhibit different spike shapes, important 
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features of the membrane could be approximated by the appropriate piecewise linear char-

acteristics corresponding to the bang-bang controlled membrane impedance. This is the 

subject of the subsequent chapters. 

Figure 3.5 stresses the similarity between the HH-spike and that generated using a 

bilinear model. Although the initial inflection is not quite apparent in figure 3.1, neurons 

do exhibit this behavior when the excitation is just strong enough to produce an action 

potential. Depending on the strength of the current impulse input, the action potential 

rises rapidly or through a significant initial inflection point. In the BLS-model, this could 

be accounted for by altering the firing threshold above the negative switching eigen vector 

line. 

Here, the permeability of the membrane to sodium ions is represented by the unstable 

equilibrium point part (saddle). The period during which the potential rises-along the 

positive eigen vector-could be thought of as the flow of sodium ions from the outside of 
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the membrane to the inside, just as described by Hodgkin and Huxley. This situation does 

not last long before the permeability of the membrane to potassium ions takes over, and the 

membrane potential drops back to approach its equilibrium potential. This is represented 

by the stable focus portion of figure 3.5. 

3.3. Neuron Properties 

The desired model simplification of a single neuron is compared to the HH-model in 

light of some properities which neurons exhibit. It is therefore worthwile mentioning some 

of these characteristics before any further analysis. 

3.3.1. Pu.lse Timing 

Communication between neurons has b8en approached from different perspectives. 

Some models assume instantaneous activated synapses by graded potential changes between 

neurons. Others assume discontinuous communication which takes place via synapses acti­

vated by propagated action potentials (spikes). 

In the latter category, relative presentation of stimulating current impulses (or action 

potentials) are found to have interesting effects on the timing of the neuron's membrane 

firing[5]. The relationship of the spike appearance time to the strength and the presentation 

time of afferent impulses is given by curves referred to as input and output curves (1/0-

curves). 

3.3.2. I/O properties of single Neu.rons 

As it is shown in figure 3.6, the model consists of two distinct neurons[l]. The neurons 

are normally at rest. Cell-l is used to provide an EPSP signal just strong enough to cause 

cell-2 to spike. Depolarizing (DI) and hyperpolarizing impulses are used to model the effect 

of converging influences of different magnitudes from the neighboring cells. DR's and DI's 

are very short (one integration step) and the voltage changes they produce is well within the 

linear region of the membrane. Figure 3.7 shows three superposed simulations' independent 
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DI 
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HI 

FIGURE 3.6: Perturbation of a neuron cell by hyperpolarizing and depolarizing impulses[5] 

sweeps. The dashed curve shown in panel (A) is the unperturbed spike, with the application 

of the EPSC (B) only. The dotted and continuous curves represent the evoked spikes with 

the application of DI and HI perturbing impulses respectively. It is clear that depolarizing 

impulses advance the spiking event while hyperpolarizing impulses delay it. 

The time it takes for the action potential (spike) to reach the threshold voltage, 

with respect to some given reference (in this case it is the beginning of each sweep), is 

recorded and plotted against the presentation time of the corresponding impulses. Different 

curves for different perturbing impulse amplitudes are obtained and the their collection is 

called I/O-functions or Latency curves(referred to as Input-Output, I/O, functions for the 

experiment). Their shapes are shown in figure 3.8. 



mV 

50 
40 
30 
20 
10 
o 

-10 
-20 
-30 
-40 
-50 
-60 
-70 

Excitation 0.5 
currents(ns) 

,-: ;.. 
: ::. 

________________________ ,_> _A_.Inpu, level fo, de<e,tin, 
a spike (Threshold) 

f--------...L..----------Time 

Perturbing 
current impulses EPSC 

L--f-------'----=-------Time 

-63.1 j .~ 
-63.3 f---!-~--_="-__ --+-------+---t--Time(msec) 

-63.5 

mV 
23 28 33 

FIGURE 3.7: Three superimposed simulation sweeps[5] 

I 
o 

I TiITle (ITlsec) 
10 20 

FIGURE 3.8: Latency (I/O) curve shapes[5] 

I 

30 

26 



27 

3.4. Inductance Effect in the Ionic Channel 

3.4.1. Inductive feature of a neuron membrane 

A significant evidence of an equivalent inductive effect in the membrane of a neu-

ron cell was illucidated by some HH-model simulation results consisting of calculating the 

average voltage to current ratio across the membrane. Figure 3.9 shows three impedance 

plots obtained under different conditions; normal resting, depolarized, and hyperpolarized 

membrane [5] . 

The impedance curves shown in figure 3.9 are obtained from simulations on the 

Hodgkin-Huxley (HH) neuron model. They portray the fact that depolarizing the membrane 

enhances the appearance of the inductive effect. Since during depolarization the membrane 

becomes much more permeable to sodium ions, this suggests that particularly sodium paths 

should be modeled to include inductance (lead in phase) as opposed to potassium paths 

which show much less inductive effect when their ions are favored by the membrane perme-

ability. 

Although appropriate experimental data has not been available to this project, we 

use the data from HH-model simulations as this is broadly accepted for the squid giant 

axon. 

3.4.2. General Model of an Ionic Channel 

Simulated HH-model data, such as figure 3.9 suggest that the actual network shown 

in figure 3.10 should include some inductance. Here, 

From equation 3.12, we have 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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FIGURE 3.9: Impedance plots of a neuron membrane under subthreshold conditions. They 
are obtained by simulations of HH-model[5] 

Using equation 3.14, we get 

(3.16) 

Rearranging the equation above, we obtain the following equation, in which a lead term 

originating from the existence of the channel inductance appears. 

C d2vm CmRch dVm _1_ ( E) _ diex R ch . 
m dt2 + Lch dt + Lch Vm + ch - dt + Lch ~ex (3.17) 

Or 
d2vm Rch dVm 1 ( 1 di ex Rch . 
F + Lch dt + LchCm Vm + Ech ) = Cm dt + LchCm ~ex (3.18) 

Which could be written as a transfer function from i ex to Vm as: 

Vm(S) = K w;(s + a) 
Iex(s) s2 + 2(wns + w; 

(3 .19) 

where, K = Lch , Wn = l /jLchCm , a = Rch/Lch, (= RchJCm/Lch . 
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FIGURE 3.10: Equivalent circuit of a membrane channel. 

The time domain impulse response, Vmir , of the system represented by equation 3.19 

is given by the following equation: 

(3.20) 

where 

II -1 Wn .JI=(2 
(7 = tan {( < 1) 

a-(wn 
(3.21 ) 
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3.4.3. Latency Experiments on a Simple Second-Order System 

30 

.. 

Figure 3.11 shows a block diagram of a second-order system as used in chapter 4. with 

the added lead term suggested above. It also shows how the latency is measured. A strong 

primary input impulse is presented at a fixed point in time. Secondary perturbing impulses 

are presented at different time positions prior to the the primary one. For each amplitude Ai 

of the perturbing impulses, their presentation time is varied to sweep the entire time interval 

prior to the primary input impulse. Latency curves are obtained by plotting the time, L i , at 

which the output voltage reaches lith against these presentation times, for different values of 

Ai. Initial time of each simulation is taken to be the time origin. Appendix B provides the 

required parameters for the implementation of the same simulation using simulink system 

blocks. It also provides the driving matlab program, written to vary the presentation time 

and record the latency. 

The values used in this experiment are ( = 1/~, Wn = ~, similar to the stable 

focus mode in section 3., but with Q = 5. 
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FIGURE 3.12: Depolarization and Hyperpolarization latency curves. Ai are the amplitudes 
of the perturbing impulses. 

Figure 3.12 shows the obtained latency time trajectories (see chapter 3), correspond-

ing to positive perturbing impulses (Depolarization) and others corresponding to negative 

impulses (hyperpolarization) for this simple model. 

These curves show a natural feature of this linear system class. They are closely 

related to the published latency curves obtained from the Hodgkin and Huxley model with 

similar experiments as shown in figure 3.8. 

However, note a slight lack of symmetry in figure 3.8 (not present in figure 3.12) prob-

ably due to the change in the model parameters according to impulse sign and magnitude, 

through the nonlinear feedback in the HH-model. 
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4. SINGLE NEURON MODEL 

4.1. Introduction 

In this section, a preliminary study of a basic switching problem, which is based on 

section 3.1. is presented. In this part of work, only one type of input, delta-functions form 

change in current, A 2: 5(t - td is considered. The switching threshold for going from one 

mode to another will be determined according to both the voltage and its rate of change 

levels as appropriate for a second-order system. Again, the switchings correspond to discrete 

impedance changes as for potassium and sodium ions. 

4.2. Refractoriness 

In order to account for the fact that the membrane is totally insensitive to the in­

coming impulses, received while spiking and before the membrane voltage settles within a 

particular range around the SF equilibrium point, a third nonlinearity (relay) is used to 

disable the excitation after the first switching and enable it again after the voltage signal 

enters a zone defined by a circle of radius E centered around the stable focus equilibrium 

point. Although it appears, from simulations performed on the HH-model, that the mem­

brane restores its sensitivity to input pulses in a progressive manner, an ideal relay is used 

here for illustration purposes. In the following paragraphs, a procedure is developed to 

determine the logic needed. 

4.3. Threshold Determination 

As mentioned in the introduction, Dirac type impulses are considered primarily as 

the inputs for the model. During the initial phase, the membrane is at rest. The resting 

potential is assumed zero in this analysis. A current impulse is applied to the membrane 

and depending on the area of this impulse, the membrane mayor may not fire. Let both 

coefficients of the left hand side of equation 3.18 be equal to 2, (damping coefficient of 0.707 
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and the natural frequency of )21, and let A be the coefficient of the applied Dirac impulse. 

( 4.1) 

The solution for equation 4.1 is given by the following, 

Vm(t) = Ae-t sin(t) (4.2) 

with the initial conditions vm(O) = 0 and 

(4.3) 

If the equilibrium point corresponding to the saddle point is Vsp , and if Al is the 

negative eigenvalue corresponding to the saddle point, then the condition for firing is given 

by: 

(4.4) 

In general, the spiking threshold at Vm = x is set to be 

(4.5) 

when saddle equilibrium point, Vsp , is not at the origin. 

Figure 4.1 shows the switching operations by means of comparators and other logic. 

Figure 4.2 gives the phase plot of the two states of the model. 

The relay shown in figure 4.1 is used to implement the refractory property. As men-

tioned in section 4.2., the circles included in figure 4.2 account for the refractoriness. By 

means of a relay, the input is disabled as soon as the firing threshold is reached and is en-

abled again when the trajectory enters a recovery zone defined by a circle of radius € in the 

phase plot, within which the neuron is assumed to have completely restored its sensitivity 

to the input signal. This is taken to be Vthj50 in preliminary simulations. The spiking 

threshold sets the relay's higher switching point while the recovery region sets its lower 

switching limit. 

IThese values are normalized to rad/msec in order to approximate the neuron response. 
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FIGURE 4.1: Block diagram of the Switching circuit 

The general equation of the system described by figures 4.1 and 4.2 could be written 

as follows. 

1 vm ~ Al(Vm - Vsp ) 

0 elsewhere. 

1 Vm > A2(Vm - Vsp) 
(4.6) 

0 elsewhere 

1 Vm ~ Vs 

0 elsewhere 

1 ((t) = Jvm2 + v~ ~ € and m4- =0 

0 ((t) ~ Vmth(t) and m4_ = 1 
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Where al = a2 = 2.5 and b1 = b2 = 2 in this example. In the equations above the (-) 

sign as a subscript refers to the previous state of the corresponding quantity. 

4.4. Results 

The results depicted by figure 4.3 are obtained using the BLS-model coefficients cal-

culated in section 4.5 .. 

• Figure 4.3 shows different results for two different firing frequencies. The first two 

windows show the response of the model along with the train of impulses applied to 

it. These are of such a frequency that the recovery is attained before the application 

of the next impulse (fin = 62 Hz). 

• Similarly, the second two windows show that there is no response to impulses applied 

before the membrane recovers from the previous excitation. 
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FIGURE 4.3: Time trajectories of the model output for different input frequencies 

• The last window shows the zoomed spike for clarity. 

• Finally, the two small windows in the lower left side of figure 4.3 show the control 

signals ml and m2· 

4.5. Coefficient Determination Based on The HH-Action Potential 

4.5.1. Stable Focus 

In this section, the features of the an action potential obtained from simulating the 

HH-model are explored in order to obtain the order of magnitudes of the bang-bang model 

parameters. Time response specifications of a second order system[17] are used here to 
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measure the settling time, Ts and the peak time 2 Tp of the spike portion which behaves as 

a stable focus. 

The settling time, Ts is the time required for the output to settle to within a certain 

percent of its final value. The two commonly used values are 5 and 2 percent. Regardless 

of the percentage used, for the second-order undamped system, the settling time is directly 

proportional to the time constant 7[17]; that is, 

k 
Ts =k7=­

(wn 
(4.7) 

where k is determined by the defined percentage, ( is the dimensionless damping ratio and 

Wn is defined to be the natural frequency or the undamped frequency. 

The peak time is given by 

1r 
Tp = -----:== 

wn Jr=(2 
(4.8) 

Although equation 4.8 gives a peak value of the step response, the situation here 

is equivalent since the membrane potential falls from some initial conditions down to the 

equilibrium point. 

Figure 4.4 shows a spike signal used to roughly determine the second order model 

coefficients of the stable focus. 

Using matlab and assuming that the final value of Vm is Vmj, Ts is approximated as 

(4.9) 

From figure 4.4 it is found that Ts = 10.5248msec and that Tp 3msec. From 

equations 4.8 and 4.7, ( and Wn are found to approximately be 

1 
( = ~ 0.3413 

. /1 + ~L. V 4Tp 

(4.10) 

4 
Wn = 10.52( ~ 1.11 (4.11) 

2The time it takes for the spike to drop from its peak value to the apparent undershoot. 
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FIGURE 4.4: HH-spike used for a rough parameter determination. 

4.5.2. Saddle Point 

The rising part of the spike has a very high slope. It is possible to vary how fast the 

potential should increase by changing the slope of the eigen vector corresponding to the 

positive eigenvalue. However, since this is limited by the amount of overshoot produced by 

the stable focus after the switching occurs, the switching set point from the saddle point to 

the stable focus (Vsp ) should be decreased every time the slope of the positive eigenvector 

is increased. The eigenvalues Al = 3 and A2 = -0.5 produce the spike shown in figure 4.5 
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FIGURE 4.5: Comparison of the HH-spike and that produced by a bilinear system (fit not 
optimized). 



40 

4.6. Model Parameter Identification 

4.6.1. Recursive Parameter Identification Using RPM/RLS 

The problem at hand is to model the neuron using switching between different linear 

systems by a bang-bang controlled BLS. Each of these different linear systems is individually 

characterized by its own number of parameters depending on the state of the membrane 

and the type of ions the membrane is permeable to. These parameters should be optimally 

determined to best suit and represent the physical biological phenomena which characterize 

the neuron. HH-model is taken as a reference in this work. 

There are numerous methods used to optimally identify systems' parameters, many 

of which are detailed in [18]. These methods differ from one another according to the kind 

of circumstances conditioned by the amount ar..d the type of noise involved, how fast the 

signals vary etc. 

Among the mostly used parameter estimation methods is the recursive least square 

method (RLS). This algorithm has many variants, thoroughly discussed in [18]. However, 

in order to use this method the system model is traditionally put in a linear form with 

respect to the parameters to be identified. An example of such a model is an ARMA model 

which is written as follows 

(4.12) 

where'!L is a vector of the measurements, fl. the system parameters to be determined and <P 

the coefficient matrix usually formed from the history of both the measured output and the 

available input values. In our case, the piecewise linear systems are described by second­

order differential equations whose parameters are to be identified. 

In order to use one of the optimization algorithms, such as the least square method, 

to precisely identify the system coefficients to fit the HH-model, a means to convert the 

model differential equations to the form given by 4.12 is required. 

A method called Reinitialized Partial Moments (RPM), outlined in the appendix A, 

offers one tool to transform a differential equation model into a form given by equation 4.12. 
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FIGURE 4.6: HH-neuron input and output for identification. 

The parameter coefficients are integrals (instead of being derivatives) which are easily com-

puted using one of numerical methods such as Simpson method. 

The RPM method together with the recursive least square algorithm are used to 

identify the four parameters of a general second order differential equation 4.13, with a lead 

term, representing the model in order to inspect the parameter evolution throughout the 

whole spiking period. 

rPy(t) dy(t) du(t) 
~ + a1-a:t + aoy(t) = bl ~ + bou(t) (4.13) 

The obtained results shown in figure 4.7, particularlyao and al provide an insight 

about the variable structure property of the membrane impedance. It can be seen that 

after a brief moment during which ao and al have different signs (saddle point) they remain 

relatively constant along two plateaus suggesting the existence of two different stable foci. 
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FIGURE 4.7: Identified four parameters throughout the spiking process using RPMjRLS 
method. 

It is, however, hard to extract meaningful results for the eigenvalues, ),1 and ),2, 

corresponding to the saddle point of the system. The reason for this is that during the 

very brief period during which the potential rises rapidly (saddle point), there are very few 

data points and therefore the algorithm does not have enough time to converge to some 

meaningful values. Nevertheless, it can be noticed that ao and al evolve being of opposite 

signs suggesting the saddle point structure. 

4.6.2. Optimal Parameter Determination of the Coefficients in the Three Spike 
Regions. 

In light of above discussion in section 4.6.1., the generated HH-model spike is divided 

into three regions. As shown in figure 4.8. The first part labeled h (t) corresponds to the 

saddle point. The second and third portions labeled 12 (t) and 13 (t) are assumed to be 
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FIGURE 4.8: HH-neuron spike divided into three piecewise constant parameter regions. 

generated by two different stable foci. The parameters are to be determined to fit these 

three portions in the least square sense. 

As shown in section 3.4.3., a lead term included in the differential equation repre-

senting the resting potential equilibrium point (!3(t) in figure 4.8) advances or delays the 

occurrence of the spike. On the other hand, it is noted from simulations of the BLS-model 

that varying the threshold point above the negative eigenvalue as a function of the input 

impulse amplitude also delays or advances the spike generation. More simulations and val­

idation of the model are required to determine the best method to generate the similar 

latency curves as those of the HH-mode. In any case for the purpose of this section, includ-

ing a lead term in the resting stable focus is not relevant since the spike is generated by an 

impulse which ends by the time a threshold is reached. The whole spiking process evolves 

autonomously with a zero input. 
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If the three different spike regions are written with respect to 0 time reference, and if 

g( t) is the entire spike from the threshold, then 

with 

i1(t) +a1j1(t) +ao!I(t) = 0 

i2(t) + a~j2(t) + a~h(t) = 0 

o 

The solution of equation 4.15 is given as 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

In this equation, the eigenvalues, ).1;).2, the two constants k1 ; k2 and the saddle point 

location Vsp are to be determined using a nonlinear curve fitting algorithm based on the 

least square method. 

Similarly, h(t) and h(t), the solutions of equations 4.16 and 4.17 have the same form 

given respectively by 

h(t) 

h(t - td 

h(t) 

2k'eo.'t cos(f3't + 0'), with 

lit 2k" eO. cos(f3"t + elf), with 

Where k', kIf, a', a", f3', f3", Vsfl and Vsf2 are also to be determined. 

(4.20) 

(4.21) 
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Saddle Point Intermediate SF Resting SF 

Al 1.5897 k' 216.6493 k" 8.9005 

A2 17.2881 0' 92.9522 Oil 14.8043 

kl 2.802 cl -0.9724 ei' -0.1979 

k2 0.0002 /3' 0.6175 /3" 0.1759 

Vsp -62.6624 Vsf2 -105.1434 Vsfl -65.0965 

al -18.8778 a' 1 1.9448 a" 1 0.3958 

ao 27.4828 a' 0 1.3269 a" 0 0.0701 

(' 0.8442 (" 0.7476 

w' n 1.1519 w" n 0.2647 

TABLE 4.1: Optimal parameters for curve fitting the action potential in three regions 

4.6.3. Estimated Parameter Values 

Figure 4.9 shows both g(t) and the approximated version rebuilt using the parameters 

found in curve-fitting equations 4.19-4.21 

It can easily be seen that by means of another stable focus, the HH-spike can be very 

closely approximated. In this situation, two switchings take place during the firing process 

of the membrane. Hence, the membrane state visits three regions in the state space after the 

spiking threshold is attained. At least two control variables are needed to distinguish the 

region of the current membrane state in the state space in order to change the membrane 

structure as its state switches from one region to the other. Depending on the the switching 

limits ( during the spiking process), a logic circuit could be built to provide these variable. 
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FIGURE 4.9: Superposition of the HH-spike with the reconstructed version using optimally 
determined parameters. 

Assume the control variables Ul and U2 could take distinct values over the state space 

according to table 4.2. These values can be used together with the the coefficients ai of each 

individual equation describing the structure in the corresponding state region and combine 

them into one differential equation. The resulting differential equation is called a bilinear 

differential equation. 

Equations 4.15- 4.17 can, now, be combined into the following equation: 

[ ( , ) ( " ] dVrn 
a2 + Ul al - al + U2 al - ad dt 

[aD + uda~ - ao) + U2(a~ - ao)] Vrn 

[aD Vsp + Ul (a~ Vsjl - ao Vsp ) + U2(a~Vsj2 - ao Vsp )] = 0 (4.22) 
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Region U2 Ul 

Saddle Point 0 0 

Intermediate SF 1 0 

Resing SF 0 1 

TABLE 4.2: Control variables for changing the membrane structure during the spiking 
process. 

The state space representation of equation 4.22 is written bellow. 

Equation 4.23 is under the following form: 

2 2 

X = Ax + L UiNiX - C + L UiCi (4.24) 
i=l i=l 

Where 

[vm vm ]T, 

A= [:0 :J Nl = [ (00: 0,) (0': aD ] , N2= [ (00: 0,) (0': a~) ] 

and 

c= [ ao:,J Cl = [ (0, -:ov,pJ C2 = 
[ (a, -:v,P) 1 

Vsp , Vsfl and Vsf2 are the the saddle point, resting and intermediate stable focus equilibrium 

points respectively. 
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Substituting the values listed in table 4.1 in the matrices above gives: 

[ 
OIl A= , 
27.5 -18.9 [ 

0 0 1 Nl-
- 26.2 -20.8 ' [ 

0 0 1 N2 -

- 27.4 -19.3 ' 

and 

Cl = [ 0 1 
1582.6 ' 

Equation 4.24 is a bilinear system equation that describes the membrane. It imple-

ments the second order differential equation given by equation 3.18 with different channel 

resistance, inductance in different regions state space. The resting equilibrium stable focus 

could be interpreted as the state of the potassium channel. The saddle point on the other 

hand represents the sudden permeability change sodium channel. And finally, the interme-

diate stable focus represents the transition from one structure to the other, which involves 

the motion of both ion types through the membrane. 
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5. CONCLUSION AND PERSPECTIVE 

It is seen that the bang-bang controlled bilinear model (BLS) provides a flexible 

manner to obtain a satisfactory approximation of the HH-model features. In addition to 

the fairly good approximation of the spike obtained from simulating the HH-model, the 

BLS-model is shown to inherit the characteristics which seem to be of a high importance in 

the transfer of information among different neurons. The first of these trades is the ability 

of the model to fire by producing an action potential as a response to an appropriate current 

excitation. While in the HH-model the firing threshold depends on the voltage level, in the 

BLS-model this depends on both the membrane voltage and its rate of change as the firing 

threshold is defined to be the negative slope line in figure 4.2. Also, note that the BLS 

model is flexible enough to approximate other species' neurons besides the squid giant axon 

for the HH model. 

The second property is the refractoriness of the membrane. This characterizes the 

low sensitivity of the model to the input signals during the firing process. In the BLS-

model, this feature is implemented by assuming two concentric circles around the resting 

stable focus in the state plane. When the magnitude of the model state is outside the outer 

circle and satisfies the firing condition (crossing the negative eigenvector) the input signal 

is completely attenuated. Only when the model state enters the inner circle is the input 

enabled again by being multiplied by a unity gain. This operation is performed by means 

of an ideal relay in the simulations of the BLS-model. 

Finally, the property related to latency, concerns the study of the effects other afferent 

currents have on the spike occurrence time set by an excitatory post-synaptic current pulse 

(EPSC)3. Simulations done on the HH-model show that if the membrane is properly depo-

larized very near the threshold, the membrane potential either spikes or aborts by falling 

back to its resting potential after a long plateau around the threshold voltage. The same 

3This is the current pulse presented to the membrane at some point in time. Its purpose is to depolarize 
the membrane near the threshold 
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behavior is shown by the BLS-model, in the sense that if the membrane state is brought by 

an appropriate excitation to lie exactly on the negative eigenvector switching line, the state 

would move to the saddle point equilibrium point, generating a similar plateau shape in 

the spike. Then any perturbation would either cause it to move towards the resting stable 

focus (aborted spike) or shoot up along the positive eigenvector producing a spike. 

An approximation of the latency curves of the model could be obtained in two different 

ways. It is seen that if the threshold point is varied between two limits, above and near 

the negative slope eigenvector, according to the amplitude of the input signal, one can 

change the curvature (inflection point) of the action potential around the threshold. This 

curvature could be very long and flat before the voltage increases rapidly towards the sodium 

equilibrium potential. This happens when the switching occurs very close to the eigenvector 

just as described in the preceding paragraph. The farther the switching threshold from the 

eigenvector the faster the spike moves along the state trajectory in the saddle point region. 

This is all evident when considering the state space. This delay, which it takes for the 

spike to exceed its inflection point, is recorded against the presentation times of other input 

impulses and are called latency curves. 

The other method could be to introduce a lead term (proportional plus derivative) 

as opposed to the way described above. This lead term is justified by the impedance plots 

shown in section 3.4.1. and the natural latency curves, shown in figure 3.12, of a simulated 

second-order system with a stable focus equilibrium point. This method remains to be 

detailed and pursued in future research. 

It is important to mention that a certain number of improvements and modifications 

to the model remain to be done in order to improve dynamic accuracy. It would be desirable, 

in the future work, to use real data collected from a particular cell for optimal identification 

of its BLS model parameters, using one of the system identification techniques such as that 

outlined in appendix A. 

In dealing with the refractoriness, as mentioned above, an ideal relay is assumed to 

perform the task described above. In reality, this happens a bit differently. Although the 
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disabling of the inputs occurs relatively faster, enabling happens progressively in an almost 

linear manner4 This could be implemented assuming sigmoidal or linear variations of the 

gains and the attenuators of the input around the transitions of the refractory period. More 

work and simulations are to be performed in order to explain more precisely the dynamics 

of this gain variation and to better approximate it. Also, rather than using heavy-side 

switching of the parameters in a bang-bang fashion to change the membrane structure, the 

model could well be improved using smooth transitions (sigmoidal functions) from one value 

to another since such transitions are common to most biological processes. As such, the use 

of the intermediate stable focus to improve the spike shape approximation would likely not 

be necessary. 

As a future work, it would be interesting to linearize the Hodgkin and Huxley equa­

tions around the equilibrium points. This will allow a comparative analysis of the BLS­

model suggested here and the linearized HH-equations. 

In section 3.4.2., a general form of a single channel is given. The values of the induc­

tance and channel resistance which appear in the coefficients of equation 3.18 are different 

from one channel structure to another. Hence, as opposed to HH-model where existence of 

different channels is assumed, the BLS-model consists of only one equivalent channel whose 

characteristics (L and R) change depending on the state of the membrane (vm and vrn). 

Although the BLS-model offers a simpler perspective than the HH-model, their macroscopic 

behaviors are quite consistent. The three equilibrium points shown in the more accurate 

BLS-model are related to the ionic batteries included in the HH electrical equivalent circuit 

shown in figure 2.5. The change in the channel structure which is exclusively related to 

the membrane voltage and its rate of change can also be related to the biological reaction 

of the membrane to different types of ions involved in the current flow through the mem­

brane. The simplicity of the BLS model, from the engineering point of view, constitute a 

very important aspect. Nowadays neural-networks form a basis for modern computers and 

artificial intelligence. Hence, Synthesizing a neuron is an unavoidable need to implement 

4Linear increase of the gain from zero to a constant value. 
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such networks. The synthesis simplicity of BLS systems presents an ambition to construct 

integrated circuit neurons which would exhibit as many real neuron properties as possible 

as it is seen in this work. 
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A Continuous System Identification 

The least square method is extensively used in optimal parameter identification. It is suit-

able for the models that are linear with respect to the parameters such as the difference 

equation models in discrete systems. In the case of continuous systems described by dif-

ferential equations, the coefficients of the parameters to be identified are derivatives of the 

outputs and/or inputs. The RPM method allows converting a differential equation to an 

integral equation and convert the coefficients from derivatives to integrals. These are eas-

ily computed using numerical integration such as Simpson or trapezoidal algorithms. This 

makes it, finally, possible to transform the differential equation to the form of equation 4.12, 

which is convenient to be used with the recursive least square method (RLS). The RPM 

method is outlined in this appendix. 

AI. Partial Moments Method 

Definition: Moments of a bounded function: 

By definition, an n-order moment of a bounded function f(t) is given by[6] 

(5.1) 

and an n-order partial moment is given by 

l
Ttn 

An,T(f) = .. f{t)dt 
o n. 

(5.2) 

Moment method: Principles of the method: 

This method is best explained with a simple example. Assume that we have the following 

first order differential equation, 

dy 
dt = -aoy(t) + bou(t) (5.3) 

Multiplication of equation 5.3 by t along with integrating along the interval [0 T] 

results in 

rT 
dy rT rT 

10 t dt dt = -ao 10 ty(t)dt + bo 10 tu(t)dt (5.4) 
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Hence, 

( ) JoT ty(t)dt J[ tu(t)dt J[ y(t)dt 
y T = -aO T + bo T + T (5.5) 

Note that equation 5.5 is a linear model with respect to the desired unknown param-

eters, suitable for use with an RLS estimation algorithm. 

With fl.= 
[ aboo 1 

y(T) = aoao,T(y) + bo!3o,T(Y) + al,T(y) 

= I£T(T)fl. + al,T(y) 

and I£T(T) = [aO,T(Y) b0!30,T(Y)] 

A2. Output Model Properties 

b(t) 

u(t) 
H(s) 

FIGURE 5.1: Output model of a system H(s) 

(5.6) 

(5.7) 

In figure 5.1, the data are sampled at a period h sec/sample. The period T used in 

the integration above is then T = kh, where k is an integer. 

The measurable output in figure 5.1, the membrane potential in the neuron case, is 

contaminated by a noise b(t). This noise is the result of all the factors affecting the measure-

ments such as uncertainties, acquisition tools' tolerances and etc. Since these contaminated 
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measurements are used to compute the vector '£ above, the estimated outputs, f) are written 

as follows; 

f) = aoao,T(Y*) + bof3o,T(U) + Ql,T(Y*) 

= aoao,T(Y) + b0f30,T(U) + al,T(Y) + e(T) 

where e(T) = aoao,T(b) + al,T(b) is the estimation error. 

(5.8) 

(5.9) 

i; refers to the estimated values whereas x* refers to the measured values. It can be shown[6] 

that the variance of {ek} is minimal for a properly chosen integration interval T = Kopth, 

if b(t), is a centered white noise. For a first-order system, it can be shown that K opt = ~ T 

with T being the system's time constant. The variance of the error of estimation of f)(T) is 

then minimum when T=Topt=Kopth. This is illustrated in figure 5.2. 

K 

!\,pt 

FIGURE 5.2: Variance of the estimation error vs K[6] 
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A3. Reinitialized Partial Moments 

It is can also be shown that the estimation error minimum variance property is con-

served when working on a mobile horizon [0 T]. In other words, we reinitialize the moment 

computation at each instant t = kh. This idea is portrayed in figure 5.3 

f(t) 

t-T opt t 

0 

f('t) 

t 
0 

Topt 

FIGURE 5.3: Mobile horizon in the reinitialized partial moment computation.[6] 

We define then an n-order reinitialized partial moment of a function f(t) on the 

interval [t - T opt; t] by 

l
ToPt rn 

An,t(J) = I f(t - Topt + r)dt 
o n. 

(5.10) 



A4. Reinitialized Partial Moment Model (first-order system) 

aO,t{y) 
= _ AI,t{y) = - f[opt ry{t - Topt + r) dr 

Topt Topt 

= - foTopt 
fo{r)y{t - Topt + r)dr 

+ Ao,t{Y) = fo
Topt 

y{t - Topt + r) dr 
Topt Topt 

= - foTopt 
h{r)y{t - Topt + r)dr 

Al t{u) f[opt ru{t - Topt + r) 
+' = h 

Topt Topt 
[Topt 

= Jo fo{r)u{t - Topt + r)dr 

In the previous set of equations, fo{r) = T.T , h{r) = -T.
1 

opt opt 

A5. Generalization to Order N 

For a general N-order linear differential equation model, 

N-I M 

y(N){t) + L aiy(i){t) = L biu(j){t) 
i=O i=O 

the corresponding RPM (linear with respect to parameters) is given by 

N-l M 

y{t) = L anan,t{Y) + L bm!3m,t{u) + aN,t{y) 
o 0 
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(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

anan,t{Y) and bm!3m,t{u) are functions of reinitialized partial moments of y and u. 

They are computed by using Simpson's method to evaluate the integrals given in 5.25. 



A6. Weighing functions 

fo = 
TN (Topt - T)N-l 

(N - l)!Topt 

!i(T) = (_l)i
cf

!o 
drt 

Qn,t(Y) 

f3m,t(Y) 

A 7. Recursive Least Square Method 
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(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

For a system modeled by equation 4.12, we use the measurements of Y to form the 

following 

y(k) '.£T(k) e(k) 

= fl. + (5.26) 

y(k - N) '.£T (k - N) e(k - N) 

The RLS algorithm is summarized by the following three equations. The details of this 

method could be found iu[I8]. 

~N+l = ~N + KN+l (YN+l - '.£~+l~N) 

KN+l = PN'.£N+l [l+'.£~+lPN'.£N+lrl 
PN+l = [I - KN+l'.£~+l] PN 

(5.27) 

(5.28) 

(5.29) 

Determining PN allows the computation of KN+l and the the estimation fl. at the 

instant N + 1. This, of course assumes knowledge, or at least choosing P(O) and ~(O). 
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A8. Example of Parameter Identification On a Second Order System 

Figure 5.4 shows a simulation set up in order to demonstrate the usefulness of the 

RPM-method in identifying the parameters of a system whose inputs and outputs are 

recorded. The system has been arbitrarily chosen as shown in a simulink diagram. The 

statistical testing should therefore confirm the values shown in the transfer function block 

diagram. 

m_~~~;iiI, 
File . Edit Si~ulation ,'Formai Tools I: 

10(,+ 1 ) 

Random 
Numberl 

(,+2 -2i X,+2+2i ) 

Zero-Pole 

FIGURE 5.4: Simulation set-up for system identification 

It is assumed that most of disturbances are mapped to the output just as depicted 

by figure 5.4. Figure 5.5 shows a sample trace of the output response of the system in the 

presence of noise for a nominally constant input. 



Inpul signal with a PRSS lor a ZV' order system 
2.5.--.,.-------.----r--=----,---.---.___-.--..,_--,-----, 

2 

1.5 

0.5 c:::..=---'-_-'-_-'-_----'-_--':------:'--_~_...J-_-'-_-.J 
o 2 4 6 10 12 14 16 18 20 

Output 01 the ZV' order sys1em with a noisy output 
5r--.,.------,--~-___,_-~--.___-=-._-..,_-_,_-_, 

2 4 6 10 12 14 16 18 20 
Time 

FIGURE 5.5: Step input with a PRBS and the system output 
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The noise variance and mean have been arbitrarily chosen to be 0.01 and 0 respec-

tively. A PRBS5 , obtained, using identinput matlab command, is added to the step input to 

constitute an input excitation for system identification. The bit interval and the sequence 

length can be chosen on the basis of a preliminary estimate of the order of magnitude of the 

dominant roots of a system[36]. Figure 5.6 shows the identified parameters. It can be seen 

that they are pretty much close to those shown in the transfer function block in figure 5.4. 

The two responses of the system with both the original and the identified parameters are 

shown in figure 5.7 

sPsoeudo Random Binary Sequence 
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~L -"-I lr .. '} 
o 1000 2000 3000 0 500 , 000 1500 2000 2500 

~ ~ 

lE--j :~El 
o 1000 2000 3000 0 500 1000 '500 2000 2500 

FIGURE 5.6: The 4 identified parameters. 

A9. Matlab Programs for RPM/RLS Computations 

This section shows matlab programs used in the RPMjRLS calculations 

% *************************************************************** 

function I = simpson(h,f) * 
This function implements Simpson Integration method. * 
Its arguments are : * 
h: sampling period. * 
f: Is either a ro~ of an odd number of elements * 

or an array of ro~s of an odd n# of elements * 
(in order to have an even number of intervals) * 

Written by Y. Yahiaoui * 
05-09-1999 * 

% *************************************************************** 
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Reconstruction 01 the output signal 'rom Identified parameters 
4.5 

3.5 

3 

2.5 

2 

'.5 

0.5 

0 
0 2 6 s '0 '2 ,& ,s 20 

FIGURE 5.7: Output reconstructed using the identified parameters. It is superposed on 
the original contaminated output signal. 

function I simpson(h,f) 

L size(f,2); 

I h/3*(f(:,1)+f(:,L) + 4*(sum(f(:,2:2:L-1),2»+ ... 

2*(sum(f(:,3:2:L-2),2»); 

i. *************************************************************** 

function theta = mcr(y,H,par) * 
This function implements the Recursive Least Square * 
Method(RLS). * 
This function takes * 
y: Nx1 measured values y. * 
H: Explicative NxM matrix H. * 
par: Mx1 intial guess of the parameters. * 

Written by Y. Yahiaoui * 
On May 9th 1999. * 

i. *************************************************************** 



function theta = mcr(y,H,par) 

dim = size(H); y = y(:); i. make sure to put y in a column vector. 

if (dim(2) -= length(par» I (dim(l) -= length(y» 

disp('Dimension problem Error, y(nxl)=H(nxm).par(mxl)! !') 

end 

i. Choice of PO and ParO 

I = eye(dim(2),dim(2»; PN = I; theta(:,l) = par; 

i. Recursive Least Square Method. 

for i 

end 

1 :dim(1); 

K = PN*H(i,:)'*inv(l+H(i,:)*PN*H(i,:)'); 

PN = (I - K*H(i,:»*PN; 

par = par + K*(y(i)-H(i,:)*par); 

theta(:,i+1) = par; 

i. *************************************************************** 

i. function H = yindoys(l,y) * 

i. This function takes a lxN roy and produces an (N-l+1)xl * 

i. matrix yhos roys are values seen through l-yide yindoy. * 

i. Written by Youcef Yahiaoui * 

05-09-1999 * 
i. *************************************************************** 

function H = yindoys(l,y) 

if size(y,l) -= 1 i. make sure y is a roy vector. 

y = y'; 

end 

N = length(y); 

for i = 1:1 

H(:,i) = y([1:N-l+1]+i-1)'; 

end 
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AIO. First Implementation of RP M/MCR method 

% *************************************************************** 

% function theta = mpr_mcr_ver2(T,u,y,Kopt,parO) * 
% This function implements RPM/RLS method for continuous * 
% system identification. * 
% T: Sampling Period * 

% u: Input signal * 

% y: Measurement vector * 

% Kopt: optimum Reinitialization interval length Topt=Kopt*T * 

% parO: Initial guess of the parameter vector * 

% Written by Youcef Yahiaoui * 

% on 05-09-1999 * 

function theta mpr_mcr_ver2(T,u,y,Kopt,parO) 

y y(:)'; % Making sure that y is a column vector. 

u u(:)'; parO = parO(:); 

tau O:T:Kopt*T; % Reinitialization interval. 

Topt Kopt*T; % Reinitialization period. 

% Wheighing function computation. 

fO = tau.-2-(tau.-3)/Topt; 

f1 = 3*(tau.-2/Topt)-2*tau; 

f2 = 2-6*tau/Topt; 

% Least Square Algorithm. 

dim = length(parO); 

I eye(dim,dim); 

PN I· , 

theta(:,1) = parO; 

% Weighting function fO 

% Weighting function f1 

% Weighting function f2 

% Correlation Matrix 

% Parameter Initialization 
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buffer = zeros(l,Kopt); 

y = [buffer y]; 

% Padding the measurets with 0'5. 

u = [buffer u]; 

L = length(y); 

lamda = 0.98; % Forgetting factor 

% ---------- Implementation of the RPM method ------------­

for i = Kopt+l:L 

alphaO -simpson(T,fO.*y(i-Kopt+(O:Kopt))); 

alphal = -simpson(T,f1.*y(i-Kopt+(0:Kopt))); 

alpha2 = -simpson(T,f2.*y(i-Kopt+(0:Kopt))); 

betaO 

betal 

simpson(T,fO.*u(i-Kopt+(O:Kopt))); 

simpson(T,fl.*u(i-Kopt+(O:Kopt))); 

% ---------- Implementation of the RLS algorithm ----------­

h = [alphaO alphal betaO betal]; 

end 

ynew = y(i)-alpha2; 

K = PN*h'/(lamda+h*PN*h'); 

theta(:,i-Kopt+l) = theta(:,i-Kopt)+K*(ynew-h*theta(:,i-Kopt)); 

PN = (I-K*h)*PN/lamda; 

% plotting the results 

figure (22) 

for i = 1:4 

subplot(2,2,i);plot(theta(i,:)) 

if i>2 

title(['b_',num2str(i-3)]) 

else title(['a_',num2str(i-l)]) 

end 

end 
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All. Second Implementation of the RPM/RLS Algorithm 

% *************************************************************** 

% function parameters = mpr_mcr(Kopt,parO) * 

% This program forms an MPR model for the second-order * 
% differential equation. It transforms the continuous * 
% second-order differential equation to a form * 

% Y = Phi(y)*theta, using Reinitialized Partial Moments of y. * 

% and it calls mcr function to estimate the parameters. 

% Kopt: width of the moving window for the MPR 

% parO: Initial guess of the parameters. 

function parameters = mpr_mcr(time,in,out,Kopt,parO) 

h = time(2)-time(1); Topt = Kopt*h; 

v = out; n = length(v); 

iex = in; tau = (O:h:Topt); 

I length(tau) ; 

% Transforming v's to a matrix Hv 

Hv = windows(l,v(l:n-l»; 

Hiex = windows(l,iex(l:n-l»; 

fO tau.-2-tau.-3/Topt; 

fl 3*tau.-2/Topt-2*tau; 

f2 = 6*tau!Topt - 2; 

alpha_Os = -simpson(h,Hv*diag(fO»; 

alpha_is = -simpson(h,Hv*diag(fi»; 

alpha_2s -simpson(h,Hv*diag(f2»; 

beta_Os = simpson(h,Hiex*diag(fO»; 

beta_is = simpson(h,Hiex*diag(fl»; 

% Explicative Matrix 

H = [alpha_Os alpha_is beta_Os beta_is]; 

* 

* 

* 
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y = v(l+l:n); y y(:); 

y = y-alpha_2s; 

parameters = mcr(y,H,parO(:»; 

% Plotting the results. 

figure (22) 

for i = 1:4 

subplot(2,2,i);plot(time(1:length(parameters»,parameters(i,:» 

end 

if i>2 

title(['b_',num2str(i-3)]) 

else title(['a_',num2str(i-1)]) 

end 
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B Latency Curves From a Stable Focus System with a Lead Term 
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FIGURE 5.8: Latency Simulation Setup 



Bl. Simulation Driver Program: 

% ************************************************************** 

% This program drives the simulink model to purturb a response * 

% of a second order system to an input pulse. This is done by * 

% varying both the amplitude and presentation time of perturb- * 

'l. impulses presented prior to the main input pulse. * 
'l. Written by Youcef Yahiaoui * 
'l. on 07/27/1999 at 12:21 AM. * 

'l. ************************************************************* 

clear 

tt = [0:0.5:25]; 'l. presentation times 

A = [1.5:-0.5: -1.5]; 

L length(A); 

'l. Amplitudes of the perturbing impulses. 

for k=1:L 'l. Varying the perturbing impulse amplit$ 

end 

Ai = A(k); 

disp(['This is for Amplitude A_i = " num2str(Ai)]) 

for i=l:length(tt) I. Presenetation time variation 

i 

ti =tt (i) ; 

tsim = [0:0.001:20]; 

[t,x,y] = sim('ts',tsim); 

R =min(find(detect>O)); 'l. Vout > preset_threshold detection 

Li(k,i) =tsim(R) 

end 

'l. Recording the latency. 

save latency Li 'l. Save the latency into a mat-file and print it 

'l. against the presentation times tt. 
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B2. Simulation Parameters: Solver Icon 

iii Simulation Parameter-s: ts II 
. s~'~~;l worksp~ce. l/? I. :Diagno: tics I. r Simulation timB ~ ____ .. 

· Start t ime: 0 
: '. .'. • ~_, ·«~r_~_ . >~V.~ ·_ • • ~~ ... _.:' 

Stop time: 25 

Solver options ----'------------------, 

· Type : · v~riable :::·st·e':-p~ :. I ode23tb (stifftTR- BDF2) ~I 

· Max step size: auto Relative to lerance: . , e- 3 

--"""~ ..... ----...,.,-.. -.--
.Initial step.size: ,;auto Absolute tolerance: , e- 6 

Refine factor: ' - -- - ~- I 
. ,.~ , ....... 

FIGURE 5.9: Simulat ion Parameters: Solver 
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B3 . Simulation Parameters: Workspace Icon 

> S?I~.~~ I ··w~;~~;~~~~~·~ol Di,~g~~·s·i~~~l:·::, 
-~.. . - ~ ., ."'- .'. . ..... . 

;:. . -~ ~... ... ... ;".... ~-.. ,,-~,,;.,,: ,- --:~ 

.;, ' ~; . L·o.ad fro,!! workspace ~".,--...,..",..~-,.,.,., .: Save. tg workspace "-', ...,.--...,.----,-,-,; 

!.:- .·":~:F~~'p~t·: ."'-:::-:',c:,,fi:,' :~1 '; 

~': " . :' .;;;j'~1~:itf~" ~t~t~e:r~i~;· : : ":' :~.~"':"" .. , .... " ." 
. . ," -.~ ."'--........ . 

:, .', . Sa v e 0 pt ion S ...,;.....,."....,...,=-=-=.=. '.,,;..' -,,-:..--:-..,...,..-=""...,.---=,--,.,-.,.----,----,--,,--.,-,---=-"~,..., 

~'i~:; =~L '~"i~if r~~]i lo::j:~ii?'~I:':r:;: ~ ) ' : : : '" .... 
J... ~ . , _ 

'Y . '. • _. . ~ • .' • _.' 
-... ..::..-' 

}:.: 1 

FIGURE 5.10: Simulation Parameters: Workspace. 



B4. Relay Block: 

Output the specified "on" or 'off' value by 
comparing the input to the specified thresholds. 
The on/off state of the relay is not affected by 
input bet\.veen the upper and lower limits . 

Parameters --------------------, 

Switch on pOint: 

1m 
Switch . off pOint: 

/50 
Output when on: 

/, 
Output when off: 

__ o_K_---II · Can eel Help 

FIGURE 5.11: Simulat ion relay block 
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B5. Simulation Pulse Generator(Input Secondary pulses): 

FIGURE 5. 12: Simulation Pulse Generator{Input Primary Pulse): 
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B6. Simulation Pulse Generatorl(Input Secondary pulses): 

FIGURE 5. 13: Simulation Pulse Generator! 
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c Simulink Model of Hodgkin and Huxley Equations 

FIGURE 5.14: Simulink implementation of the HH-model 
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FIGURE 5.15: Simulink implementation of the BLS Model 
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