
Accelerating moderately stiff chemical kinetics in reactive-flow
simulations using GPUs

Kyle E. Niemeyera,b,1,∗, Chih-Jen Sungb

aDepartment of Mechanical and Aerospace Engineering
Case Western Reserve University, Cleveland, OH 44106, USA

bDepartment of Mechanical Engineering
University of Connecticut, Storrs, CT 06269, USA

Abstract
The chemical kinetics ODEs arising from operator-split reactive-flow simulations were solved
on GPUs using explicit integration algorithms. Nonstiff chemical kinetics of a hydrogen ox-
idation mechanism (9 species and 38 irreversible reactions) were computed using the explicit
fifth-order Runge–Kutta–Cash–Karp method, and the GPU-accelerated version performed faster
than single- and six-core CPU versions by factors of 126 and 25, respectively, for 524,288
ODEs. Moderately stiff kinetics, represented with mechanisms for hydrogen/carbon-monoxide
(13 species and 54 irreversible reactions) and methane (53 species and 634 irreversible reactions)
oxidation, were computed using the stabilized explicit second-order Runge–Kutta–Chebyshev
(RKC) algorithm. The GPU-based RKC implementation demonstrated an increase in perfor-
mance of nearly 59 and 10 times, for problem sizes consisting of 262,144 ODEs and larger,
than the single- and six-core CPU-based RKC algorithms using the hydrogen/carbon-monoxide
mechanism. With the methane mechanism, RKC-GPU performed more than 65 and 11 times
faster, for problem sizes consisting of 131,072 ODEs and larger, than the single- and six-core
RKC-CPU versions, and up to 57 times faster than the six-core CPU-based implicit VODE algo-
rithm on 65,536 ODEs. In the presence of more severe stiffness, such as ethylene oxidation (111
species and 1566 irreversible reactions), RKC-GPU performed more than 17 times faster than
RKC-CPU on six cores for 32,768 ODEs and larger, and at best 4.5 times faster than VODE on
six CPU cores for 65,536 ODEs. With a larger time step size, RKC-GPU performed at best 2.5
times slower than six-core VODE for 8192 ODEs and larger. Therefore, the need for developing
new strategies for integrating stiff chemistry on GPUs was discussed.

Keywords: Reactive-flow modeling, GPU, Chemical kinetics, Stiff chemistry, CUDA

1. Introduction

The heavy computational demands of high-fidelity computational fluid dynamics (CFD) sim-
ulations, caused by fine grid resolutions and time step sizes in addition to complex physical

∗Corresponding author
Email addresses: Kyle.Niemeyer@oregonstate.edu (Kyle E. Niemeyer), cjsung@engr.uconn.edu

(Chih-Jen Sung)
1Present address: School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Cor-

vallis, OR 97331
Preprint submitted to Journal of Computational Physics November 4, 2013

models, are the primary bottleneck preventing most industrial and academic researchers from
performing and using such studies. Reactive-flow simulations considering detailed chemistry
in particular pose prohibitive computational demands due to (1) chemical stiffness, caused by
rapidly depleting species and/or fast reversible reactions, and (2) the large and ever-increasing
size of detailed reaction mechanisms. While reaction mechanisms for fuels relevant to hyper-
sonic engines, such as hydrogen or ethylene, may contain 10–70 species [1, 2], a recent surrogate
mechanism for gasoline consists of about 1550 species and 6000 reactions [3]; a surrogate mech-
anism for biodiesel contains almost 3300 species and over 10,000 reactions [4]. Strategies for
incorporating such large, realistic reaction mechanisms in reactive-flow simulations are beyond
the scope of this paper; for example, Lu and Law [5] recently reviewed strategies for mechanism
reduction.

Even compact mechanisms pose challenges due to stiffness. In the presence of stiffness,
explicit integration algorithms generally require time step sizes on the same order as the fastest
chemical time scales, which can be many orders of magnitude smaller than the flow time scale [5].
Due to the resulting computational inefficiency, most reactive-flow simulations rely on special-
ized integration algorithms such as high-order implicit solvers based on backward differentiation
formulas (BDFs) [6, 7]. However, these implicit solvers involve expensive linear algebra opera-
tions, so techniques for removing stiffness via reduced chemistry have also been developed [5].

Exploiting graphics processing unit (GPU) acceleration offers another avenue for enabling
the use of accurate, detailed reaction mechanisms in high-fidelity reactive-flow simulations.
Most reactive-flow codes rely on the operator-splitting or fractional-step method [8–15], where
the large system of governing partial differential equations (PDEs) is separated such that dif-
ferent physical processes are evaluated separately. For the chemistry—typically the most time-
consuming portion of the simulation, accounting for 90% or more of the total simulation time in
some cases—this results in a system of independent ordinary differential equations (ODEs) for
the conservation of species mass in each spatial location (i.e., at each grid point or volume).

Due to the independent nature of the integration for the systems of ODEs governing chem-
istry in all locations, the entire set can be integrated simultaneously. One option is to parallelize
the chemistry integration on multiple central processing unit (CPU) cores or processors using the
Message Passing Interface (MPI) [16] or OpenMP [17–19], but the massive parallelism and in-
creasing performance of GPUs—as well as the potential to reduce capital costs through improved
energy efficiency—make them an attractive option for accelerating reactive-flow codes. General
CFD applications also benefit from GPU acceleration due to the inherent data parallelism of most
calculations for both finite difference and finite volume methods. Vanka et al. [20] surveyed some
of the literature on using GPUs to accelerate general CFD simulations; more recently, Niemeyer
and Sung [21] comprehensively reviewed advances in this area for both nonreactive and reactive
flows. In the following, we will summarize important results related to GPU-based reactive-flow
simulations.

The first effort in this area came from Spafford et al. [22], who accelerated the species rate
evaluations in the direct numerical simulation (DNS) code S3D [23, 24] on the GPU. In their
approach, the CPU handles the time integration of the chemical source terms using an explicit
fourth-order Runge–Kutta method. Each integration step requires four species rate evaluations,
and for each evaluation the CPU invokes the GPU to evaluate the species rates of change for all
grid points simultaneously. Using an ethylene reaction mechanism with 22 species, Spafford et
al. [22] achieved performance speedups of around 15× and 9× for single- and double-precision
calculations, respectively.

Most recent efforts follow the spatially-independent acceleration paradigm introduced by
2

Spafford et al. [22], beginning with Niemeyer et al. [25], who developed a GPU-based explicit in-
tegration algorithm for nonstiff chemistry. Using a compact hydrogen mechanism with 9 species
and 38 irreversible reactions [26], Niemeyer et al. [25] demonstrated a computational speedup
of up to 75× compared to a single-core CPU over a wide range of independent ODE systems.
Shi et al. [27] presented a hybrid CPU/GPU chemistry integration strategy where the GPU si-
multaneously integrates nonstiff chemistry in grid cells using an explicit algorithm and the CPU
handles spatial locations with stiff chemistry using a standard implicit integrator. This combined
approach, paired with a reactive-flow code, achieved an overall performance speedup of 11–46×
over the algorithms executed on a single CPU core.

Le et al. [28] developed the first reactive-flow solver where the GPU evaluates both the fluid
transport and chemical kinetics terms. As with most other approaches, they used operator split-
ting to decouple and independently solve the fluid transport and chemistry terms. They handled
the stiff chemical kinetics terms in parallel on the GPU using a first-order implicit method (the
backward Euler method), employing a direct Gaussian elimination to solve the resulting linear
system of equations. Compared against an equivalent CPU version executed on a single proces-
sor core, their combined GPU solver performed up to 40 times faster using a reaction mechanism
for methane with 36 species and reversible 308 reactions, on a grid with greater than 104 cells.
However, the low order of the chemistry solver—first order—should be noted.

Stone et al. [29] implemented two chemistry integrators on the GPU: (1) a fourth-order adap-
tive Runge–Kutta–Fehlberg (RKF45) method and (2) the standard fifth-order accurate implicit
CVODE method. Applied to a reduced mechanism for ethylene with 19 species and 15 global
reaction steps [30] and compared against equivalent single-core CPU versions over a range of
ODE numbers, the RKF45 and CVODE methods achieved up to 28.6× and 7.7× speedup, re-
spectively. The GPU-based RKF45 method performed 20.2× faster than the CPU-based DVODE
solver operating on a single core. It should be noted that the reduced mechanism used by Stone et
al. [29] may not exhibit much stiffness, since it was developed by applying the quasi-steady-state
approximation to certain radical species and eliminating fast elementary reactions [30].

Alternative approaches for GPU acceleration of chemical kinetics have also been presented
that exploit other areas of data independence. Shi et al. [31] used the GPU to (1) simultaneously
calculate all the reaction rates for a single kinetic system (i.e., a single computational volume/

grid point) and (2) accelerate the matrix inversion step of the implicit time integration using a
commercial GPU linear algebra library, CULA [32]. They found this approach beneficial for
large reaction mechanisms (e.g., more than 1000 species), accelerating homogenous autoigni-
tion simulations up to 22×, but for moderate-size mechanisms (e.g., less than 100 species) their
GPU-based implementation performed slower than the original CPU version. More recently,
Sankaran [33] presented a new approach for accelerating the chemistry in turbulent combustion
simulations where the GPU solves the unsteady laminar flamelet equations; the controlling CPU
handles the main flow solver. This method involves three levels of concurrency on the GPU: (1)
the solution of species reaction rates, thermochemical properties, and molecular transport rates;
(2) the solution of the discretized flamelet equations in an regular grid in the mixture fraction
space; and (3) the solution of multiple flamelets.

Here, we demonstrate new strategies for accelerating chemical kinetics with moderate levels
of stiffness using GPU-based explicit integration algorithms. Building upon our earlier work
using the standard fourth-order Runge–Kutta algorithm [25], we demonstrate the potential per-
formance improvement using a related explicit fifth-order adaptive method for nonstiff chemical
kinetics. In addition, we introduce a stabilized explicit Runge–Kutta method that can handle
moderate stiffness, and show that it can be used on GPUs to achieve significant computational

3

speedup.
The rest of the paper is structured as follows. First, we discuss some topics related to GPU

computing in Section 2.1. Next, in Section 2.2 we provide the governing equations for chem-
ical kinetics in reactive-flow simulations, then in Sections 2.3 and 2.4 we describe the explicit
integration algorithms used in this study. In Section 3 we demonstrate the performance of the
GPU-accelerated integration algorithms using four reaction mechanisms with increasing levels
of stiffness and discuss these results. Finally, we summarize our work in Section 4 and outline
future research directions.

2. Methodology

2.1. GPU computing

While an in-depth discussion about GPU computing is beyond the scope of this work, we
will briefly introduce important concepts. Interested readers should see the textbooks, e.g., by
Kirk and Hwu [34] and Sanders and Kandrot [35]. The current generation of application pro-
gramming interfaces, such as CUDA [36] and OpenCL [37], enables a C-like programming ex-
perience while exposing the massively parallel architecture of graphics processors. This avoids
programming in the graphics pipeline directly. Our efforts are based in CUDA, a programming
platform created and supported by NVIDIA, but the programming model of OpenCL, an open-
source framework, is similar.

In addition, recently a new avenue for GPU parallelization has been introduced: OpenACC [38,
39], which uses compiler directives (e.g., #pragma statements) placed in Fortran, C, and C++

codes to identify sections of code to be run in parallel on GPUs. This approach is similar to
OpenMP [17–19] for parallelizing work across multiple CPUs or CPU cores that share memory.

GPUs operate on the “single instruction, multiple thread” (SIMT) parallelization paradigm,
similar to vector computing, where a large number of processing units independently and simul-
taneously execute the same instructions on different data elements. A parallel GPU function is
a kernel, which—in the CUDA programming model—consists of a grid of thread blocks. Each
block is made up by threads, the fundamental CUDA processing unit. Physically, GPUs consist
of a number of streaming multiprocessors (e.g., 14), which can each execute 32 operations si-
multaneously. Thread blocks are subdivided into warps consisting of 32 threads; the streaming
multiprocessors execute instructions for threads in a particular warp simultaneously. For optimal
performance, all 32 threads within a warp should follow the same instruction pathway. If threads
in a warp encounter different instructions (e.g., through a conditional branch), the warp diverges
and significant loss in performance may result—in the worst case, by a factor of 32, if each thread
follows a different instruction pathway.

2.2. Governing equations

Given a vector of state variables Φ = {φ1, . . . , φn}, the governing equations for scalars in a
general reactive-flow simulation are

∂φi

∂t
= ∇ · (Ai + Di) + Ri, i = 1, 2, . . . , n, (1)

where A and D represent the advective and diffusive fluxes, respectively, and R represents the
change due to chemical reactions. Solving this stiff, coupled system for a large number of grid

4

points/volumes is challenging, so many reactive-flow modeling approaches rely on operator split-
ting (also known as the fractional step method) [8–15]. This technique separates the integration
of the stiff reaction terms from the spatially discretized transport terms, resulting in a large num-
ber of independent systems of ODEs—one for each spatial location—to solve.

When the reaction terms are separated from physical transport, the species equations are

dYi

dt
=

Wiωi

ρ
, i = 1, 2, . . . , nS , (2)

ωi =

nR∑
j=1

(
ν′′i j − ν

′
i j

)
Ω j, (3)

where Yi denotes the mass fraction of the ith chemical species, nS and nR are the numbers of
species and reactions, respectively, ρ is the mixture density, Wi is the molecular weight of the
ith species, Ω j is the rate of progress of reaction j, and ν′′i j and ν′i j are the reverse and forward
stoichiometric coefficients for the ith species in reaction j. The rate of progress of an irreversible
reaction without pressure dependence is given by

Ω j = k j

nS∏
k=1

C
ν′k j

k , (4)

where Ck is the concentration of species k. Third-body and pressure-dependent reactions were
also considered, depending on the formulation given for the particular reaction; see, for example,
Law [40], or the Chemkin manual [41], for details. The reaction rate coefficient k j follows the
Arrhenius formulation

k j = A jT β j exp
(
−E j

RT

)
, (5)

where R is the universal gas constant, A j is the pre-exponential factor, β j is the temperature expo-
nent, and E j is the activation energy for reaction j. In general, reactions may be reversible; those
without explicitly defined Arrhenius reverse rate parameters (i.e., A, β, and E) require evaluation
of the equilibrium constant to obtain their reverse rate coefficients. To avoid the conditional state-
ments that may cause thread divergence on GPUs (as will be discussed in Section 3) required by
this evaluation, we converted all such reversible reactions into two irreversible reactions for each
following the procedure given in Appendix A.

In addition to the species equations, we consider a constant-pressure energy equation

dT
dt

= −
1
ρcp

nS∑
i=1

hiωiWi, (6)

where cp is the mass-averaged constant-pressure specific heat and hi is the specific enthalpy of
the ith species. Together, the coupled mass and energy equations model the time-dependent
behavior of an adiabatic, homogenous gas mixture in a closed system. The number of unknowns
is equal to the number of species plus one (temperature), N = nS +1, and the vector of dependent
variables consists of temperature and the species mass fractions, y(t) = {T,Y1,Y2, . . . ,YnS }.

Typically, reactive-flow simulation codes use BDF-based implicit algorithms to solve Eqs. (2)
and (6). While explicit algorithms tend to offer greater general efficiency and lower startup
costs—important in operator-split formulations where the transport terms modify the thermo-
chemical conditions and invalidate any saved information, such as the Jacobian matrix, between

5

i ai bi j ci c∗i

1 37
378

2825
27648

2 1
5

1
5 0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10 − 9

10
6
5

125
594

13525
55296

5 1 − 11
54

5
2 − 70

27
35
27 0 277

14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j 1 2 3 4 5

Table 1: Coefficients for the fifth-order Runge–Kutta–Cash–Karp method, adopted from Press et al. [43].

reaction integration steps—stiffness-induced instabilities force the use of extremely small time
step sizes. Implicit algorithms offer greater stability and therefore allow larger time step sizes
in the presence of stiffness, resulting in better performance overall. However, implicit methods
involve complex control algorithms and linear algebra subroutines, with logical tests for conver-
gence and controlling error. As such, these implicit methods may not be suitable for operating
on GPUs, where the complex control flow in such operations could cause threads in a warp to
diverge due to slightly different conditions. Stone et al. [29] ported the implicit CVODE solver
to GPU operation, and found that it performed only slightly better than a multi-core CPU version
would. Explicit algorithms, on the other hand, involve simpler logical flow, and may be better-
suited for GPU operation, especially with little-to-moderate stiffness in the chemical kinetics.

2.3. Runge–Kutta–Cash–Karp method

When the chemical kinetics exhibits little to no stiffness, we can solve the system of equations
given by Eqs. (2) and (6) using an explicit integration method such as the fifth-order Runge–Kutta
method developed by Cash and Karp [42], namely, the RKCK method. This approach uses an
embedded fourth-order method to determine the truncation error and adaptively select the step
size; our methodology is taken from Press et al. [43].

If yn is the approximation to the exact solution y(t) at t = tn, and δtn = tn+1 − tn is the current
step size, then the RKCK formulas, which also apply to any general fifth-order Runge–Kutta
method, are

k1 = δt f (tn, yn) (7)
k2 = δt f (tn + a2 δt, yn + b21k1) , (8)
k3 = δt f (tn + a3 δt, yn + b31k1 + b32k2) , (9)
k4 = δt f (tn + a4 δt, yn + b41k1 + b42k2 + b43k3) , (10)
k5 = δt f (tn + a5 δt, yn + b51k1 + b52k2 + b53k3 + b54k4) , (11)
k6 = δt f (tn + a6 δt, yn + b61k1 + b62k2 + b63k3 + b64k4 + b65k5) , (12)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6, (13)
y∗n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6, (14)

6

where yn+1 is the fifth-order solution and y∗n+1 is the solution of the embedded fourth-order
method. The vector f(t, y) = dy(t, y)/dt represents the evaluation of the right-hand side of
Eqs. (2) and (6). The RKCK coefficients are given in Table 1. The fourth- and fifth-order solu-
tions are used to estimate the error of the step ∆n+1,

∆n+1 = yn+1 − y∗n+1 =

6∑
i=1

(
ci − c∗i

)
ki. (15)

This error is then compared against a desired accuracy, ∆0, defined by

∆0 = ε (|yn| + |δt f (tn, yn)| + δ) , (16)

where ε is a tolerance level and δ represents a small value (e.g., 10−30). If the estimated error of
the current step is larger than the desired accuracy (∆n+1 > ∆0), the step is rejected and a smaller
step size is calculated; if the error is smaller than the desired accuracy (∆n+1 ≤ ∆0), the step is
accepted and the step size for the next step is calculated. The following is used to calculate a new
step size based on error and the current step size:

δtnew =

S δtn max

i

(∣∣∣∣∣∣ ∆0,i

∆n+1,i

∣∣∣∣∣∣
)1/5

if ∆n+1 ≤ ∆0,

S δtn max
i

(∣∣∣∣∣∣ ∆0,i

∆n+1,i

∣∣∣∣∣∣
)1/4

if ∆n+1 > ∆0.

(17)

Here, i represents the ith element of the related vector and S denotes a safety factor slightly
smaller than unity (e.g., 0.9). Eq. (17) is used to calculate the next time step size for an accepted
step and a new, smaller step size when the error is too large (and therefore the step is rejected).
In practice, step size decreases and increases are limited to factors of ten and five, respectively.

2.4. Runge–Kutta–Chebyshev method
For stiff problems, standard explicit integration methods become unsuitable due to stability

issues, requiring unreasonably small time step sizes [7]. Traditionally, implicit integration algo-
rithms such as those based on BDFs have been used to handle stiff problems, but these require
expensive linear algebra operations on the Jacobian matrix. In addition, the complex logical flow
would result in highly divergent instructions across different initial conditions, making implicit
algorithms unsuitable for operation on GPUs. One alternative to implicit algorithms for prob-
lems with moderate levels of stiffness is a stabilized explicit scheme such as the Runge–Kutta–
Chebyshev (RKC) method [44–49]. While the RKC method is explicit, it is capable of handling
stiffness through additional stages—past the first two required for second-order accuracy—that
extend its stability domain along the negative real axis.

Our RKC implementation is taken from Sommeijer et al. [48] and Verwer et al. [49]. Fol-
lowing the same terminology as in the description of the RKCK method in Section 2.3, where yn

is the approximation to the exact solution y(t) at t = tn and δtn = tn+1 − tn is the current step size,
the formulas for the second-order RKC are

w0 = yn, (18)
w1 = w0 + µ̃1 δt f0, (19)
w j = (1 − µ j − ν j)w0 + µ jw j−1

7

+ ν jw j−2 + µ̃ j δt f j−1 + γ̃ j δt f0, j = 2, . . . , s, (20)
yn+1 = ws, (21)

where s is the total number of stages. The w j are internal vectors for the stages, and f j are
evaluations of the right-hand-side function of the governing equations at each stage, where f j =

f(tn + c j δt,w j). Note the recursive nature of w j, which requires only five arrays for storage. The
coefficients used in Eqs. (19) and (20) are available analytically for any s ≥ 2:

µ̃1 = b1ω1, (22)

µ j =
2b jω0

b j−1
, ν j =

−b j

b j−2
, µ̃ j =

2b jω1

b j−1
, γ̃ j = −a j−1µ̃ j (23)

b0 = b2, b1 =
1
ω0
, b j =

T ′′j (ω0)(
T ′j(ω0)

)2 , (24)

w0 = 1 +
κ

s2 , ω1 =
T ′s(ω0)
T ′′s (ω0)

, (25)

where κ ≥ 0 is the damping parameter (we used κ = 2/13 [48, 49]). T j(x) are the Chebyshev
polynomials of the first kind, defined recursively as

T j(x) = 2xT j−1(x) − T j−2(x), j = 2, . . . , s, (26)

where T0(x) = 1, T1(x) = x, and T ′j(x) and T ′′j (x) are the first and second derivatives of T j(x),
respectively. The c j used in the function evaluations are

c1 =
c2

T ′2(ω0)
≈

c2

4
, (27)

c j =
T ′s(ω0)
T ′′s (ω0)

T ′′j (ω0)

T ′j(ω0)
≈

j2 − 1
s2 − 1

, 2 ≤ j ≤ s − 1, (28)

cs = 1. (29)

The RKC method can also be used with an adaptive time stepping method for error control,
as given by Sommeijer et al. [48]. After taking the step tn+1 = tn + δtn and calculating yn+1, the
error in the calculation at the current step is estimated using

∆n+1 =
4
5

(yn − yn+1) +
2
5
δtn(fn + fn+1). (30)

These error estimates are used with absolute and relative tolerances to define the weighted RMS
norm of error:

‖∆n+1‖rms =

∥∥∥∥∥∥ ∆n+1

T
√

N

∥∥∥∥∥∥
2
, (31)

T = A + R ·max (|yn|, |yn+1|) , (32)

where N represents the number of unknown variables (here, N = nS + 1 as defined previously),
A is the vector of absolute tolerances, and R is the relative tolerance. The norm ‖ · ‖2 indicates the
Euclidean or L2 norm. The step is accepted if ‖∆n+1‖rms ≤ 1; otherwise, it is rejected and redone

8

using a smaller step size. The weighted RMS norm of error for the current and prior steps, and
the associated step sizes, are then used to predict the new step size, using

δtn+1 = min (10,max(0.1, f)) δtn, (33)

f = 0.8
 ‖∆n‖

1/(p+1)
rms

‖∆n+1‖
1/(p+1)
rms

δtn
δtn−1

 1

‖∆n‖
1/(p+1)
rms

, (34)

where p is the order of the algorithm—two, in this case. When a step is rejected, we use a similar
equation to calculate a new step size:

f =
0.8

‖∆n‖
1/(p+1)
rms

. (35)

In order to determine the initial time step size, we first use a tentative step size calculated as
the inverse of the spectral radius σ—the magnitude of the largest eigenvalue—of the Jacobian.
After predicting the error associated with this tentative step, we then set the initial step size as
one-tenth of the step size that would satisfy error control based on the tentative step:

δt0 =
1
σ
, (36)

∆0 = δt0 (f(t0 + δt0, y0 + δt0 f(t0, y0)) − f(t0, y0)) , (37)

δt1 = 0.1
δt0
‖∆0‖

1/2
rms

, (38)

where ‖∆0‖rms is evaluated in the same manner as ‖∆n+1‖rms using Eq. (31).
After selecting the optimal time step size to control local error, the algorithm then determines

the optimal number of RKC stages in order to remain stable. Due to stiffness, too few stages
would lead to instability. The local stiffness is determined using the spectral radius and time step
size. The number of stages are determined by

s = 1 +
√

1 + 1.54 δtn σ, (39)

as suggested by Sommeijer et al. [48], where the value 1.54 is related to the stability boundary
of the algorithm. Note that s may vary between time steps due to a changing spectral radius and
time step size. In our RKC implementation, we used a nonlinear power method [48] to calculate
the spectral radius; this choice costs an additional vector to store the computed eigenvector, but
avoids storing or calculating the Jacobian matrix. Depending on the problem type, alternative
methods such as the Gershgorin circle theorem [50, 51] could be used to obtain an upper-bound
estimate for the spectral radius. In our experience, however, the circle theorem tended to over-
estimate the spectral radius, resulting in unnecessarily large numbers of stages—this induced
greater computational expense compared to using the power method. Following Sommeijer et
al. [48], in our RKC implementation the spectral radius is estimated every 25 (internal) steps or
after a step rejection. In addition, the computed eigenvector is saved to be used as the initial
guess in the next evaluation.

3. Results and discussion

In order to study the performance of the GPU-based RKCK and RKC solvers (termed RKCK-
GPU and RKC-GPU, respectively), we tested their performance with four reaction mechanisms,

9

representing different levels of stiffness. We varied the problem size, meaning number of chemi-
cal kinetics ODEs, over a wide range from 102 to 106, representing a wide range of grid resolu-
tions in an operator-split reactive-flow code.

First, we studied the performance of RKCK-GPU using a nonstiff hydrogen mechanism.
Next, we considered (separately) mechanisms for hydrogen/carbon monoxide and methane with
moderate levels of stiffness and use these to study the performance of RKC-GPU. Finally, we
examined the performance of RKC-GPU in a case where stiffness is more severe, using an ethy-
lene mechanism. In all four cases, we compared the performance of the GPU algorithm against
an equivalent CPU version. In the presence of stiffness, we also compared the performance of
RKC-GPU against an implicit CPU-based code, VODE F90 [52], a Fortran 90 version of the
well-known VODE solver.

In both the CPU and GPU algorithms used here, we generated the subroutines needed for
chemical kinetics source terms (e.g., species rates, reaction rates, thermodynamic properties)
using an open-source Python tool that we created [53], which takes Chemkin-format reaction
mechanisms as input. Further, we converted all reversible reactions in the reaction mechanisms
used here into two irreversible reactions for each in order to avoid the computation of equilibrium
constants, as described in Appendix A. We developed an additional Python tool implementing
this procedure that is also available online [54]. We paired VODE with CHEMKIN-III [41]
to evaluate the chemical kinetics and species thermodynamic properties. All calculations were
performed in double precision and at constant pressure—although the generated subroutines are
also capable of constant volume conditions.

All calculations reported here were performed using a single GPU and single CPU; we mea-
sured the serial CPU performance using a single core as well as parallelized CPU performance—
via OpenMP [19]—on six cores. The GPU calculations were performed using an NVIDIA Tesla
c2075 GPU with 6 GB of global memory. An Intel Xeon X5650 CPU, running at 2.67 GHz
with 256 kB of L2 cache memory per core and 12 MB of L3 cache memory, served as the host
processor for the GPU calculations and ran the CPU single- and six-core OpenMP calculations.
We used the GNU Compiler Collection (gcc) version 4.6.2 (with the compiler options “-O3
-ffast-math -std=c99 -m64”) to compile the CPU programs and the CUDA 5.0 compiler
nvcc version 0.2.1221 (“-O3 -arch=sm 20 -m64”) to compile the GPU versions. The function
cudaSetDevice() was used to hide any device initialization delay in the CUDA implementa-
tions prior to the timing.

Imposing identical initial conditions for all ODEs would not represent the situation in a
reactive-flow simulation where conditions vary across space, so we generated initial conditions
for the ODEs by sampling the solutions obtained from constant pressure homogeneous ignition
simulations. For all four fuels studied, we used starting conditions of 1600 K, 1 atm, and an
equivalence ratio of one. This resulted in a set of initial conditions covering a wide range of
temperatures and species mass fractions. For example, some data points came from the pre-
ignition induction period, some from the transient regime when temperature increases rapidly,
and some from the post-ignition stage where conditions approach equilibrium. We distributed
the resulting initial conditions in two ways. First, we assigned initial conditions sequentially
to ODEs, where consecutive data points—taken from consecutive time steps—contain similar
conditions. This emulated adjacent spatial locations with similar but not identical conditions.
Further, this procedure represents a more realistic performance measure compared to the previ-
ous work of Niemeyer et al. [25], where identical initial conditions and a constant time step size
were used. For the GPU-based algorithms, similar—but not identical—initial conditions will re-
sult in threads within warps that may follow divergent pathways, due to varying time step sizes,

10

for example. In order to further explore the impact of divergence on performance, we also as-
signed initial conditions to threads in a second manner: randomly shuffling the order. Compared
to using similar conditions, randomly selected initial conditions represent a worst-case potential
for divergence.

Other potential sources of thread divergence could be conditional statements in the source
terms, because, e.g., thermodynamic properties are typically fitted as polynomials across dif-
ferent temperature ranges, certain reaction pressure-dependence formulations are described in
different pressure ranges. We attempted to minimize the occurrence of such conditional state-
ments by converting each reversible reaction in the reaction mechanisms into a pair of irreversible
reactions (as described above). This avoided the temperature conditional statement required for
evaluating the Gibbs function polynomial, in turn needed for the equilibrium constants. Regard-
ing the conditional statements required to evaluate the species thermodynamic properties for the
energy equation or reaction rates for particular pressure-dependence formulations, in the current
work, neither of these contributed to thread divergence because (1) all temperatures experienced
by threads fell within the same polynomial fitting range and (2) none of the pressure-dependent
reactions considered in the reaction mechanisms were formulated using multiple pressure ranges.
However, in general cases, conditional statements on temperature or pressure could cause addi-
tional thread divergence.

The integration algorithms take as input initial conditions and a global time step, perform-
ing internal sub-stepping as necessary. The computational times, or wall-clock times, reported
represent the average over ten global time steps. For the GPU implementations, the reported
computational time per global time step included the overhead required for transmitting data be-
tween the CPU and GPU before and after each integration step. The integrator restarts at each
global time step, not storing any data from the previous step—although any sub-stepping per-
formed by the algorithm within these larger steps does benefit from retained information from
prior sub-steps. This is done to emulate a true operator-split code, where the transport integra-
tion step would update the thermochemical conditions independently from the chemistry and
therefore invalidate any retained information between global steps. This reduces the efficiency
somewhat, by forcing the integrator to take initially large test steps, but the startup costs of the
explicit integration algorithms considered here pale in comparison to those of implicit integrators
such as VODE, where the Jacobian matrix must be re-evaluated.

In the GPU-based algorithms, threads independently integrated each chemical kinetics ODE.
The total number of threads then equaled the number of ODEs; blocks consisted of 64 threads
each. For problem sizes of 4,194,304 or larger, where a block size of 64 threads would exceed
the maximum limit on number of blocks per grid (65,535) in one dimension, we used a block
size of Nt/32,768, where Nt is the total number of threads. We kept the block size as a multiple
of 32 to ensure blocks contained whole thread warps.

3.1. Hydrogen kinetics
First, we considered a case where stiffness in the chemical kinetics does not pose a challenge,

using the hydrogen oxidation mechanism of Yetter et al. [26] with 9 species and 38 irreversible
reactions. We employed the explicit RKCK method, with a tolerance level ε of 1 × 10−10, and
performed 10 global integration steps of 1 × 10−8 s (or 10 ns) each. The average time needed
per step is reported. This application is relevant particularly for DNS and studies of high-speed
flows, which use extremely short time step sizes in order to resolve the Kolmogorov scales and
capture the short time scales due to high flow velocity, respectively. Adjacent ODEs used similar
initial conditions as described in the previous section.

11

10-3

10-2

10-1

100

101

102

103

102 103 104 105 106 107

Co
m

pu
tin

g
tim

e
pe

r g
lo

ba
l t

im
e

ste
p

(s
)

Number of independent ODEs

126×
25×

RKCK-CPU
RKCK-CPU × 6

RKCK-GPU

Figure 1: Performance comparison of (single- and six-core) CPU and GPU integration of the nonstiff hydrogen mecha-
nism using the explicit RKCK method. Note that both axes are displayed in logarithmic scale.

The lack of stiffness in this case was due to both the particular chemistry considered and the
short global time step sizes used. Quantifying stiffness is somewhat difficult [7], but in general
explicit methods are more efficient for nonstiff problems than implicit or other stiff integrators
(e.g., stabilized explicit methods like RKC). In terms of computational time, RKCK-GPU per-
formed nearly 2.3× and 2.6× faster than RKC-GPU for problem sizes of 65,536 and 262,144
independent ODEs, respectively, so we consider this case nonstiff.

Figure 1 shows the performance results of the CPU- and GPU-based RKCK algorithms for
problem sizes ranging from 64 to 8,388,608. RKCK-GPU performed faster than the single-core
RKCK-CPU for problem sizes of 128 ODEs and larger, and faster than the six-core CPU version
when the number of ODEs is 512 or larger. Note that the speedup of the GPU implementation
increased with growing problem size. For the largest problem sizes, RKCK-GPU ran up to 126×
and 25× faster than the single- and six-core RKCK-CPU versions. On six cores RKCK-CPU ran
between five and six times faster than on a single core, due to the data independent nature of the
problem.

We also studied the effect of different initial conditions on the performance of RKCK-GPU,
by randomly shuffling the data points used for this purpose such that neighboring threads no
longer contained similar data. This resulted in thread divergence, since different threads in each
warp will require different inner time step sizes—therefore some threads will require a greater
number of steps, while others will finish sooner. Figure 2 shows the comparison of performance
for RKCK-GPU between threads with similar initial conditions and threads where initial condi-
tions were randomly selected (and are therefore different). The divergence caused by randomized
initial conditions reduced performance by up to a factor of 2.3, with a greater reduction at larger
problem sizes. We note that some divergence was also present for threads with similar—but not
identical—initial conditions.

12

10-2

10-1

100

101

102

102 103 104 105 106 107

Co
m

pu
tin

g
tim

e
pe

r g
lo

ba
l t

im
e

ste
p

(s
)

Number of independent ODEs

2.5×

Similar conditions
Randomized conditions

Figure 2: Performance comparison of RKCK-GPU integration of the nonstiff hydrogen mechanism where neighboring
threads have similar and randomized initial conditions.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f o
cc

ur
re

nc
es

Divergence measure D

Similar conditions
Randomized conditions

Figure 3: Warp thread divergence comparison of RKCK-GPU for nonstiff hydrogen kinetics for similar and random
initial conditions, where the number of occurrences of the divergence measure D is plotted for 2048 thread warps.

13

In order to quantify this divergence, we introduce a measure for the divergence in a thread
warp, D, proposed by Stone [55] and Sankaran [56], defined by

D =

∑32
i=1 di

32 maxi di
, (40)

where di denotes the number of right-hand function (i.e., derivative) evaluations in the ith thread
over a certain number of global time steps. We used this to represent the cost of integration per
global step for each thread within a warp. Values of D approaching one represent a warp with
completely converged threads, while values approaching zero represent a situation where a small
number of threads perform significantly more work than other threads. However, it should be
noted that D is not a perfect measure of divergence in general applications, where threads may
follow different instructions but perform similar amounts of work. Figure 3 shows the distribution
of D for 65,536 ODEs, corresponding to 2048 thread warps, where the sum of the derivative
evaluations over ten global time steps was used to evaluate D. For similar initial conditions,
the divergence remained low as measured by D, while with randomized initial conditions the
divergence was greater, with D ranging between 0.3–0.8 and showing peaks around 0.4 and 0.65.
This divergence likely caused the reduced performance of RKCK-GPU with randomly chosen
initial conditions compared to similar initial conditions.

3.2. Hydrogen/carbon monoxide kinetics

Next, we studied a kinetic system with moderate stiffness, using the hydrogen/carbon monox-
ide reaction mechanism of Burke et al. [1], which consists of 13 species and 27 reversible (con-
verted to 54 irreversible) reactions. Here, we chose a global time step size of 1 × 10−6 s and
reported the average computational time for ten steps. This value represents step sizes used in
large-eddy simulations of reactive flows [57, 58]. We consider this problem to be “moderately”
stiff because RKC-GPU performed more than three times faster than RKCK-GPU. For RKC, we
used a relative tolerance of 1 × 10−6 and an absolute tolerance of 1 × 10−10. Adjacent ODEs used
similar initial conditions.

Figure 4 shows the performance comparison between the single- and six-core RKC-CPU and
RKC-GPU for problem sizes ranging from 64 to 4,194,304. As with the RKCK algorithm, at
smaller problem sizes RKC-GPU compared less favorably against RKC-CPU, but the speedup
increased with increasing problem size. RKC-GPU outperformed RKC-CPU on a single CPU
core for the entire range of ODE numbers considered here, while it performed faster than the
six-core version for problem sizes of 512 ODEs and larger. While the exact speedup varied, for
ODE numbers of 262,144 and higher RKC-GPU demonstrated performance speedups of 59×
and 10× compared to RKC-CPU on one and six CPU cores, respectively.

Similar to our analysis of divergence for RKCK-GPU, we also studied the effect of ran-
domized initial conditions on the performance of RKC-GPU. In this case, there are now three
potential sources of thread divergence: (1) varying numbers of iterations for the nonlinear power
method used to estimate the spectral radius, (2) varying numbers of stages due to different spec-
tral radii, and (3) varying numbers of steps due to different time step sizes. Figure 5 shows
the performance comparison for RKC-GPU between threads with similar and randomized initial
conditions. Thread divergence caused by random initial conditions reduced the performance of
RKC-GPU by up to a factor of 3.3. As expected, RKC-GPU exhibited a greater performance
loss than RKCK-GPU, where the major source of thread divergence was varying numbers of
time steps.

14

10-2

10-1

100

101

102

103

104

102 103 104 105 106

Co
m

pu
tin

g
tim

e
pe

r g
lo

ba
l t

im
e

ste
p

(s
)

Number of independent ODEs

59×

10×

RKC-CPU
RKC-CPU × 6

RKC-GPU

Figure 4: Performance comparison of (single- and six-core) CPU and GPU integration of the moderately stiff hydrogen/

carbon monoxide mechanism using the stabilized explicit RKC method.

10-2

10-1

100

101

102

103

102 103 104 105 106

Co
m

pu
tin

g
tim

e
pe

r g
lo

ba
l t

im
e

ste
p

(s
)

Number of independent ODEs

3.3×

Similar conditions
Randomized conditions

Figure 5: Performance comparison of RKC-GPU integration of the hydrogen/carbon monoxide mechanism where neigh-
boring threads have similar and randomized initial conditions.

15

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f o
cc

ur
re

nc
es

Divergence measure D

Similar conditions
Randomized conditions

Figure 6: Warp thread divergence comparison of RKC-GPU for hydrogen/carbon monoxide kinetics for similar and
random initial conditions, where the number of occurrences of the divergence measure D is plotted for 2048 thread
warps.

The greater divergence of RKC-GPU is also demonstrated in Fig. 6, where the number of
occurrences of D is counted for 65,536 ODEs (2048 warps). In this case, even similar initial
conditions caused some divergence. This was likely the reason for the reduced performance
speedup of RKC-GPU compared to that of RKCK-GPU relative to their respective CPU versions.
With randomly distributed initial conditions, D is distributed normally around ∼0.55. Compared
to the distribution of D for RKCK, RKC shows a higher incidence of low values, likely the cause
behind the greater reduction in performance for the randomized initial condition case with RKC.

3.3. Methane kinetics
Next, we analyzed the performance of the CPU and GPU versions of RKC in another case

with moderate stiffness, using the GRI-Mech 3.0 [59] mechanism for methane oxidation, which
consists of 53 species and 325 reaction steps (converted to 634 irreversible reactions). As in
the previous section, we chose a global time step size of 1 × 10−6 s and reported the average
computational time for ten steps. Adjacent ODEs used similar initial conditions. In this case,
RKC-GPU performed nearly eight times faster than RKCK-GPU in terms of computational time,
suggesting more significant stiffness compared to Section 3.2. Consequently, we also compared
the performance of RKC-GPU with the CPU-based implicit solver VODE. In both RKC and
VODE, we selected a relative tolerance of 1 × 10−6 and an absolute tolerance of 1 × 10−10.

Figure 7 shows the performance comparison between the single- and six-core RKC-CPU and
RKC-GPU for problem sizes ranging from 64 to 2,097,152. As before, RKC-GPU performed
better at larger problem sizes. Similar to the hydrogen/carbon monoxide mechanism results,
RKC-GPU outperformed RKC-CPU using a single CPU core for all ODE numbers considered
here and faster than the six-core version for problem sizes of 512 and larger. At larger problem

16

10-2

10-1

100

101

102

103

104

105

102 103 104 105 106

Co
m

pu
tin

g
tim

e
pe

r g
lo

ba
l t

im
e

ste
p

(s
)

Number of independent ODEs

69×
13×

RKC-CPU
RKC-CPU × 6

RKC-GPU

Figure 7: Performance comparison of (single- and six-core) CPU and GPU integration of the moderately stiff methane
mechanism using the stabilized explicit RKC method.

sizes, RKC-GPU compared slightly more favorably than in the previous section, performing up
to 69× and 13× faster than RKC-CPU on one and six CPU cores, respectively. The jump in com-
putational time between 512 and 1024 ODEs corresponded to the addition of initial conditions
with greater stiffness.

Since this problem exhibited greater stiffness compared to the previous case, we also stud-
ied the performance of VODE on the CPU compared against RKC-GPU. Figure 8 shows the
computational time for VODE on six CPU cores and RKC-GPU for problem sizes ranging from
64 to 1,048,576. At all numbers of ODEs considered, RKC-GPU performed faster than VODE,
demonstrating a speedup of up to 57×. Though it is not shown here, we also note that RKC-CPU
outperformed VODE—both on six CPU cores—by a factor of three to six.

Figure 9 shows the performance of RKC-GPU for methane kinetics when the initial condi-
tions in neighboring threads were similar and randomized. The behavior demonstrated here was
similar to that in the previous section, with increasing disparity in performance for larger num-
bers of ODEs. In this case, with randomly selected initial conditions RKC-GPU performed up to
nearly four times slower than when threads contained similar initial conditions. This drop in per-
formance can also be seen in the distribution of D for 65,536 ODEs (2048 warps) in Fig. 10. The
divergence, as measured by D, showed similar behavior to that of hydrogen/carbon monoxide in
Fig. 6. Here, for similar conditions, D is clustered near one, and for randomized initial condi-
tions normally distributed around 0.45—slightly lower than with the hydrogen/carbon monoxide
mechanism. This likely explains the slightly greater drop in performance for randomly ordered
initial conditions, compared to the previous section.

17

10-1

100

101

102

103

104

102 103 104 105

Co
m

pu
tin

g
tim

e
pe

r g
lo

ba
l t

im
e

ste
p

(s
)

Number of independent ODEs

57×

VODE × 6
RKC-GPU

Figure 8: Performance comparison between VODE running on six CPU cores and RKC-GPU with the moderately stiff
methane mechanism over a wide range of problem sizes (i.e., number of ODEs).

100

101

102

103

104

103 104 105 106

Co
m

pu
tin

g
tim

e
pe

r g
lo

ba
l t

im
e

ste
p

(s
)

Number of independent ODEs

4×

Similar conditions
Randomized conditions

Figure 9: Performance comparison of RKC-GPU integration of the methane mechanism where neighboring threads have
similar and randomized initial conditions.

18

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f o
cc

ur
re

nc
es

Divergence measure D

Similar conditions
Randomized conditions

Figure 10: Warp thread divergence comparison of RKC-GPU for methane kinetics for similar and random initial condi-
tions, where the number of occurrences of the divergence measure D is plotted for 2048 thread warps.

3.4. Ethylene kinetics

Finally, we studied the performance of RKC-GPU in a case where stiffness is more severe:
ethylene oxidation using the USC Mech version II mechanism [60], which consists of 111 species
and 784 reactions (converted to 1566 irreversible reactions). In both RKC and VODE, we se-
lected a relative tolerance of 1 × 10−6 and an absolute tolerance of 1 × 10−10. Adjacent ODEs
used similar initial conditions.

Figure 11 shows the computational time for RKC-CPU, RKC-GPU, and VODE for numbers
of ODEs ranging from 64 to 131,072. As before, we chose a global time step size of 1 × 10−6 s
and reported the average computational time for ten steps. Both CPU-based algorithms were ex-
ecuted on six CPU cores. Here, we omit the single-core RKC-CPU results; the performance ratio
between the single- and six-core version showed similar scaling (4–6×) to that shown in the pre-
vious sections. At problem sizes smaller than 256 ODEs, both RKC-CPU and VODE performed
faster than RKC-GPU. RKC-GPU and VODE showed nearly indistinguishable performance for
1024 and 2048 ODEs. For numbers of ODEs greater than 8192, RKC-GPU performed 12–18×
faster than RKC-CPU and 2.5–4.5× faster than VODE.

Next, we increased the global time step size to 1 × 10−4 s to further increase the severity of
stiffness. Figure 12 shows the performance of RKC-GPU and six-core VODE for numbers of
ODEs ranging from 64 to 65,536. For all problem sizes here, RKC-GPU is slower than VODE.
At best, RKC-GPU ran 2.5× slower than VODE for 16,384 ODEs.

3.5. Discussion

The results shown above demonstrate that GPUs may be used to significantly reduce the
cost of incorporating detailed chemistry in reactive-flow simulations. When stiffness is low due

19

100

101

102

103

104

105

102 103 104 105

Co
m

pu
tin

g
tim

e
pe

r g
lo

ba
l t

im
e

ste
p

(s
)

Number of independent ODEs

18× 4.5×

RKC-CPU × 6
VODE × 6
RKC-GPU

Figure 11: Average computational time required for a 1 × 10−6 s global time step using RKC-CPU, RKC-GPU, and
VODE with the ethylene oxidation mechanism, for a wide range of ODE numbers. Both RKC-CPU and VODE were
performed on six CPU cores.

100

101

102

103

104

105

102 103 104 105

Co
m

pu
tin

g
tim

e
pe

r g
lo

ba
l t

im
e

ste
p

(s
)

Number of independent ODEs

2.5×

VODE × 6
RKC-GPU

Figure 12: Performance comparison between VODE running on six CPU cores and RKC-GPU with the ethylene mech-
anism over a wide range of problem sizes for a global time step size of 1 × 10−4 s.

20

to the chemistry or small time step sizes used—such as those used in high-speed flow or DNS
studies—explicit algorithms such as RKCK offer significantly higher performance on CPUs than
implicit methods. Implementing RKCK on the GPU compounds this performance benefit over
an order of magnitude, performing up to factor of 25 faster than the equivalent six-core CPU
version in this study. As such, GPU-accelerated explicit methods are an attractive choice for
nonstiff problems.

However, many chemical kinetics problems exhibit stiffness and therefore implicit algorithms
are typically chosen to integrate the chemistry terms. As shown here, though, stabilized ex-
plicit methods such as RKC offer another option when stiffness is moderate. Demonstrated
with methane kinetics, the RKC-GPU solver performed up to nearly 60× faster than the implicit
VODE solver on six CPU cores. In fact, even the CPU implementation of RKC outperformed
VODE. Based on these results, we suggest that a GPU-accelerated stabilized explicit method like
RKC should be used in place of the standard implicit solvers in reactive-flow simulations—when
stiffness is moderate. Typically, high-fidelity simulations use mechanisms with less than around
100 species—the size of those used in this study—so applying the GPU-based RKC integrator
could significantly reduce the cost of chemistry in such studies. In addition, it could allow the
use of larger, more complex mechanisms.

In the presence of more severe stiffness, as with the ethylene oxidation mechanism here, the
GPU-accelerated RKC still showed significant speedup over the CPU version. Unfortunately, the
comparison between VODE (on six CPU cores) and RKC-GPU became less favorable, with the
speedup dropping to a factor of 4.5 for a global time step size of 1 × 10−6. The performance of
RKC-GPU compared to VODE dropped further when the global time step size was increased—
due to the greater stiffness this induced. For example, a time step size of 1 × 10−4 s may be used
for engine simulations; in this case, RKC-GPU performed at best 2.5× slower than VODE (on six
CPU cores). As Stone et al. [29] demonstrated, porting VODE to the GPU may not yield much
benefit over a multi-core CPU implementation. Therefore, for problems with severe stiffness, an
integration algorithm appropriate for GPU acceleration needs to be developed.

In all cases shown here, the speedup of the GPU-based algorithm compared to the equivalent
CPU-based algorithm improved with increasing numbers of ODEs; at the smallest numbers,
the six-core CPU-based algorithms performed better. This trend agrees with that observed in
previous efforts using various integration algorithms [25, 27, 29]. At smaller problem sizes, the
overhead due to memory transfer between the GPU and controlling CPU dominates, while at
larger problem sizes the time required for actual computation comprises most of the total wall-
clock time.

Further, we observed a general trend of increasing RKC-GPU to RKC-CPU speedup with
increasing mechanism size. For mechanisms with 13, 53, and 111 species, RKC-GPU performed
up to 10×, 13×, and 18× faster, respectively, than the six-core RKC-CPU for a global time step
size of 1 × 10−6 s.

We also found that the the performance of both RKCK-GPU and RKC-GPU dropped by
factors of up to 2.5 and 4.0, respectively, when adjacent threads (corresponding to spatial lo-
cations) used randomly shuffled—rather than similar—initial conditions. This was due to di-
vergence from threads following different instruction pathways, since different conditions will
result in varying inner time step sizes. RKC-GPU exhibited greater thread divergence due to
additional sources from the spectral radius estimation and varying number of stages, and corre-
spondingly with randomized initial conditions this method displayed a larger reduction in per-
formance compared to RKCK-GPU relative to the respective CPU versions. In general, we
consider the case of threads with similar initial conditions more realistic, since in reactive-flow

21

simulations—particularly with structured grids—neighboring volumes/grid points will contain
similar thermochemical states. However, a reduction in performance due to divergence could
result in some cases, such as with unstructured grids, where neighboring locations may not be
stored consecutively in memory.

4. Conclusions

In the present work we demonstrated new strategies for accelerating reactive-flow simula-
tions using graphics processing units (GPUs). Most approaches for such simulations rely on the
operator-splitting technique, which separates the chemistry and transport terms in each time step
for separate evaluation. This results in a large number of ordinary differential equations (ODEs)
governing the evolution of the species mass fractions for each discretized spatial location (i.e.,
grid point or volume) that need to be solved each time step. Here, we demonstrated that explicit
algorithms used to integrate the chemistry ODEs in parallel on GPUs can perform significantly
faster than equivalent CPU versions. We employed the explicit fifth-order Runge–Kutta–Cash–
Karp (RKCK) and second-order Runge–Kutta–Chebyshev (RKC) methods for nonstiff and mod-
erately stiff kinetics, respectively.

We studied the performance of the RKCK algorithm using a nonstiff hydrogen mechanism
with with 9 species and 38 irreversible reactions [26], and the performance of the RKC algo-
rithm using three mechanisms with increasing sizes and levels of stiffness: (1) hydrogen/carbon
monoxide with 13 species and 54 irreversible reactions [1], (2) methane with 53 species and 634
irreversible reactions [59], and (3) ethylene with 111 species and 1566 irreversible reactions [60].
By comparing the performance of the CPU and GPU versions of RKCK and RKC, as well as the
CPU-based implicit VODE solver, over a wide range of problem sizes (i.e., number of chemistry
ODEs), we drew the following conclusions:

• For cases without stiffness, the GPU-based RKCK outperformed the six-core CPU version
by a factor of 25 at best.

• For cases with moderate levels of stiffness, the GPU-based RKC performed faster than the
six-core RKC-CPU by, at best, factors of 10 with a hydrogen/carbon monoxide mecha-
nism, 13 with a methane mechanism, and 18 with an ethylene mechanism.

• In the presence of moderate stiffness in the methane mechanism, RKC-GPU outperformed
the implicit VODE solver—on six CPU cores—by a maximum factor of 57.

• For cases with moderate stiffness, even the CPU-based RKC outperformed VODE.

• With increased stiffness in the case of the ethylene mechanism, RKC-GPU performed only
4.5× faster at best than VODE on six CPU cores.

• When stiffness became more severe due to a larger time step size used with the ethylene
mechanism, RKC-GPU became less efficient than six-core VODE, performing at best 2.5×
slower.

• At small problem sizes (less than 512 ODEs), the six-core RKC-CPU was more efficient,
but RKC-GPU outperformed the serial (single-core) CPU version in all cases considered
here.

22

• Due to thread divergence, the performance of the GPU solvers degraded with randomized
(and therefore different) initial conditions in adjacent memory locations, by up to a factor
of four slower compared to using similar initial conditions.

Finally, we note that while we used a second-order accurate RKC algorithm here, higher order
RKC methods exist. For example, Abdulle [61] developed a fourth-order RKC with similar traits
to the current method. Our future work will involve implementing these higher order algorithms
where such accuracy is needed, as well as developing a GPU-based stiff integrator that can handle
severe stiffness.

Acknowledgements

This work was supported by the National Science Foundation under grant number 0932559,
the US Department of Defense through the National Defense Science and Engineering Gradu-
ate Fellowship program, the National Science Foundation Graduate Research Fellowship under
grant number DGE-0951783, and the Combustion Energy Frontier Research Center—an Energy
Frontier Research Center funded by the US Department of Energy, Office of Science, Office of
Basic Energy Sciences under award number DE-SC0001198.

References

[1] M. P. Burke, M. Chaos, Y. Ju, F. L. Dryer, S. J. Klippenstein, Comprehensive H2/O2 kinetic model for high-pressure
combustion, Int. J. Chem. Kinet. 44 (2011) 444–474.

[2] Z. Qin, V. V. Lissianski, H. Yang, W. C. Gardiner, S. G. Davis, H. Wang, Combustion chemistry of propane: a case
study of detailed reaction mechanism optimization, Proc. Combust. Inst. 28 (2000) 1663–1669.

[3] M. Mehl, W. J. Pitz, C. K. Westbrook, H. J. Curran, Kinetic modeling of gasoline surrogate components and
mixtures under engine conditions, Proc. Combust. Inst. 33 (2011) 193–200.

[4] O. Herbinet, W. J. Pitz, C. K. Westbrook, Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels
blend surrogate, Combust. Flame. 157 (2010) 893–908.

[5] T. Lu, C. K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Prog. Energy
Combust. Sci. 35 (2009) 192–215.

[6] G. D. Byrne, A. C. Hindmarsh, Stiff ODE solvers: a review of current and coming attractions, J. Comput. Phys. 70
(1987) 1–62.

[7] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, Springer Series in Computational Mathematics,
2nd ed., Springer-Verlag, Berlin Heidelberg, 2010.

[8] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506–517.
[9] O. M. Knio, H. N. Najm, P. S. Wyckoff, A semi-implicit numerical scheme for reacting flow II. stiff, operator-split

formulation, J. Comput. Phys. 154 (1999) 428–467.
[10] M. S. Day, J. B. Bell, Numerical simulation of laminar reacting flows with complex chemistry, Combust. Theor.

Model. 4 (2000) 535–556.
[11] B. Sportisse, An analysis of operator splitting techniques in the stiff case, J. Comput. Phys. 161 (2000) 140–168.
[12] E. S. Oran, J. P. Boris, Numerical Simulation of Reactive Flow, 2nd ed., Cambridge University Press, 2001.
[13] A. Bourlioux, A. T. Layton, M. L. Minion, High-order multi-implicit spectral deferred correction methods for

problems of reactive flow, J. Comput. Phys. 189 (2003) 651–675.
[14] H. N. Najm, O. M. Knio, Modeling low mach number reacting flow with detailed chemistry and transport, J. Sci.

Comput. 25 (2005) 263–287.
[15] Z. Ren, S. B. Pope, Second-order splitting schemes for a class of reactive systems, J. Comput. Phys. 227 (2008)

8165–8176.
[16] MPI Forum, MPI: A Message-Passing Interface Standard. Version 2.2, available at: http://www.mpi-forum.

org, 2009.
[17] L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-memory programming, IEEE Comput. Sci.

Eng. 5 (1998) 46–55.
[18] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon, Parallel Programming in OpenMP, Aca-

demic Press, San Diego, CA, 2001.
23

http://www.mpi-forum.org
http://www.mpi-forum.org

[19] OpenMP Architecture Review Board, OpenMP application program interface version 3.0, http://www.openmp.
org/mp-documents/spec30.pdf, 2008.

[20] S. P. Vanka, A. F. Shinn, K. C. Sahu, Computational fluid dynamics using graphics processing units: challenges
and opportunities, ASME Conf. Proc. 2011 (2011) 429–437.

[21] K. E. Niemeyer, C. J. Sung, Recent progress and challenges in exploiting graphics processors in computational
fluid dynamics, Manuscript submitted for publication, 2013.

[22] K. Spafford, J. Meredith, J. Vetter, J. H. Chen, R. Grout, R. Sankaran, Accelerating S3D: A GPGPU case study,
in: Euro-Par 2009 Parallel Processing Workshops, LNCS 6043, Springer-Verlag, Berlin, Heidelberg, 2010, pp.
122–131.

[23] E. R. Hawkes, R. Sankaran, J. C. Sutherland, J. H. Chen, Direct numerical simulation of turbulent combustion:
fundamental insights towards predictive models, Journal of Physics: Conference Series 16 (2005) 65–79.

[24] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-
Crummey, N. Podhorszki, R. Sankaran, S. Shende, C. S. Yoo, Terascale direct numerical simulations of turbulent
combustion using S3D, Comput. Sci. Discovery 2 (2009) 015001.

[25] K. E. Niemeyer, C. J. Sung, C. G. Fotache, J. C. Lee, Turbulence-chemistry closure method using graphics pro-
cessing units: a preliminary test, in: 7th Fall Technical Meeting of the Eastern States Section of the Combustion
Institute, Storrs, CT, 2011.

[26] R. A. Yetter, F. L. Dryer, H. Rabitz, A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen
kinetics, Combust. Sci. Tech. 79 (1991) 97–128.

[27] Y. Shi, W. H. Green, H. Wong, O. O. Oluwole, Accelerating multi-dimensional combustion simulations using
hybrid CPU-based implicit/GPU-based explicit ODE integration, Combust. Flame 159 (2012) 2388–2397.

[28] H. P. Le, J. Cambier, L. K. Cole, GPU-based flow simulation with detailed chemical kinetics, Comput. Phys.
Comm. 184 (2013) 596–606.

[29] C. P. Stone, R. L. Davis, B. Sekar, Techniques for solving stiff chemical kinetics on GPUs, in: 51st AIAA
Aerospace Sciences Meeting, AIAA 2013-0369, 2013.

[30] A. C. Zambon, H. K. Chelliah, Explicit reduced reaction models for ignition, flame propagation, and extinction of
C2H4/CH4/H2 and air systems, Combust. Flame 150 (2007) 71–91.

[31] Y. Shi, W. H. Green, H. Wong, O. O. Oluwole, Redesigning combustion modeling algorithms for the graphics
processing unit (GPU): Chemical kinetic rate evaluation and ordinary differential equation integration, Combust.
Flame 158 (2011) 836–847.

[32] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, E. J. Kelmelis, CULA: Hybrid GPU accelerated linear
algebra routines, in: E. J. Kelmelis (Ed.), Proc. SPIE, volume 7705, 2010, p. 770502. doi:10.1117/12.850538.

[33] R. Sankaran, GPU-accelerated software library for unsteady flamelet modeling of turbulent combustion with com-
plex chemical kinetics, in: 51st AIAA Aerospace Sciences Meeting, AIAA 2013-0372, 2013.

[34] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Morgan Kaufmann,
Burlington, MA, 2010.

[35] J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming, 1st ed.,
Addison-Wesley Professional, 2010.

[36] NVIDIA, CUDA C Programming Guide, 4.0 ed., 2011.
[37] A. Munshi, The OpenCL specification, Khronos Group, 2011.
[38] OpenACC, OpenACC application programming interface, http://www.openacc.org/sites/default/

files/OpenACC.1.0_0.pdf, 2011.
[39] R. Reyes, I. López, J. J. Fumero, F. de Sande, Directive-based programming for GPUs: A comparative study, in:

IEEE 14th International Conference on High Performance Computing and Communications, 2012, pp. 410–417.
[40] C. K. Law, Combustion Physics, Cambridge University Press, New York, 2006.
[41] R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, CHEMKIN-III: A FORTRAN Chemical Kinetics Package for the

Analysis of Gas-Phase Chemical and Plasma Kinetics, Technical Report SAND96-8216, Sandia National Labora-
tories, 1996.

[42] J. R. Cash, A. H. Karp, A variable order Runge–Kutta method for initial value problems with rapidly varying
right-hand sides, ACM Trans. Math. Software. 16 (1990) 201–222.

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran 77. The Art of Scientific
Computing, 2nd ed., Cambridge University Press, 1992.

[44] P. J. van der Houwen, B. P. Sommeijer, On the internal stability of explicit, m-stage Runge-Kutta methods for large
m-values, Z. Angew. Math. Mech. 60 (1980) 479–485.

[45] J. G. Verwer, W. Hundsdorfer, B. P. Sommeijer, Convergence properties of the Runge–Kutta–Chebyshev method,
Numer. Math. 57 (1990) 157–178.

[46] P. J. van der Houwen, The development of Runge–Kutta methods for partial differential equations, Applied
Numerical Mathematics 20 (1996) 261–272.

[47] J. G. Verwer, Explicit Runge–Kutta methods for parabolic partial differential equations, Appl. Numer. Math. 22

24

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://dx.doi.org/10.1117/12.850538
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

(1996) 359–379.
[48] B. P. Sommeijer, L. F. Shampine, J. G. Verwer, RKC: An explicit solver for parabolic PDEs, J. Comput. Appl.

Math. 88 (1997) 315–326.
[49] J. G. Verwer, B. P. Sommeijer, W. Hundsdorfer, RKC time-stepping for advection–diffusion–reaction problems, J.

Comput. Phys. 201 (2004) 61–79.
[50] S. Geršgorin, Über die abgrenzung der eigenwerte einer matrix, Bulletin de l’Académie des Sciences de l’URSS.

Classe des sciences mathématiques et na (1931) 749–754.
[51] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 1990.
[52] G. D. Byrne, S. Thompson, VODE F90, www.radford.edu/~thompson/vodef90web, 2006.
[53] K. E. Niemeyer, create rate subs, https://github.com/kyleniemeyer/create_rate_subs, 2013.
[54] K. E. Niemeyer, irrev mech, https://github.com/kyleniemeyer/irrev_mech, 2013.
[55] C. P. Stone, Personal communication, 2013.
[56] R. Sankaran, Personal communication, 2013.
[57] H. Wang, S. B. Pope, Large eddy simulation/probability density function modeling of a turbulent jet flame, Proc.

Combust. Inst. 33 (2011) 1319–1330.
[58] G. Bulat, W. P. Jones, A. J. Marquis, Large eddy simulation of an industrial gas-turbine combustion chamber using

the sub-grid PDF method, Proc. Combust. Inst. 34 (2013) 3155–3164.
[59] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K.

Hanson, S. Song, W. C. Gardiner Jr., V. V. Lissianski, Z. Qin, GRI-Mech 3.0, http://www.me.berkeley.edu/
gri_mech/, 2010.

[60] H. Wang, X. You, A. V. Joshi, S. G. Davis, A. Laskin, F. Egolfopoulos, C. K. Law, USC Mech Version II. High-
temperature combustion reaction model of H2/CO/C1–C4 compounds, http://ignis.usc.edu/USC_Mech_II.
htm, 2007.

[61] A. Abdulle, Fourth order Chebyshev methods with recurrence relation, SIAM J. Sci. Comput. 23 (2002) 2041–
2054.

[62] T. Turányi, MECHMOD: program for the modification of gas kinetic mechanisms, http://garfield.chem.
elte.hu/Combustion/mechmod.htm, 2003.

Appendix A. Irreversible reaction mechanism converter

In order to avoid the conditional statements associated with the equilibrium constants re-
quired to calculate reverse reaction rate coefficients during a simulation, we can calculate re-
verse Arrhenius parameters (Ar, βr, Tar = Er/R) a priori. Our procedure is similar to that of
Turányi [62]. Evaluating the reverse rate coefficients via the forward rates and equilibrium con-
stants at three temperatures (T1, T2, T3) results in three equations to solve for the three unknown
reverse Arrhenius parameters:

kr1 = Ar · exp (βr · ln T1 − Tar/T1) (A.1)
kr2 = Ar · exp (βr · ln T2 − Tar/T2) (A.2)
kr3 = Ar · exp (βr · ln T3 − Tar/T3) (A.3)

25

www.radford.edu/~thompson/vodef90web
https://github.com/kyleniemeyer/create_rate_subs
https://github.com/kyleniemeyer/irrev_mech
http://www.me.berkeley.edu/gri_mech/
http://www.me.berkeley.edu/gri_mech/
http://ignis.usc.edu/USC_Mech_II.htm
http://ignis.usc.edu/USC_Mech_II.htm
http://garfield.chem.elte.hu/Combustion/mechmod.htm
http://garfield.chem.elte.hu/Combustion/mechmod.htm

Let x1 = ln T1, x2 = ln T2, and x3 = ln T3. Then, dividing by A and taking the natural logarithm
of each side,

ln
(

kr1

Ar

)
= ln kr1 − ln Ar

= βr x1 −
Tar

T1
(A.4)

ln
(

kr2

Ar

)
= ln kr2 − ln Ar

= βr x2 −
Tar

T2
(A.5)

ln
(

kr3

Ar

)
= ln kr3 − ln Ar

= βr x3 −
Tar

T3
(A.6)

Subtracting Eq. (A.5) from Eq. (A.4) and Eq. (A.6) from Eq. (A.5) gives

ln kr1 − ln kr2 = βr (x1 − x2) − Tar

(
1
T1
−

1
T2

)
= βr (x1 − x2) − Tar

T2 − T1

T1T2
(A.7)

ln kr2 − ln kr3 = βr (x2 − x3) − Tar

(
1
T2
−

1
T3

)
= βr (x2 − x3) − Tar

T3 − T2

T2T3
(A.8)

Then, solving Eq. (A.8) for Tar,

T2T3

T3 − T2
(ln kr2 − ln kr3) =

T2T3

T3 − T2
βr (x2 − x3) − Tar

Tar =
T2T3

T3 − T2
(βr (x3 − x2) − ln kr2 + ln kr3) (A.9)

Inserting Eq. (A.9) into Eq. (A.7) for Tar, and letting a1 = ln kr1, a2 = ln kr2, and a3 = ln kr3,
leads to:

a1 − a2 = βr(x1 − x2) −
T2 − T1

T1T2

T2T3

T3 − T2
(βr(x2 − x3) − a2 + a3)

a1 − a2 +
T2 − T1

T1T2

T2T3

T3 − T2
(a3 − a2) = βr

(
x1 − x2 − (x2 − x3)

T2 − T1

T1T2

T2T3

T3 − T2

)
Then, solving for βr,

βr =
a1T1 (T3 − T2) + a2T2 (T1 − T3) + a3T3 (T2 − T1)
x1T1 (T3 − T2) + x2T2 (T1 − T3) + x3T3 (T2 − T1)

(A.10)

Tar is then

Tar =
T1T2T3 (a1 (x2 − x3) + a2 (x3 − x1) + a3 (x1 − x2))
x1T1 (T3 − T2) + x2T2 (T1 − T3) + x3T3 (T2 − T1)

(A.11)

26

To solve for Ar, substitute the expressions for βr and Tar into Eq. (A.4),

a1 − ln Ar = βr x1 −
Tar

T1

ln Ar = a1 − βr x1 +
Tar

T1

=
a1T1 (x2T2 − x3T3) + a2T2 (x3T3 − x1T1) + a3T3 (x1T1 − x2T2)

x1T1 (T3 − T2) + x2T2 (T1 − T3) + x3T3 (T2 − T1)
(A.12)

Ar = exp (ln Ar) (A.13)

We wrote a Python tool implementing the above conversion for Chemkin-format reaction
mechanisms. This software is freely available online [54].

27

	Introduction
	Methodology
	GPU computing
	Governing equations
	Runge–Kutta–Cash–Karp method
	Runge–Kutta–Chebyshev method

	Results and discussion
	Hydrogen kinetics
	Hydrogen/carbon monoxide kinetics
	Methane kinetics
	Ethylene kinetics
	Discussion

	Conclusions
	Irreversible reaction mechanism converter

