
LibraryFind
Better Discovery. Easy Delivery.

®

LibraryFind Vision

• Universal platform for scholarly activity

• Better discovery

• Easy delivery

• Open source, easily adoptable

• Extensible

(some user-noticed)

LibraryFind Features• Two-click workflow

• Facets for browsing / limiting

• Ability to sort by relevance or date

• Breadcrumb trail

• Quick citation information

• Link to resource collection

• RSS Linking

(some under-the hood)

LibraryFind Features
• “Look-ahead” OpenURL resolution

• Smart ILL link display

• Dynamic, on-the-fly facet creation

• Extensively user-tested user interface

• Search caching

• Ability to locally index harvestable

collections

(some more under-the-hood)

LibraryFind Features

• Extensible, customizable (XML-backend)

• Web-based administration

• COinS support

• Open Source

U

S

E

R

I

N

T

E

R

F

A

C

E

A

P

P

S

E

R

V

E

R

WS

RoR

Dispatcher

Group / Collection

Knowledge Base

OpenURL

Resolver

Holdings

Knowledgebase

(o
a
i) (z

3
9
.5

0
) (O

p
e
n
S

e
a
rc

h
) (e

tc
)

Local Data

Store

Direct-query Dbs

Harvestable

Dbs

WS = Web Services

RoR = Ruby on Rails

LibraryFind

Architecture

0.9 Federated Search Engine

Query Engine

Job

Queue
Listener

Tracer

LibraryFind – Behind

the scenes

• LibraryFind is a unique metasearch tool for a

couple of reasons:

1.Integrated OpenURL resolution

2.Both a harvester/indexer and federated search

tool

3.Metadata driven knowledge-base

4.Implements a 2-tier caching system

LibraryFind – Behind

the scenes
•OpenURL

• LibraryFind utilizes OpenURL to accomplish its two
click workflow (search => get)

• OpenURL resolution works two ways:

• Utilizing LF’s build-in OpenURL resolver (requires
coverage information to be managed within the
application)

• Utilizing an externally supported OpenURL
resolver (coverage information is managed
remotely)

LibraryFind – Behind

the scenes

•Harvester/Indexer

• LibraryFind has the ability to harvest

• OAI & MARC repositories

• incremental harvests

LibraryFind – Behind

the scenes
•Federated Search tool

• Utilizes a metadata-based knowledge-base

system

• Allows for the use of abstract connection

classes rather than hardcoded connectors

• Makes adding new resources and sharing

the knowledge-base with other institutions

possible

LibraryFind – Behind

the scenes
•Caching System Infrastructure

LF Technologies

• Ruby on Rails

• MySQL

• Lucene (Ferret)

• web services (REST, SOAP/WSDL)

Protocols

• Z39.50 / SRU / SRW

• OAI-PMH

• OpenSearch

• SOAP / WSDL

• COinS

LibraryFind UI

• Template-based UI generation

• Utilizes Rails model

• views/layouts templates helpers etc.

• language files (for UI I18 support)

• (todo – support for I18 searches on all

protocols)

Default Templates

• 2 default templates

• General template (mixes articles/images)

• Image template (for image view)

Image Template

Mixed Template

Admin UI

Challenges

• Ruby

• Good lack of XML support as part of the
language

• Lack of good, built in thread support

• Installation/deployment challenges

• Coming to grips the Ruby philosophy of
making things work and then optimize (i.e.,
figuring out where the language still needs
optimized)

Challenges

• Working with content providers

• For OpenURL API like Serials solutions and

SFX

• Article/metadata providers

• No standard search API interfaces

• or, the need to sign non-disclosures which

may limit the ability to provide connector

information as part of the project

Challenges

• Building and maintaining the connector

knowledge-base

• Both for OSU and users wanting to use

LibraryFind

• Building and maintaining the OpenURL server

components/database

• Finding ways to work closer with groups like

Serials Solutions, EbscoHost, SFX, etc.

