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Abstract
Understanding the causes and consequences of rapid environmental change is an essential scientific
frontier, particularly given the threat of climate- and land use-induced changes in disturbance
regimes. InwesternNorthAmerica, recent widespread insect outbreaks andwildfires have sparked
acute concerns about potential insect–fire interactions. Although previous research shows that insect
activity typically does not increase wildfire likelihood, key uncertainties remain regarding insect effects
onwildfire severity (i.e., ecological impact). Recent assessments indicate that outbreak severity and
burn severity are not strongly associated, but these studies have been limited to specific insect or fire
events. Here, we present a regional census of largewildfire severity following outbreaks of two
prevalent bark beetle and defoliator species,mountain pine beetle (Dendroctonus ponderosae) and
western spruce budworm (Choristoneura freemani), across theUS PacificNorthwest.Wefirst quantify
insect effects on burn severity with spatialmodeling at thefire event scale and then evaluate how these
effects vary across the full population of insect–fire events (n=81 spanning 1987–2011). In contrast
to common assumptions of positive feedbacks, wefind that insects generally reduce the severity of
subsequentwildfires. Specific effects varywith insect type and timing, but both insects decrease the
abundance of live vegetation susceptible towildfire atmultiple time lags. By dampening subsequent
burn severity, native insects could buffer rather than exacerbate fire regime changes expected due to
land use and climate change. In light of these findings, we recommend a precautionary approachwhen
designing and implementing forestmanagement policies intended to reducewildfire hazard and
increase resilience to global change.

1. Introduction

Forest ecosystems play a vital role in the biosphere, but
anthropogenic climate change and shifting distur-
bance regimes threaten to destabilize the ecosystem
services that forests provide from local to global scales
(Kurz et al 2008, Littell et al 2010, Seidl et al 2011,
Turner et al 2013). Indeed, the indirect effects of
climate change on forests via disturbances (including
wildfires, insect outbreaks, introduced species, and
pathogens) are expected to exceed the direct but more
gradual effects of warmer temperatures (Ayres
et al 2014,Hart et al 2015). In an era of rapid, nonlinear
changes in the Earth system, understanding the causes,

consequences, and feedbacks of forest disturbances is
a crucial scientific and policy frontier.

Disturbance interactions—when one disturbance
influences the likelihood, extent, or severity of another
(Paine et al 1998, Simard et al 2011, Buma 2015, Meigs
et al 2015a)—are a particularly important example of
feedbacks that could be reinforced under novel cli-
matic conditions (e.g., persistent drought (Turner
et al 2013, Harvey et al 2014b, Hart et al 2015)). In wes-
tern North America, insect outbreaks and wildfires are
the twomost ecologically and economically significant
natural forest disturbances (Westerling et al 2006,
Kurz et al 2008, Hicke et al 2013). Both disturbances
have been widespread in recent decades and are
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projected to increase in response to climate and land
use change (Hessburg et al 2000,Westerling et al 2006,
Raffa et al 2008, Bentz et al 2010, Littell et al 2010,
Ayres et al 2014). By killing trees and redistributing
forest fuels, insect outbreaks influence fire regimes in
many parts of the world, and recent large outbreaks
have sparked acute societal concerns about potential
insect–fire interactions and impaired ecosystem resi-
lience (Hicke et al 2012, Harvey et al 2014b, Jenkins
et al 2014). For example, based on the implicit
assumption that insect outbreaks increase wildfire
hazard by generating abundant dead fuels, the 2014US
Farm Bill designated $200 million annually to support
fuel reduction activities across 18 M ha of US National
Forest lands affected by diseases and insects (Agri-
cultural Act of 2014,Hart et al 2015).

Despite concerns about altered fire regimes and
insect–fire interactions, recent studies indicate that
insect outbreaks generally do not increase wildfire
likelihood (Lynch and Moorcroft 2008, Kulakowski
and Jarvis 2011, Flower et al 2014, Hart et al 2015,
Meigs et al 2015a). When they do overlap, however,
key uncertainties remain regarding the influence of
insect outbreaks on subsequent wildfire severity
(Hicke et al 2012, Harvey et al 2014b, Hart et al 2015).
Specifically, although insect-caused treemortalitymay
increase the flammability of canopy fuels at fine scales
in time and space (Jolly et al 2012), a pivotal question
in contemporary environmental management is whe-
ther these insect-altered fuels increase burn severity
(i.e., ecological impact; a major fire regime comp-
onent) at broader spatiotemporal scales. If insect out-
breaks do amplify subsequent fire effects, the resultant
compound impacts may hasten climate-induced shifts
in disturbance regimes toward more severe fire and
altered ecosystem structure and function. Conversely,
if insects buffer subsequent fire effects by redistribut-
ing fuel density and/or availability, recent widespread
outbreaks may bolster ecosystem resistance to shifting
fire regimes. Empirical studies that identify particular
time lags and locations where insect-altered fuels
either exacerbate or dampen fire effects on surviving
trees are directly applicable to time-sensitive manage-
ment activities (e.g., post-insect salvage logging, fuel
reduction at the wildland–urban interface) as well as
broader policy discussions of forest health in a time of
shifting disturbance regimes.

Due in part to data paucity, computational limita-
tions, and the relative rarity of insect–fire co-occur-
rence, recent empirical assessments of insect effects on
burn severity have been limited to specific insect out-
breaks, fire events, or insect–fire time lags (e.g., Crick-
more 2011, Harvey et al 2013, Harvey et al 2014b,
Prichard and Kennedy 2014). These studies suggest
that burn severity is either unaffected by or weakly
positively associated with outbreak severity, that insect
effects are context-dependent, or that factors like fuel
treatments, topography, and weather are stronger pre-
dictors of fire effects. To further elucidate general

system behavior and inform regional management
strategies, it is essential to investigate numerous fire
events spanning multiple insect types (e.g., bark beetle
versus defoliator), insect and burn severities, and time
lags. Here, we leverage recent advances in remote sen-
sing of forest disturbance dynamics (Kennedy
et al 2010, Meigs et al 2015b) to conduct a burn sever-
ity census of large wildfires following recent outbreaks
of the two most prevalent native forest insects across a
large forested region, the US Pacific Northwest (PNW;
40M ha; Oregon andWashington; figure 1). We focus
on all large fire events (�400 ha)with substantial over-
lap of fire perimeters with prior outbreaks of either
mountain pine beetle (MPB) [Dendroctonus ponder-
osaeHopkins (Coleoptera: Curculionidae: Scolytinae);
a bark beetle] or western spruce budworm (WSB)
[Choristoneura freemani Razowski (Lepidoptera: Tor-
tricidae); a defoliator] (total n=81; table S1). Our
specific objectives are (1) to quantify the fine-scale
(30 m) effects of recent insect outbreaks on sub-
sequent burn severity with spatial modeling at the fire
event scale and (2) to evaluate the role of insect type,
time since outbreak, insect and fire extent, fire season,
and interannual drought across the full population of
insect–fire events.

2.Methods

2.1. Study area and recent insect dynamics
Conifer forests of the PNW vary across gradients of
climate, topography, soil, and management history
(Franklin and Dyrness 1973, Hessburg et al 2000,
Meigs et al 2015a). Despite climatic variability, a
common feature is that low precipitation during
summer months (Franklin and Dyrness 1973) yields
conditions conducive to periodic insect and wildfire
disturbances, particularly in mixed-species conifer
forests east of the crest of the Cascade Range (Meigs
et al 2015a). In general, these forests occur in remote,
mountainous terrain and are managed by US federal
agencies for multiple resource objectives. Given the
extent of similar geographic conditions, vegetation
types, and anthropogenic pressures, recent PNW
insect and wildfire patterns are broadly representative
of contemporary disturbance dynamics in conifer
forests of westernNorthAmerica.

Bark beetles, especially MPB outbreaks, have
altered forest composition and structure across tens of
millions of hectares of North American forests in
recent decades (Raffa et al 2008, Bentz et al 2010).MPB
adults attack pine tree stems [Pinus spp., particularly
mature lodgepole pine (Pinus contorta Douglas ex
Louden)], inducing variable but relatively rapid tree
mortality during major outbreaks (Raffa et al 2008,
Meigs et al 2011). In contrast, WSB larvae typically
consume the current year’s foliage of host trees {parti-
cularly true firs [Abies spp.], spruces [Picea spp.], and
Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco]},
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and multiple years of WSB defoliation can result in
tree mortality, often in conjunction with secondary
bark beetles (Hummel and Agee 2003, Meigs
et al 2011). Across the PNW, both insects have erupted
inmultiple outbreaks since 1970, withWSB exceeding
MPB in cumulative extent and tree mortality (Meigs
et al 2015b). Importantly, WSB host forests are more
widespread and occur in relatively warmer, more pro-
ductive locations than MPB host forests in the
study area.

2.2. Insect andfire census data
Recent advances in remote sensing of forest dynamics
across the PNW (Kennedy et al 2010, Meigs
et al 2015b) provide an unprecedented opportunity to
investigate relationships between insect outbreaks and
wildfire severity in a retrospective, empirical, census-
based framework. We used regional maps of insect
and fire effects developed with LandTrendr time series
analysis, which is described in detail by Kennedy et al
(2010). Briefly, we acquired georectified images from
the USGS Landsat archive and applied a series of steps
—pre-processing (atmospheric correction, cloud
masking), processing (temporal segmentation), and
analysis (disturbance attribution, regional

mosaicking)—to reduce multiple sources of uncer-
tainty and assess trajectories of vegetation change
(Kennedy et al 2010,Meigs et al 2015b).

We accounted for insect activity with LandTrendr-
based maps of the cumulative magnitude, cumulative
duration (count of years), and time since onset ofMPB
and WSB outbreaks developed by Meigs et al (2015b).
These insect maps improve on regional aerial surveys
by capturing fine-scale variation of insect impacts
(30 m) and constraining maps to locations with dur-
able vegetation change in known insect host forests
from1985 to 2012. Themaps also quantify the impacts
ofMPB andWSB in consistent units of spectral change
as seamless mosaics across the PNW study area
(including all or part of 35 Landsat satellite scenes
(Meigs et al 2015b)).

We accounted for burn severity by combining
LandTrendr-based regional mosaics of spectral
change (Kennedy et al 2010)with fire perimeters from
a database of large wildland fires in the western US
(�400 ha; 1985–2012 (available online: http://mtbs.
gov)). We first compiled annual time series (tempo-
rally stabilized at the pixel scale) of the normalized
burn ratio (NBR; which combines near-infrared and
mid-infrared wavelengths of the Landsat TM/

Figure 1.Distribution of large forestfires affected by prior outbreaks ofmountain pine beetle (MPB; red; n=19) andwestern spruce
budworm (WSB; blue; n=62)within theUSPacificNorthwest study area (Oregon andWashington; inset). Note that 29%of large
wildfires during the study period (�400 ha; 1987–2011; n=277)had�10%prior insect damage, highlighting that these potential
compound disturbance events are limited to drier, interior conifer forests.We include only large wildfire perimeters with�50% forest
cover (seemethods). Oregon andWashington encompass ca. 40 M ha, half of which is forested (forest cover fromOhmann
et al 2012).
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ETM+sensor (Miller and Thode 2007)). Impor-
tantly, the Landsat time series are anchored in time
near the median date of each scene (generally 1
August), which reduces seasonal variability associated
with phenology and sun angles. We then computed
the relative differenced normalized burn ratio
(RdNBR (Miller and Thode 2007)) in two-year inter-
vals to ensure pre- and post-fire coverage for all pixels
within a given fire event. By capturing the relative
change in dominant forest vegetation, RdNBR enables
the assessment of burn severity across numerous fire
events spanning heterogeneous vegetation (Miller and
Thode 2007, Cansler and McKenzie 2014) or variable
prefire disturbances (including insect outbreaks (Har-
vey et al 2013, Prichard andKennedy 2014)). Although
remotely sensed spectral change indices such as
RdNBR have inherent limitations and do not measure
very fine-scale fire effects and responses (e.g., tree
charring, forest floor combustion, or postfire regen-
eration (Harvey et al 2014b)), they provide the only
spatially and temporally consistent metric of burn
severity encompassing all fires since 1985. Further-
more, because NBR is at the core of many current fire
monitoring protocols (e.g., Key and Benson 2006), our
RdNBR-based analysis is directly applicable to con-
temporary fire research andmanagement.

We conducted a regional insect–fire severity cen-
sus by focusing on large fire events with the following
characteristics: total fire extent�400 ha;�10% of fire
extent affected by prefire insect outbreaks (eitherMPB
or WSB); �50% forest cover (30 m resolution
(Ohmann et al 2012)). Because this forest cover map
targets conditions in the year 2000 and classifies some
previously burned areas as non-forest, we manually
included several fires (n=8) with mapped forest
cover <50%. To avoid potential confounding effects,
we excluded fire polygons with prior outbreaks of both
MPB andWSB (n=8), fires in 1986with only one full
year of prefire insect data (n=5), fires in 2012 with-
out postfire imagery for RdNBR calculations, and one
fire classified as a prescribed fire. With these criteria,
we refined the total population of forest fires (n=425
spanning 1985–2012) to our final census of large wild-
fires with prefire insect activity (n=81 spanning
1987–2011;figure 1).

2.3. Statistical analysis
We developed a hierarchical framework to investigate
insect effects on burn severity within and among all
wildfires in our census (i.e., at the individual and
population level). Within each large insect–fire event,
we assessed fine-scale (30 m) insect effects on burn
severity with sequential autoregression (SAR), a
powerful spatial modeling approach advanced
recently for wildfire analysis (e.g.,Wimberly et al 2009,
Prichard and Kennedy 2014). SAR incorporates the
inherent spatial autocorrelation in dependent and
independent variables with a spatial error term

(Haining 1993,Wimberly et al 2009). This spatial error
term also accounts for spatially autocorrelated vari-
ables not included explicitly, resulting in more robust
inferences than traditional approaches like ordinary
least squares regression (Wimberly et al 2009, Prichard
andKennedy 2014).

We conducted all analyses in the R statistical
environment (R Core Team 2015), constructing SAR
models with the spautolm function in the spdep pack-
age (Bivand et al 2013) in the form:

( )b l b e= + - +Y X W Y X ,

whereY is the vector of the dependent variable,X is the
matrix of independent variables, β is the vector of
parameters, λ is the autoregressive coefficient,W is the
spatial weights matrix, and ε is the uncorrelated error
term. W is based on the spatial structure of the
dependent and independent variables and is defined
by an inverse distance rule that assigns a weight of zero
to all pixels outside the focus pixel neighborhood and
weights equal to the inverse of the distance within the
focus pixel neighborhood. We determined the most
parsimonious inverse distance rule of W by selecting
the neighborhood that minimized both the Akaike
information criterion (AIC) and residual spatial auto-
correlation of the SARmodel (Moran’s I) (Kissling and
Carl 2008, de Knegt et al 2010). Specifically, we ran
SAR models with all dependent and independent
variables (described below) across seven neighbor-
hood distances (30–210 m in 30 m increments) for a
subset of fires (n=15) spanning the range of condi-
tions in the large fire census. We then calculated AIC
and Moran’s I of the SAR residual values (moran.test
function in Bivand et al 2013), which indicated an
optimal neighborhood distance of 30 m, consistent
with previous SAR burn severitymodeling in the study
area (Prichard and Kennedy 2014) and typical for a
spreading disturbance phenomenon such asfire.

Following these initial steps, we quantified insect
effects on subsequent burn severity at the individual
fire level (Objective 1) by running a SAR model for
each large insect–fire event in the regional census
(n=81).We used all 30 mpixels within eachfire peri-
meter to predict burn severity (RdNBR)with the same
set of independent variables related to forest fuels and
topography (table 1). We included the insect damage
and duration variables described above as well as
pixel-level estimates of prefire biomass from annual
Landsat time series and nearest neighbor imputation
with forest inventory data derived for a regional analy-
sis of carbon trajectories (http://lemma.forestry.
oregonstate.edu/projects/cmonster).

Although our primary focus was insect effects on
burn severity via their impacts on vegetation/fuels, we
recognize that topography and weather are funda-
mental drivers of fire behavior and effects. We thus
included a set offive topographic variables (aspect, ele-
vation, slope, and topographic position index at 150
and 450 m; derived from a 30 m digital elevation
model) associated with burn severity in the region
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(Thompson et al 2007, Dillon et al 2011, Prichard and
Kennedy 2014). Unlike these spatially static covariates,
fire weather is a dynamic variable that needs to match
SAR model resolution in both space and time. Recent
advances in the development of gridded meteor-
ological data (e.g., Abatzoglou 2013) have great poten-
tial for such analysis but must be combined with
accurate fire progression maps to assign fire weather
conditions to each pixel for the day it burned. Because
consistent fire progression maps are a recent develop-
ment in North American wildfiremonitoring, they are
not available for most fires in our census, precluding
the use of fire weather covariates in our SAR analyses.
Nevertheless, a major strength of SAR is that the spa-
tial error term captures unmeasured but spatially
structured variables at the pixel scale (Haining 1993,
Wimberly et al 2009), including fire weather.

To evaluate key drivers of insect–fire effects at the
population level (Objective 2), we assessed the dis-
tribution of SAR regression coefficients derived for
each fire event with a set of predictor variables not
included in the SARmodels (table 2). Because the large
variability and range of the independent SAR variables
precluded direct comparison across model coeffi-
cients, we first standardized the coefficients by calcu-
lating z-scores based on the standard deviation of the

mean across all SAR models. We then investigated
whether insect effects on burn severity (z-scores of
prefire insect damage coefficients) varied with insect
type (MPB versus WSB), time since outbreak, total
area affected by prior insect outbreaks (%), fire size
(total extent), fire season (inferred from fire ignition
date), or drought condition of each fire year (Palmer
drought severity index; PDSI). We derived these pre-
dictor variables from the insect and fire census data
described above, with the exception of state-level PDSI
values (available online: http://www.wrcc.dri.edu/
wwdt/time/), which we assigned to each fire, aver-
aging June–August after Heyerdahl et al (2008). We
estimated time since onset of insect outbreak at the fire
event scale as the majority year of first detection in the
Landsat-based insect atlas (Meigs et al 2015b), recog-
nizing that actual insect activity begins one year before
vegetation changes are detected (Meigs et al 2015a)
and that outbreak initiation varies within a given fire
perimeter, depending on outbreak and fire extent.
Finally, we computed linear models to assess uni-
variate relationships between these population-level
predictors and the insect–fire coefficients.

We evaluated uncertainty in the SAR models for
each fire event as well as the distribution of model acc-
uracy across all fire events (table S1). Specifically, we

Table 1. List of variables used in sequential autoregressionmodeling of burn severity (RdNBR spectral index) of allfire events affected by
priormountain pine beetle orwestern spruce budworm.All data were compiled as regionalmosaics encompassing the PacificNorthwest
study area (figure 1) and processed at 30 m resolution.

Variable Description Source

Burn severity (response) Relative differenced normalized burn ratio (RdNBR, two year interval) (Miller andThode 2007)
Prefire insect damage Cumulative prefire vegetation change due to insect activity fromLand-

sat time series (NBR)
(Meigs et al 2015b)

Prefire insect duration Count of yearswith prefire insect activity fromLandsat time series (y) (Meigs et al 2015b)
Prefire biomassa Prefire tree biomass from imputationmapping (kg ha−1)
Aspectb Cosine transformed aspect (°)
Elevationb Elevation (m)
Slopeb Slope steepness (%)
Topographic position index

(150 m)b
Difference between a pixel’s elevation and themean elevation of pixels

within 150 m

Topographic position index

(450 m)b
Difference between a pixel’s elevation and themean elevation of pixels

within 450 m

a Annual biomass maps were derived from Landsat time series and nearest neighbor imputation with forest inventory data as part of a

regional analysis of carbon trajectories (http://lemma.forestry.oregonstate.edu/projects/cmonster).
b Topographic variables derived from30 mdigital elevationmodel.

Table 2. List of population-level predictor variables used to assess drivers of insect effects on burn severity across all fire events affected by
priormountain pine beetle orwestern spruce budworm.

Variable Description Source

Insect type Mountain pine beetle (bark beetle) orwestern spruce budworm (defoliator) (Meigs et al 2015b)
Time since outbreak Time since onset of insect outbreak according to Landsat time series (y) (Meigs et al 2015b)
Area affected by insect Area offire extent affected by priormountain pine beetle or western spruce

budworm according to Landsat time series (cumulative%)
(Meigs et al 2015b)

Fire size Extent offire event (ha) http://mtbs.gov

Fire season Day of year of fire ignition http://mtbs.gov

Interannual drought Palmer drought severity index (mean June–August PDSI) by fire year and state http://www.wrcc.dri.edu/

wwdt/time/
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graphed SARmodel coefficients of determination (R2)
by insect type and across the same key predictor vari-
ables used in the population-level analysis. Recogniz-
ing additional uncertainties inherent to these spatial
datasets, we emphasize general patterns across the
regional census and the relative effects of insect out-
breaks. For example, because the insect outbreak year
is offset by one year and uncertain for any given pixel
within a fire perimeter, we focus on the relative time
since insect outbreak across all fires rather than the
specific time lag for a given fire event.

3. Results

Our census of recent insect–fire events across Pacific
Northwest forests reveals that, after accounting for
prefire biomass and topography, burn severity is
generally lower in forests with higher cumulative
prefire insect damage (figure 2). Notably, this negative
effect of prior insect damage on burn severity is strong
enough to emerge without directly accounting for
weather conditions at the time of burning.

Following both MPB and WSB outbreaks, burn
severity is lower across most time lags (figure 3). The
two insects exhibit divergent temporal trajectories,

however, revealing differential insect effects on tree
mortality, vegetation response, and associated fuel
dynamics. Specifically, whereas burn severity decrea-
ses with time following MPB outbreaks (figure 3(a)),
severity increases with time followingWSB outbreaks,
eventually recovering to a neutral effect within 20
years (figure 3(b)).

In addition, insect effects on burn severity do not
depend on the other population-level predictor vari-
ables. Specifically, the insect–fire coefficients are not
associated with the proportion of fire extent affected
by insects (%), total fire extent (ha), fire season (igni-
tion date), or interannual drought condition (PDSI)
for either insect species (figures S1–S4). This lack of
association underscores the importance of time-since-
outbreak as an emergent predictor of fine-scale insect
effects on burn severity (figure 3).

In general, SAR model accuracy is high (MPB
mean R2=0.64; WSB mean R2=0.72; table S1),
indicating that the insect, vegetation, and topography
variables—as well as the inherent spatial patterning
represented by the spatial error term—explain a large
proportion of variation in estimated burn severity. In
addition, the coefficients of determination are gen-
erally evenly distributed across the regional predictor

Figure 2.Effect of insect, vegetation, and topography drivers on remotely sensed burn severity across fire events with priormountain
pine beetle (a, n=19) orwestern spruce budworm (b, n=62). The standardized z-scores from spatialmodeling (sequential
autoregression; SAR) of each large fire event indicate that burn severity (RdNBR spectral index) is lower in forests with higher
cumulative prefire insect damage and lower prefire biomass. The SARmodels also account for prefire insect outbreak duration and
five potential topographic drivers of severity (table 1). The box andwhisker plots show themedian as a horizontal line, 25th and 75th
percentiles as box edges, 1.5 times the interquartile range aswhiskers, and outliers as points.
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variables, which encompass a broad range of insect,
fire, and drought conditions (figures S5–S9). Finally,
other recognized drivers of burn severity that we did
not model explicitly, particularly fire weather and fire-
fighting response at the event scale, contribute to the
spatially autocorrelated variance captured indirectly
by the SAR spatial error term associatedwith eachfire.

4.Discussion

By quantifying the fine-scale effects of insect outbreaks
on burn severity within all large insect–fire events
across a heterogeneous forest region, this study
demonstrates a general pattern of lower burn severity
following outbreaks of both bark beetles and defolia-
tors, in contrast to recent findings that burn severity is
either unaffected by or weakly positively associated
with outbreak severity (e.g., Crickmore 2011, Harvey
et al 2013, 2014a, 2014b, Prichard and Kennedy 2014).
We suggest that higher severity insect outbreaks
reduce the abundance of live vegetation susceptible to
wildfire while altering vertical and horizontal fuel
distributions, particularly as trees defoliate, die, and
transition from canopy to surface fuels (Hummel and
Agee 2003, Simard et al 2011, Hicke et al 2012, Cohn
et al 2014,Harvey et al 2014a).

In the case of MPB, this forest thinning effect
results in a lasting reduction of fire impacts on residual
vegetation (figure 3(a)). Moreover, the continuing
decline in post-beetle burn severity indicates that the

thinning effect may persist until vegetation and fuel
distributions recover to pre-insect conditions. Because
there were relatively few fire events within the first few
years following MPB outbreak in our census
(figure 3(a)), future studies should continue to investi-
gate the transient yet highly flammable red stage of
outbreak (Jolly et al 2012). Nevertheless, our finding of
generally lower burn severity in forests affected by
MPB outbreaks—as well as the relative rarity of red-
stage fire events in recent decades despite major beetle
outbreaks in the study region (Meigs et al 2015b)—
highlights the need for discretion in forest and fuel
management following beetle outbreaks.

In the case of WSB defoliation, lower initial burn
severity is consistent with reduced potential fire beha-
vior and effects due to fine-scale canopy thinning and
mortality dynamics (Cohn et al 2014). The relatively
rapid increase of the budworm-fire coefficient with
time (figure 3(b)) indicates that the thinning effect on
fuel profiles is less persistent for the defoliator (WSB)
than for the bark beetle (MPB). In addition to rela-
tively lower per-unit-area tree mortality impacts
(Meigs et al 2011), WSB affects host forests that are
more productive than those affected by MPB in the
study region (Meigs et al 2015b), leading tomore rapid
accumulation of live overstory and understory vegeta-
tion. Thus, as time elapses following WSB outbreaks,
fuel density and connectivity likely increase in multi-
ple strata, including dead surface fuels (Hummel and
Agee 2003) and total live biomass, the latter of which is
associated with higher burn severity (figure 2). The

Figure 3.Relationship between prefire insect effect on burn severity (RdNBR spectral index) and years since onset of insect outbreak
across fire events (individual points)with priormountain pine beetle (a) orwestern spruce budworm (b). For both insects, burn
severity is lower in forests with higher prefire insect damage acrossmost time lags, although the two insects exhibit divergent
trajectories.Whereas burn severity decreases with time followingmountain pine beetle outbreaks (R2=0.19,P=0.06, n=19),
severity increases with time followingwestern spruce budwormoutbreaks (R2=0.40,P<0.0001, n=62), recovering to a neutral
effect within 20 years.
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potentially synergistic budworm-fire effects in older
outbreaks have important implications for current
forest management in the US Pacific Northwest,
where regional WSB outbreaks peaked 25–30 years
ago, exceeding recent MPB outbreaks in cumulative
extent and impacts (Meigs et al 2015b).

Very few studies to date have assessed post-insect
burn severity in an empirical, spatially explicit man-
ner, and our census of numerous large fire events
occurring up to 26 years following bark beetle and
defoliator outbreaks provides a broader context for
assessments of specific insect outbreaks, wildfires,
locations, and time lags. In so doing, our analysis
demonstrates generally negative feedbacks, in com-
parison with the neutral or relatively transient positive
effects quantified with field observations in wildfires
occurring up to 15 years following MPB outbreaks in
Northern Rocky Mountain forests (Harvey
et al 2014a, 2014b). In addition, our results differ from
the positive MPB-fire feedbacks identified via SAR for
the 2006 Tripod Fire Complex in northern Washing-
ton (Prichard and Kennedy 2014). Finally, analyses of
fire effects following WSB defoliation have been espe-
cially rare. The post-budworm temporal trend sug-
gests a neutral effect ca. 18–23 years post-outbreak
(figure 3(b)), consistent with the lack of association
between budworm damage and the severity of the
2003 B&B Fire Complex in central Oregon (18 years
post-outbreak (Crickmore 2011)).

Our core finding that insect outbreaks actually
dampen wildfire severity across numerous large
insect–fire events has direct applications to natural
resources management. Specifically, policies based on
the assumption that recent insect outbreaks increase
the hazard of subsequent wildfires might be unjusti-
fied (Hart et al 2015). Furthermore, given that insects
also can reduce wildfire likelihood (Lynch and Moor-
croft 2008, Meigs et al 2015a), these findings illustrate
the role that a biotic disturbance (i.e., insect outbreak)
can play in limiting both the occurrence and impacts
of an abiotic disturbance (i.e., wildfire). Because bark
beetle and defoliator effects on burn severity appear to
diverge over time, however, forestmanagement strate-
gies should recognize the differential and dynamic
effects of each insect on fuel conditions and associated
fire potential.

Although our regional census reveals negative
insect effects on burn severity across a range of condi-
tions that has not been assessed to date, numerous
uncertainties and research questions remain, particu-
larly regarding the mechanistic linkages among
insects, fuels, and other known drivers of fire behavior
and effects. Specifically, our inference is limited to the
locations and years captured by the available spatial
datasets, and future studies could investigate insect–
fire severity relationships over broader spatiotemporal
scales. Future studies also could combine our spatially
extensive methods with the temporally rich insights
provided by tree ring analysis (e.g., Flower et al 2014).

Such a fusion approach would enable forest research-
ers and managers to determine whether recent insect
and fire patterns represent a departure from historic
disturbance regimes. In addition, because our census
uses remotely sensed relative spectral change (RdNBR)
as a proxy for fire effects, we cannot directly address
causal relationships, fine-scale ecological impacts and
responses (e.g., soil heating, tree regeneration), fire
behavior (e.g., fire intensity, crowning), or operational
fire management (e.g., firefighter safety, suppression
tactics) (Thompson et al 2007, Harvey et al 2014b, Jen-
kins et al 2014, Hart et al 2015). Moreover, although
the SAR spatial error term indirectly captures the
effects of missing variables (Haining 1993, Wimberly
et al 2009), future studies could explicitly address the
effects of other key drivers like fire weather on a subset
of events where fine-scale, consistent, and accurate
weather and fire progression data are available (e.g.,
Harvey et al 2014b, Prichard and Kennedy 2014).
Similarly, topography and climate are known drivers
of burn severity in the western US (Dillon et al 2011),
and future research could further investigate the gen-
erally positive association between elevation and burn
severity in our SAR modeling (figure 2) and lack of
association between drought and insect–fire effects
across this census, which spans a range of drought
conditions (figure S4). Finally, our analysis is limited
to the relatively rare events where wildfires occur
within the initial decades following insect outbreaks,
and future studies should continue to evaluate the per-
vasive ecological and economic impacts of these and
other disturbance agents separately (e.g., Westerling
et al 2006, Kurz et al 2008,Hicke et al 2013).

5. Conclusion

Contrary to common assumptions of positive feed-
backs, recent forest insect outbreaks actually dampen
subsequent burn severity at multiple time lags across
the US Pacific Northwest. Indeed, by altering forest
structure and composition from forest stand to
regional scales (Raffa et al 2008, Flower et al 2014,
Meigs et al 2015b), these native insects contribute to
landscape-scale heterogeneity, potentially enhancing
forest resistance and resilience to wildfire. Because
insect outbreaks do not necessarily increase the
severity of subsequent wildfires, we suggest a precau-
tionary approach when designing and implementing
forest management policies aimed at reducing wildfire
hazard in insect-altered forests.

In addition, by dampening subsequent burn sever-
ity, insect outbreaks could buffer rather than exacer-
bate some fire regime changes expected due to global
change (e.g., climate warming, drought, invasive spe-
cies (Littell et al 2010, Ayres et al 2014)) and forest
response to land use (e.g., fire exclusion, timber har-
vest, livestock grazing (Hessburg et al 2000)). How-
ever, each of the disturbances assessed here (bark
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beetle, defoliator, wildfire) influences more forest area
separately than in combination (Meigs et al 2015a),
and it will remain a high priority tomonitor and adap-
tively manage their individual impacts on forest health
and ecosystem services. Given projected increases in
the activity of both wildfires and insects (Raffa
et al 2008, Bentz et al 2010, Littell et al 2010), the
potential for disturbance interactions will continue to
increase, as will the potential for ecological surprises
like the negative feedbacks apparent in this census.
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