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HEAT CONDUCTION IN A CONE WITH A RING SOURCE

I. INTRODUCTION

The problem considered and solved in this thesis is that of the

conduction of heat inside a homogeneous solid; a cone of slant height

a and terminated by a spherical cap of radius a. Also the semi-

infinite cone as a particular case is considered. An initial tempera-

ture distribution u(r, 0, yo, 0) throughout the interior, together with

certain conditions for the temperature u at the boundaries are pre-

scribed. We will consider only the isothermic case which occurs

when the boundary is kept at the constant temperature zero at all

times. Our heat source is a ring of unit strength placed symmetri-

cally about the axis of the cone.

Not much work has been done with regard to the above problem.

Probably the first investigation of the problem was done by

H. S. Cars law. In 1913 he determined the Green's function for
01.

Au k
2u

= 0 in the cone by contour integration and gave the results

in the form of infinite series. Later, in 1921, the solution to the heat

conduction problem in the finite cone appeared in his book "Introduc-

tion to the Mathematical Theory of the Conduction of Heat in Solids,"

which came out in print in 1940, and was completely revised in 1947

and 1959. In the 1947 and 1959 editions the Green's function for the

infinite cone is found also by the method of Laplace transformation.
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A more recent publication related to the above problem is the

one by R. Muki and E. Sternberg [7]. They investigated the problem

of steady-state heat conduction in the semi-infinite cone by the use of

the Me llin transform and the results are given both in the form of an

infinite series and in the form of a contour integral. Also some

numerical results are obtained by numerical integration.

The method used here is that of determining the Green's function

using eigenvalues and eigenfunctions. This could be done using a well

known expansion formula [4, p. 267], but we use the modified Green's

function as an intermediate, because that enables us to find the

Green's function for the semi-infinite cone as a particular case. The

use of the eigenvalues and eigenfunctions does not work very well in

the adiabatic case, which occurs when the boundary is insulated so

that no heat flows through into the surrounding medium, because the

eigenvalues are obtained as the roots of a transendental equation

(Appendix B, Equation (B. 2)) and they are hard to locate.

The primary result obtained in this paper is the first Green's

function for both the finite and semi-infinite cone with an axi-

symmetric source ring. Then the temperature inside the finite or

semi-infinite cone in time t due to an initial temperature distribu-

tion independent of y is easily obtained. However, it was felt

that an example demonstrating the advantages of the method used

should be done first. A lot of the formulas in this example are used



3

again in obtaining the solution to the main problem. Those relations

used later in the main problem are developed with reasonable detail

and for that reason this example might seem a little longer than

what one would normally expect in a simple demonstration.
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II. DEFINITION OF GREEN'S FUNCTION FOR THE HEAT
CONDUCTION EQUATION. MODIFIED GREEN'S FUNCTION

Our problem consists of finding the solution u = u(x, y, z, t) to

the heat conduction equation

au
K u in V; t > oat

satisfying the homogeneous boundary condition

u = 0 on 5; t > 0

and the initial condition

u = f(x, y, z) in V; t = 0

where V is the interior of the volume of the conical structure

described in the Introduction, S is the surface area of that struc-

ture, V = V u S, and K is the thermal conductivity of the solid.

The so called Green's function of the heat conduction equation in

free space is [8, p. 59]

0
(PQ)

2

1 4Ktu(x, y, z, t) =
(47Kt)3

/2 (1)

Here PQ is the distance of a point of observation P from

the location Q of a thermic point source which is usually referred



to as a heat pole [8, p. 59].

The function u, as it is represented by Equation (1), has the

following properties

(a) u satisfies the heat conduction equation

(b) u(x, y, z, 0) = 0 if PQ 0

(c) u(x, y, z, 0) ---- 00 as P Q

+00

(d) u(x, y, z, t)dxdydz = 1, regardless of t and

_00

(x', y', z').

In other words,

5

u, as given by Equation (1), has the character

of a 5-function [8, p. 27].

We denoted here (x, y, z) as the Cartesian coordinates of the

point of observation P, while (x', y', z') are the Cartesian co-

ordinates of the location of the source point Q.

The Green's function for the interior of a volume bounded by a

closed surface 0- is defined as

G = G(P, Q, t)

(0 aG
= KAG everywhere inside CT for t > 0.at

(2)

(ii) For t = 0, G = 0 everywhere inside 0- except when P

is at Q where it has the character of a 5-function (heat

pole).
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(iii) G1 = 0 if P is on o- (first Green's function).

aG
2

0 if P is on IT (second. Green's function).
an

Here a
an

is the normal derivative with respect to the surface

Physically, the expressions (1) and (2) represent a temperature

field produced by a heat pole located at a point Q (source point) in

the case of Equation (1) in free space, in the case of Equation (2)

inside a closed surface o, according as the boundary condition

u = 0 (isothermic case) or au
an

0 (adiabatic case) is imposed.

If, for instance, Cartesian coordinates are considered, then,

with P(x, y, z) and Q(x', y', zl)

G 4 G(x, y, z;xl, y', zl, t).

Furthermore, if at t = 0 a temperature distribution f(x, y, z)

is imposed, then the temperature field inside IT is

u(x, y, z, t) = f(x', yi, z')G(x, y, z; z 1, t)d.x'dy'd.z' (3)
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where G is one of the Green's functions as defined in (2). The

integration has to be performed over the whole volume bounded by o .

Let

u(P, Q, t) = g(P, Q)T(t)

Then g(P, Q) is a solution of Helmholtz equation

Ag + k
2g

= 0

where k is a separation parameter.

Using the eigenvalues and the normalized eigenfunctions,

g(P, Q) is given by [5, p. 267]

g(P, Q) =
un(P)u*(Q)

2 Zk -kn
(4)

where the summation is single, double, or triple depending only on

the geometry of the problem, kn are the eigenvalues, u (P) are
n

the corresponding normalized eigenfunctions evaluated at the point of

observation P, and u*(Q) are the complex conjugate normalized

eigenfunctions evaluated at the source point Q.

Hence, we have the following expansion formula for a particular

solution of the heat conduction equation.

u(P, Q, t) =
u

n
(P)u*(Q) 2

n e-R K t
Z 2

n
k -kn

(5)
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A well known formula giving the Green's function in terms

of the eigenvalues and the normalized eigenfunctions is [4, p. 288]

G(P, Q, t) =

00

n=1

-k2
K t

P)u *(Q)e (6)

where again the summation is single, double, or triple depending on

the geometry of the problem, and un(P), u*(Q), and kn are as in

Equation (4).

To determine g(P, Q) or G(P, Q, t) using eigenvalues and

eigenfunctions one could use Equations (4) and (6), respectively. We

are going to use a method that uses the modified Green's function, de-

noted by G, as an intermediate.

Let k = -iy in Equation (4). Then, denoting by G(P, Q, y)

the resulting value of g(P,Q), we have

Q, y) =

n

un(P)u):,(Q)

2 2
+kn

The function G(P, Q, y) is a solution of

Ag - N2g = 0

which is referred to as the "modified Helmholtz equation. "

Now replace y by yl /2 and find the inverse Laplace

(7)
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transform of the resulting equation with respect to y. Since neither

un(P), nor u*(Q) contain y we only have to obtain the inverse
1Laplace transform of

y+k
Using Equation (A. 1) in Appendix A

we find that

G (P, Q, -y
1/2

)

n

-k 2
t

u (P)u*(Q)e nn n

Now replacing t by Kt in Equation (8) we see that

1C {G(P,Q, y 1/2
)} = G(P,Q,t)t K t

(8)

( 9 )

Here nt Kt" means t is replaced by Kt.

For instance, the point source solution of the Helmholtz equa-

tion which applies to time harmonic wave propagation phenomena is

[9, Vol. 2, p. 57]

1 e-ikPQu = -
4TrPQ

Replace k by -iy in Equation (10).

1 e-yPQu -
4TrP Q

Equation (11) is the point source solution of the modified

(10)



Helmholtz equation.

Using Equation (A. 4) in Appendix A we see that

--0
(PQ)

2

1 4Kt
3/2e

(4ff Kt)
ec

1 /2-0P-1 1 -.y
{- e

PQ
Kt4TrPQ

10

It seems a waste of time, once you have found the eigenvalues and

the corresponding eigenfunctions, to find. G(P, Q, y) as described

above, instead of finding g and G directly from Equations (4) and ( 6) .

If we want to examine g and G with a semi-infinite domain,

that is with a = 00, the seemingly easiest way to do it, using eigen-

values and eigenfunctions, is to find g and the Green's function using

Equations (4) and( 6) for finite a and then let a 00. In doing so, how-

ever, we get an infinite series that does not converge or in other

cases it might converge very slowly. By using the modified Green's

function as an intermediate step with the help of Equation (7) we get a

solution which is monotonic in nature for the finite case and hence con-

verges more rapidly than the oscillatory solution that we would have

obtained, if we had used Equations (4) and (6) At the same time we

are able to examine the case with infinite domain, something which we

would not probably have been able to do, due to the ill behavior of the

infinite series in Equation (4) and (6). Furthermore, since un(P) and

u *(Q) do not involve y, finding the inverse Laplace transform of

Equation (7) is a relatively simple problem in the case of a finite



11

domain.

To demonstrate the need for the modified. Green's function as an

intermediate step we consider the following example in which we de-

rive Equation (1).
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III. FREE SPACE GREEN'S FUNCTION

We obtain the solution by solving the classical problem of finding

the Green's function of a sphere of arbitrary radius a and center

at the origin and then, as mentioned in the analysis before, we let

a 00. We let the point source be the arbitrary point Q inside the

sphere.

As mentioned earlier first we must find the eigenvalues and the

corresponding eigenfunctions for the sphere. That is, we want to find

the functions which are continuous, single valued solutions of the

scalar Helmholtz equation

A u + k
2u

= 0 (12)

in the sphere which satisfy the homogeneous boundary condition

Let

u = 0 at the surface of the sphere. (13)

x= r sin 0 cos 'p, y= r sin 0 sin yo, z= r cos 0

z



Then Equation (12) expressed in spherical coordinates is

a au a au a
2

u 2

2 ar 1.* ar 2 a (sine ae
) +

2 2 2
+ k u = 0

r sin 0 0

and the boundary condition (13) becomes

r sin 0 aco

13

(14)

u= 0 at r = a (15)

Since we will be seeking solutions of Equation (14) in solving the

problem for the cone later, let us derive the general solution of that

equation he re .

Assume a solution of the form u = f l(r)f
2

(0)f
3

(cp). Substitution

into the Helmholtz equation yields the following three ordinary differ-

ential equations:

2
d. f

1
+

1
df

+ kr k2- (v+1)2
2 r d.r 2 lfl 0

L

dr r

d2f 2
2

df2

2
+ cot 0 + [v(v+1)

d0 de 2sin 0

d
2f

3 2

2- f3
dco

]f2 = 0 (16)

(17)

where p., v are arbitrary separation parameters.

The first of these equations is recognized as the Bessel's differ-

ential equation of order v+1 whose general solution is [4, p. 217]



rf
1

(r ) = LAJ (kr)+BY (kr)]
r1/2 v+z

Here J ,1

14

and. Y I denote the Bessel functions of the first
v+-2-

and second kind, respectively, of order v+-f and. A, B are

arbitrary constants.

Equation (16) is recognized as the Legendre differential equa-

tion. Its general solution is given by [4, p. 117]

f2(0) = CPP'(cos 0) + De(cos 0)

where C, D are arbitrary constants and Pµ and QV' denote the

associated Legendre functions.

Finally, the general solution of Equation (17) is given by

f
3

(cp) = E cos p.cp + F sin p.cp

where again E, F are arbitrary constants.

Therefore, the general solution of the Helmholtz equation in

spherical coordinates is

1
u = [AJ (kr )+BY (kr)][CPP-(cos 0)+DQPI(cos 0)]

v+-2- v+-z

X [E cos p.cp+F sin pp] (18)

We want the solution u to be bounded and single-valued in the

sphere. Therefore, we must set v = n = 0,1,2, ...
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= m = 0, 1, 2, and B = D = 0 in Equation (18), because

Yni_1(kr) has a singularity at r = 0 and, while both Pm(cos 0)

rri
and. Qn (cos 0) are single-valued, only Pn (cos 0) is bounded for

0 < 0 < Tr with Qn m(cos 0) possessing singularities on both the

axes 0 = 0, Tr [5, p. 367]. Hence, the eigenfunctions for the sphere

are

1

= i(kr)Pn (cos 0)e±imcPrn , m, n = 0, 1, 2, .,n 1/2r

The boundary condition (15) implies that

J 1.(ka) = 0

Let T
n ,

be the ith root of this equation. Then the eigen-

values will be given by

n ,kn,/ = a n = 0 , 1 , 2, ..., Q = 1, 2, ...,

and the corresponding eigenfunctions by

u
1 J 1(T -r-)Pm(cos 0)e±imcprn, n, 1/2 n, / a n

m, n = 0, 1, 2, . . . , f = 1, 2, 3, . . .

In order to find the normalizing constant N we must evaluate

the following triple integral
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a Tr

N
2

= r[J
n+-2-

1(T / a n
°)] 2

mdr [P(cos OH sin 8 d8n,r=0 8 =0

2
2Tr cos mcp

X
2

dcp

cp=01. sin mcp

From the theory of Bessel functions [5, p. 308] we know that

S r[J 1

2
2

v
(kr)] dr= {lc a 2[P(ka)] 2 + (k2a2-v2)[Jv(ka)]

} (19)
r=0 2k

Hence

S r[J 1(7 -I: )] 2dr =
a2 2

n+-2- n, / a 2 n+1 n2r=0

Using the recurrence formula [10, p. 45]

zJ'(z) - vJv(z) = -zJv+1 (z)

we get

tr r[J (T )] dr = [ a (T )]2
r 2 a2

n, a 2 ri-F n,r=0

The second integral is known [11, p. 193]

Tr
2 2 (n +m[Pn(C°

U)

^1 sin 0d.0 = (n-m0=0

Finally, for the third integration we get

(20)



2Tr cos2mcp
dcp

= 0 1- sin 2mcp

where s is Neumann's number defined bym

1 m = 0
E
m 2 m 0

Therefore, the normalized eigenfunctions are

17

(21)

(2n+1)(n-m) r
1(T )P

m
(cos 0)1

cos mco
1 m 1 1/2 n +2 n,1 a n s in mcp=um,

n, .e a arr(n.+m)!r J 3 ( T )n+f n,

m, n = 0,1,2, ... , = 1,2,3, . .

Substituting these eigenvalues and eigenfunctions into Equation

(7) we get the modified. Green's function

G(P, Q, y) =

X

CO 00 00

1

2a 2-n-(rr') 1/2
nz.-0 /=1 m=0

(2n+1)(n-m) !Em
(n+m)!

J 1 (T
r
--)J 1 (T ) Pm (cos 0)P (cos 0')n, I a n +2 n, i a

[3(TJ
n,

2 T
2

+
2

X cos m(cp--yo') (22)

Using the addition theorem [6, Vol. 1, p. 168] in Equation (22)

we get



where

G(P, Q, .y)

X

2a Trfrrl

00 00
(2n+1)Jn 1 (Tn, a )

/2
2[J 3(T )1n=0 n+f n,

J 1(T --)P (cos O1)
n+-2- n, a n 1

2 n, 2
+ ( )a

cos 01 = cos 0 cos + sin 0 sin 0' cos (co-cp').

18

(23)

Also from the theory of Bessel functions [6, Vol. 2, p. 104] we

have the following formula

TrJv(xz)
[Jv(z)Y v(Xz)-J v

(Xz)Y
v

(z)]
v

00

-2 2 2 -1
jv("v,n)jv(Xlv, n"v+1(Niv,n)] (z

0 < x < X < 1, v -1, -2, ... , (24)

with x and X interchanged when X < x.

n=1

This formula is also given by Watson [10, p. 499], but his has a

mistake. Buchholz was the first to point out and correct this mistake

[1, p. 245].

In Equation (24) let z = ik. Using the fact that

Tr11)
2Jv(iz) = e Iv(z)



and
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we find that

00

Tr Tr

Z 2
e Iv (z )co s vTr-e I- v(z)

sin vTr

Jv(xyv, n)Jv(Xyv, n) 1
Iv(xk)

2 2 2 ,
= I(k) [Iii(k)Kv(Xk)- K

v
(k)I

v
(Xkil

v
n= Jv+1(\/v, n)] [k +Nv, ni

0 <x<X< 1 (25)

with x and X interchanged when X < x.

Here I , K are the modified. Bessel functions of the first and
v v

second kind respectively.

Applying Equation (25) to Equation (23) we find that the modified.

Green's function is

E(P,Q, y) = 1 1
LITr(rr'

oo

n=0

2n+1)

K 1 (ya)
n+-2-X [I i(yr')K 1(yr)-I 1(yr')I i(yr) P (cos 01)

n+-f n+-2- n+-- n+-E I 1( a) n 1
1-1-F

(26)

In Equation (26) we want to let a 00. When lz I is large

enough the following asymptotic expressions are valid. [5, p. 330]



and

Iv (z)
1

(2Trz)1 /2 Eez+e-z+i(v+1)7T.

Therefore

which shows that

Kv(z)

TT

K(z) e
- Z

2z

TT

Iv(z) 2z i(v+-Dir
e +e

lira
K (z)

z
Iv (z)
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Tr 3Tr
-

2
< arg z <

2

3TrIarg zi <

= 0 (27)

Using Equation (27) in Equation (26) we see that the modified.

Green's function for the whole space is

1

4rr(rr')
n=0

00

2n+1)I (yr ')K (yr )P
v

(cos 0 ), r' < r1/2 n+-f n+-2- 1

with r and r

and.

interchanged when r < r' .

By definition [6, Vol. 2, p. 5]

ivTr

Iv(z) = e 2 Jv(iz)

ivTr

1 . 2 (
Kv(z) = -2-- lire H

v

1)
(iz)

(28)



Hence, Equation (28) may be written in the following form

G(P, Q, Y) =
8(r 1 /2

Co

n=0

21

2n+1)J ')H
(1) (i-yr)P (cos 0 ), r' < r

n+ 1

This sum now is known [5, p. 359] and so regardless of the

relation between r and r' the modified. Green's function for the

whole space is

e
--yR

G(P,
Y) 4.7R

2 2where R = (r + r' 2rr' cos 01)1/z.

(29)

Substituting Equation (29) into Equation (9) we find (Appendix A,

Equation (A. 4)) that the free space Green's function is

R2

1 G-Ile-N R,
I/2 4Kt

G(P, Q' t) 4TrR t Kt
(4TrKt) /2

(30)

agreeing with what has already been established in the literature [8,

P. 59].

If we used Equation (4) instead of Equation (7) we would have



00 00 CO

g(P' Q)
1

2

(2n+1)(n-m) !Em

(n+m)!2a Tr(rr

X

m=0 n=0 1=1

J 1(T r )J 1 (T (cos 0)P (cos 0')
nt-2- n,1 a n, .Q a n n

[J 4(- )]
2

2
Tn I 2

n+2 n, k
a

X cos m (yo-cpI)

22

(31)

In order to see what happens if we let a --- 00, let us use first

the relation (24) and the addition theorem [6, Vol. 1, p. 168]. Equa-

tion (31) becomes

00

1
g(1', Q) =

1 2 k2n+1)[J(kr 1)Y r)-J (kr)J -t (kr t)
n+-2- n+-2- rpt n8(rr')

n= 0

Y 1 (ka)
X ]IJ

n
(cos 01)jn+1.(ka)

Let us examine the behavior of Y v(z) and J v(z) as z

z real. From the theory of Bessel function [5, p. 321] we have

and

Y (z) (2 )
1/2 sin[z-(v+1-)1:] z

v 17* Z 2

31/(z) (2) 1/2cos[z-(v+1)1--]
7T z 2

00

00

(32)

From these two expressions we see that the Bessel functions

CO



Jv( z) and Yv( z) behave when z is large like damped trigono-

metric functions. Furthermore

Yv(z)

'T( z)
- tan[z-(v -4)

2
v

z oo

23

Therefore, g in Equation (32) does not approach a limit as

ooa and hence the infinite sum will not converge, whereas using

the modified Green's function we got not only a solution for the finite

sphere, but also a solution for the whole space as a special case

which converges very rapidly as it may be seen from Equation (30).

Furthermore direct substitution into Equation (6) and use of the

addition theorem [6, Vol 1, p. 168] yields

G(P, Q, t)

co

X J Crn, 1

'r
a ) P

n(cos() )e a

2n+1) J i(Tn, Q a
2[J (T

n,

T 2
n, /2

-( ) kt

X

The double sum above is not known. Hence, its behavior as

a 00 is hard to determine, and so Equation (6) is of little use for

the case a = 00 .
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IV. EIGENVALUES AND EIGENFUNCTIONS FOR THE CONE

The eigenfunctions are the continuous, single-valued solutions of

the scaler Helmholtz equation (12) in the cone which satisfy the homo-

geneous boundary condition

B(u) = 0 on the surface of the cone (33)

We will consider only the isothermic condition. So, the boundary

condition (33) expressed in sperhical coordinates is

u =0 at r = a, 0 < 0 < 0 0' 0 < < 2Tr

u = 0 at 0 = 0
o'

0 < r < a, 0 <cp <2Tr
(34)

Equation (12) expressed in spherical coordinates is given by

Equation (14) whose general solution is Equation (18). We want the
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solution u of the Helmholtz equation to be continuous and single-

valued for 0 < r < a, 0 < 0 < 0 0 < co < 271-. The Bessel func-

tions of the second kind and the associated. Legendre functions of the

second kind, as remarked earlier, become singular at r = 0 and

0 = 0, Tr, respectively. Therefore, we must set B = D = 0 in

Equation (18). The solution u must not only be single-valued, it

must also be periodic in cp. So we must set F = 0 and

= n = 0,1, 2, ... in Equation (18). Furthermore, for reasons stated

later, we restrict v to real values, and, since [6, Vol. 1, p. 144]

1311 v-1 (x) = Pv(x), we may take v > -1. So the general solution of

the Helmholtz equation for the geometry considered here is

A cos ncp
u = ,i(kr)Pv (cos 0), n 0, 1, 2, . , v > -1 (35)1/2 v-t---2-r

where A is an arbitrary constant which we may choose to set equal

to one for simplicity. Substituting v by v-2 and. A = 1 in

Equation (35) we find that

cos ncp
u 1/2 Jv(kr)Pn -1 (cos 0 ) , n = 0,1, 2, ... , v > (36)

r

Now we are ready to impose the boundary conditions (34). The

first of the boundary conditions (34) implies that



Jv(ka) = 0

Let T be the mth root ofm, v

Jv(z) = 0

Then the eigenvalues are

k = km, v

Tm, V

a
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(37)

From the theory of eigenfunctions and eigenvalues [8, p. 170]

we know that km , V
are real. Therefore, Trrl, V

must be real and

by Lommels theorem [10, p. 482] this is true only if v is real.

This justifies our earlier restriction of v to real values. Further-

more, since J -v (x) has the same roots as J
v

(x) we may restrict

Tm, V

that

to be the positive mth root of Equation (37).

Similarly, the second of the boundary conditions (34) implies

Pn (cos 00) = 0 n = 0, 1, 2, . ,

Equation (38) is a function of v. Let a be the ithn,

root of this equation. Then the eigenvalues of our boundary value

problem are

(38)

Tm,
v

km, n, = v = a , n = 0 , 1 , 2 , , m,/ =1,2,3,...a n,
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Substituting these eigenvalues in Equation (36) we find that the

corresponding eigenfunctions for our problem are

u
cos nc9 rJ (T )Pnv__2_1(cos 0)m, n, r 1 /2 v n, va

with n = 0 , 1 , 2 , . , m, Q = 1, 2, 3, ... , v = any
Q

, and a being
n,

the ith root of Equation (38).

In order to determine the modified Green's function for our

boundary problem we need the normalized eigenfunctions. The nor-

malizing constant is given by

N2 STru2
m, n, dV

V

In this case we have

a 0 2-rr

N2
1 3v(Tm, var )] 2 [Pnv i(cos 0)1 2

r=0 '0=0 y9=0 r -2

X cos 2
mpr

2sin 0d9dedr (39)

Considering first the integration with respect to r we have to

evaluate the following definite integral

r=0
r[J (T 21)]2dr

v m, v a
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We met this integral in the example considered earlier. Using

Equations (19) and (20) we find that

Sia r[J (T -Ln2dr = (T )]2
v m, v a 2 v+1 m, vr=0

The integration with respect to yo yields

2Tr
2

2Tr n = 0
cos mpdyo ={

Tr n V 0
(40)

or using Neumann's number, E , defined by Equation (21) we mayn

write Equation (40) in the compact form

27
2cos 2

mpd
7

, n = 0, 1, 2, .

yo=0 en

Finally, in order to perform the integration which involves only

the associated Legendre functions, we must evaluate the definite inte-

gral

0

C
0 1

{P 1(cos )12sin Ode = (t)]Zdtv- 1 (41)
0=0 2 "cos 00

where we have made the change of variable t = cos 0.

Let p, v, and Cr be any arbitrary parameters and

W
a-

(x), W v(x) be any solutions of Legendre's differential equation.



Then [6, Vol. 1, p. 169]

b
WPWPdx =

0- V
a

Letting v

[wp
2

a
X =

W P
v
W P (o-+p)WPWP -(v+P)WP WP bv o--1 v-1 0-

v+o-+1
+

(v-0-)(v+cr+1 )
a

o- in formula (42), we find that

[WP]2 (o-+p)WPWP -(v+p)WP WP
v o--1 v-1 cr

2v+1 (v-o-)(v+o-+1)
0-

29

(42)

b

a

WP is a function of v. Therefore, we may use L'Hopital's

rule to evaluate the above limit. We find that

[WP)2dx =
1 2 P P +(v+,)[wp d Wp-wp d wp

2v+1 v v-1 v-ldv v v dv v-1a

Using Equation (43) in Equation (41) we see that

1

[Pn (t)]2dt =
2v+2n-1 Pn 3(cos 0

0
)

V - -2- 4vcos 0
0

d i(cos 0o) = Mn(0 )dv v 0

where we have used the result of Equation (38) and the fact that

Pn 1(1) = 0 [6, Vol. 1, p. 146].
v--2-

Therefore

(43)

(44)

b

a



and

2
N2 a 7

v +11)+1 M, V V 0
n

r nJ (T )P (cos 0)
= 1 u

1 n /4 m, v a v
I7

n, N m, n, a Trr
()

n 1/2
[jv+1(Tm, dj[Mv(eOn

where n -= 0,1,2, .. . , m, .P = 1,2, , v = a , a and
n, n,

1\4'11)(00)
are determined by Equations (38) and (44) respectively.

30

(45)

Now we are ready to find the Green's function for our conical

structure. We will consider two cases: the finite case (0 < a < 00)

and the infinite case (a = 00).
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V. GREEN'S FUNCTION FOR THE CONE

In each of the cases considered in this chapter the observation

point P is assumed to be an arbitrary point in the interior of the

cone with coordinates (r, 0, cp) and. Q is an arbitrary point on the

source ring with coordinates (r', 0', yo').

" Finite

From Equations (7) and (45) we find that the modified. Green's

function for this case is

00 00 00

a
27r(rr') 1/2

1

1
(P, Q, y) =

E
n cos ncp cos mpl

n2mno
n=0 m=1 f= v+1 m, v vv (A0)

'J (T (T
r

v m, v a v m, v a n1(cos 0)P 1(cos 0')
2

TM,
V

)2a (46)

In Equation (46) replace -y by -y1 /2 and then substitute the

resulting equation into Equation (9). In doing that we have to find the

inverse Laplace transform of
T

M, Vwhere k =m, n, a

1

.y+k
2

m, n,

with respect to y,

From Appendix A. Equation (A. 1), we find that



Therefore

G
1

(P, Q, t) =

2

e
knit t

y+k2m, n,

G1 (P, Q, \/1/2}t
--' Kt

00 00 00

1

1 /2 E cos ricp cos rico'
azTr(rr')

n=0 m=1 I = 1

r r'
)

,J (T )J kT ) (cos 0)i- i (cos 0')v m, v a v m, v a
X

Liv+1 (Tm,
2

-k 2
Kt

X e m,n,I

v 0
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(47)

In order to find the first Green's function due to the whole ring

we must integrate over all the source points. That is, integrate

Equation (47) with respect to go' from co' = 0 to cp.' = 2Tr. Since

the only term in Equation (47) involving cp' is the term cos nyo',

and noting that

2Tr 2Tr n = 0
Scos ncp'dcp'

0 0 n 0

the triple sum in Equation (47) reduces to a double sum

(48)



r'oo oo
( T

2 jv(Tm, v a v m, v aG1(P, Q, t)
2a2(rr

[3- (T )]
2

m=1 1=1 v+1 m, v

P (cos 0)P i(cos 0') -km2
, /Ktv--2-

eM 00)
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(49)

where the index is determined by Equation (38).

Substituting Equation (49) into Equation (3) we find the tempera-

ture u at time t due to the initial temperature f(r, 0, cp)

a
u = G

1
(P, Q, t)f(r 1 , 0 1, (Or '

2
sin 0 'thiord.01dr ' (50)

r 1=0 01=0 (p1=0

Example

For a simple example, let the initial temperature in the finite

cone be constant. That is u(r, 0, co, 0) = f(r, 0, co) = u0, where u0

is a constant.

The Green's function is given by Equation (49) and the tempera-

ture at the time t is given by Equation (50). Then

00 oo r'2u, , a be 0 , 2Tr (T )J (T )
1 v m, v a v m, v a

a2 r'=0 01=0 '= 0 (rr 1)
1 2 [J(Tm, v)]

2
/m=1 =1 v+1

P 1 (cos 0)P 1 (cos 0') -k 2
Kt

X
m, 1 r i2sin

0 1dcp 1d01dr ' (51)Mv(00)
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Interchanging integration and summation in Equation (51) we get

co oo
(T2u

0
J

v m, v a a 3/2 r'" 2 1/2 r' J (T )dri
v m, v a

a m=1 ,Q=1
r Jv+1(Tm,

V)
r'=0

0
-k2P i(cos 0) 27T. -km,/Kt

X P (co s Or)sin 0' de' S dcp re

Mv(00) V-2 (p.0
(52)

For the first integration we use the formula [6, Vol. 2, p. 90]

z J
v

(z)dz = (p+v-1)zJv(z)Sp_1,
v -1

(z) - zJv (z)Sp., v(z) (53)

where S (z) is the Lommel's function [6, Vol. 2, p. 40].
p., v

Using formula (53) we find that

a
a r',, , r'r'3/2J (T -12-1)dri = ( ---)J (T _)

V M, v a T
)5/2 (v+D(Tm, V a v m, v ar'=0 m, v

r' , r'
-2-

X Si ,v-1(Tm,va Vrm,v a )

ar' r]X J T ,v av - 1
(Tm, v a ) 3 m r -u

5/2
a J (T )S3 (T ) (54)m, v v m, v

(T )3/2 v-1
m2 V

For the second integration we will use formula (42). Keeping in

mind that P0(cos = 1 and Pn (cos 0) = 0, if m > n, we let



p = v = 0, = v-1- and W 1(x) = P i(cos 0') in that formula.

0
0 0

P i(cos 01)sin 0'd O'
2v+1 [cos 01P i(cos 01)-P 3(cos 0')]2

v---2- 01=0
O

01=0 11--

Finally

2P -3 (COS )
0

sb

Zn

Substitute the value of

2v+1

dco' = 2rr
(p1=0
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(55)

(56)

obtained by setting n = 0 in

Equation (44) and the results of Equations (54), (55), and (56) in

Equation (52). We get

u - - 327 ()1
110 r

m=1 /=1

X

00 00
vS, (T )J (T )J (T r

)m,v v-1 m,v v m,v a
3/2

(4v
2(T )m, v -1 )Jv+1(Tm,

v )

2-km, /KtP i(cos 0) e

(cos Oo)dv

Using the recurrence relation [6, Vol. 2, p. 12]

J v-1 (z) + J
v+1

(z) = 2vz 1

J v(z)

we get the formula



for Jv+1 (z) O.

Hence

v-1 (z) 2vJv(z)
+ 1 -7

v+1
(z) zJv+1

J m, v )

J (T
v+1 m, v)

and the temperature in the finite cone due to the constant initial

temperature
0

in time t is

u =
a2r1 /2

m=1 (4v -1)(T )
3/2 d i(cos 00)m, v dv v-2

32Truo
00 00 2

VS1, v(Tm, v)Jv(Tm, va )P (cos 8) -km, / Kt

where the index of summation is determined by Equation (38).

This expression represents the equilization of temperature in-

side the cone when the outside temperature is kept at zero.

Let

Lv(-yr, -yr') =

00

"a" Infinite

J (T )J (T )m, v a v m, v a
J (T )]

2[(ai) 2+(T 2
m= v+1 m, v m, v

Apply Equation (25) to Equation (57).

(57)

36



Iv(yrI)
Lv(yr, yr') = 2 I [Iv(ya)Kv(yr)-Kv(ya)Iv(yr)],

v(Na)

with r and interchanged when r < r'.

Equation (46) may be written in the following form

CT (P, Q, y) =
1

ir(rr

CO 00

en cos rlip cos ncp

n =01 =1

r > r'
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Pn (cos 0)Pn 1 (cos 0')
X

v-2
Lv(yr, yr'), r >r' (58)v

My
0

with r and r interchanged when r < r' .

We want to let a co in Equation (58). Since L
v
(yr, yr') is

the only factor that contains terms involving the quantity a, we want

to find the limit of L
v
(yr, yr') as a --'

From Equation (27) we may conclude that

1lim Lv(yr, yr') =
2
1 (yr')Kv(yr) = L

v
(yr, yr'), r' < r

a co

with r and r interchanged when r < r' .

Using this result in Equation (58) we see that the modified. Green's

function for the semi-infinite cone is



G1(P,Q,Y) =

38

00 CO

Pn i(cos 0)P 1(cos 0')
X Lv(yr, jr'), r' < r (59)mn

v 0

The only factor that involves y in Equation (59) is

Hence, substitution of that equation into Equation (9)

would require finding

-L { L(y1/2r,y1/2r')}
Y v t Kt

From Appendix A, Equation (A. 7), we find that

r2+r '2
_

-1 1/2 1/2 e
4Kt rrl

.y
{ L

v
(y r, y r)} = i I1 /2 v

(
2Kt

)

4TrKt(rr')

Therefore, the Green's function due to one source point for the

infinite cone is

r2+r' 2

4Kt
(P, Q, t) =

1
En cos nip cos ricp'Iv( rr)

2Kt'4TrKt(rr') n=0 i=1

00 00

X

Pn i(cos 0)Pn 1 (cos 0')

Ninv ( 00 )

(60)



39

To find the Green's function for the semi-infinite cone with the whole

ring acting as a source we must integrate Equation (60) with respect

to cp.' from yo' = 0 to co' = 2.n. The only term that contributes

is the term with n = 0. Hence, the Green's function for the semi -

infinite cone is

r 2+r' 2

4Kt
G1(P, Q, t) =

2Kt(rr 1)
1/2

co
P i(cos O)P i(cos 0')

I (
rr'7--) (61)Mv(00) v LKt

with the summation index being determined by the roots of Equation

(38).

Therefore, the temperature u at time t due to the initial

temperature f(r, 0, yo) is

u

oo 0 2.Tr

G
1
(P, Q, t)f(r', 0', cp')r

r'=0 EY=0

where G
1

(P, Q, t) is given by Equation (61).

2
sin 0 'cicp Id0 'dr '
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APPENDIX A

The Laplace transform of F(t) is

f(y) = F(t)e --y tdt, Rey >
1

0

A ,j ,--
Half plane of
absolute
convergence

41

Then by the Mellin inversion theorem [11, 13. 348] we have the

following inversion formula, known as the inverse Laplace transform

of f(y) with respect to y

cd-ix
1 {f(y)} = F(t) = TT1 :.

1
f(-y)eNtdy, Rey = c >

Consider the following integral

Sc.°
0

-kn2 t -yt b -(kn2+y)t
e e dt = lim e at

09 0

-k t
which is the Laplace transform of e Elementary calculations



yield

-kn2t
1

e e dt =
0 kn

Hence, by the Mellin inversion theorem

_,
2'

-Ni+kn

42

-k2t
=e (A.1)

The second. inverse Laplace transform needed was that of
1/2

e
-R.N It is derived here using the inversion formula mentioned

above.

A well known formula from the theory of Bessel functions [6,

Vol. 2, p. 82] is the following

2
z a

K (az) = -2- a
1 v t t-v1 dt, Rez > 0, Rea2 z > 0

0

a2zIn this formula set p = ,
2

z
Then

p/21 p v/2 oo /tdt,
Kv(2(PY) ) = ) e e ReN > 0,

In Equation (A. 2) let 1v =
2

. Then

ReP > 0 (A. 2)



a )1 /4Ki (2(p.y)1 /2)
00

-yte -p/tt- 3/2dt
13

0

For n= 0, 1, 2, ,

integral [6, Vol. 2, p. 9]

43

(A. 3)

K I may be expressed as an infinite

-z co
, n 1/2 e -t t n

K i(z) () e (1+-4 dtn+f 2z n!
0

2z

So, letting n = 0, we get

co
1/2 1/2(z) = (Tr

) e
-z

e
- Trtdt = ( e

-z
2 2z

0
2z

Using this result in Equation (A. 3) we get

() e
/2

e e t dt
00

Tr

0

and by the Mellin inversion theorem

c+ioo

21-rri
c-i00

Finally, letting

of e-R-y1/2 with respect to y.

1/2 - 2 (13 )
1/2

-yt -p/t -3/2() e e e t

R2
13 4

we find the inverse Laplace transform



r _ 1 -Ry1/21 c+ e-y1/2Reytdt
0),-)1( c-100

R2

Re
4t

t
3/2

2Tr
1/2

In Chapter III we also needed the inverse Laplace transform of

, 1/2 1/2 1 1/2
Lv(y r,y r ) r')Kv(y1/2r), r' < r,

44

(A. 4)

with r and r interchanged when r < r'.

Macdonald's formula says [6, Vol. 2, p. 53]

s
2

+X
2 2Iv(x)Kv(X)

2 2sSxe e

x

I(xX/s)s Ids =
v

0 2K (x)I (X)
v v

according as X > x or X < x.

Set in this formula x = 2a y1/2, X = 2P y1/2. Then

ZA 2 2
r° e- 2 e-

(a +P (4a_ila)ds
v s s

0

t2I
v

(2ay1/2
)K

v
(2Py

1/2)

2K
v

(2ay
1/2

)Iv(2PY
1/2

)

according as P > a or P < a.

(A. 5)



eter.

45

Finally, in Equation (A. 5) let s = 2ty, t being the new param-

co

e
0

a2+p 2

--yt e- I (2a13 )
dott

v t t

21 (2ay 1/2 )Kv(2Py 1/2)
13 > a

v

2K (2ay 1/2 )1 (2Py1/2) a > p

Hence, by the Mellin inversion theorem we have

2 2
c+ico -

I

a +p
1 1 /2 -yt 1

27i7 v(2ay 1/2 )Kv(2Py )e dt = 2- e t _
I (2L-1)t 1

c- ix v t
(A. 6)

regardless of the relation between a and p.

r'Therefore, if we let a = 2 and p = 2 in Equation (A.6) we

get

r 2+r '2
L-1 {L (Y1/2r,

-y1/2r')} = 1 e_ 4t rr' -1
y v 4 I v t (A. 7)
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APPENDIX B

As stated in the Introduction the method used in this thesis does

not work very well in the adiabatic case, especially for the semi-

infinite cone. In this appendix we see why this is so.

The adiabatic case is similar with the isothermic case, except

the boundary condition (33) now becomes

au
=

0 at r=a, 0 < 0 < 00, 0 <co< 2Tr

an
0 at 0= 00, 0 < r < a, 0 <cp <2Tr

(B. 1)

Taking the partial derivative with respect to r in Equation

(36) and imposing the first of the boundary conditions (B. 1) we see that

we must have

2akJ'(ka) - Jv(ka) = 0,

Let T be the mth root ofm, v

2xJ1v(x) - Jy(x) = 0,

Then the eigenvalues in this case are

Tm, V
m, v a

- (B. 2)
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It has been proven [10, p. 482] that the zeros of Equation (B. 2)

are all real and positive, if v > -1, except for two that are pure

imaginary. The eigenvalues k are real. Hence, mustm, V m, V

be the mth real, positive root of Equation (B. 2). The disadvantage

of the method of eigenvalues and eigenfunctions is with Equation (B. 2),

for its roots are hard to locate.

Now take the partial derivative of Equation (36) with respect to

9 and impose the second of the boundary conditions (B. 1). This

implies that

d
0=00

v.

0

Let a be the

(B.3)

I th

Pn (cos 0)
dO v--2-

Equation (B. 3) is a function of
n,

root of that equation. Then the eigenvalues of the second boundary

value problem are

.....

Tm,
Vkm, n, i v= an,1 , n= 0,1, 2, ... , m,i = 1,2,3,...a

with am, being the root of Equation (B. 3).

Substitution of these eigenvalues in Equation (36) gives the cor-

responding non-normalized eigenfunctions for the adiabatic case of

our problem.

cos ncp r n
J (T --)P (cos 0)um, n, v m,v a v--zr 1/2
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The normalizing factor, N, is given by

2
N =

a 00 r. 2n-

[ 1/2 (-7 1)12[1'n i(cos 0)] 2
1

v
r=0 e=0 ico=0 r m, v a

X cos 2
mpr

2 sin Odcpd0dr

This triple integral can be evaluated in the same way as the

integral of Equation (39). Thus we find that

where

N
2 Tr

A= (T )Mn(0 )
E V M, V V 0
n

A (T ) = a
2
-t[Jr(T )]2 + [1-( (T )]

2

TV m, V V m, V V m, V
M., V

and so the normalized eigenfunctions for the adiabatic case are

r
1 ,

E n ,1/2J (T )P n (cosi 0)
Um, n, / = --1\-T- um, n, i = k ) v rn, v a v--

Trr 1/2 n 1/2 cos "
{A v (T m, v )1 [Mv(00)]

....
where v = a.n, i, n = 0, 1, 2, . .. , m,1 = 1, 2, 3, ... , an,/ and

Mnv (0
0

) are determined by Equations (B. 3) and (44) respectively.

(B. 4)

Now we are ready to find the second. Green's function for our

conical structure. The case of the finite cone is similar to the cor-

responding case with the isothermic boundary condition. The second



Green's function for the finite cone is

G 2(P, Q, t) =

00 CO

2

X

1)12
m=1 1=1

'J (T r )J (T r
)

v m, v a v m, v a
A T-

ril, V

Pv- 1 (cos 0)P (cos 0') e
k 2

Ktm, I

M v(00)
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where the index I is determined by Equation (B. 3).

But if we try to find the second Green's function for the semi-

infinite cone as a special case of the finite cone, we get an infinite

series of the Dini kind [6, Vol. 2, p. 71] whose sum is not known. We

would have to find the limit as a 00 of

where

a 2(P, Q, =

00 00

1
C nP 1(cos O)P i(cos 0')

1/2
n=0 1=1

X cos nip cos mp'Ev(yr, yr')

My(0 0)
v

J (T r)3" (T r'
\-- v m, v a v m, v 7)

Ev(yr, yr') = /
4-d A (T )[y2+( m' v )2]m=1 v m, v a

(B. 5)

The Dini series is Equation (B. 5) and having an unknown sum its

behavior as a 00 is hard to determine.

Concluding, we may remark that this case may be done by use

of the Laplace transformation and contour integration.


