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NONPARAMETRIC c-SAMPLE TESTS FOR ARBITRARILY
CENSORED DATA

I. INTRODUCTION

A common problem arising in life testing and clinical trials is
the ;:omparison of failure time distributions, or recovery time dis-
tributions, for c-treatments. Frequently, the experimenter wishes
to compare the treatments (drug, components, etc.) before all ex-
perimental units have failed, resulting in censored observations.
Due to limited testing facilities or availability of experimental units,
it may be impossible to put all units on test at the same time. Con-
sequently, censored observations may not all be subjected to the
same amount of test time, arbitrary censoring.

Motivated by clinical trials with arbitrarily singly-censored
data, Gehan [11] developed a generalized Wilcoxon test for the null
hypothesis Ho : G(t) = F(t), where G(t) and F(t) represent
the distiribution functions for the two failure distributions.

£fron[7]has also proposed a test statistic /V} whichis the maxi-
mum likelihood estimate for Pr(X >Y) witharbitrarily censored data.
He considers the case where the censoring distributions may be dif-
ferent for the two failure distributions. However, we will only be
concerned with the case where all observations are censored according

to the same censoring distribution. For an exponential censoring
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distribution, the Pitman asymptotic relative efficiency (A. R.E.) of

the W test with respect to the likelihood ratio test is given in

Table II of Efron [7]. For a particular censoring model, discussed

in Chapter VI, the generalized Savage test statistic is shown to be
asymptotically more efficient than the Efron statistic. The general-
ized Savage statistic has the additional advantage that its variance under
H0 is easily evaluated, whereas the variance of the Efron statistics
are difficult to estimate. On the other hand, V/\} has the advantage

of providing an estimate of Pr(X > Y) wunder the alternative F # G.

Thomas [25] has developed conditional locally most powerful
rank tests (c.l.m.p.r.t. 's) for the two-sample problem with arbi-
trarily censored data. These test statistics are linear functions of
rank-order statistics. The coefficients in these linear rank statistics
can easily be evaluated for the case of proportional hazard function
alternatives. The resulting statistic will be referred to as the ''gen-
eralized Savage statistic.'' Thomas [25] has also discussed how the
generalized Savage test may be modified for the case of grouped fail-
ures (ties).

Puri [20] has studied a class of test statistics Z for the c-
sample problem in the uncensored case. These Z, - statistics are
quadratic functions of linear rank statistics. Puri proves that these
Z - statistics have asymptotic chi-square distributions by approxi-

mating the coefficients in the linear rank statistics by a continuous



weighting function.

In this thesis, we consider a class of c-sample nonparametric
tests for arbitrarily censored data. The null hypothesis is
H :F (t) = FZ(t) = -0 = Fc(t) against Ha: not all Fj(t)'s are

equal. The test statistic Q given in (4. 3), is in the form

(r, N)’
of a Puri's Z-statistic. The linear rank statistics used in Q(r, N)
are the generalized Savage statistics which will be derived as an ex-
tension of the Thomas c.l.m.p.r.t. 's for the two-sample case. The
Q(r, N) tests are shown to be asymptotic efficient with respect to
the parametric likelihood ratio test for exponential censoring distri-
butions and exponential failure time distributions.

In Chapter II, the problem is formulated, assumptions are
given, and order and rank-order statistics are defined for arbitrarily
censored data. Distributions of order and rank-order statistics are
derived in Chapter III. In Chapter IV, the vector of generalized
Savage statistics is given for distributions with proportional hazard
functions. The Q(r, N) statistic is also defined in Chapter IV,

Asymptotic normality of the generalized Savage statistic vec-

tor, is established in Chapter V under H_ and (locally)

T
~(r, N)’
under Ha- For exponentialfailure time distributions with inde-
pendent exponential censoring distributions, the Q(r N)-test is

?

shown in Chapter VI to be asymptotic efficient with respect to the

likelihood ratio test.
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Numerical results are presented in Chapter VII. The exact and
chi-square approximation of upper-tailed probabilities are given in

Tables 2, 3 and 4 for three different censoring patterns in the three-

sample case. Power curves of Q tests are given in Figures 1

(r, N)

and 2 corresponding to test-sizes less than 0. 14. Figures 3 and 4

give graphical power comparisons of Q(r N) and a corresponding

quadratic function Q('r N) of Gehan's generalized Wilcoxon statis-
tics. At the end of Chapter VII, an example is given illustrating the

computation of the test statistic Q(r N) for the four-sample prob-

lem.



II. FORMULATION OF THE PROBLEM

Let there be random samples with ng, nZ, e, nC observa-
tions from the absolutely continuous distribution functions
Fl(t), FZ(t), e, Fc(t). With arbitrarily censored data, we desire

to test the null hypothesis,
: z = ... = .1
Ho : Fl(t) z FZ(t) = = Fc(t) (2. 1)
against the alternative,

Ha. : not all Fj(t) are equal; j=1,2,...,c. (2. 2)

Denote the time on test for the failure observations and the

censored observations from Fl’ FZ’ e, FC respectively by

x(1),X(Z) (c) (Ht 2t

(c)'
, .., X and x , x .  Let there be r

C

e

failures observed in the combined sample of N = an observa-
=1

tions. Represent these r ordered failures by .tll, tz, <oy tr'

Assuming no ties, then we have 0=t <t <t <...<t <t = o,
o 1 2 r r+l

Define

ci = total number of censored observations between the failure

times t. and t. ., 1i=0,1,2,...,r.
i i+1
(G) _ (3)'

u.”’ = number of censored x observations with
i

y1
to<x9 <t izo,1,2,...,r
i i+1

gi‘])= 1(0) if ti is an x(J) failure (if not), i=1,2,...,r. (2.3)



Furthermore, let

.g(i) =ttty

—

-
(1) (1) (1)
§1 §2 ce §i
(2 (2 (2
SRR U
€ i\ ° '
= (1) . .
(c-1) (c-1) (c-1)
gt gl 3
J s
i=1,2,...,r, (2. 4)
and
SNy (cscprey , ¢;)
(1) (1) (1)
u u u,
o 1 i
(2) (2) (2)
u u,
4 - o 1 i
— (1)
(c-1) (c-1) (c-1)
o 1 i ,
i=0,1,2,...,r. (2.5)
The random vector ¢t = 'E(r) and the random matrix
(§,u) = (é(r)’ E-(r)) will be called respectively "order" and "rank-
order" statistics. The vector 'C‘:'(r N) will be called the "censoring

pattern” of the observations.

From (2.3), (2.4) and (2. 5) we may note that



c-1
gfc’zl_Zg_(J), i=1,2,...,r, (2.6)
i 1
j=1
c-1
u‘(C) = ¢, - Z U.?J), 1= 0, 1, Z, , I'y (Z 7)
i i S
j=1
r
ug)+z(§§J)+u3))=n,3=1,2, »Cs (2.8)
i=1
and
c r c r
EU‘(J) + Z (§¥3)+ u'(J)) = c + E (c.+1)
.o i i o i
j=1 i=1 j=1 i=1

= N. (2.9)

The following assumptions are used in deriving the tests: (2.10)

A. Completely random allocation of treatments to experimental
units.

B. Distributions of observations are independent of time put on
test.

C. (Only required for optimum properties..) The observations
are censored according to independent identically distributed

random variables vij’ i=1,..., nj, j=1,...,¢c, thatis,

%9 is a failure for x9) <y

1 i = 1ij
(G)y' _ . . ()
X. = v.. 1s a censored observation for v <xV’,

i ij ij i



Furthermore, it is assumed that the probability density

function h(v) for v satisfies: h(v) >0 forall v

for which £9)(v) > 0, i=1,2,...,c

Note that time censored samples do not satisfy assump-
tion C. Assumption C will only be required for optimum
properties of the tests derived. Assumption B and C could
be replaced by the assumption of »rogressively censored
samples, that is, all units are put on test at the same time and

.th .
afterthei  failureoccursarandom ci of the units are cen-
r

o

sored from the remaining / (cj+l) - 1 units which have

j=1
neither failed nor been censored-at time ti, i=1,2,...,r.



III. CONDITIONAL DISTRIBUTIONS OF ORDER
AND RANK-ORDER STATISTICS
In this chapter, the conditional distributions of order and rank-
order statistics for a given censoring :cattern, g(r N’ are derived.

The following recsults are extensions of those obtained by Thomas

[25] for the two-sample case.

Theorem 3. 1. Under assumptions (2. 10), the conditional

density function of (t, §,u) is given by

~ =

N 1 i
f(t,é_,glg(r,N)’ E) = n,n_,...,n i=0 (1Y (2) (c-1)
1 2 C—l u. y U, ’ s M.
i i i
r r c uiJ) gij)
x( rIEi [H 1 {I_F,(t.)) £.(t) }]
i=1 i=1j=10 31 J ’
(3.1)
where
r
E = Z (c.+1), (3.2)
1 J
j=i
0= to <tl <tZ <...<tr <tr+l = ¢,
and £,u arc as on page 6.
Proof. The density function f£(t, é,gl (":’(r NY F) can be ex-
pressed as a product of conditional densities:
r
= I 3.
f(£,§,9_|§(r, Ny E) = By T (A;B)) (3.3)

i=1
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with

-1 &1y 2-1 Jeiy Ny £

i P(Eil 3(1_1)’§(i_1)’5(i_1)Ig(r, N)’E)’

where 'E'(i)’ i(i)’ u are given in (2. 4) and (2. 5) and ,{5, ,u. are

= (i) i ~i
.th .
the i— column vectors of the matrices of § and u respec-
tively.
Let
n. =n - u(J)
it 7)o

a-1
_ ), )
nj(1 njl - Z(gﬂ +u‘3 ),

Re>)
—

=]
il
o
w
=
w
il
ot
~.l'\J

., C (3.5)

be the number of observations from the _]t—l1 population which have

. 3
neither failed with x(J) < t’:L nor been censored with x(J) < ta.

Now, it is seen that the conditional density for the minimum t.

(j)
of nji xJ -observations, given ti >ti 1’ is equal to
(j) ()
c £.(t.) & 1-F.(t,) nji_gi
A= 0 n"lF(lt ) 1F(t1
Py VR g i-1

Hence, from (3.5) and (3. 6) we obtain
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r r c §,(J) (J)
1
MA =1 T |(n f(t)) ' (1-F.(t)) (3.7)
. i, . ij i ji .
i=1 i=1 j=1
Following the failure t, there remain nji - §§J)
x(J)-observations (j=1,2,...,¢c) which have neither failed with
. !
X(J) < t,1 nor been censored with x(J) < ti' Under assumptions
(2.10), the probability that a particular ugj) of these nj,1 - §§J)
x(J)-observations are assigned to the <. experimental units cen-
sored in the interval (ti’ ti+l) is given by
c -1
Zn..—l n.. _ng)
ji c ji i
B. =} j=1 n (3.8)
' j=1 (3)
c. J u,’
1 1
1 = ]', 2, b r’
and
N\-1 ¢ 1rlj
B = 1 ] 3.9
o) c . (j) ( )
o) j=1 u
o

Since the generalized hypergeometric probabilities (3. 8) and (3. 9)

may be rewritten respectively as
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-1
c [Ci] <
= -1
B ani (1) (2) (c-1)
. u. ,u. ,...,u,
)=1 i i i
c ) [u¥)]
x| T (n -£3)y Y |, i=1,2...,r, (3. 10)
. ji 7l
j=1
and
-1 3
[c ] ‘o c [ug)]
= Il |
B = N (1) (2) c-p| 10 (3. 11)
au ,u ,...,u =1 ,
o o o
where a[b] = a(a-1)...(a-b+1l), it is easily verified that
r N -1 r Ci
Il B. = Il
i=0 ! S Ly 1 ’nc-l i=0 u?l), u(z),...,uk-l)
i i i
r L
x 1 [E M n_. ] (3.12)
i=1 ! j:l Jt ’
with
r
E. = (c +1)
i ,a
a=i
Hence, (3.1) follows from the product of (3. 7) and (3. 12).
Corollary 3. 1. 1. Under Ho : Fl = FZ = ... = FC, the order

statistic and the rank-order statistic are independently distributed

with density function
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r C.
1
ﬂﬁmmNr%“ﬁimNJUW)%W” (3.13)
and probability function
N 1 r i
p(§, ulC ) = 1
(r, N) N, ny, e n 20 u!l{ufZ{'“’ugc-l).
1 1 1
(3. 14)

Note that, this corollary still holds even when Assumption C of (2.10)

does not, 1i.e., when the observations are time censored.

The distribution ofthe rank-order statistic under alternatives can

be determined from (3. 1) by integrating over the order statistic

= <t <t <...<t < = ). i i
t (0 to t1 t2 tr tr+1 ) In general, theintegration of
£t ,é,glg(r Ny’ F) over t is rather difficult. Under Lehmann
» e.
alternatives of the form (l-Fj) = (I-FC) J, j=1,2,---,c-1,
p&, u ,g (£, N)’ 8) can be determined as follows:

0,
Corollary 3. 1. 2. Under Lehmann alternatives (1-F)) = (1_FC) J,
J

j=1,2, -+-+-;c-1, the conditional distribution of the rank-order

statistic is given by

c g(J)
p(E’EIQ(r,N)’g):K(I\I’E’g(r,N)-rzlej
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where
r
g(J) N g(J)
L7
and i=1
C,
N -1r 1
K(N, u, C ) = I
—_ l _
(r, N) DaBs,en D =0 o ),uflz), ,uic 1)
(3.16)
Proof. Under Lehmann alternatives of the form
0.
.;1._Fj) = (1_FC) J, j=1,2,+++, c-1 (3.1) can be rewritten as
c g(_] r
f t’ > ) e, = ) ) H . * H .
(t & glg(r,N) & F)=KMNuw g 1o nE
=1 i=1
c
EO.(u(J)Hg Dy
cj 1 1
r 1
x I (¢)(1-F(t))’ (3. 17)
) c i c i
1=1
(t.), the marginal probability

By using the transformation w. =1- F (t,
1 e 1

function of the rank-order statistic (§,u) can be obtained by in-

tegrating over w: 1 > W, > w, S W > 0. Thus,

P@J.‘.’:l .C,(r, Ny’ 9)
- C j
ze.(u(3)+§(3)) |
e r c g(j) 5 5 r j:lJ J
‘-'.N»E:g ynE I o: I {w dw
(BN ) \j=1 ) P = L
r c LGt [ « -
= K(N,u,C )(H E) <n 0% > it o (u\¥+g!®)
_~(r,N) _ 1 . J a ]
=] J:l i=1 - ~
j=1 a=1



15

Iv. THE STATISTICS E(r’ N) AND Q(r,N)

Puri {20] had proposed a class of c-sample tests for the un-

~ensored case by considering test statistics of the form
C
X :fzm[(fr wy D /ALE (4.1)
i TN,j "N,j N

th
rlere m., is the size of the j— sample, p i and AN are

normalizing constants, and

N
T :——1— Z . (4. 2)
m

T.. .» j=1,2,---,¢, are linear rank statistics and E__ _,
N, j N, i

i=1,2,---,N, are constants which are often evaluated so as to give
good tests for particular alternatives. Under suitable regularity con-
ditions and assumptions, the ?}(;statistics have been shown to have
limiting chi-square distributions.

The Q test statistic considered in this chapter may be

(r, N)

written in the form (4.1). The linear rank statistics TN . will be

)]
(j)
replaced by T

, j=1,2,-++,c, which give the locally most
(r, N)

powerful rank test for the two-sample case with arbitrarily censored



] A

data. This statistic has been introduced and discussed by Thomas [25].

.. . _ (1) (2) (c-1)
The statistic T(r,N) (T(r,N)’ T(r,N)’ ) T(r, N))’

defined below, reducesto the statistic T given in Theorem 2 of

Thomas [25]. Since T( N) will be shown in Chapter V to have
~(r,
a limiting normal distribution, the statistic Q( N) will be
r,

defined as

-1

= T! . 4.3
Q(r:N) ~(r,N)z(r,N)£(r,N) ( )

z : - - . - . .

where Zr N) is the variance covariance matrix of T(r, N) N

The statistics, TEJ) N)’ j=1,2,, c-1, are defined by
\ T,
) [oleealCy yy @)
(r. N) N 26_ (4. 4)
L j 9=1

where p(§, ulC( N)’ 0) is the probability function of rank-order
—_— — r~ r’ ~

statistic given by (3. 15) for Lehmann alternatives.

Lemma 4.1. The statistic T' =(T L
e (r, N) (r, N)

T ) reduces to
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rr
(1) (1)
Z[(l_bi)gi -bu. ]
i=1
. (2) (2
1 z[(l_b.)g. -b.u, ]
L) NN | & B ' (4.3)
i=1
r
(c-1)
-1
Z[(l-b.)g. bl
1 1 11
i=1 D
wnere
i
— 1 )
b = Z I (4.0,
a=1 Z
(c.+1) .
J
j=a
The TEJ;) N in expression (4.5) can also be written as
r
(j) o) z )
T ™ aw |5 "2 8 YW (4-7)
i=1
j=1,2,...,¢c-1 ,
where
r
Y el a0
azi

i = 1:A2""’r; J = 1:2:""(:"1.

For general Lehmann alternatives (I—Fj) = Hc) (1-F ), ),
0 . c’¢
5 = x), a statistic T(r, N) could be derived similarly as in
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However, an exnlicit fori. of the distribution of the rank-
crder statistic  (u, §) is not required. But some suitable
regilarity conditions must be imposed on the alternatives which allow

orders of differentiation and integration to be interchanged.

The following regularity conditions on the functionals he (w), 0 < w <1,

i
would be sufficient
1
ahe‘(w) ahe'(w) Bhe‘(w)
' - J J -1 -
1) hej(W), hej(W) = w 50, and E)GJ, are con
J

tinuous with respect to Gj in an e-neighborhood of 1
forall j=1,2,...,c-1.
ii) There exist integrable functions over (0, 1), Ml(w), MZ(W),

M, (w), and M (w), such that

3 4

[hg ()] <M (w), [hy (w)] <M, (w)
J J
5 ]
9 1ln he'(w) 9 ln he‘(w)
56 _M3(W), 50 _M4(w) (4. 9)
J J

in an e-neighborhood of 1 for all j=1,2,...,c-1.

Lemma 4. 2. Under the null hypothesis, the mean and variance

oF ‘E(r, N) is given respectively by

E (T )=0 (4. 10)

(r, N)

and



where

( (r-b )n,(N-n.), ,
3 3_]
NZ(N-I)
o, (r, N) = <
1)
(r-b )nin,,
- 5 v 14
. N(N-1)
i,j=1,2,...,c-1,
with br given by (4.6).
Proof. From (4.7), for j=12,...,c-1, we have
T
G) L |.G) z 1)
T R |5 - L E Vi
i=1
The expected value of T(J) under H is then
(r, N) o
T T
() O i} 1 ]
= R - ) = 1
E(T. N " TR | N EE z(°+ N
i=1 a=i
rn n, r E
I T | z i
NN N N E,
i=1

19

(4.11)
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Hence,
E (}‘(r’ N)) =0
Due to Thomas [25], T((Jr) N) can always be expressed as
N r
(3) 1 (3) E () . ()
T = — = 1- - , 4. 12
(r,N) ~N Z 4 (18, -byu "] (4-12)
i=1
(j) _ e L th .
where v.;© o= 1(0) if i— observation is from the j— population
L2
(if not). And the expected value of T(J N) can easily be shown to
r,
reduce to
()2 - , n,.(N-n,)
E (T ) - Z[(l b) b e ] L—L
’ P ON(N-1)
i=1
r

By using (4. 6), z [(1-b.)2+bfci] can be reduced to r - br. ,
i
(r—br)n.(N-n.)

Hence, the variance of T(J) N i3 > J Lo Similarly,
(r’ ) N (N-l)
() (G n.n.
E (T(Jr N)T(Jr Ny T - —ZLJ— (r-b_) (4. 13)
’ ’ N7(N-1)
Lemma 4. 3. The statistic Q( N) given by (4. 3), can be ex-
r,

-

pressed in a computing form



< 2
o _ N(N-1) Z L
(r,N) (r-b_) n, (r,N)’
r' T
j=1
where e 1
(¢) _ (3)
T(r: N) o z T(r: N)
j=1
Proof. For E(r, N) 28 given in (4. 11),
that
Z-l _ ij( N)
--(r,N)—[cr nNT,
where - n
N(N-1) c N
(r-b )n (1+ n, o 1=
r i
crlJ(r, N) = <
N(N-1) i
(r-b )n '’ J
r
\
Then,
=T! z‘l T
QN T Ee N Er, NS, N)
c-1c¢-1
_ (i) ij (3)
- Z Z T(r,N)cr (r’N)T(r,
i=1 j=1
c-1 2
_ _N(N-1) (j)
" (r-b )n ZT(I', N) ¥
r'c

j=1

21

(4. 14)

(4. 15)

it is readily seen

(4. 16)
N)

c-1 2
N(N-1) ZLT(J) ,
(r-b ) n. (r,N)

r j=1 ]



_ N(N-1)

- (r-b )

It should be noted that

the Puri's i-statistic (4. 1).

1

n,

j=1

Q

(r, N)

22

G)°
(1‘, N)

in (4. 14) has the same form as
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V. LIMITING DISTRIBUTIONS OF T AND Q
~(r, N) (r,N)
Under the assumptions
0<X <\ <1._-Xx <1
- i- o
. r
lim §=v>0, (5.1)
N-—~ow
where )\o is a positive constant with
il
AN, = lim —
i N — N !
the asymptotic distributions of I'(r, N) and Q(r, N) as defined by

(4. 5) and (4. 3) will be derived under Ho and locally under Ha.

Theorem 5.1. Under H :6_=06_=...=0 =1, the statistic
o 1 2 c-1
I(r N) has a limiting (c-1)-variate normal distribution with mean
0 and variance-covariance X, where
z = [O-ij] ’
with

Lemma 5. 1. 1. Foreach k>1 and r <N, define




r
.Y L
i=1 Ei
where '
T
E. = Z(c +1) ,
i o
a=i
then
()
lim _;1— =0
N —~o
Proof. For a given pattern 9(1- Ny’ r <N with

r
Z (cj+l) = N, it is seen that
j=1

N

Tr
b(k)<b(l):b = Z 1 _ <'Z
r - r Tr -

r
i1 Z(c,-i—l) =l
J
j=i

o

Recall the Euler's constant, (see [16])

N

1

y= lim [E — - 1n N]
N—= S
i=1

= . 5772156649,

It follows that

N

lim -II:I Z_‘l—’lnN =0
N-—> ~1
i=1

24

(5. 3)

(5. 4)

(5. 5)

(5. 6)

(5. 7)



Combining the results of (5. 5)

lim
N—

ALl

IA

By applying (5.1) and (5.

lim =
N—ow (5N

Proof of Theorem 5.1.

= . -1
T(I‘,N), J 1,2, » C
N r
G oL N4 0. LN
T~ W A% 20N
i=1 i=

Thomas has shown that {da}

-+ [(l-bi)Z.J -b.u,

and (5.7), we get

4) to (4.11), we have

= >

From (4.12), the statistic

is given by

(j) (i)
./]'

1 11

1

satisfies the condition

25
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of the Wald- Wolfowitz- Noether theorem for permutation distribu-
tions (see page 236 of Fraser [9]). Theorem 5.1 then follows from
(5.8), (5.9) and Fraser's [10] vector form of the Wald- Wolfowitz-

Hoeffding theorem.

Theorem 5. 2. Under the sequence of alternatives

{GJ. =1+ 6J_ /NN}, where 6J_ is a fixed constant for each

j=l2...,e-1, 8 =0, the limiting distribution of Tie ny Biven
'(;(r NJ is (c-1)-variate normal with mean Z 6 andvariance-

Ccovariance Y,

Lemma 5. 2. 1. Foreach j=1,2,...,c-1, BN i converges

in probability to o.., where

r () (j)

1 V1 Vi
- = < 1. = (5.10)
BN,j N Z E E

| i i
i=1

with

th
Ei given by (3.2) and o..= v\ (l-\), the j— diagonal



217

element of ‘_‘3 .

Lemma 5.2.2. Foreach j#j'=1,2,...,c-1, By i con-
T j
verges in probability to a‘jj,, where
r
7 1 (),GY
N,jJ'_'NZ 2 Vi Vi (5-11)
E.
i=1 71
— . n'th
and ij' = -v)\j)\j, the j,j'— elementof .

The proofs of Lemma 5. 2. 1 and 5. 2. 2. will be presented in

Appendix L

Proof of Theorem 5. 2. Recall the probability density function

of the rank-order statistic from (3.15),

c §(j) r Ei
PElSip, oy &) = KNwS ) | 1 07 || 1 E g (5:12)
j= i= i
where
r C
E.(9) = Z z o (u\Msg!®))
i a j
j=i a=1
c :
:-Ze vie) (5.13)
a 1
a=1

Define the probability ratio L(8) as pe/pl, then
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c EJ) r Ei
L@ =| M 6> T =5 (5.14)
j=1 i=1 S~
Replacing Gj by Gj N 6j/r\/—N, j=1,2,-++5¢c=-1, and using
Taylor's expansion of 1n (1+x), we get
-1 -
Swols 5| SIS e e
InLE_) = - - . +
n L@ Zg, VN " 2N ZZ E'JN Z Ry
. . ZE N
J:l i=l]a=1

(5.15)
where RN is the remainder term which will be shown to be o(1)

in Appendix II. Then,

c-1
(j)
0 =
In L(8 ) zéT(r N)
j=1
-1 3
c r V(J) V!J)
—l—zazT‘ﬂJrlz;l_l_
T2 j | (r,N) NN E T E
J:1 1:1
-1 ;
. < ul 66jV§J)V:J;‘
—— : +0
+2NZ Z 2 (1)
j#i'=1 li=1 i
Substituting B.. . and B__ .., from Lemma5.2.1 and 5. 2.2, we
N, j N, jj
have
c-1 c-1 c-1
(j) 1 Z 20.(3) IZZ
6._)= 5T - — ) + -=
In L('--N) ZJ’ (r,N) 2NN j[T(r,N) \[NBN,j] 2 6j6j'BN,jj'
j=1 j=1 i#i'=1
(5.16)
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The moment generating function of T and B .., B can

~(r, N) ~N,j° ©N,jj'

be obtained by taking expected value of

(UJI

exolT'T . " 8Byt Y

where T, a, y are vectors of arguments of dimension (c-1), (c-1)

and (c-1)(c-2) respectively, and EN’ EN are vectors of (c-1)
1.2 . . . thei
and (c-1){(c-2) dimension having BN,j and BN,jj' as their
elements.
M ~  (T,a,y)
e, Ny P BN &
= T +a'B _+y'B
£u
c-1 c-1 62
Sl ), o D
X 6. - T
=P Z(j N ot )(,N) BT LL Yt 1P
j=1 j=1 j#j'=
+0(1) (5.17)
where
I I = I I :l
K(Nw, G ) = PEulC (8= d)
as defined in (3. 16). It is then seen that
M 5 . s(Tay =M, ~  (T,& 9 001 »
T , B ,B ;0 ~~ ~ B s~~~
Tir vy B B 2 L ny By B 2 € (s5.18)
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where
~ 1 2
T =6, - —6. + 7T
i 2NN j
— 1
a =a, - —6,2 (5.19)
i3 2]
Yoot = Yoo - 8.8
it Yt %y
Then,
lim M ~ (T, a, Y)=M ~ (T,a, Y)
’ ’ ,6 ~ 1) 2 ’6 ~T o~
N —0 ~(r,N) -\B-N § ~ ::E ? g ~
= ~ T,a,3 .
MI’ B B §(§+~,g, Y) . (5. 20)
But,
T = C e T, ’
My, o1 = My g g5 6(T:0,0
i . (155
MI, g, '@:g('\',g, X)I =

Applying the results of Theorem 5.1, Lemma 5.2. 1 and Lemma

5. 2.2, we get

1 1
T = -_— ! _ =5t
My, (1) = expl3(&+T)" Z(5+T)- 38" 2 8]
= explg' = ;r+%;r' z7l) (5. 21)

which is the moment generating function of (c-1)-variate normal dis-

tribution with mean X 8 and varignce-covariance matrix X .
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Lemma 5. 2. 3. The limiting distribution of Q(r N) under the

sequence of alternatives {GJ N =1 + 6 /N} is non-central chi-square
’ J
with c-1 degree of freedom and non-centrality parameter

8zs.

Proof. Since Q is defined as

(r, N)
Q = T! = ! o 5. 22)
(r,N) ~ (r, N) =(r, N)¥(r, N) (5
-1 -1 . .
and g( ) has X as its limit, then by the result of Theorem
r,N
5.2, we have Q(r N) converging in distribution to a non-central
chi-square variable with (c-1) degree of freedom. The non-
centrality parameter then will be
-1
(Z9)'Z (Z8)=28'Z5s. (5. 23)

The non-centrality parameter (5. 23) may also be expressed as

c-lc-1
26 = Z Z 6.0,.6,
~= = 11ij j,
1:1 J»].
which by use of (5.2) reduces to
’ c-1 c-1
— 5 =
vZ)\.(l-)\A)é, Y A N85,
i i’ - ijij
i=1 i#j=1
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c-1 c-1 2
2
=vz N6 - v Z NS
ii ii
i=1 i=1

(5. 24)

H
<
Ve
>
.
(w4
"
i
o
S
oo

where
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VI. ASYMPTOTIC EFFICIENCY OF Q(r N)

The statistic Q will be shown to be asymptotic efficient

(r, N)
relative to a parametric likelihood ratio test. Exponential failure
time distributions and an exponential censoring distribution will be

assumed. The experimental units used during experimentation are

randomly censored according to an exponential distribution. That is,

a failure arises if xiJ) < Yi(J) and a censoring arises if ng) > yg‘]),
() -9.x§3)
£(x)=0e
J 1 J
hiy) = ae 7, (6. 1)
where xiJ) and yiJ) are the ith observation of failure time and
censoring time from the _]t-E population respeétively, i=1,2,..., nj
and j=1,2,...,c. Let
ng) = 1 if the ith observation of the Jt-l'-l- population
is a failure
= 0 if it is a censored observation. (6. 2)
Lemma 6. 1.
P
0
mj /nj ota (6. 3)
and
P o
r/N - —— : (6. 4)
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where 6O is a parameter in the sequence of alternatives

{O,N = 9(1+6j /NN)}, mj is the number of failure observations from

the jtﬁ population, i.e.,

m, = Z efj) . (6.5)
J 1

(3),

Proof. Due to Efron [7], the €’''s are statistically indepen-

dent for each j=1,2,...,¢c, with

() ’in
Pl =530
jN
), o) . o
P(e )= 0) = creril (6. 6)

n,
J
1
— z e(J) =m./n,,
n, J ]
J i:].
N 1 %%y
then has expected value 9_.1: and variance o —J—-Z- . Since
j i (6. +
N i iN a)
1 %N
the variance of mJ /nJ, is n— '—J—, which tends to zero when
j 6. +
i A iN a)

N — o, then
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. 2 (6. 8)

Moreover, we have immediately from (6. 8) that

C p C n
- - J e
r/N ij/N L2
j=1 j=1
0
-2 (6. 9)

Lemma 6. 2. If X(J) is distributed as the exponential with

parameter ejN = 9(l+6jNN), j=1,2,...,¢c, then under (6.1)
R=-2In L.R. (L.R. =likelihood ratio test statistic) has a limiting

chi-square with c-1 degree of freedom and non-centrality parameter

c
0
T e , .10
AR, 6, 9) ora Z (6 6 (6 )
where
A.= lim n,/N
J n— oo
and

C

8 = z \.6.
i

j=1
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Proof. From (6. 1), we have

1 - H(y) = e-ay

-0. %

1-%khe . (6.11)

The likelihood function can be written as

f(x, yle, 8, a)

< 5l <’ G) (01*?
SR M0 £ 6 -HG )| Ry )O-Fr )
j=li=1] " .
c e ra) [ Y6 1a) 1-513)
K IO 1 j{6e ] ' lae . (6. 12)
j=1i=10 " L -
Thus,
n-
c
Inf=1nK+ z Z[ew(ln e,-fo)(e,+a))+(1-e(,J))(ln a-ny)(e-Jra))],
1 J 1 J 1 1 J
J':l i=1
and
n,
j
m ‘
9lnf ' (3)_() (), (]
Er _efl i Z[EiJ xiJ Hl“ij )YiJ)]'
J b
Consequently, the unrestricted maximum likelihood estimators for 6,
J
are given by
m,
A
, i
" h L j= L e C (6. 13)
J
Z[E_(J)X Dyr.9)y, 00
1 1 1 1
i=1
And under Ho : 61 = 62 = ..z ec =z 0, the maximum likelihood

estimator is
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(6. 14)

[ao)g
n

n,
c

\ [ G) () G),. ()
z Z[ei x. +(l_ci )yi ]

j:l i=1

Substituting IéJ and 8§ from (6. 13) and (6. 14) in (6. 12), we obtain

c
= 2lnL.R. = -2 ij[ln ,é- 1n /63]
j=1
Since, this is the well-known (see Kendall and Stuart [17]) likelihood

ratio statistic with @J and ® are the reciprocal of the averages

of independent observations, then

c
-2 =2 :
R= zmj(ej-e) /8 ' (6. 15)
j=1
has limiting central chi-square distribution under Ho. Under Ha,

R will have limiting non-central chi-square with non-centrality

parameter conditional on 1,

. ‘C
MR, 8,0|m) = ij(ej_E)Z/EZ , (6. 16)

=1
where

0. = 8(1+6./NN)
J J

and
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C
— 1 Z
0=— m. 0,
r i
j=1
= 9(1+6/NN) . (6.17)

By using the result of Lemma 6. 1, the unconditional non-centrality

parameter of R is

c -2

On, (6.-6)
X(R,Q,O):ZEJ&'_‘_;Z
i=1 N(1+6/NN)
c
. 6 -2
® 5ra ij(éj-é) . (6.18)
j=1

Lemma 6. 3. The unconditional non-centrality parameter of

is approximately equal to

R, Ny

0 -2
Y )\j(éj-é) . (6. 19)

j=1

Proof. The conditional non-centrality parameter of Q(r N)

as given in (5. 35) is
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From (6.9), it follows that the non-centrality parameter of the uncondi-

tional limiting distribution of Q-"r N) is equal to
_
9N (s )2, (6. 20)
O+a /L, 1 1

i1

Theorem 6. 1. Under the exponential alternatives of failure ob-

servations and exponential censoring time, the asymptotic relative

efficiency of Q(r,N) with respectto R is 1.

This result follows from the fact that the non-centrality para-

meters of Q( N in (6.20) and that of R in (6.18) are equal.
LI,

Comments on a time censored modél: For uniform random
arrivals over the internal (0, T) with all units on test at time T
being censored, we have not been able to evaluate, for arbitrary T,
the A. R. E. of the Q(r, N)-test with respect to the likelihood ratio
test for the case of exponential failure distributions. However, for
the limiting case T — oo, the A. R. E. is equa;l tol and T — O
is equal to 8/9. The A.R. E. for T — ®© is well-known (e. g., see
Puri [20]). For T — 0 the O statistic and the corresponding
c-sample statistic using Gehan's W(j) statistics in place of the T(j)
statistics (see Gehan [11]), QY can be shown to be asymtotically
equivalent. Since the A. R.E. of Q' with respect to the likelihood ratio

test is independent of ¢, the evaluation, by Gehan, of the A. R, E, of

Q' with respect to the likelihood ratio test for c =2 may be used.
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VII. NUMERICAL RESULTS AND ILLUSTRATIVE EXAMPLE

In the first part of this chapter, comparisons of exact and chi-
square approximation upper-tail probabilities of Q(r,N) are
made for three different censoring patterns. For each pattern, the
upper-tail probabilitiescorresponding to six different values of §
are tabulated below in Tables 2, 3, and 4. ,15(1, 1) denotes the chi-
square approximation probability under Ho, i.e., 91 =1 and

0,=1, and P(91, 0 denotes the exact probabilities for six pairs

2 2)

of values for (91,92) with 93 = 1. P(l,1) and P(BI,BZ) are
computed according to (3. 14) and (3. 15) respectively.

Due to the large number of points in the sample space of the
rank-order statistic, it was necessary to choose small sample sizes
and small numbers of failures. For sample sizes n; =n,=n;= 4
and r = 3,4,5 in censoring patterns given in Table 1, there were
respectively 648, 1230, and 1890 points in the sa.fnple spaces of the
rank-order statistics. Consequently, the Q(r, N)-test has small
power. In pattern I, the largest power for test size a = 0.10
occurs when 9, = (1, 3), which is about 0. 20. The largest powers
in patterns II and III for the .corresponding test size are slightly
larger, which are about 0. 23 and 0. 25 respectively. It is interesting

to note that in all three patterns, the maximum powe rs occur at the

same 8= (1,3). Figures 1 and 2 show the relations of power and
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size a of the test for various values of /?,
The corresponding generalized Gehan's statistics, er N)
(see Appendix III), are also computed and ordered. The upper-tail

probabilities of Q can be obtained by cumulating the proba-

(r, N)

bilities ofthe corresponding rank-order statistics. Power comparisons of

are presented graphically in Figures 3 and 4.

Qr, Ny 2P QN

]
In pattern II, Q(r, N) and Q(r, N) have nearly the same power.

In pattern III, the powers of Q are slightly larger than those

(r, N)

of QEr N) for the case of 0 = (2,2) and substantially larger for

the case of 8 = (1, 3).



Table 1. Arbitrary censoring patterns I, II and III,
N=12, n =n,=n, =4

1 2 3

Pattern I Pattern II Pattern III

r=3 r=4 r=3S5
i c, i c, i c,
i i i
1 1 1 1 1 1
3 2 0 2 0
3 5 3 2 3 1
4 5 4 0
5 5

Table 2. Exact and chi-square approximation cumulative probabilities of Q &, N) for arbitrary
censoring pattern I,
) P, 1) P(1,1)  P(1,2)  P(1,3)  P(2,2)  P2,3)  PB@3,3)
8.3642 . 01530 . 00087 . 00146 . 00262 .00117 . 00160 . 00150
7.7208 . 02107 . 00866 .01433 . 02522 . 01152 .01550 . 01442
7.5362 . 02305 .02424 .03898 . 06670 . 03169 . .04194 .03911
6.7407 . 03439 . 02511 . 04024 . 06860 . 03280 . 04334 . 04050
6. 4409 . 03996 . 05455 . 08246 . 13248 . 06936 . 08864 . 08413
4. 2709 . 11765 . 05714 . 08560 . 13646 . 07237 . 09208 . 08765
3. 9734 . 13807 .05974 . 08862 . 14009 . 07536 . 09542 .09114
3. 5353 . 17033 . 09177 . 12552 . 18414 . 11106 . 13466 . 13102
3.3277 . 19014 . 12121 . 15804 . 22042 . 14318 . 16907 . 16627
3.1640 . 20598 . 12727 . 16450 .22702 . ,19466 . .22330 17417
2.8526 . 24171 . 20519 | 24806 . 31647 . 23328 . 26371 . 26366
2.6935 . 25924 . 28139 . 32736 . 39744 . 31370 . 34664 . 34938




Table 3. Exact and chi-square approximation cumulative probabilities of Q(

and er
2

for arbitrary censoring pattern II,

r, N) N)
Q(r, N) ?’(1, 1) P(1,1) P(1,2) P(1, 3) P(2,2) P2, 3) P(3, 3) Qér’ N) P(1, 1) P(1, 2) P(3, 3)
10. 5322 . 00519 . 00087 . 00204 . 00462 . 00140 . 00226 . 00197 4, 3874 . 00087 . 00204 . 00197
10. 3365 . 00570 . 00606 . 01424 .03232 . 00954 .01538 .01304 9. 2855 . 00606 .01424 .01304
7.1583 . 02788 , 00693 . 01576 . 03516 . 01076 .01710 . 01466 7. 6050 . 00693 . 01576 . 01466
6. 8561 . 03288 .01039 .03181 . 04650 . 01542 . 02356 . 02048 7.4012 . 01212 . 02483 . 02322
6.6403 . 03615 .01212 . 02483 . 05216 . 01769 . 02660 . 02322 6. 5864 .01386 . 02751 . 02636
6. 2871 . 04328 .01472 . 02887 . 05866 . 02126 .03137 . 02795 6. 2299 . 02082 . 03809 . 02706
6. 0407 . 04979 .01905 . 03552 . 06922 . 02696 .03873 .03513 6.1281 .02514 . 04457 . 04346
5. 8546 . 05340 . 02424 . 04351 . 08211 . 03365 . 04735 . 04332 5. 8225 .03726 .06121 . 06076
5. 6021 . 06081 . 03463 .05865 . 10483 . 04708 . 06419 . 06010 5.6528 . 05196 .08139 . 08032
5. 4409 . 06588 .03810 . 06390 . 11334 . 05132 . 06958 . 06497 5. 5170 . 05892 . 09145 . 08846
5.3517 . 06925 . 04156 . 06870 . 12006 . 058577 . 07501 . 07056 5. 3642 . 06066 .09411 . 09106
5. 1934 . 07502 . 05628 .08892 . 14804 . 07449 . 09771 . 09479 4, 9568 . 06324 . 09779 . 09568
4. 4833 . 08291 . 06494 . 10059 . 16397 . 08522 . 11056 . 10677 4, 6682 . 07594 . 11550 . 11702
4, 9056 . 08629 .07619 . 11562 . 18430 . 09908 . 12706 . 12342 4. 3966 . 08770 . 13266 . 13660
4. 7099 . 09537 . 09697 . 14317 . 22150 . 12403 . 15650 . 15243 4. 1929 . 09814 . 14616 . 15146
4, 5919 . 10127 . 10476 . 15326 . 23464 . 13350 . 16756 . 16371 4, 0232 . 10852 . 15930 . 16750
4, 3933 . 11080 . 12035 . 17266 . 25858 . 15233 . 18914 . 18622 3.8144 .11284 . 16504 . 17438
4, 2572 . 11884 . 12900 . 18348 . 27220 . 16263 . 20099 . 19835 3. 5309 . 12586 . 18160 . 19352
4. 1669 . 12400 . 13939 . 19590 . 28669 . 17514 . 21506 . 21344 3,2083 . 13740 . 19461 . 20926
4, 0759 . 13100 . 14199 . 19890 . 28995 . 17844 . 21879 . 21777 2, 8688 . 14088 . 19887 . 21396

154



Table 4. Exact and chi-square approximation cumulative probabilities of Q(r, N) and Qir, N) for arbitrary censoring pattern III, .

Q(r’ N) ?(1, 1) P(1,1) P(1,2) P(1,3) P(2,2) P(2, 3) P(3, 3) Qir, N) P(1, 1) P(2,2) P(1, 3)
9.5017 . 00865 . 00087 . 00209 . 00480 . 00154 . 00255 . 00241 9.3771 . 00087 . 00154 . 00236
8.7884 . 01240 . 00346 . 00808 . 01820 . 00584 . .00941 . 00866 9.0766 . 00260 . 00432 . 00472
8.1350 .01725 . 00952 . 02165 . 04738 . 01530 . 02420 . 02159 8.3552 . 00692 . 01108 . 01148
7. 5236 . 02328 . 01558 .03373 . 07042 . 02447 . 03765 . 03404 7. 9946 . 00866 . 01376 . 01870
7.1778 .02901 .01818 . 03850 . 07876 . 02845 . 04324 . 03964 7.6339 .01214 . 01880 .03312
6.7082 . 03508 . 02684 . 05380 . 10498 . 04134 .06112 . 05745 7.0328 . 01556 . 02428 . 04476
6. 4758 . 03916 . 02857 . 05654 . 10921 . 04416 . 06495 .06191 6. 4918 . 02162 . 03246 . 06418
6.2853 . 04505 . 03463 . 06680 . 12650 . 05283 . 07673 . 07355 6.0110 . 02762 . 04162 . 08254
5. 9684 . 05079 . 04069 . 07542 . 13780 . 06260 . 08924 . 08924 5. 7400 . 03368 .05144 . 09898
5.7698 . 05558 . 04848 . 08685 . 15387 . 07429 . 10471 . 10620 5. 4700 . 04316 .06120 . 11864
5. 5699 . 06142 . 05455 . 09465 . 16252 .08395 . ,11594 . 12157 5.2446 . 05078 . 07448 . 13360
5.5039 . 06393 . 05887 . 10059 . 17019 .09053 . . 12416 . 13151 5. 0492 . 06206 . 08370 . 16296
5.2775 .07136 . 06667 . 11187 . 18655 . 10164 . . 13822 . 14707 4. 8689 . 06890 . 09957 . 17732
5. 1626 . 07577 .07013 . 11751 . 19647 . 10602 . 14401 . 15220 4. 7036 . 07316 . 10597 . 18518
4.7603 . 09255 . 08052 . 13128 . 21391 . 12027 . 16124 . 17164 4. 5683 . 08090 . 11725 . 19680
4, 5117 . 10435 . 09437 . 14925 . 23659 . 13856 . 18283 . 19556 4. 3730 . 09206 . 13293 . 21848
4,3543 . 11304 . 11169 . 17147 . 26463 . 16089 . 20907 . 22420 4.1626 . 10250 . 14627 . 23426
4,2485 . 12003 . 12208 . 18410 . 27912 . 17452 . 22470 . 24218 3.8921 . 12338 . 17347 . 26194
4,1482 . 12619 . 13420 . 19838 . 29461 . 19051 . 24284 . 26362 3. 6670 . 13904 . 19463 . 28026
3. 9368 . 13946 . 14805 . 21613 . 31734 . 20709 . 26197 . 28280 3,1257 . 15296 . 21211 . 29958

1474
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Figure 4. Power comparison of O(r, N) and Qir, N) for /QJ= (2, 2) and

(1, 3) (pattern III).
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As an illustrative example, we consider data for a 4-sample
problem. For n, =mn, = 5, n, = 6, n, = 9, r=10 and N = 25,

the data is presented as follows:

U a4t a1 7.2 7,28 7.2t

2 2.4t 2.7 46 5.7

3 1.9t 203 25T 3.9 7,27 72"

B9t 32t 3.3t 3., a8t 7.2t 72t 72t 7.2,

a)+

where x( denotes the censoring time of an observation from
th (a) . X .
a— sample, and x denotes the failure time of an observation
th .
from ao— sample. In combining these 4 samples, the values of

rank-order are obtained in Table 5. With the computed values bi's,

the linear rank statistics can easily be computed by formula,

r

(@)  _ _1 .(a) (a), . (a)
TNy~ N Z bylu,+E, ],
i=1
and the Q(r, N) computed according to the formula,
NN N (0
AL\ LY !
%" b)) L T

i=1



Computational form of Q
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- 10
(1) (1), (1)
£.7 - Zbi(ui +€. %)
i=1
10
__ L (@) (2), .(2)
Ti10,25)° N25 &.7 - Zbl(“' )
i=1
10
£3) Zbi( (3),¢03),
V- 1=]. —d
(1) - L (2.2.42151064) = —— (..42151064)
(10, 25)  ~N2Z5 ' NZ5
) 1 L
T(lo, 25)_\/_2.5(4.1.3%16851) _m(z.60383149)
3 oL (3.2.09435379) = —= (-. 09435379)
(10,25) ~N2Z5 7 NZ5
(4) B (1) (2) (3)
T10 250~ "T(10, 25)" T(10, 25)" T(10, 25)

- L (2.08796706)

.1 i
(r, N) from (4. 14) is
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_ 24 9 2 .9 2
Q(lo, 25) = (10-. 68429638)9 [5(-.42151064) +5(z.6o383149)

+%4H09435379)2 +(a2.08796706)2]

24 r9

9 2
838413326 | 5 17767122) +7(6.08796706) ]

+%(.00890264) +(4.35960644)]

48.36752635

This indicates a significance at level <. 0001.

Table 5. Rank-order and arbitrary censoring pattern. .

(1) 2y 3y (1) (@2) G)

£ § & i i i ¢4 E, b,
1 0 1 0 0 0 0 0 25 . 04000000
2 0 0 0 0 0 1 1 24 . 08166667
3 0 0 1 1 1 1 3 22 .12712121
4 0 1 0 0 0 0 0 18 . 18267676
5 1 0 0 0 0 0 2 17 . 24150029
6 0 0 0 0 0 0 0 14 .31292886
7 0 0 1 0 0 0 0 13 . 38985194
8 0 1 0 0 0 0 1 12 . 47318527
9 0 1 0 0 0 0 0 10 .57318527
10 1 0 0 2 0 2 8 9 . 68429638
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APPENDIX I

Proofs of Lemmas 5.2.1 and 5. 2. 2

Lemma 5. 2. 1.

LIV iy
i=1 1 1
Proof.
r
() _ (G), ()
E (Vi ) = ZE (u; +§a)
a=i
= EN\, (A..2)
1)
and
2 r r -
EL(V?) )= E, E(ufﬁ’%fﬂ’) + ZZ (D eg U)o 1D gl
a=i afa'=i
r r
= E[Kj(ca+l)+Kfca(ca+l)] + )\jz Zz(ca+l)(ca+l) + o(N)
a=i afa'=1i
=\E, + XZEZ - )\.ZE. + o(N) (A.3)
J 1 J 1 J 1
Combining (A..2) and (A. 3), we have
1
E (BN, J.) "N )\j(l-)\j)(r-br) +o(1) (A. 4)

Hence,



lim E (BN )= vA (T-X\)).

By expanding the square of BN j

2

E [BN’J,

]= —13 r(r-l)k.z(l-k.)2+ o(l).
N J J :

From (A. 5) and (A. 6), it follows that

Var (BN,j)= o(l)
=0 as N—oo,
Then,
P
B —~ WA (1-\)).
N,j J J

Lemma 5. 2. 2.

. -'
Proof. Consider VEJ)V? )

r r
() 3" _ (), () (3", £GY
Vi Vi - Z(ua +ga. ) Z(uu +§a
a=i a=i

iy
_ Z(u(3>u<j'>+§(j>u(1'>+§(j')um) ;
a a a a a a

a=i

55

(A.5)

and taking expected value, we get

(A. 6)

(A.7)
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r
) gl

afa'=i

r
(G),(G")
E (V.'VS )= Z[ca(ca-1)+ca+ca]xjxj,

a=1i

r

+ EZ (ca+1)(ca,+1)xjxj,

afa'=i

= xjxj,EiZ - )‘j)‘j'Ei' (A 8)

Hence,

E(B. . )=-=X X, +\\,

b
I
N, jj' N jj ji'N

From results of Lemma 5. 2. 2, we get

lim E (B ..,)= - VA,

: (A-9)
'
N — N, j] i

By taking the expected value of sum squares and cross-products of

.
N, jj"

2 4 1
N, J,j,] = NZ r(r_l)xjxj, + ofl) (A.10)

E B
From the results of (A.9) and (A. 10), we have

2
lim var [B_ ..,]=0.
N — N, jj
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APPENDIX II

Limitation of RN in Theorem 5. 2

By using Taylor's expansion of 1n (l+x) to expand 1n L(8)

of (5. 25), we have

c-1 ) c-1 c-1 6(J.Vio.)
InL(8) = Zg. 1n(1+6j/'\/'N)- Z In 1+z ENN
j=1 a=1 a=1 '
) 62 6'3
Egu i _J_+_J_
3INVN
r}c- 6V(0.) c-1 3
R D e Py
- ) — N
=1~ ENN 2NE, 3N\/'NE *t
i=1} a=1 a=1
(A.11)
where - 6J. < 6Jf < 6J, for j=1,2,...,c-1. Then the remainder
term RN in (5. 26) is
c-1 6'3 c-1 3
Zg(J —1_ _ z 51y
3NNN 3N’\/N E3 a'i
J_l a=1
Since
c c-1 3
E = ) v\*  then Z s v <33,
i a i - i



where ©§ = max(|61|, |62|,..., I&CI), it follows that

T .3

1 g3+z [
3NN 3NNN

i=1

|R

IA

N I

= o(l).

.28
— 3NN
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(A.12)
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APPENDIX III

c-Sample Generalization of Gehan's Statistics

Define
n N-n
a a
W= Z u'® (A-13)
a ij [
i=1j=1
with
[ @ _ (o) (a) _ (a)'
a a a a
- < <
1 X YJ or x, YJ
(a) (a) (a) (a)' (a) (a)' (a)
= = < < .
Uij 0 X, Yj or X, Yj or Yj x (A.14)
(a) a) (a)' (a)
> >
1 x y or x, Yj 5
.
t
where xia) and xia) are the i— failure and the i— cen-

sored observations within the atﬁ sample, and ,y(.a) and Y(_a)' are
J
.th . .th . ‘i1
the j— failure and the j— censored observations within the

th .
a— sample respectively.

Assuming no ties in observations, we may express W(1 as a

linear function of g(a) and g(a),
r r
_ . (a), . (a)
W(1 = Z (1— Z(cj+l)) gi + 1ui (A.15)
i=1 j=i
a=1,2,...,c
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It can be easily verified, by using the similar techniques for the case

(j)
of T(r, N)’ that
EL(WQ) =0
n (N-n ) z
VAW )= — Z[(l—E)+1c]
1" T NG
and i=1
r
nunu' . 2 .2
COV.L(WQ, Wa,) = - N(T—l) Z [(1—Ei) +1 Ci] (A.16)
i=1
(a#a'=1,2, , C)

W,
= N-1 Z 1 (A.17)
r n,



