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NONPARAMETRIC c-SAMPLE TESTS FOR ARBITRARILY
CENSORED DATA

I. INTRODUCTION

A common problem arising in life testing and clinical trials is

the comparison of failure time distributions, or recovery time dis-

tributions, for c-treatments. Frequently, the experimenter wishes

to compare the treatments (drug, components, etc. ) before all ex-

perimental units have failed, resulting in censored observations.

Due to limited testing facilities or availability of experimental units,

it may be impossible to put all units on test at the same time. Con-

sequently, censored observations may not all be subjected to the

same amount of test time, arbitrary censoring.

Motivated by clinical trials with arbitrarily singly-censored

data, Gehan [11] developed a generalized Wilcoxon test for the null

hypothesis Ho : G(t) = F(t), where G(t) and F(t) represent

the dist.-ibution functions for the two failure distributions.

Efron [7] has also proposed a test statistic W which is the maxi-

mum likelihood estimate for Pr(X > Y) with arbitrarily censored data.

He considers the case where the censoring distributions may be dif-

ferent for the two failure distributions. However, we will only be

concerned with the case where all observations are censored according

to the same censoring distribution. For an exponential censoring
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distribution, the Pitman asymptotic relative efficiency (A. R. E.) of

the W test with respect to the likelihood ratio test is given in

Table II of Efron [7]. For a particular censoring model, discussed

in Chapter VI, the generalized Savage test statistic is shown to be

asymptotically more efficient than the Efron statistic. The general-

ized Savage statistic has the additional advantage that its variance under

Ho is easily evaluated, whereas the variance of the Efron statistics
Aare difficult to estimate. On the other hand, W has the advantage

of providing an estimate of Pr(X > Y) under the alternative F G.

Thomas [25] has developed conditional locally most powerful

rank tests (c.l.m.p.r.t. 's) for the two-sample problem with arbi-

trarily censored data. These test statistics are linear functions of

rank-order statistics. The coefficients in these linear rank statistics

can easily be evaluated for the case of proportional hazard function

alternatives. The resulting statistic will be referred to as the "gen-

eralized Savage statistic. 'I Thomas [25] has also discussed how the

generalized Savage test may be modified for the case of grouped fail-

ures (ties).

Puri [20] has studied a class of test statistics Z for the c-

sample problem in the uncensored case. These X. -statistics are

quadratic functions of linear rank statistics. Puri proves that these

-statistics have asymptotic chi- square distributions by approxi-

mating the coefficients in the linear rank statistics by a continuous
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weighting function.

In this thesis, we consider a class of c- sample nonparametric

tests for arbitrarily censored data. The null hypothesis is

Ho Fl(t) F2(t) )'s are

equal. The test statistic Q(r, N)'

of a Puri 's Z- statistic.

given in (4. 3), is in the form

The linear rank statistics used in Q(r,
N)

are the generalized Savage statistics which will be derived as an ex-

tension of the Thomas c. 1. m. p. r. t. 's for the two- sample case. The

Q
( r, N)

tests are shown to be asymptotic efficient with respect to

the parametric likelihood ratio test for exponential censoring distri-

butions and exponential failure time distributions.

In Chapter II, the problem is formulated, assumptions are

given, and order and rank-order statistics are defined for arbitrarily

censored data. Distributions of order and rank-order statistics are

derived in Chapter III. In Chapter IV, the vector of generalized

Savage statistics is given for distributions with proportional hazard

functions. The Q(r,
N)

statistic is also defined in Chapter IV.

Asymptotic normality of the generalized Savage statistic vec-

tor, 1.(r, is established in Chapter V under Ho and (locally)

under H
a

For exponential failure time distributions with inde-

pendent exponential censoring distributions, the Q(r,
N)

-test is

shown in Chapter VI to be asymptotic efficient with respect to the

likelihood ratio test.
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Numerical results are presented in Chapter VII. The exact and

chi-square approximation of upper-tailed probabilities are given in

Tables 2, 3 and 4 for three different censoring patterns in the three-

sample case. Power curves of Q(r,
N)

tests are given in Figures 1

and 2 corresponding to test-sizes less than O. 14. Figures 3 and 4

give graphical power comparisons of Q(r,
N)

and a corresponding

quadratic function Q('r,
N)

of Gehan's generalized Wilcoxon statis-

tics. At the end of Chapter VII, an example is given illustrating the

computation of the test statistic Q(r,
N)

for the four-sample prob-
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II. FORMULATION OF THE PROBLEM

Let there be random samples with n1, n2, , nc observa-

tions from the absolutely continuous distribution functions

Fi(t), F2(t), , F
c
(t). With arbitrarily censored data, we desire

to test the null hypothesis,

Ho : F1(t) = F2(t) Fc(t)

against the alternative,

(2. 1)

Ha : not all F.( t ) are equal; j = 1, 2, ... , c. (2. 2)

Denote the time on test for the failure observations and the

censored observations from F1, F2, , Fc respectively by

(1) x(2),
(1)' (2)' (c)'

x , x . . , x and x , x , , x Let there be

failures observed in the combined sample of N =
=1

tions. Represent these r ordered failures by t1, t2, tr.

observa-

Assuming no ties, then we have 0
-=

to < t
1

< t
2

<... < tr < tr+1 = 00.

Define

c. = total number of censored observations between the failure
1

times t.
1

and ti+1' i = 0, 1, 2, ... , r.

(j) x(j)Iu. = number of censored observations with
i

t. <x(j)i <t i+1'
i = 0, 1, 2, ... , T.

gi = 1 (0) if ti is an x(i) failure (if not), i= 1, 2,...,r. (2. 3)



Furthermore, let

and

t = (t , t2, , t.)-(i) 1 2 1

(c-1) (c-1) e(c-1)
1 2

i= 1, 2, ... r, (2.4)

= (co, c1, c c )
N) o' 1' 2 " i

(i)

(1) (1) (1)
uo

u.(2)
(2)

11(2)
o

u
1 1

(c-1) (c-1) (c-1)
uo u

1
u.

1

i= 0, 1, 2, , r. (2. 5)

6

The random vector t = t(r) and the random matrix

(t, u) (1(r), u (r)) will be called respectively "order" and "rank-

order" statistics. The vector C will be called the "censoring
N)

pattern" of the observations.

From (2. 3), (2. 4) and (2. 5) we may note that



and

c- 1
(c) (j),= 1 -

(c)
u. = c.

j=1

i = 1, 2, , r, (2.6)

c-1

u(j)
i '

= 0, 1, 2, , r, (2.7)

j=1

r
u + s i(j) + u(.j)) = n., j = 1,2, ,c, (2.8)

i=1

i=1 j=1

(J)+
+ ) = co +

r

i= 1

=N. (2.9)

7

The following assumptions are used in deriving the tests: (2. 10)

A. Completely random allocation of treatments to experimental

units.

B. Distributions of observations are independent of time put on

test.

C. (Only required for optimum properties..) The observations

are censored according to independent identically distributed

random variables v.., i = 1, . . . , n., j = 1, c, that is,
3

. i(j) (x. s a failure for x. j) < v.
1

(j)x. v.. is a censored observation for v < x .
1 1J 1J 1
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Furthermore, it is assumed that the probability density

function h( v) for v satisfies: h( v) > 0 for all v

for which f(3)( v) > 0, j = 1, 2, c.

Note that time censored samples do not satisfy assump-

tion C. Assumption C will only be required for optimum

properties of the tests derived. Assumption B and C could

be replaced by the assumption of )rog,ressively censored

samples, that is, all units are put on test at the same time and
th.

after the 3. failure occurs a random c. of the units are cen-
r

sored from the remaining / (c.-I-1) - 1 units which have
Z.-

3=ineither failed nor been censorecl at time t., i = 1, 2, .. . , r.
1
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III. CONDITIONAL DISTRIBUTIONS OF ORDER
AND RANK-ORDER STATISTICS

In this chapter, the conditional distributions of order and rank-

order statistics for a given censorinp, -)attern,
I\1)'

are derived.

The following results are extensions of those obtained by Thomas

[25] for the two-sample case.

Theorem 3. 1. Under assumptions (2. 10), the conditional

density function of ( t, u) is given by

where

and u

r

E. =
1

3=i

F) =
(n1'

N -1 c.
II

n '' n i=0 (1) (2) (c-1)2c- 1 u. u. ,...,u.
1 1

r r c u(j) ,(j)
X ( HE [ H H 1- F.(t.)) 1 f (t.)1

.3 1j=1.

0 E to <t
1

<t2 <... < tr < tr+1 = cc'

arc' as on page 6.

Proof. The density function

pressed as a product of conditional densities:
Qcr, Ny F)

r
f(t, (r, N) ,F) = B

o
(A.B.)

1 1
i=1

(3. 1)

(3. 2)

can be ex-

(3. 3)



with

Ai = f(ti,
-11(i-1) I ,C--(r, N)' 17)

Bi
(i-1)'1(i-1)1S(r,N),E,),

10

(3. 4)

where t u are given in (2. 4) and (2. 5) and u. areHi) ^4°1

.ththe 1 column vectors of the matrices of and u respec-

tively.

Let

n. = n. - u(j)
331 o

a-1

Ja 1 R P
=1

a= 2, 3, ... , r; j= 1, 2, ..., c (3. 5)

.thbe the number of observations from the 3 population which have

neither failed with x(j) <t nornor been censored with x(j)I <t .a
Now, it is seen that the conditional density for the minimum t.

(j)
of n..

31
x -observations, given t.

1
> t.

1
, is equal to

1-

c

A. = 11

J=1

(nji 1-F.(t. )

f.(t.)

1- 1

Hence, from (3.5) and (3. 6) we obtain

(j)
1 1-F.(t.) n..

1

1- F3 .(t.
1

)
- 1
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r r c
Ti A. = n 1-1

1 i=1 j=1i=1

Following the failure

(j)

(n..f.(t.)) 1 (1-F.(t.))
31 3 1 J 1

ti there remain

(ju.

n.. -
31 J1

(3. 7)

x (j) -observations (j = 1, 2, , c) which have neither failed with

x(i) < ti nor been censored with x(j)1 < t.. Under assumptions

(2. 10), the probability that a particular uij)

x (j) -observations are assigned to the

of these n.. -
31

(j)

c. experimental units cen-
t

so red in the interval (t., t.
1+1

) is given by

and

B. =-
1

j =1

\-1
..- 1

31

c.
1

c

j =1

= 1, 2, , r,

-1 c ( ni
o co j=1 u(j)

(3. 8)

(3. 9)

Since the generalized hypergeometric probabilities (3. 8) and (3. 9)

may be rewritten respectively as



B. =
,

j=1

and

Bo =
ic

1
ji

[cif c.
1

(1) (2) (c-1)\ 1
, . . ,

12

c
x (j 1

11 (n. -t. )
) , i = 1, 2, ... , r, (3. 10)[

= 1
ji 1j

-1 /
(1)u u,

(2)
,

co

.. (c-1), u

c
II

j=1
(n.,) °

31

where a[b] = a(a-1)... (a-b+1), it is easily verified that

with

c.-1 r (
IIII B. = (c-)i=0 1 n

1
, n2,..., nc_i

0
(1)

,
(2)

U.
1

1 1 1 /
r c - (j)

X 11 E. 1I n..
i=1 1 j=1 31 '

E. = (c +1) .

Hence, (3. 1) follows from the product of (3. 7) and (3. 12).

(3. 11)

(3. 12)

Corollary 3. 1. 1. Under H0 : F1 a. F2 a .. = Fe the order

statistic and the rank-order statistic are independently distributed

with density function



r ci
f( t IC

i
N), Fc) = n

1

[E.(1-F
c i
(t)) f c(t.i )]

=

and probability function

13

(3. 13)

N -1 r 1
c.

p(,u1C )=--(r, N) n
1,

n
2
,..., nc -1 i=0

1

(1) (2) (c-1)/.
u1 . ,u. ,.,u.

(3. 14)

Note that, this corollary still holds even when Assumption C of (2.10)

does not, i. e. , when the observations are time censored.

The distribution of the rank-order statistic under alternatives can

be determined from (3. 1) by integrating over the order statistic

t (0 = to < t
1

< t
2

< tr < tr+1 = 00). In general, the integration of

f(1, u I F) over t is rather difficult. Under Lehmann
A.

alternatives of the form (1 -F.) =1-F.) (1-Fc) J, j = 1,2, -,c-1,

P(,1 IC r, can be determined as follows:

O.
Corollary 3. 1. 2. Under Lehmann alternatives (1-F.) = (1-F

c
)

j = 1, 2, , c-1, the conditional distribution of the rank-order

statistic is given by

c

P(1'11..C(r, NY .2)
K(N, u, g(r, N) fj.J1

-r -1

X r(IIrE.) n /
a J J

(u(.a)+e.a))
i =1 i =1

J =1
a =1

(3. 15)



where

,ind

(j)

N
K(N, u, C(r,

N)) nc

14

C,-1 r
(1) (2) (c-1)

i=0 u. ,u. ,...,u. /
1 1 1 (3. 16)

Proof. Under Lehmann alternatives of the form
0.

) = (1-F c) j = 1,2, , c-1 (3. 1) can be rewritten as

r
f( t, u1C , F ) = K(N, u, C ) O. II E.e- -

3=1
(r, N) . j

r
=

X II f (t.)(1-F(t.))j 1

cir=1-
(3. 17)

By using the transformation w. = 1 - F (t.), the marginal probability
e

function of the rank-order statistic u) can be obtained by in-

tegrating over

p(, ul

w 1 > w
1

> w
2

> . > wr > 0. Thus,

/0.(P+ iJ))

) E. ri e.
(r C p r

lI

1 j w 1

dw.
/ j=1

( r c ,(j)\ r
K(N,u,c(r,m) n E. (11 A. It

\i=1 j=1 / i =1

r c

(a) (a)0 (u. )

a 3

j =i a=1



IV. THE STATISTICS T (r N) AND Q( r , N),
Puri [2.0j had proposed a class of c-sample tests for the un-

en.sored case by considering test statistics of the form

j
[(T p. )/A. 12 .

N, j N, j N
j =1

15

(4. 1)

.th
1-lere m. is the size of the j sample, µ and AN are

j

normalizing constants, and

T =
1

N, j m. N, N,
i=1

j = 1 7 2 7 c, are linear rank statistics and E
TN, N, i

(4. 2)

i = 1,2, , N, are constants which are often evaluated so as to give

good tests for particular alternatives. Under suitable regularity con-

ditions and assumptions, the g,- statistics have been shown to have

limiting chi-square distributions.

The Q( r , N)
test statistic considered in this chapter may be

written in the form (4. 1). The linear rank statistics T will be
N, j

replaced by T(j)(r, N) 1,2, c which give the locally most

powerful rank test for the two-sample case with arbitrarily censored
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data. This statistic has been introduced and discussed by Thomas [25].

(T(1) , T(2) , T(c-1)),The statistic TT(r,
N) (r,N) (r, N) , (r, N)

definedbelow, reduces to the statistic T given in Theorem 2 of

Thomas [25]. Since T
N)

will be shown in Chapter V to have

a limiting normal distribution, the statistic Q(r,
N)

will be

defined as

-1T'Q(r,
N) ---(r,N)(r,N) T

N)

where E is the variance-covariance matrix(r, N)
The statistics, T(i)(r, N) j

1,2, , c-1,

TO) , 1 nd in P(L' g(r,

of T (r, N)
are defined by

e= 1

(4.

1)

(4.

3)

4)(r, N) 7k ao.
L

where ujG , 0) is the probability function of rank-order
^'(r, N)

statistic given by (3. 15) for Lehmann alternatives.

Lemma 4.1. The statistic T' (T (1)
, T(2)(r, N) (r, N) (r, N)'

(c-1)Tr,
N)

) reduces to

)



wne re

where

1

( r , N ) \/-171

The T(J)(r, N)

[(1-1))(.1)._b u 1 )1
1 1

(2) (2)
-b.u.

1 1 1 1

i=1

r (c-1)
/[(1-h.). - b u(c-1)]

1 i i

i=1

1b.
1

a,1 /(c.+1)
j'a

in expression (4. 5) can also be written as

TO)
1

(r, N) N1 171

r

r
(v. j)

j= 1, 2, ... , c- 1 ,

a,i
i = 1,2,,r; j = 1,2,, c-1

17

(4. 5)

(4. 6,

(4. 7)

(4. 8)

=general Lehmann alternatives (1-F.) Ho (1- Fc), ),

a statistic T could be derived similarly as in-(r, N)(h =
0

(x) x),

(4. 4).
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However, an explicit furl-- of the distribution of the rank -

(,rd...r statistic (u, is not required. But some suitable

regi larity conditions must be imposed on the alternatives which allow

orders of differentiation and integration to be interchanged.

The following regularity conditions on the functionals h0 (w), 0 < w < 1,

would be sufficient

ah (w) ah (w) ahi (w)
e e e

) h(w), h (w)i -. J= j and j are con-
Ow ae. ae.

3 3 3 J

tinuous with respect to 0. in an (-neighborhood of 1

for all j = 1, 2, , c-1.

ii) There exist integrable functions over (0, 1), M1(w), M2(w),

M3(w), and M4(w), such that

(w)1 < Mi(w), the (w)1 <M2(w)

a In h
O.

(w)

ae. < M 3(w),

a In h'
O

(w)

ae.
J

< M 4(w)

in an (-neighborhood of 1 for all j = 1, 2, , c-1.

(4. 9)

Lemma 4. 2. Under the null hypothesis, the mean and variance

A is given respectively by
N)

E (T(r,
N)

) = 0

and

(4. 10)



where

= [a-..(r, N)]-tr, N) 1.)

o-..(r, N) =

(r-b
T 1

)n,(N-n.),

NZ(N- 1)

(r-br )n.n.,

N2(N-1)

i

j= 1, 2, , c-1

with b given by (4. 6 ).r

Proof. From (4. 7 ) , for j = 1, 2, . . , c- 1, we have

(j) V(.i)TO) =(r, N) Nn7 .

= 1

The expected value of T()(r, N) under Ho is then

E(r (r, N)) = N

1

= 0 .

rn. n.

N N

n.
c +1)-1a N

19

(4. 11)



Hence,

E (T ) = 0
(r, N)

Due to Thomas [25], T(j)(r, N) can always be expressed as

r
T(j) 1 v(j) 1

i
[(1-b.)(i)-b.u(j)] , (4. 12)( r, N) i\RV i NrIST 1 1 i

i =1 i=1

20

where 1(0) it th1 observation is from the th3 population
(if not). And the expected value of T(j)2 can easily be shown to(r, N)

reduce to

E (T(j)2 )
(r, N)

r
2 2 ,By using (4. 6), [(1-b.) +b. c.3 can be reduced to r - br.

i i 1

(r-b )n.(N-n.)
Z Similarly,Hence, the variance of T(j) .

(r, N) N2(N- 1)

n n'
E (T(r)

, N)
T(r,(jr)

N)
) J (r-br) .

2
N (N-1)

(4. 13)

Lemma 4. 3. The statistic Q given by (4. 3), can be ex-(r, N)

pressed in a computing form



where

that

where

Then,

N(N-1) 1 (j)
Q(r,N) (r-br) n. T(r,

N)

3=

2

(c)T(r,
N)

= -

c - 1

J= 1

(j )
(r, N)

21

(4. 14)

(4. 15)

Proof. For -Z(r, N)
as given in (4. 11), it is readily seen

1 ij
E = [a- (r, N)] ,-(r, N)

ii(r, N)cr =

n
N(bN-)1) c

n.r c 1.

N(N-1)
, i j(r-b )nr c

-1
= TQ(r,

N) "'(r, N)-(r, N)#-(r, N)

c-1 c -1

(i) crii(r, N)T(i)T(r,
N) (r, N)

i=1 j=1

(4. 16)

N(N-1)
-c-1

T(j)
N)

j=1

2 -1
N(N- 1)

n.
J

T(j)2(r,N)(r-b )n
C

(r-br)
j =1



N(N-1)
(r-br)

1 TO)n. (r, N)

2

It should be noted that Q(r,
N)

the Puri's g- -statistic (4. 1).

22

in (4. 14) has the same form as



V. LIMITING DISTRIBUTIONS OF T(r
N)

AND Q(r,
N)

Under the assumptions

0 < < X . . < 1 - X <1
O 1 o

lim N= v > 0 ,

where Xo is a positive constant with

n.
1

X. = lim
N.- 00

23

(5. 1)

the asymptotic distributions of T(r, N)
and Q(r,

N)
as defined by

(4. 5) and (4. 3) will be derived under Ho and locally under H.

Theorem 5. 1. Under Ho:01=02= =0c-1 1,

N)

the statistic

has a limiting (c-1)-variate normal distribution with mean

0 and variance-covariance E, where

with

=

vk.1 (1-X.), i = j
1

-vX.X13 3

Lemma 5. 1. 1. For each k > 1 and r < N, define

(5. 2)



where

then

E. =

a=i

ca+1) ,

b(k)
= 0 .

N -6.00

Proof. For a given pattern C , r < N with
N) -/ (c.+1) N, it is seen that

j=1
r

b(k) < b
(1) = br = 1

r r
i=1 (ci+1)

i=i

Recall the Euler Is constant, (see [16])

It follows that

y = lim
N-00 i=1

= . 5772156649.

lirn

N--00

-
N

-ln N

i=1

In N]

i=1

24

(5. 3)

(5. 4)

(5. 5)

(5. 6)

= 0 (5. 7)



Combining the results of (5. 5) and (5. 7), we get

b(k)r
N

lim
N-00

< lim
N-'00

br

N

In N
N

= 0, for k > 1.

By applying (5. 1) and (5. 4) to (4. 11), we have

urn S =

N 00
(r, N)

Proof of Theorem 5.1. From (4. 12), the statistic

T(j)(r, N)' i l' 2,
' c-1 is given by

N r

T(j)
1

d v(i) = 1 [(1-b)z(j)-bu(i)]
(r, N) rN L i i NFN L, 1 i 1 i

1=1 i =1

Thomas has shown that {d satisfies the condition
a

(N- d
a
2

)

a =1

k/2

r

1=1

k ka. + b. e.)
1 1 i

i=1

k/2
(a 2 + b 2 e.)]

for k = 3, 4,

25

(5. 8)

= 0(1) (5.9)



of the Wald- Wolfowitz-Noether theorem for permutation distribu-

tions (see page 236 of Fraser [9]). Theorem 5.1 then follows from

(5. 8), (5. 9) and Fraser's [10] vector form of the Wald- Wolfowitz-

Hoeffding theorem.

Theorem 5. 2. Under the sequence of alternatives

{E). = 1 + 6./\171'},

= 1, 2, ... , c-1,

where 5. is a fixed constant for each

5 = 0, the limiting distribution of T
N)'

C , is (c-1)-variate normal with mean E 6 and variance-- ( r, N)

covariance

26

given

Lemma 5. 2. 1. For each j 1, 2, ... , c- 1, BN,
j

converges

in probability to

with

o-..,
33

where

r v ) v( )

1
_BN,

j N E.
i= 1

E. given by (3.2) and

E.

j
th

C r = VX. ( 1- X.), the j diagonal
j 3 J

(5. 10)
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element of Z

Lemma 5. 2. 2. For each j j' = 1, 2, , c-1, B con-
N, jj

verges in probability to where
JJ

B
(i) (jr)

N,D = V. V.-

i=1

(5.11)

and
J

=g.., -vX.X., the j, j It-23- element of E
J 3

The proofs of Lemma 5. 2. 1 and 5. 2. 2. will be presented in

Appendix I.

Proof of Theorem 5. 2. Recall the probability density function

of the rank-order statistic from (3. 15),

where

E.(0) =1 -

c (j)

[j=1 i =1 Ei(P)

E.
11 61."

(a) (a)(u. )
a J J

j=i a=1

c

a=1

(a)V. .a 1

Define the probability ratio L(e) as /p then

(5.12)

(5.13)



L(2) = lI 0

i=1

Replacing 0. by 0. = 6 RrN, j = 1, 2, ,c-1, and using3, N j

Taylor's expansion of In (1 +x), we get

c -1

In L(0
N

) = (j)

j=1

(u) c-

2E.
(

6 V.a 1 1 ( )6 V +RN

28

(5.14)

a=1
(5.15)

where RN is the remainder term which will be shown to be o (1)

in Appendix II. Then,

c -1

In L(0 )= 6 T(j)-N j (r, N)
j=1

1

2N

c- 1

' = 1 i= 1

(j) 1)6.6.V. V.
1

E.2
1

+0(1)

Substituting B . and B from Lemma 5. 2. 1 and 5. 2. 2, we
N, 3 N, 33

have

c-1

In L(0 )= 6.T (j) 1 [TO ) + B-N j (r,N) 2q1\1 3 (r,N)
j=1 j=1

+0(1)

c - 1

,j

c -1

6.6.,B
J J N,jjjj' =1

(5.16)



The moment generating function of T
N)

be obtained by taking expected value of

where T, a, y

exp[TIT +a'B +1/13
(r, N) -N

29

and B B can-N,33'

are vectors of arguments of dimension (c-1), (c-1)

and (c-1)(c-2) respectively, and B , B
N

are vectors of (c-1)

and (c-1)(c- 2) dimension having B . and
B

. as their
N, 3 N,3 j'

elements.

-

= E 5[exp(III(r, N)+51.1'N+ Y117.0

= /K(N,u,C )

u

X exp

where

-c-1

(6.- 1
6

2
+ T)T(j)

2N 1 N 3 j (r,N)-
j=1 j=1

+ 0(1)

a..

K(N, u, C ) = p(t, ulc , =
N) N)

as defined in (3. 16). It is then seen that

6.6.,

2

(5.17)

MT
(r, N)' L3N' 71?N; 6 Y) MT, Ziser3.N; 0

L'
3i).40,00.)

(5.18)



where

T, = S,- 1 6 2 + T
j j 2VISt j

2= a. - l6.
j j 2

YJJ
JJJ

, = Y.., 6.5.1

Then,

MT
r B

(T, a, y) =
MT,

°'
T, B, ; 6 -N-00 -(r,N -N' B-N'

But,

= m
T, B, Et; 6 ( 6+ T , a, -,7)

M (T) = M (T, 0, o)
7:; T, B, B;

= MT, V) IT, B, B; 0 a=0
y=0
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(5. 19)

(5. 20)

Applying the results of Theorem 5. 1, Lemma 5. 2. 1 and Lemma

5. 2. 2, we get

r 1m (T) = expi-
2

(8+IP 1Z (6+T)- -6' E 6]T; 8

= exp[6' T ] (5. 21 )

which is the moment generating function of (c-1)-variate normal dis-

tribution with mean Z 6 and variance- covariance matrix E
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Lemma 5. 2. 3. The limiting distribution of Q(r,
N)

under the

sequence of alternatives {0
j, N J

= 1 + b. b\FIS-T} is non-central chi-square

with c-1 degree of freedom and non-centrality parameter

6' Z 6

Proof. Since Q(r,
N)

is defined as

-1
= T' T(r, N) N)(r, N)

(5. 22)

and Z1 has Z1 as its limit, then by the result of Theorem(r, N)
5. 2, we have Q(r,

N)
converging in distribution to a non-central

chi-square variable with (c- 1) degree of freedom. The non-

centrality parameter then will be

(E ,§)1E 1(2; 5) = 5tZ 5 (5. 23)

The non-centrality parameter (5. 23) may also be expressed as

6'Z 6 =

c- lc- I

6. o-.. 5.
1 1J ,

i-, I j= I
which by use of (5.2) reduces to

c -1

k.(1-k.)5.2 - v
i=1

c -1

X. k 5. 5.
1 3 1



where

= V

= v

.8.2 - v
1 1

1
.( 6. -T.)2 ,

i=1

bc = 0, S = X. b. .

i =1

i =1

1 1

2

32

(5. 24)
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VI. ASYMPTOTIC EFFICIENCY OF (:)(r,
N)

The statistic Q(r,
N)

will be shown to be asymptotic efficient

relative to a parametric likelihood ratio test. Exponential failure

time distributions and an exponential censoring distribution will be

assumed. The experimental units used during experimentation are

randomly censored according to an exponential distribution. That is,

(a failure arises if x. j) < y(i) and a censoring arises if x(j) > .
(j)

,

(j)f.(x. ) = 0. e 1

J 1

-0.x. )

h(y) = ae-ay (6. 1)

(j) j) .thwhere x. and yi are the 1 observation of failure time and
.thcensoring time from the j population respectively, i = 1,2,..., nj

and j = 1, 2, ... , c. Let

(j) th .th
= 1 if the i observation of the j population

is a failure

= 0 if it is a censored observation. (6. 2)

Lemma 6. 1.

and

m. /n.
J J

r/N

e

0+a

e
0+a

(6. 3)

(6. 4)
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where 0 is a parameter in the sequence of alternatives

{03.N = 0(1+6./NrICI)}, m. is the number of failure observations from
3 3

the 3 population, i. e. ,

m. = E.
3 1

i=1

(6. 5)

Proof. Due to Efron [7], the E(.i)'s are statistically indepen-

dent for each j = 1, 2, ... , c, with

P(E(j)= 1) - ejl\I
1 OjN+a

a
P(E(.j)= 0) -

1 OjN+a

The mean of independent Bernoulli trials,

then has expected value

the variance of m. /n.
3 3

N 00, then

= m. in. ,
3 3

0 aOjN'N 1

0. +a variancea
(0. +a)

2
3N

3N

(6. 6)

Since

1
0.0

'Nis which tends to zero when
(O. +a) 2'

3N



p
m. /n.

3

lira
n--"00

0
0+a

O'N

0jN+ a

Moreover, we have immediately from (6. 8) that

r/N= m. /N _L
N 0+a

j=1 j=1

e
0+a
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(6. 8)

(6. 9)

Lemma 6. 2. If X (j) is distributed as the exponential with

parameter = 0(1+6./NT/7), j = 1, 2, ... , c, then under (6.1)jN

R = - 21n L. R. (L. R. = likelihood ratio test statistic) has a limiting

chi- square with c-1 degree of freedom and non-centrality parameter

j=

where

and

0
X(R, 6, 6) z; K.(6.-6)2 ,

3 3

X. = lira n. /N
n--- co 3

6 X.6.
1 3

(6. 10)



Proof. From (6. 1), we have

1 H(y) e-GY

-0. x
1 - F.(x) = e

The likelihood function can be written as

f(x, y_1( , A, a)

n.
c 3

= K II II

j =11 =1

C nJ

j=1

Thus,

In f = 1nK +

and

lnf mj

ao. 0.

(j) (j)f
J

).(xj))(1-H(x.1) h(yi )(1-F.(y. ))
1

0.e
J

-x())(0.+a)
1 j

j=1 i=1

1=1

E(i) -y(i)(0.+a)
ae 3

L

)n0.-x()(0.+a))+(l-E(21) (ln a-y())(0.+a))],
1

( j ) ( j ) + ( 1 E(i))V(j)Ei

36

(6. 11)

(6. 12)

Consequently, the unrestricted maximum likelihood estimators for

are given by

[E(i i)x(i)+(1 -E(j))y(j)]

1=1

And under H : 0 = 0 =
1 2

estimator is

j .= 1, C . (6. 13)

a Oc 0, the maximum likelihood



10* - n.
r

c j

[E(i) x(j) + (1 -e(i) )y(j)

37

(6. 14)

j=1 i=1

Substituting laj and id from (6. 13) and (6. 14) in (6. 12), we obtain

R = -2 ln L. R. = - mjln In 9.] .

Since, this is the well-known (see Kendall and Stuart [17]) likelihood

ratio statistic with A. and 9 are the reciprocal of the averages

of independent observations, then

c

RZ m3.(03.-0)
2

/0
2 (6. 15)

has limiting central chi-square distribution under Ho. Under Ha,

R will have limiting non-central chi-square with non-centrality

parameter conditional on

X(R, 6, elm) =

where
j=1

m
3

0. = 0(1-1-8./N M)

and

(6. 16)



_1

r
j=1

= 0(1+6 / Nrg) .
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(6. 17)

By using the result of Lemma 6. 1, the unconditional non-centrality

parameter of R is

X(R, 0) =
On. (6.-T)2L 3

0+a N(1+-ERM)2

0 X.(6.-6)20+a
j=1

(6. 18)

Lemma 6. 3. The unconditional non-centrality parameter of

Q( r , N)
is approximately equal to

0
0+a 3 3

1

(6. 19)

Proof. The conditional non-centrality parameter of Q( r , N)

as given in (5. 35) is

X(Q, 6Ir) z
N lJ X.(6.-6)2

i=1



39

From (6.9), it follows that the non-centrality parameter of the uncondi-

tional limiting distribution of Q,,r,N)

0 2kJ,5 -8)
8+a I

is equal to

(6. 20)

Theorem 6. 1. Under the exponential alternatives of failure ob-

servations and exponential censoring time, the asymptotic relative

efficiency of Q(r,
N) with respect to R is 1.

This result follows from the fact that the non-centrality para-

meters of
Q( r, N)

in (6. 20) and that of R in (6. 18) are equal.

Comments on a time censored model: For uniform random

arrivals over the internal (0, T) with all units on test at time T

being censored, we have not been able to evaluate, for arbitrary T,

the A. R. E. of the Q(r,
N)

-test with respect to the likelihood ratio

test for the case of exponential failure distributions. However, for

the limiting case T 00 the A. R. E. is equal to 1 and T 0

is equal to 8/9. The A. R. E. for T 00 is well-known (e. g. , see

Puri [20]). For T 0 the Q statistic and the corresponding

c-sample statistic using Gehan's (j) statistics in place of the T(j)

statistics (see Gehan [11]), Q', can be shown to be asymtotically

equivalent. Since the A. R. E. of Q' with respect to the likelihood ratio

test is independent of c, the evaluation, by Gehan, of the A. R. E. of

Q' with respect to the likelihood ratio test for c = 2 may be used.
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VII. NUMERICAL RESULTS AND ILLUSTRATIVE EXAMPLE

In the first part of this chapter, comparisons of exact and chi-

square approximation upper-tai 1 probabilities of C:2(

made for three different censoring patterns. For each pattern, the

upper-tail probabilities corresponding to six different values of 0

are tabulated below in Tables 2, 3, and 4. 11(1, 1) denotes the chi-

square approximation probability under Ho, i. e. , 01 = 1 and

02 = 1, and P(01, 02) denotes the exact probabilities for six pairs

of values for (01' 02) with 03 = 1. P(1, 1) and P(01, 02) are

computed according to (3. 14) and (3. 15) respectively.

Due to the large number of points in the sample space of the

rank-order statistic, it was necessary to choose small sample sizes

and small numbers of failures. For sample sizes n1 = n2 = n3 = 4

and r = 3, 4, 5 in censoring patterns given in Table 1, there were

respectively 648, 1230, and 1890 points in the sample spaces of the

rank-order statistics. Consequently, the Q(r,
N)

-test has small

power. In pattern I, the largest power for test size a = 0. 10

occurs when 0 = (1, 3), which is about 0. 20. The largest powers

in patterns II and III for the corresponding test size are slightly

larger, which are about 0. 23 and 0. 25 respectively. It is interesting

to note that in all three patterns, the maximum powers occur at the

same 0 = (1, 3). Figures 1 and 2 show the relations of power and

are



size a. of the test for various values of 0.

The corresponding generalized Gehan's statistics, Q1(r, N)

(see Appendix III), are also computed and ordered. The upper-tail

probabilities of Q('r,
N)

can be obtained by cumulating the proba-

41

bilities of the corresponding rank-order statistics. Power comparisons of

Q(r,
N)

and Q'(r, N)

In pattern II, Q(r,
N)

are presented graphically in Figures 3 and 4.

and Q('r,
N)

have nearly the same power.

In pattern III, the powers of Q(r,
N)

are slightly larger than those

of Q' for the case of 0 = (2, 2) and substantially larger for(r, N)

the case of 0 = (1, 3).
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Table 1. Arbitrary censoring patterns I,, II and III..
N = 12, ni = n2 = n3 = 4

Pattern I Pattern II Pattern III
r = 3 r = 4 r = 5

i c.
1

i C.
1

i C.
1

1 1 1 1 1 1

2 3 2 0 2 0
3 5 3 2 3 1

4 5 4 0
5 5

Table 2. Exact and chi-square approximation cumulative probabilities of 9(r,
N)

for arbitrary
censoring pattern I.

Q(r,
N)

1\(1, 1) P(1, 1) P(1, 2) P(1, 3) P(2, 2) P(2, 3) P(3, 3)

8.3642 .01530 .00087 .00146 .00262 .00117 .00160 .00150

7.7208 . 02107 . 00866 .01433 .02522 .01152 .01550 .01442

7. 5362 .02305 .02424 .03898 .06670 . 03169 . 04194 . 03911

6. 7407 . 03439 . 02511 04024 . 06860 . 03280 . 04334 . 04050

6. 4409 . 03996 . 05455 . 08246 . 13248 . 06936 . 08864 . 08413

4. 2709 . 11765 . 05714 .08560 . 13646 .07237 .09208 . 08765

3. 9734 . 13807 . 05974 .08862 . 14009 .07536 .09542 .09114

3. 5353 . 17033 . 09177 . 12552 . 18414 . 11106 . 13466 . 13102

3. 3277 . 19014 . 12121 15804 . 22042 . 14318 . 16907 . 16627

3. 1640 . 20 598 . 12727 . 16 450 . 22702 19466 . 22330 . 17417

2.8526 . 24171 20519 24806 31647 .23328 . 26371 . 26366

2.6935 . 25924 . 28139 . 32736 . 39744 . 31370 . 34664 . 34938



Table 3. Exact and chi-square approximation cumulative probabilities of Q(r,
N)

and Q'
(r, N)

for arbitrary censoring pattern II.

4(r, N)
P(1, 1) P(1, 1) P(1, 2) P(1, 3) P(2, 2) P(2, 3) P(3, 3) Q' P(1, 1) P(1, 2) P(3, 3)

10. 5322 . 00519 . 00087 . 00204 .00462 . 00140 00226 . 00197 4. 3874 . 00087 . 00204 . 00197

10.3365 .00570 .00606 .01424 .03232 .00954 .01538 .01304 9.2855 .00606 .01424 .01304

7. 1583 .02788 , 00693 . 01576 . 03516 . 01076 .01710 . 01466 7. 6050 . 00693 . 01576 . 01466

6. 8561 .03288 .01039 . 03181 .04650 .01542 .02356 .02048 7. 4012 .01212 .02483 .02322

6. 6403 . 03615 . 01212 .02483 .05216 .01769 .02660 .02322 6. 5864 . 01386 .02751 .02636

6. 2871 .04328 .01472 .02887 .05866 .02126 .03137 . 02795 6. 2299 . 02082 .03809 . 02706

6.0407 . 04979 .01905 .03552 .06922 .02696 .03873 .03513 6. 1281 .02514 .04457 .04346

5. 8546 . 05340 .02424 .04351 .08211 . 03365 . 04735 .04332 5. 8225 .03726 . 06121 .06076

5. 6021 . 06081 .03463 .05865 10483 .04708 . 06419 .06010 5. 6528 .05196 .08139 .08032

5. 4409 .06588 .03810 . 06390 . 11334 05132 .06958 .06497 5. 5170 . 05892 . 09145 . 08846

5.3517 .06925 .04156 .06870 .12006 .05577 .07501 .07056 5.3642 .06066 .09411 .09106

5. 1934 . 07502 . 05628 . 08892 . 14804 . 07449 . 09771 . 09479 4. 9568 . 06324 . 09779 . 09568

4. 4833 .08291 .06494 . 10059 . 16397 .08522 11056 . 10677 4.6682 .07594 . 11550 . 11702

4. 9056 .08629 .07619 . 11562 . 18430 . 09908 . 12706 . 12342 4. 3966 . 08770 . 13266 . 13660

4. 7099 .09537 .09697 . 14317 22150 . 12403 . 15650 . 15243 4. 1929 .09814 . 14616 . 15146

4. 5919 . 10127 . 10476 . 15326 . 23464 . 13350 16756 . 16371 4. 0232 . 10852 . 15930 . 16750

4. 3933 . 11080 . 12035 . 17266 . 25858 . 15233 18914 . 18622 3. 8144 . 11284 . 16504 . 17438

4. 2572 . 11884 . 12900 . 18348 . 27220 . 16263 . 20099 19835 3. 5309 . 12586 . 18160 . 19352

4. 1669 . 12400 . 13939 . 19590 . 28669 . 17514 . 21506 . 21344 3. 2083 . 13740 . 19461 . 20926

4.0759 . 13100 . 14199 . 19890 . 2899S . 17844 . 21879 . 21777 2.8688 . 14088 . 19887 . 21396



Table 4. Exact and chi-square approximation cumulative probabilities of 9
N)

and Q' for arbitrary censoring pattern III,(r, (r, N)

9(r,
N)

13(1, 1) P(1, 1) P(1, 2) P(1, 3) P(2, 2) P(2, 3) P(3, 3) 9'(FN) P(1, 1) P(2, 2) P(1, 3)

9. 5017 . 00865 . 00087 . 00209 00480 . 00154 . 00255 . 00241 9. 3771 .00087 . 00154 . 00236

8. 7884 . 01240 . 00346 . 00808 . 01820 . 00584 . 00941 . 00866 9.0766 . 00260 . 00432 00472

8. 1350 .01725 .00952 . 02165 .04738 . 01530 . 02420 .02159 8. 3552 . 00692 . 01108 . 01148

7. 5236 .02328 .01558 .03373 . 07042 . 02447 .03765 . 03404 7. 9946 .00866 . 01376 .01870

7. 1778 .02901 .01818 .03850 . 07876 . 02845 .04324 . 03964 7.6339 .01214 .01880 .03312

6.7082 . 03508 .02684 .05380 10498 .04134 .06112 .05745 7.0328 01556 .02428 . 04476

6. 4758 . 03916 .02857 .05654 . 10 921 .04416 06495 .06191 6. 4918 02162 . 03246 . 06418

6.2853 .04505 .03463 .06680 . 12650 .05283 .07673 .07355 6.0110 .02762 .04162 .08254
5. 9684 .05079 04069 . 07542 . 13780 .06260 . 08924 . 08924 5. 7400 03368 . 05144 . 09898

5. 7698 .05558 .04848 . 08685 . 15387 .07429 . 10471 . 10620 5. 4700 , 04316 .06120 . 11864

5. 5699 .06142 .05455 09465 . 16252 .08395 11594 . 12157 5. 2446 .05078 . 07448 . 13360

5. 5039 . 06393 . 05887 . 10059 . 17019 . 09053 . 12416 . 13151 5. 0492 . 06206 .08370 . 16296

S. 2775 .07136 .06667 . 11187 . 18655 . 10164 . 13822 . 14707 4. 8689 .06890 . 09957 . 17732

5. 1626 . 07577 .07013 . 11751 . 19647 . 10602 14401 . 15220 4. 7036 .07316 . 10597 . 18518

4.7603 . 09255 .08052 . 13128 . 21391 . 12027 . 16124 . 17164 4. 5683 .08090 . 11725 19680

4. 5117 . 10435 .09437 14925 23659 . 13856 . 18283 . 19556 4. 3730 . 09206 . 13293 . 21848

4.3543 . 11304 . 11169 . 17147 .26463 . 16089 . 20907 . 22420 4. 1626 10250 . 14627 . 23426

4.2485 . 12003 . 12208 18410 .27912 . 17452 . 22470 . 24218 3. 8921 12338 . 17347 26194

4. 1482 . 12619 . 13420 . 19838 . 29461 . 19051 . 24284 . 26362 3.6670 13904 . 19463 . 28026

3.9368 . 13946 . 14805 21613 . 31734 . 20709 . 26197 .28280 3. 1257 . 15296 . 21211 . 29958



45

. 22

. 20

. 18

. 16

. 14

. 04

. 02

. 00
4 5

x

Figure 1. Upper-tailed probabilities of Q(
r , N)

for different values
of 0 (pattern II).
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Figure 2. Upper-tailed probabilities of Q(r,
N)

for different values
of 0 (pattern III).
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Test size
Figure 3. Power comparisons of Q(

r , N)
and Qtr,

N)
for 6 = (1, 2) and

(3, 3) (pattern II).
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Power comparison of (;)(r, and Q(r, N) for (2, 2) and
(1, 3) (pattern III).
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As an illustrative example, we consider data for a 4-sample

problem. For n1 = n2 = 5, n3 = 6, n4 = 9, r = 10 and N = 25,

the data is presented as follows:

x(1): 2. 4+, 3. 1, 7. 2, 7. 2+, 7. 2+

x(2): 2. 4+, 2. 7, 4. 6, 5. 7

x(3): 1.9 +, 2. 3, 2. 5+, 3.9, 7.2 +, 7. 2+

x(4): 1.7 +, 3. 2+, 3. 3+, 3. 7, 4. 8+, 7.2+, 7.2+, 7.2 +, 7. 2+,

where x(a)+ denotes the censoring time of an observation from
tha sample, and x (a) denotes the failure time of an observation

thfrom a sample. In combining these 4 samples, the values of

srank-orderare obtained in Table 5. With the computed values b.' s,

the linear rank statistics can easily be computed by formula,

r

T(a) 1 (a.) a) (a)- - b.(u.( )] ,
(r, N) N/N

i=1

and the Q(r,
N)

computed according to the formula,

N(N-1)
Q(r, N) (r-br)

i=1

(i)2 /n.(r, N)
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1
T(10,

25) Nr23

(1)t

(2)t

10

i=1

10

(1) (b.(u. +t 1)
)

(2)b.(u. (2)
)

i=1

10

(3)b.(u. (3)
)

i=1

N-1 Xc T(i)2
Q(r, N)

(1) 1 1(2-2. 42151064) (-. 42151064)T(10, 25) N r25 Nrn

T(10, 25) N

(2) 1 1
(4-1. 39616851) (2. 60383149)

IT5 Nrzs

T(3)(10, 25)
1 1

(2-2. 09435379) (- 09435379)
N/75 NI75

(4)
= -(T(1) + T(2) + T(3)T(10, 25) (10, 25) (10, 25) (10, 25))

1 (-2. 08796706)
Nr-15

Computational form of Q
( r , N)

from (4. 14) is

= (r-b (r, N)r c
i=1



51

24 2[9 (_. 42151064)2 + 2(2.60383149)
Q(10, 25) (10-. 68429638)9 5 5

+ (_.09435379)2 + (-Z.08796706)2]
6

24- 8, 38413326 r
5
9 (.17767122) +9 (6. 08796706)2]

5

+2(.00890264) + (4. 35960644)]
6

= 48. 36752635

This indicates a significance at level < . 0001.

Table 5. Rank-order and arbitrary censoring pattern. .

1

(1) (2) (3)ti (1)ui
(2)

ui
(3)ui c. E.

1
b.

1

1 0 1 0 0 0 0 0 25 . 04000000
2 0 0 0 0 0 1 1 24 .08166667
3 0 0 1 1 1 1 3 22 . 12712121
4 0 1 0 0 0 0 0 18 . 18267676
5 1 0 0 0 0 0 2 17 . 24150029
6 0 0 0 0 0 0 0 14 .31292886
7 0 0 1 0 0 0 0 13 .38985194
8 0 1 0 0 0 0 1 12 .47318527
9 0 1 0 0 0 0 0 10 .57318527

10 1 0 0 2 0 2 8 9 .68429638
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APPENDIX I

Proofs of Lemmas 5. 2. 1 and 5. 2. 2

Lemma 5. 2. 1.

BN,
j

r (j) (j)V. V.

E.
1- -

Ei
i=1

Proof.

E (Vii)) =

r

a =i

E (u(j)+(i))a o.

= E.X.

E1(V.( ) = E

1J

a=i

vX.(1-X..J )
J

(j) (i)
)2+

(j) (j) g (j)-q ua +gcea
a =i a a'=i

r

54

(A..2)

X. (c +1)+X. c (c +1)] + X. 1(c +1)(c a+1) + o(N)2 2

J a j a a. J a
aYat=i

2
= + X E. - X E. o(N)X.E.

j 1 3 1

Combining (A..2) and (A. 3), we have

E (B
N,

j) =
N

K.(1-k.)(r-b r ) +o(1)
3

Hence,

(A.-3)

(A. 4)



55

urn E (BNB =.) vX.. (1-X.). (A..5)
J JN-00

By expanding the square of B
N,

and taking expected value, we get
3

1
E [B2 .] =

2 (1-X.) 2
+ 0(1) .

N, 3
N

2

From (A. 5) and (A. 6), it follows that

Then,

Lemma 5. 2. 2.

N, 331

Var (BNB ) = o(1)

=0 as N Go

vB X..(1-X.).
N,J J J

r
V.

(j)
V.

(j1)
1 1

i =1
E.

2

Proof. Consider V.(j) )V. ,
1 1

(i)V. V.( =
1 1

r

a=i

(A. 6)

- vX.X.., (A. 7)
J J

(j)-f)) u(j1)+01)a a a a
a=i

(i)u(i ) +g(j)u(i ')+ 0 1)u(i )) +



(j) (jI)E (V. V. ) =

Hence,

r

a a Xua, +t
O. - 1r_.

a=i

c (c -1)+c +ca a. a a 3

r

+ c +1)(c ,+1)X..X..,a a 3 3

aVat=1

= X X E. - X..X.,E..
J ' 1 3 3 1

br
E .1 = Xkj i

X.X., NBN, jj N j J J

From results of Lemma 5. 2. 2, we get

=ErnE (B ) - vX.X., .
N-1 00

N,3j1 J
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(A. 8)

(A. 9)

By taking the expected value of sum squares and cross-products of

2BN,ii,,

E [B2N, jit ] =
1 r(r-1)X

?

+ o(1)
N

From the results of (A. 9) and (A. 10), we have

,lim Var 1B
2

N,
jjI] = 0.

N--"00

(A.10)



APPENDIX II

Limitation of RN in Theorem 5. 2

By using Taylor's expansion of In (1+x) to expand In L(0)

of (5. 25), we have

c-1 c-1 c -1
6 V(a)

ln L(0) = ()) In (1+6. /NM) - In +/ a 1

3 E.'N/N
j=1 a=1 a=1

c -1 2
13(j)[ i __L +
.

2N 3NNTICT

6.6

j=1

6 V(.a)
c-1 2 c-1 3

E. N/IST
1 2NE.

6 V(a)
+a i

3NN/N.E. a 1

1

3
61V(.c1))

a 1 1

1 a=1 1
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(A.11)

where - 6. < 6! < 6. for j = 1, 2, ... , c-1. Then the remainderJ J

term RN in (5. 26) is

Since

c-1
6'3

e(J) 3NNIC1

j=1

E. =

a =1

c -1 3

3NNTIST E.

[/ 6laVi(a)]
1

i= a =1

Va), then

c-1
(

b ' V.
a)

a 1

a= 1

3

3<b E.
1



where b = max (I 60, I62I, . . . , I Sc I ), it follows that

r
-.3

1 -.3 6
I R

N
I

3 NM
6 +

3 NNIN
i= 1

3

<
3

- 0(1).
NM'

(A.12)



APPENDIX III

c-Sample Generalization of Gehan's Statistics

Define

na N-na

(a)W = U..

59

(A.13)

with

(a)U.. =
13

-1

0

1

a.

(a) (a)x. < y.
1 J

x(. a)
= y(. a)

1 J

x( a) > y( a)
1 J

i =1 j=1

a) (a)'or x.( < y.
1 J

or (a)' y(.a)x.
1 3

or x(ar > ( a)
i J

or (.ar x(.a)
y3 i

(A.14)

th thwhere x( ,a) and x(.0.)' are the i failure and the i cen-
1 1

thsored observations within the a sample, and y( a) and yca)
.th .ththe j failure and the j censored observations within the

tha sample respectively.

are

Assuming no ties in observations, we may express Wa as a

linear function of (a) and u(a),

i= 1

r

i=i

a= 1, 2, , c.

c.+1)) t(a) i+ u. (A.15)
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It can be easily verified,by using the similar techniques for the case

of TO)(r, N), that

and

E
1

(W a) = 0

n (N-na fa 2 2
V (W

a N(N- 1)
) - -E.) +i c.]

1,

Coy
1

(W a' Wa' )

i=1

r

[(i-E.) 2+
i
2c.

i=1

(a # a' = 1, 2, , c).

The modified Gehan's statistic for c-sample is then defined as

I E-
1

WQ(r, N)
= W

W

N -1

[(i-E.)2+ i
2

c.

i=1

i=1

W.2

n.

(A.16)

(A.17)


