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ON THE EXTENSION OF THE GENERALIZED SAMPLING THEOREM

Chapter I

INTERPOLATORY FUNCTIONS AND SAMPLING THEOREMS

In this chapter we review the theory of interpolatory functions,

1since this is where the Shannon [34] sampling theorem had

originated. As such we intend to show that it is also here that the

Kramer [26] generalization of the above sampling theorem emerged

as a natural extension.

1. 1 The Cardinal Series

E. T. Whittaker [51] set out to find an analytic expression

for a function when the values of the function are known for equidistant

values a, a+w, a+nw, of its argument, and such that this

expression is free of periodic components with period less than 2w.

This function was called the Cardinal Function. As such he showed

that this analytic expression is not only an interpolatory expression

but a representative one as well. Hence, we may say that the sam-

pling theorem of Shannon had originated. The first thing we notice is

that Whittaker's problem is concerned with equally spaced values of

1 For the exact statements of the Shannon sampling theorem and the
Kramer generalization see Sections 2. 1 and 3. 1 respectively.



has a larger period

2

the argument so a periodic function is expected. Whittaker con-

sidered the tabulated values of the function f(t), 1. e. f(a),

f(a+w), f(a+nw), then defined the set of Cotabular Functions

as all functions F(t) = f(t) + g(t), where g(t) is analytic and

vanishes at the sampling points. He also showed that even if the

choice of f(t) is an analytic function with a finite number of singu-

larities these singularities may be removed when the function is

replaced by another function of the cotabular set. This was demon-

strated with a choice of g(t) as

(.Trt-a)r sin
(1. 1. 1)

Tr(c-a)(t-c) sin

for the case of f(t) with a simple pole at t = c. As a result one

can always find an analytic function f(t) as a member of the cotabu-

lar set.

For the problem of removing from f(t) the periodic constit-

uents of period less than 2w Whittaker resorted to Fourier analysis

and substituted for them from the cotabular components with periods
2Trgreater than 2w. For example, sinXt has a period while

X

sin[(X 4Tr)t 4Tra 3 is cotabular with sinXt at t = tin yet

21r

4TrX --
w

. By using this, and assuming the use

of the Fourier integral formulas, the final form of the cardinal



function is

co . Trsin (t -a -nw)
2: f(a+nw) W

Tr
(t -a -nw )

n= -co W

We note that this cardinal series is the one Shannon used for his

Sampling Theorem and is what is sometimes called the Whittaker

Sampling Theorem. There are two references here, to E. T.

Whittaker [51] and J. M. Whittaker [52] . This may be due to the

fact that the final statement of the above sampling theorem in terms

of band-limited signals is very close to the more refined statements

of J. M. Whittaker [53, p. 68] concerning the relation between the

cardinal series and the finite Fourier integral. In fact we can show

that E. T. Whittaker had the same statement since, when using

Fourier theorems he considered
Tr 3Tr

1
w

r°
g(t, k) = du f(u)[ S+

Tr
-co 0 7T

then replaced this by the following cotabular function which is free of

components with periods less than 2w

(1. 1. 2)

-Xk
e c OS X(t-u)dX, (L 1.3)

3



G(t,k) = 1 rdu f(u) [
TT

- 00

e-Xkcos X(t-u)dX

Tr
2Trw -k(X +

+ e w cos [X (t-u)+3-2. (a-u)] dX
Tr

It -k+-)
4Trcos[X (t-u)+w (a-u)} dX +

and we can show that this is equivalent to the Fourier theorem repre-

sentation of G(t) by a finite Fourier transform. 1.f we use (1.1. 4)

before integrating with respect to X we find

It

1urnG(t, k) = 27 Sb du f(u) sin X(t-u) cot 7r (a-u)dX , 1. 1.5)
k Tr

but the Fourier theorem gives f(t) as

A
f(t)= lim dX. e

iX(t- u)f (u) du,
ZIrA-00 -A -00

4

(1. 1.4)

(1. 1. 6)

so if we use the complex form, let b = Tr and allow the inter -

change of the order of integration we get



Hence,

G(t) = f(t) cot b(a-t) (1. 1. 8)

and is represented by a truncated Fourier transform.

It is noted here that E. T. Whittaker used the Fourier theorem

as a tool for constructing his cardinal series representation for the

function. But the present sampling theorems need only a truncated

Fourier transform representation for the function to guarantee a

cardinal series representation which is free of the fine structure.

Also, E. T. Whittaker's purpose in constructing the cardinal func-

tion was to have it analytic and represented by the following expres-

sion:

f0 rift+ +n(n-11 20f +
n(n+1)(n-1) 3

5 f + 1, 9)I 2! 3!2 2

where

oo

G(t) =Cb eiXtdX e -iXuf(u) cot b(a-u) du.
21T j-b -oo

cardinal:

5f1= f1 - f02fn = 6f - Elf -

(1. 1.7)

(1. 1. 10)

In addition, he gave an example of a cotabular function which is not

5



CO

n= -00

-c (t -a -nw )
2k

f(a+nw
TT (t -a-nw)

Trsin (t - a -nw)
, (1.1.11)

where c 0 and k and m are positive integers. For c = 0

and m = 1 this is a cardinal function.

1. 2 Suggestions for Other Series

At this point it is not surprising that we raise the question,

"Is it possible to consider some expression resembling the cardinal

expression but which will sample a function with its tabulated values

for non-equidistant values of its argument, say { t} ?it To follow

the same procedure we know that sin Xt is the simplest periodic
Trfunction with period , so for our case we avoid it and try

K(X , t), where X E [a, b] and

K(X, tn) = 0 (1.2. 1)

but K(X, t) is not necessarily periodic. For this interpolating

function we propose

Sn(t) = S(t;t ,a,b) (1. 2. 2)

6

where S(tn; tn, a, b) is unity. The explicit expression for such an

Sn(t) is given by Kramer [26] for his generalized sampling theorem



for any choice of
K(X.,tn)

as an orthogonal set on [a, b] . So we

can regard Kramer's generalization as a natural extension of

Whittaker's work and the popular sampling theorem.

1.3 The Cardinal Series and the Fourier Integral

In this section we will discuss J. M. Whittaker's [52]

important development toward what we now know as the Shannon

Sampling Theorem. In particular, his explicit theorem involves

the cardinal series and Fourier and Fourier-Stieltjes integrals.

Hence, he came the closest to the present statement of the sampling

theorem as it is given in terms of a band-limited signal (i. e. , a

truncated Fourier transform). J. M. Whitta,ker's [52,th.2] theorem is

Theorem 1.3.1. " If the series

n=1

converges, the cardinal series

oo
a a a

C(x) - sin
Trx {3.7- +

Tr
-1)n [ -12 + -1-n ] }x-n x+n

0

n=

is absolutely convergent, and its sum is of the form

(1.3.1)

(1.3. 2)

7



s[cos Trxt dF(t) + sin Trxt dG(t)] , (1. 3. 3)
0

F, G continuous functions. Given any function f(x) of the form

of (1. 3. 3) the series

co

sin Trxr f(0) r f(n) f(-n)
Tr 1 - x-n x+n

n=1

2is summable (C, 1) to f(x)" .

Previously Ferrar [16] gave the following theorem, which we

consider to be even closer to Shannon's original statement of the

sampling theorem:

oo

Theorem 1. 3. 2.
I an I P is convergent, p > 1, and

n= -00

C(x) is defined by

then

C(x) -

00
-1)n asin TrxC(x) -

TT x-n
n = -00

co

sin Tr(x-b) (-1)n C(b+n)
TT x-b-n

n= -00

(1. 3. 4)

(1. 3. 5)

(1. 3. 6)

2 By Hardy's theorem 1. 3. 4) converges if f(n) is bounded.

8



3 Note that, by Hardy's theorem, for C(x) as (C, 1) summable
to be convergent we need an! (x-n) = 0(1/n), i. e., if C(b+n) is
bounded.

9

where Ian le ip implies that the series in (1. 3. 5) and (1. 3. 6) are

311convergent . Ferrar called this the consistency of the cardinal

series. This corresponds to the representation of the sampling

theorem as compared to the interpolation only in the case of inter-

polatory theory. Again J. M. Whittaker asserted that, given a

sequence ao, a , an, of real numbers, then the series

(cardinal) of type (1. 3. 4), convergent or (C, 1) surnrnable, affords

a means of defining the trigonometric integrals associated with the

Fourier and Fourier-Stieltjes series respectively. For example,

a(x) = f(x) cos xt dt, (1. 3. 7)
-Tr

where f(x) is represented by the Fourier series and a(x) by the

cardinal series. Here, we are led to the finite Fourier integral in

(1. 3. 7). At this point we note that the above statement is another,

more precise statement of what E. T. Whittaker had started, with

almost everything centered around the cardinal series.

1. 4 The Cardinal Series and Other Finite Transforms

This section deals with a question of different nature but is



10

still aimed at tying the Kramer generalization of the sampling theorem

to a common origin with the Shannon sampling theorem and, hence, as

a natural extension of the latter. This question is, "What kind of

integral representation would a series other than the cardinal series

offer ?" It is sufficient to consider the Bessel function 3- (xt)

instead of sin xt, and we first write the Fourier-Bessel expansion

for Jrn(xt),

co

Jin ()d) = bnJm(xtn), Jrn(tn) =0, n=1,2,- (1.4.1)
n= 1

then consider f(t) with a Fourier-Bessel expansion,

co

f(x) =
an Jm (xtn) , 3m(tn) = 0, n= 1, 2, (1. 4. 2)

n= 1

where

el
a = xf(x)m(xtn)dx. (1. 4. 3)n Jo

The orthogonality property of the Bessel functions leads to

co
1 1

sxf(x)Jrn(xt)dx = an S x Jm(xt)Jm(xtn)dx. (1. 4. 4)
0 0n= I



1

If xJ (xt)J (xt )dx is taken to be the interpolating function
0 rn n

for the series (1.4.4), as is asserted by the Kramer [26] generalized
sin (x-mr)sampling theorem (as compared to for the cardinal series),

x-nTr

we obtain

a(x) = x f (x) Jm(xt)dx . (1.4.5)

That is, a(x) is represented by a finite Hankel transform. In

general, with the help of Kramer's theorem one might consider any

orthogonal expansion for f(x) with its corresponding finite trans-

form for a(x). We mention here that in moving from sin nx to

K(x,tn) we have at least gained the liberty to sample at points Itnl,

the zeros of K(x,tn) which are not necessarily equidistant. The

other point remains with the advantage of other orthogonal expansions

over the Fourier sinusoidal expansions, a matter which is closely

related to the nature and geometry of the problem, and as such it

might not be of importance to the communication engineer. J. M.

Whittaker [53, p. 71] came close to touching this question when he

considered the general partial fraction series [53, p. 64]

00

f(0)H(z) 1 +

n=1

11

f(c) f(-c)
] } , (1.4.6)H' (cn)(z -cn)

+ H' (cn)(z+cn)



where the c , ,
1

c
2

is a strictly increasing sequence of positive

co

1numbers suchthat2c - converges and
n

n=1

H( ) =
oc 2

z TT 0 _ ) .

c2n=1
n

Provided the series in (1. 4.6) is convergent the divided difference

series

2f(0)+ zf(0, cd+ z(z-c)f(O,ci, -c 1)+ z(z2-c)f(O,ci, -ci, c2)

22+ z(z -c1)(z-c2)f(0,c1,-c1,c2,-c2)+

(1.4. 7)

(1. 4. 8)

converges to the same sum. In addition, he noted that Theorem

(1.3. 1) does not apply to (1.4. 7) in general, but to the special case

14(z) = sin Trz and cn = mr, z = cx, as the cardinal series is in

terms of {sin mrx }, an orthogonal set of functions relative to its

zeros in [0,1] . At this point he hinted [53, p. 71] that a theorem

similar to (1. 3. 1) holds if cn tn, the zeros of J (z) and
0

H( z) zJ0 (z). So, H(xcn) is the orthogonal set relative to its

zeros with a weight function p(x) = . It is no surprise to find

the Bessel functions among the first examples of the Kramer general-

ized sampling theorem, where we accept the theorem as the natural



13

extension of the work of Ferrar and both Whittakers, and away from

their cardinal series.
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CHAPTER II

REVIEW OF THE SAMPLING THEOREM AND ITS APPLICATIONS

The sampling theorem that is about to be discussed in detail

was introduced by Shannon [34] to information theory. As we have

seen in Chapter I this theorem was originated by both Whittakers

[ 51, 52, 53] and Ferrar [16], even though some attribute it to

Cauchy (see Section 2. 6). In the Russian literature this theorem

was introduced to communication theory by Kotelhikov [24] , and

took its name from him as opposed to Shannon's, Whittakers' or

popular sampling theorems in the English literature. In what follows

we will use either one of the above references or, in brief, we will

use WKS sampling theorem after both Whittakers, Koternikov

and Shannon. We will do this with every sampling theorem that

involves a band-limited signal, i.e. , represented by a finite Fourier

transform. WKSK may stand for Kramer's [26] generalization

of the sampling theorem which involves a much more general kernel

than the earlier Fourier kernel.

2. 1 The Original Shannon Sampling Theorem

Shannon's original statement [34] of the WKS sampling theorem

is the following:



Theorem 2. 1. 1. "If a function f(t) contains no frequencies

higher than W cps it is completely determined by giving its

ordinates at a series of points spaced
2W seconds apart" .
1

Proof: Let

oo 277W
f(t) = sP(o.))eILAdo.) 1:27.vyMe

1 1

Tr - CO

icon2irW
1 C F(u)) 2W do.)

f(2.11-/1V1 - 27r

oo

n sin Tr(2Wt-n)f(t) =
f(2W) (2Wt-n)

n=-00

15

(2. 1. 1)

since F(o)), the spectrum of f(t), is assumed to be zero outside

the band. When the Fourier series expansion of F(co) is written

with the fundamental period, -W < < W, we recognize

(2. 1. 2)

as the sampled values of f(t) and the nth Fourier coefficient, and

so they determine F(w) when F(co) is zero for I cd > 2Tr.W. By

the uniqueness property of the Fourier transform f(t) is deter-

mined. Shannon then constructed f(t) as

(2. 1. 3)

We note that the outline of this proof and the method of constructing

f(t) as in (2. 1.3) is parallel to the work of J. M. Whittaker [52] .



In fact, Shannon introduced the physics of time and frequency to the

second part of Theorem 1.3.1, where (2. 1. 3) is Whittaker's cardinal

series. This celebrated theorem, with some variations from the

above-mentioned Shannon statement, is discussed in a number of

texts [ 2* 30, 33, 55] in the field of communications with some de-

tailed illustrations. The variations in the proofs center around

different methods of manipulation in Fourier analysis.

2. 2 Physical Interpretation

Reza [33, p. 305] gave the following physical interpretation

to Shannon's (WKS) sampling theorem. Suppose that f(t) repre-

sents a continuous band-limited voltage signal. Then f(t) can be

quantized at times sin Wtn 0, 1-- 1, 2, and
Trt

16

is known to be the impulse response of an ideal low-pass filter with

frequency cut-off at W. Then f(t) of (2. 1.3) will be the output

of such a filter with input taken to be the pulse train defined by

f(). As we will see in Section 2.8 Papoulis [31] later extended
2W

the WKS sampling theorem in such a way that he obtained a physical

interpretation with more relaxed conditions on the filter and with a

recognizable pulse as input rather than the inattainable impulse. The

price of this relaxation is paid in terms of a higher sampling rate.

2. 3 Sampling Theorem and Interpolation

Jagerman and Fogel [19] considered the WKS sampling
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theorem as an interpolation formula, then stated and proved a num-

ber of interesting extensions. They first considered the Lagrange

interpolation polynomial

P(z) = sin

f(t)
Pn(t) gn g (t)=O.(t) (t-t.)gl (t.)'n 3

J 3j=0

They extended the real variable t to a complex variable z.

Note that (2. 3. 1) is the partial fraction expansion of J. M.

Pn (z)Whittaker's equation (1.4. 6). Here g (z) is analytic except at
n

the zeros of gn(z), the sampling points, and P(z) is entire.

This was generalized to include an infinite number of sampling
irzpoints. The choice for g(z) was obviously g(z) = sin IT

00

TTZ - 1 )3f ( jh )

z -jh
3=-(x)

(2. 3. 1)

so

(2. 3. 2)

is the entire cardinal series. The sample points are uniformly

spaced on the complex plane. We remark here that a more general

choice for g(z) would be a function such as Jn(z), where the

sample point distribution would be asymptotically uniform. For

their choice of g(z) they stated and proved the following versions

and extensions of the WKS sampling theorem, using the method

of contour integration.
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Theorem 2. 3. 1. "If the entire function f(z) is such that there

exists a K such that

-ThT7Th I

A(y) < r
IY I

as lyl 00, and where

A(y) = Max lf(z e
-00 <x <00

then

f(z) =

00

f(jh)

Tr
sin IT (z -jh)

Tr (z-jh)

(2. 3. 3)

(2. 3. 4)

(2. 3. 5)

in which the cardinal series is uniformly convergent in any finite

domain for the z plane and h = lh le

We remark that the uniform convergence of the series above

is not obvious. We observe that (2. 3. 3) and (2. 3. 4) express the

fact that f(z) = o(eAlzI), a condition which is used for the Paley

and Wiener theorem [ 29, p. 13] concerning finite Fourier trans-

forms. This we will quote and use to prove Corollary 2 of Theorem

4. 2. 1. Also, the following theorems were stated and proved, which

will bring WKS sampling theorem very close to Whittaker's theo-

rem 1. 3. 1. First they introduced the definition:



f(z)

1
f(z) =

and g()g(w) is the Fourier spectrum of f(z). Clearly, a band-

limited function is entire"

Theorem 2, 3.3. "A band-limited function f(z) with maximum

frequency (angular) W is represented by

00

f(z) = f(jh)

2TrW
iwz

e dg(w) .

2TrW .

iwz
e g(w)

-2TrW

Tr
sin /71.- (z-jh)

-rr (z-jh)

19

Definition 2. 3. I. "A function f(z) is said to be band-limited

if there exists a constant W > 0 and a function g( c) of bounded

variation over the interval (-2TrW, 2TrW) so that

(2.3. 6)

(2. 3. 7)

(2. 3. 8)

The g( is the Fourier-Stieltjes spectrum of f(z). In case g(w)

is absolutely continuous over (-2TrW, 2TrW)

provided that the sampling interval h satisfies Ih I <
2W

Corollary 1. "If zf(z) is band-limited and lim z f(z) = 0 then
z

f(z) is represented by (2. 3. 8), provided that th I -- 2W
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Corollary 2. " If f(z) is band-limited with maximum frequency

W and Fourier spectrum of bounded variation over the interval

(-211°W, 2TrW), then f(z) is representable by the infinite series
I(2. 3. 8), provided that lh < -27-w It

.

Also, Theorem 2. 3.3 and its corollaries were proved for the

case of Theorem 2.4. 2 of the next section, where the samples are

f(jh) and f' (jh).

2.4 Sam lin with the Values of the Function and Its Derivatives

When Shannon introduced the sampling theorem he also re-

marked that the value of f(t) can be reconstructed from the

knowledge of the function and its derivative at every other sample

point, then extended his remarks to the higher derivatives. Fogel

[ 17] considered this question without reference to the above remark,

stated and proved the following theorem.

Theorem 2.4. 1. " If a function f(t) contains no frequency higher

than W (cps) it is determined by giving M function derivative

values at each of a series of points extending throughout the time

domain, sampling interval T - being the time interval be-

tween instantaneous observations" .

Later Jagerrnan and Fogel [19] were able to incorporate the



21

above theorem with Theorem 2. 3. 1 when they realized that all that

was needed in the case of f(jh) and f' (jh) samples is to have

double zeros for g(z). Their choice was

give

Theorem 2. 4. 2. " If f(z), the entire function, satisfies the

conditions in Theorem 2. 3. I thenco2
sin Th-1-(z-jh)

f(z) = [f(jh)+ (z-jh)f Oh)] [ ]

- (z-jh)

g(
. 2 Tr) = sin z, to

(2. 4. 1)

in which the series is uniformly convergent in any closed domain

of the z-plane, h = lh I ei4" .

Theorem 2.4. 3. "A band-limited function f(z) with maximum

frequency W is representable by Equation (2.4. 1) provided that

hJ < 1/W" . Corollaries of this theorem follow in exactly the same

way as those of Theorem 2. 3. 3.

The importance of the last theorem lies in its application.

For example, within an aircraft estimated velocity as well as

position is used to determine a continuous course plot of the path

with half the sampling rate.

As a generalization to the above results and as an explicit

answer to Shannon's remark concerning the reconstruction of a

function f(t) when the value of the function and its first R



derivatives are given at equi-distant sampling points (R+1)/ 2W

seconds apart, Linden and Abramson [27] gave this result:

Theorem 2. 4. 3. " Let f(t) be a continuous function with Fourier

transform F'(w) such that F(w) = 0 for > 27rW. Then

op
.64_RI to(t-kh)2I[f(kh)+(t-k.h)f'(kh)+

2
f" (kh) + + (t-1"/ f``(kh)] (2.4.2)

!

k=-00
R+ 1sin Tr (t-kh)

iT (t-kh)

R+1is equal to f(t) where h 11.
2W

In addition, they showed that for large R this R -derivative

expansion approaches the Taylor series weighted by a Gaussian

density function centered about each sample point.

We remark that the last result is in agreement with the physi-
sin axcal interpretation since, for R = 0, is the impulse re-x

sin ax )2(sponse to an ideal low-pass filter and, for R 1, is

22

the impulse response of a filter with idealized triangular form.
R+1

Then lim (sin ax) would be the impulse response of a filter
Roo

whose function approaches the Gaussian density as R 00

and the impulse response itself is of the Gaussian form.
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Kahn and Liu [22] treated the problem of the representation

and construction of signals, not from one set of data If(11-11:a )1 but

from several sets of sampled values obtained by using a multiple

channel sampling scheme. They showed that with the optimum

combination of pre-filters and post-filters, in the case where two

sets of sample values are taken, the frequency range of the input

signal is limited by the pre-filters to a total width of 4a. This

is in the stead of the usual total width of 2a when a single channel

is used, which makes it stand as a natural extension of the latter

case.

2.5 Sampling at the Zeros of the Function

Bond and Cahn [6] considered extending the WKS sampling

theorem for the case when tn } , the sampling points, are not

independent of the sampled signal f(t). Their justification was

that such a procedure had proved valuable in minimizing the error

caused by infinite clipping, which means that one can transmit a

continuous signal over a discrete channel if the zero crossings of

f(t) are preserved. For f(t) a band-limited function on (0,W)

they extended t to a complex variable z and used the

Titchmarsh [44] result that

F (z e2Trifzva) (2. 5. 1)
-W



oo

f(z) = f(0) I I (1
n=1
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is a real, entire function, described by the location of its zeros

which are either real or occur as complex conjugate pairs. In

general, the zeros tend to cluster near the real axis. Furthermore,

the aggregate of the zeros occur at the Nyquist rate. Thus,

(2. 5. 2)

iOn2WRwhere f(0) 4 0, zn Rne Rn < Rn+1 and lim n - 1.
n 00

Note that the formula of (2. 5. 2) needs all the past and future zeros,

both real and complex, which makes it not practicable. Instead,

they suggested another, more practicable problem with specified

interval TT
2 and zeros inside this interval occurring at

slightly less than the Nyquist rate, zeros outside real and occurring

at the Nyquist rate. Let N be the largest integer not exceeding

WT then there are a maximum of 2N real or complex zeros,

z = t +iu , It1 < T/2. Outside this interval the zeros occur at
n n n n

tn = 2W
n for n = N+1, N+2, ° - Using this in (2.5. 2) and'

referring to the infinite product representation of the sine function

they obtained

n sin (2TrWt - mr)f(t) = (-1)A
n 27rWt n-rr

n=-N

(2.5. 3)

where An is expressed in terms of the values of the zeros inside
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the interval. So, it appears that a band-limited function f(t) can

be represented by a finite sum when the amplitude
An at these

sampling points {*,v } is determined in terms of the finite number

of the real and complex zeros for Itn < .

2. 6 Sampling with Non-uniformly Spaced Sampling Points

For the case of a band-limited function f(t) with all the

sample points outside the interval (-T, T) being exactly zero,

Shannon [34] remarked, as did others before him, that only then

can f(t) be specified by 2WT sample points. He also re-

marked that these 2WT sample points need not be equally spaced,

an idea that cannot be covered by his version of the WKS sampling

theorem and its cardinal series. We review here some of the work

which was done in this direction. The first is a statement which

was attributed to Cauchy by Black [5, p. 41]

If a signal is a magnitude-time function, and if time
divided into equal intervals such that each subdivision
comprises an interval T seconds long, where T
is less than half the period of the highest significant
frequency component of the signal, and if one instan-
taneous sample is taken from each sub-interval in any
manner, then a knowledge of the instantaneous magnitude
of each sample plus a knowledge of the instant within
each sub-interval at which the sample is taken, contains
all the information of the original signal.

Yen [56] considered the case where a finite number of



uniform sample points migrate in a uniform distribution to new

distinct positions. He proved that the band-limited signal f(t)

remains uniquely defined, then reconstructed f(t). When the

number of migrated points increases without limit he called it a

gap and proved a similar theorem. Yen also considered the case

of a "recurrent, non-uniform sampling". That is, when the sam-

pling points are divided into groups of N points each, and the

groups have a recurrent period of NI 2W seconds. Here W is

the maximum frequency of the band-limited function f(t). He

determined f(t) uniquely and reconstructed it in terms of its
mNvalues at t = t + p = 1,2, ° ,N and m = -1, 0,1,

p 2W

We note that Yen's first result answered the remark of Shannon in

that the 2WT sample points, necessary for constructing the

time-limited, band-limited signal f(t), need not be equally spaced.

In addition, Yen proved the "minimum energy signal" theorem

for constructing the above f(t) without specifying the time interval

explicitly.

Theorem 2. 6.1. "If the sample values at a finite set of arbitrarily

distributed sample points t = t, p = 1, 2, N, are given, then

a signal f(t) with no frequency components above W (cps) is

defined uniquely under the condition that the energy of the signal,
Q.

tc 2
f (t)dt,

-co
is a minimum" .
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2.7 Application of the Sampling Theorem for Signal of a Continuous
Time Parameter

Another extension of the WKS sampling theorem was con-

sidered by Balakrishnan [3] where he proved that the WKS sam-

pling theorem can be used to represent a process of a continuous

time parameter. One of the theorems in this direction is

Theorem 2.7. 1. "Let x(t), 73 < t < 00, be a real or complex

valued stochastic process, stationary in the "wide sense" (or

second order stationary), possessing a spectral density which

vanishes outside the interval [ -2TrW, 2TrW] . Then x(t) has the

representation

00

n sin Tr(2Wt-n)x(t) = 1. i. m. x( )
2W Tr(2Wt-n)

n=-00
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(2.7.1)

for every t, where 1. i. m. stands for limit in the mean

square" . The proof consists of using the WKS sampling theorem

for the covariance function of the process, since it is assumed to have

a truncated Fourier transform. Then 'Mt), the optimal estimate

of x(t), was constructed by using the cardinal series to show that

the mean square error is zero.

In a more recent paper Balakrishnan [4] considered the

question, "that a stationary stochastic process that is band-limited



Smf(co) Sm(w)K(w) -

k(t) = 1

S (co)
Sm(co)+ Sn(co)

Since S (co) is band-limited it is obvious that K(c).)) is band-

limited. Let K(w) = 0,o..)'(1) <Z, > w, then

iwt
e K(c)dc,

the impulse response of the optimum filter. Now the ouptut of the
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is not physically realizable" . As a solution he chose to speak of

"essentially band-limited stochastic processes" , a notion that

Slepian and Pollak [36] had given for the deterministic signals by

allowing time-limited and band-limited signals at the same time

and in apparent violation of the uncertainty principle.

Let us consider now the case of no cross-correlation between

m(t), the signal, and n(t), the noise, [48, P. 14] ; then

Smf(co) = Sin(w) and Sf(w) = S
(c4)+Sn(w),

where
Sf(w)

is the

spectral density of f(t). For an optimum filter the transfer

function [48, p. 14]

oo

K()) = e-iw-rk(T)dT (2, 7. 2)

(where k(t) is the impulse response of the filter), must satisfy

(2.7. 3)

(2. 7. 4)



optimum filter is

and

x(t)=
oo 2

1 S
eicotK(G))F (co) = eioAK()F (co)olco. (2. 7. 7)

2IT
-co

w2

Thus x(t) can be sampled using the WKS sampling theorem.

So, we have proved the following:

Corollary 1. The output of any optimum time-invariant filter,

with input a stationary stochastic process with band-limited spectral

density, is band-limited and is samplable by the WKS sampling

theorem.

2.8 Error Analysis for Sampling Theory and Other Extensions

The most recent extension of the WKS sampling theorem is

due to Papoulis [31] . The first attempt is to move away from the

ideal low-pass filter which is associated with physical interpretation

29

co

x(t) = k(T)f(t-T)dT (2.7.5)
-oo

But k(t) f(t) -.---F(o)), where implies Fourier

transform mates. Then

oo

k(T)f(t-T)dT**-K(w)F(c.o), (2.7. 6)
-oo
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of the sampling series. As we mentioned earlier the price of this

freedom is paid in terms of a higher sampling rate. Papoulis con-

sidered a band-limited function f(t) but he constructed it in a

more general way as

f(t) =

x(t) =

00

n=-00

Trwhere w2 col, col < wo 2w2 - col. The proof is con-

sidered to be a particularly elegant version of the proof of the

popular sampling theorem [31] and [30, p. 50] . It is clear now

that the sampling rate for (2. 8. 1) is higher than that of the usual

cardinal series (which corresponds to the special case col = coo= w2).

Papoulis tried to prove the following converse of the above

theorem:

Theorem 2.8. 1. "Given an arbitrary sequence of numbers {an},

if we form the sum

n=-00

then x(t) is band-limited by coo" . We note that Papoulis' proof of

sin
0.)0

(t-nT)
f(nT)

co2(t-nT)
(2. 8.1)

(2. 8. 2)

this theorem needs a condition on Ian } so his term by term integration

00
sin coo(t-nT)

an w2(t-nT)



is valid. A sufficient condition is that

00

We will

n=-00
prove this theorem in Chapter IV as Lemma 2 for a different

purpose and by a different method.

The result (2. 8. 1) made it possible to interpret the sampling

result
oo

f(t) =T f(nT)k(t-nT), (2. 8. 3)

n=-00

where k(t) is the Fourier transform of

K(co) =

rate since

arbitrary elsewhere.

co Es > o. So, in this way, the sharp cut-off is
2 T
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1,
-w1

w
col

{ 0,
2nco2 - w1< co< 2nco2+ wl' n 0, (2. 8.4)

This K(w) is a more general system function of a filter than the

one for the ideal low-pass filter, although it requires higher sampling

avoided although the vanishing condition is not allowed exactly for

the case of K(w) E and with impulse response as a causal func-

tion. A causal function is defined to be zero for negative values of

the argument. This is due to the Paley-Wiener condition [30, p. 215].

As a result there will be an error due to the impossibility of elimi-

nating the higher frequencies of F*(co) , the periodic extension of
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0.
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F(w). ''This error can be minimized when the part of K(w)F*(w)

which does not vanish in the second range of (2. 8. 4) can be neglected

as
w2 becomes large compared to

w1. This means a higher

sampling rate.

To solve this problem and to use more realistic impulses

Papoulis considered two filters. The first is chosen with impulse

response ho(t) so that its output for the input pulses f(nT)

becomes

oo

f0 (t) = f(nT)h0 (t-nT). (2. 8. 5)

n=-00

This
f0 (t) will serve as an input to a second filter with a system

function Hl(w) such that

H
1

(w)H
0

(w) = (2. 8. 6)

where H0 (w) is the system function of the first filter and F(w)

is the spectrum of f(t) with a cut-off at Hence f(t), the

output of the two filters in cascade, is a band-limited function with

a sampling function that can be interpreted in terms of more real-

istic pulses as input and in terms of filters with more realistic

impulse response.

Papoulis also gave the sampling series of the function f2(t)
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F(o)). This error can be minimized when the part of K(OF*(w)

which does not vanish in the second range of (2. 8. 4) can be neglected

as (4)2 becomes large compared to cJi. This means a higher

sampling rate.

To solve this problem and to use more realistic impulses

Papoulis considered two filters. The first is chosen with impulse

response h0(t) so that its output for the input pulses f(nT)

becomes

co

f0 (t) - f(nT)h0 (t-nT). (2. 8. 5)

n=-00

This
f0 (t) will serve as an input to a second filter with a system

function HI (w) such that

H1(G))H0(w) = (2. 8. 6)

where H0() is the system function of the first filter and F(w)

is the spectrum of f(t) with a cut-off at
col.

Hence f(t), the

output of the two filters in cascade, is a band-limited function with

a sampling function that can be interpreted in terms of more real-

istic pulses as input and in terms of filters with more realistic

impulse response.

Papoulis also gave the sampling series of the function f2(t)



f2(t)

oo

n=-00

rrwhere co ----- and (..) > 2co (instead of
0)2 col

in the case
2 T 2

for f(t)) and coo is such that 2o 2w2 - 2.

In his study of the error analysis for the sampling theorem

Papoulis applied this theorem to the round-off error

E n f(nT) -r(n.T), (2. 8. 8)

where f (nT) is the recorded or tabulated sampled values which

differ from the exact sampled values byE . Using the cardinaln

series with sampled values f (nT) he constructed the function

fr(t), which differs from f(t) by the total round-off error

e(t). Combined with the above results in (2. 8. 7) he showed that

this error er(t) is bounded by its own total energy E. That is,

sin coo(t-nT)
(nT) (2. 8. 7)

w2(t-nT)

1

CO le
(t)1 < )-
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(2. 8. 9)

He then treated the truncation error eN(t) that results when (t)

is constructed as a finite sum. This immediately reduced to a

truncated Fourier series for F(o.)), its Fourier transform. A

bound on eN(t) was given and was attributed to Jagerrnan.

Another important error that Papoulis considered is the



"Aliasing Error" ,

which results from constructing fa(t) as

co

fa (t) = f(nT)

n=-00

co

sin co2(t-nT)
cop -nT)

where
0,.)2

T < and o..) is the band limit of f(t). He gave
1 1

a bound on this error in terms of the area B of its spectrum as

Bea(t) j sin
cc2t

I .

Papoulis also considered the jitter problem, which arises

when the sample values are not exactly at the sampling points nT

but are at some other instants nT - un, where {un} is the set

of deviations of the sampling points from nT. He considered

sin
on)2(1-

-nT)0(T) =u
c.42(T-nT)

n=-00

to be band-limited, using Theorem 2.8.1. We again remark that
00

this theorem is correct for lunj < oo, a condition which is not
n=-00

obviously satisfied by the set of numbers in the above application.
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(2. 8.11)

(2.8. 12)

(2.8. 13)

ea fa(t ) - f (t- ) (2. 8. 10)



Assume that this condition is satisfied and that 0(T) is small.

He used the transformation

t = T - 0(T), T v(t), (2.8.14)

to show that f(t) can still be sampled in terms of f(nT-u) as

00

f(t) = f(nT -
un) c.J2k(t) nT]

sin w2{ y(t) nT]
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(2.8.15)

provided that 0(T) is such that

f[T-0(T)] f(T)- 0(T)f' (T). (2.8.16)

Note that the above Taylor series expansion, if adequate, results in

a band-limited function with cut-off at w1+ w2' where
w2

and

w1
are the band limits for F(w) and 9 (w) respectively. So,

unless 0(T) is very small,the (2.8.15) series will suffer from the

aliasing error.

We remark that if a second derivative is needed in the above

Taylor expansion then the sampled function is band-limited with cut-

off at wi + 20)2, which will increase the above error.

From the above discussion one may conclude that it is not clear

that the jitter problem is solved. At this point we may propose a

safe but less general treatment of the problem. This will consist of
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a restriction that the set {un} be restricted to a finite number,

say M, of non-zero sampling points.

2. 9 Sampling Theorem in n-Dimensional Space

The sampling theorem was extended to include sampling for

variables. The following is the statement given in [33, p. 453]

and its proof follows the same method used for the one-dimensional

WKS sampling theorem given by Parzen [32] .

Theorem 2. 9.1. It Let f(t1't2' ,tn) be a function of n real

variables, whose n-dimensional Fourier integral exists and is

identically zero outside an n-dimensional rectangle and is sym-

metrical about the origin; that is,

g(Y1,Y2'...'Yn = 0, k = 1, 2, ,n. (2. 9.1)

Then
00 00

f(ti,t , ,t
= -00

1

1 nf(
nm

sin(wi t1-miTr)

w1t1- m171"

sin(wt-mnn n
IT)

wntn-mn 7r

2.10 Other Extensions of the WKS Sampling Theorem

(2. 9. 2)

One important extension of the sampling theorem was due to
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Kohlenberg [23], and that is to consider the function f(t) as band-

limited in (wo,wo+w) instead of the usual interval (0,w). He

proved that in this case f(t) is completely determined by its values

at a properly chosen set of points.

As an application to the WKS sampling theorem we intro-

duce the following example which leads to interesting results. From

Titchmarsh [45, p. 186] we have

r(a-1)
a-2 a+x a-x

2 r(-)r(-)
2 2

1

r(142-2E) r(-a-tx )

00

1

r(i)

Tr

2

(cos t)a-Zeixtdt, a > I . (2. 10. 1)

We recognize that this is a finite Fourier transform and so by the use

of the sampling theorem we can immediately write down the infinite

series representation of the left hand quantity:

r( a+2n
-2n))r(a (7-x - mr)

n-=-00 2

Tr
s in( 2x-nTr)

,(2.10. 2)

a result which is apparently not in the literature. Setting a = 2 in

(2. 10.1) leads to the well-known special case

Tr

1
sin x

(2. 10.3)

This method may be extended to many other functions with finite
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Fourier transform representation. Finite Fourier transform tables

are found in many places [10, 14, 15] .



CHAPTER III

THE GENERALIZED SAMPLING THEOREM

3. 1 Kramer's Generalization of the Sampling Theorem

Kramer's generalized (WKSK) sampling theorem [ 26] was

originally stated as the following lemma, and we will give his proof

with the necessary details.

Lemma " Let I be an interval and
L2(I) the class of functions

4)(x) for which I (P)(x)1
2 dx < oo. Suppose that for each real t

f(t) SK(t, x)g(x)dx, (3.1. 1)

where g(x) E L2(I). Suppose that for each real t, K(t, x)E L2(I),

and that there exists a countable set E = {tn } such that {K(tn, x) }

is a complete orthogonal set on L2(I). Then

f(t) = lim f(tn)Sn(t), (3. 1. 2)
N

In1<_N
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where



Proof. Let

f(tn)Sn(t)

InIN

from (3. 1. 1)

f(t ) = SK(t , x)g(x)dx
n I n

and from 3. 1. 1) and (3. 1.4) we get

f(t) - fN(t) = K(t, x)g(x)dx -
I

Using (3. 1.5) this becomes

4

x)K(tn, x)dx

Sn(t) - (3. 1.3)

$ K(tn, x) I 2dx

4 This is Kramer's original form but later we will introduce a
weighting function p(x) to the integral, as was suggested by
Campbell [7] .
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(3. 1. 6)

(3. 1.4)

(3. 1.5)

f(tn)Sn(t).
InI<N



Hence

= SK(t, x)g(x)dx - K(tn, x)Sn(t)] g(x)dx
I ni<N

[ [K(t, x) - Vz K(tn, x)Sn(t)j g(x)dx .

inl<N

The triangular and the Schwarz inequalities lead to

lf(t) - fN(t) I x) - K(t , x)S (0 2] dx I g(x)
2dx. (3.1.8)

I Ini<Nn

Since {K(tn, x)} is a complete orthogonal set

K(t, x) = 1.1. m. c K(t , x), (3. 1. 9)n nN001 nI <N

where

, x)dxSK(t , x)K
(tn

S(t).
Cn

=

S1K(tnx)12dx

(3.1.7)

(3.1.10)
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f(t) fN(t) = SK(t, x)g(x)dx K(tn, x)g(x)dx] Sn(t)



and, from (3.1.8) and (3.1.11) we get

lim f(t) - (t) = 0, (3.1.12)
N

which means

f(t) urn f(t)S(t). (3.1.13)
N co <N

3.2 Illustration for the Generalized Sampling Theorem

Kramer showed that the conditions for his lemma of Section

3.1 on the kernel K(x, t) in (3.1.1) is exhibited by the solutions
5of nth order, self-adjoint 6differential equations. His theorem

now goes as

S I K(t, x) K(tn' x)Sn(t)12dx=0N-.."° I InI<N

5 This theorem was arrived at independently by P. Weiss [50]
for the case n = 2.

6 An excellent treatment of this subject is given in Coddington and
Levenson [8, p. 188 and p. 284] , and its application to a fourth
order differential equation [40] is here given in Appendix A. 1.
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(3.1.11)



Theorem 3. 2. 1. " Let

Lu = tu, B (u) = B(u) - - Bn(u) = 0 (3. 2. 1)
1 2

be a self -adjoint boundary value problem for an nth order differen-

tial operator L on the finite interval (a, b). Suppose that there

exists a solution u(t, x) of the differential equation Lu = tu such

that the set of zeros E. of Bi[u(t,x)] is independent of i,

then u.(t, x) meets the condition in the lemma on K(t, x)" .

Kramer gave the following two examples as illustration to his

theorem. The first will show that the WKS sampling theorem is a

special case of the WKSK (generalized) sampling theorem. We

mention here for future reference that Campbell [7] also illustrated

this WKSK sampling theorem, in addition to raising the question

of possibly no advantage of the generalized theorem over the popular

the

Example 1. Let
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i du (3. 2. 2)
u 21T dx B (u) u(a) - u(b) = 0.

The solution of Lu = tu is at once

u(t, x) = C exp (27ritx). (3. 2. 3)



The boundary conditions require that

2Trinx
=

nu(t, x) = C exp ( ), t (3. 2. 4)n b-a n b-a

If we use this result in (3. 1.3) we get

exp [ 27rib(t- )] -exp [ 2Tria(t- bna)]
Sn(t) -

27ri(b-a)(t- -n )b-a

Replace a by -a, set b = a, final form is

sin 2ira (t - )
2aS (t) -n 2ira (t -

2a

so (3. 1. 2) may be written as

00

f(t) =

n=-00

sin arra(t )2a
2a 2ra(t )

2a

This is the form of the usual sampling series of the band-limited

function of Shannon.

Example 2, Bessel functions. Let

2u
2nd -1Lu= - +
2

- tu,
B1

(u) = u(t, 0) = 0, B2 (u) =u(t, 1) = 0. (3.2.8)
dx2 x
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. (3. 2. 5)

(3. 2. 6)

(3. 2. 7)



For u = ,Nrxv this reduces to the familiar form of the Bessel

differential equation in v,

2d v dv 22x
--2-2

+ x + (tx-n)v = 0,
dx

so the solution which is finite at the origin is v(x, t) = Jn(xt) and

u(x,t) 'Tx J (x'sft) (3. 2. 10)

Clearly the first boundary condition is satisfied for n > 0, the

second yields a set of numbers,

then

where

Jne\rtk) = 0' k = 1,2,-

According to Kramer's theorem if

1

f(t) St\rx J (xNit)g(x)dx
0 n

f(t) =

on

k=1
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(3. 2. 9)

(3. 2. 11)

(3.2. 12)

(3. 2. 13)



r 1

ix j (x)jn(xNlik)dx0 n 2'\ik Lin(Nrt)
Sk(t) -

S1 2dx (t-tk)Jn+1(ik)x[3. (xNrt )]
0 n k

(see Appendix A. 2).

Campbell [7] illustrated the WKSK sampling theorem for

the case of the kernel K(t, x) taking on a form of the Legendre

function Pt (x)

Example 3, Legendre functions. Consider the Legendre differential

equation,

the solution is taken to be P 1(x), which is finite at the endpoints.

If

then

where

[ (1-x2 du 2
3-cd ]+ - )u 0,dx

1

f(t) = PL (x)g(x)dx
-1 L-2
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(3. 2. 14)

(3. 2. 15)

(3. 2. 16)

00

f(t) = f(tn)Sn(t), (3.2.17)
n=0



Sn(t)-

e 1

Pt --I(x)Pn(x)dx
- 1 2

1

Si
P(x) J 2dx

-1

Using [11, p. 170, Eq. 3.12(17)] we get

2n+1 sin(t-n4)S (t) = -
n Tr (t-n-1- (t+n+1-)

3.3 Comparison of the Generalized and the Popular Sampling
Theorems

Campbell [7] illustrated the WKSK sampling theorem in a

different manner. He considered as kernels of the generalized

sampling theorem the solution of a regular first order differential

equation, the solution of a regular second order differential equation

with separated boundary conditions, and the solutions of the singular

Bessel and Legendre equations. For all these cases he showed that

if a function with such a kernel can be expanded by the use of the

WKSK sam.plg theorem then it can also be expanded by the use of the

WKS sampling theorem. In addition, he mentioned that the asymp-

totic spacing for the WKSK sampling theorem is the same as that

for the WKS sampling theorem. He then gave some suggestions

concerning the solution of the nth order self -adjoint boundary value

problems. In sum, for the above mentioned functions he concluded
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(3. 2. 18)

(3.2.19)
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that the WKSK sampling theorem has no advantage over the popu-

lar WKS theorem. The following is a summary of his results

with some details.

1. First Order Equations. Consider the self-adjoint boundary value

problem,

duip(x)+ [q(x)+ pt(x)+\p (dx 2

then

becomes

sin C2 (X -Xn)C(X.)S(X) -
C

(Xn)
cl (X -Xn)

Sn(X ) =

)1 u

C(X) lEx + )J .,x )
Nrp

u(x, X ) u x, )p(x)dx
a

I u(x, Xn) Zp(x)dx
a

Nip (a)u( a ) ei`Nrp(b) u(b),

(3. 3. 1)

where p(x), p' (x), q(x) and p(x) are real-valued, continuous func-

tions on the closed interval [a,b] . Then, by a change of variables,

x = y(g ), C2 = S2 (a, b), and v(x) Nrp(x) ( ), and Campbell showed

that the solution may be represented as

(3. 3. 2)

(3. 3. 3)

(3. 3. 4)



which is the cardinal function of the Whittaker sampling theorem

(aside from CP") ) which may be obtained when the exp(iX
C

(Xn)
part of (3.3. 2) is considered to be the kernel associated with the

popular sampling theorem.

2. Second Order Equations. A. Consider the Sturm-Louiville

problem

d du
dx [P(x) + [X p (x) - q(x)) u = 0,

ax

with boundary conditions

u(a) cos a - p(a)u' (a) sin a = 0,

u(b) cos a 1-p(b) 13.1 (b) sin a1 = 0,

(3. 3. 5)

(3. 3. 6)

where p(x), q(x) and p(x) are positive and p' (x), q(x) and

pt(x) are continuous on the closed interval [a, b] . Let X = t

and let the characteristic values
t2n

be restricted to simple and

positive.

Campbell also considered a partial differential equation of

second order in x and y,

a aw a w
[ p(x) T;] - P(x) 2 - q(x)w O. (3.3. 7)

ay
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For

f(t) = u(x, t)g(x)p(x)dx (3.3.11)
a

Campbell used (3. 3. 8) with

Under the above restriction on p(x), q(x) and p(x) this will be a

hyperbolic equation. He integrated it by Riemannian methods; after

a number of changes of variables he obtained the following repre-

sentation for the solution of the above Sturm-Louiville problem:

u(x, t) = C(t)[ Gi(x) e t
+ G2(x)e-iP

t
+ G3 (x' )e, , (3. 3. 8)

-P

where rn ) is the characteristic curve used in the Riemannian

method. It is the solution of the differential equation

and

ox
R (x) =i dy.

a P(Y)

s-22 = 211-c) dxp(x)a

an interchange and rearrangement led to
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(3.3. 9)

(3. 3. 10)

(3.3. 12)



f(t)

f(t) = C(t) S22H(y)e1ytdy
-02

CO

rnr C(t)
sin (2t-mr)

t-n7r)
n=-00 2 ) 2

2
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(3.3.13)

and he concluded that the integral in (3.3.13) may be expanded by the

WKS sampling theorem, obtaining

(3.3.14)

B. Equations with singular points. In contrast to the above solution

of the second order differential equation with continuous coefficients

Campbell treated the Bessel and Legendre functions as solutions of

differential equations of the singular type. In Chapter IV we will

extend these results to other functions.

Bessel Functions: We refer to (3. 2. 9) and (3.2.12) and note that

Campbell used the integral representation of J(z) [14, p. 11]

z n
( ) 1 .J(z)1 e(1-y2) dy. (3.3.15)

\r'IT r(11+ ) -1

If we set z = tx and co = xy we get

tn
'tot 2 2 11--"(-2;) e (x -w ) du). (3.3.16)Jn(tx) -

Ni-Tr F(n + ) -x
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If we let Nrt, = t in (3.2. 12) and use (3.3. 16) for Jn(tx), then

interchange the order of integration in a manner similar to that of

(3. 3. 13), we arrive at (see Appendix A. 3)

f(t) = tn
1

H(w)eicotdw (3. 3. 17)
-1

where H(c) is given in (A. 3. 1). So, the integral in (3. 3. 17) may

now be expanded using the WKS sampling theorem and the f(t)

sampling series is obtained in a manner similar to (3. 3. 14).

Legendre Functions: We refer to (3. 2. 15) and (3. 2. 16) and use

the integral representation for P i(cos 0) [14, p. 221

eia t

Pt 1(cos0)d a'42 S cos at da Ni2 (10
Tr oNrcos a - cos 27 Nrcos a - cos

(3. 3. 18)

Substituting this in (3. 2. 16) and interchanging the order of integra-

tion (see Appendix A. 3) we get

f(t)
g Tr

- -rr

iat
e H(a)da

where H(a ) is given in (A. 3.2) . So, f(t) may be

sampled by using the WKS sampling theorem.

(3. 3. 19)



CHAPTER IV

PRESENT EXTENSIONS OF THE TWO SAMPLING THEOREMS

4.1 Further Illustrations of the Kramer Generalized (WKSK)
Sampling Theorem

In this section we will consider more functions which are

solutions of second order differential equations with singular coef-

ficients, plus one of fourth order with continuous coefficients [21] .

This section may be considered as an extension of the work of

Kramer [26] and Campbell [7] , which was discussed in Section

3. 2.

1. Associate Legendre Functions. We consider the Legendre

equation [11, p. 121]

2 2
du.(1-z2) d u

2
2z + {I/ (v +1)-

2
] u = 0

dz
dz 1-z
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(4.1.1)

where z, v , p. are unrestricted. The solution is defined in terms

of the associated Legendre function and in terms of the indicated

hypergeometric function:

2
1 z+1 1 z

u(z) = (z) r (1 -)( F(-v ,v+1;1-11; -2- --z),
z

(4. 1. 2)
11-zi < 2.



To obtain S (v), the sampling function in (3.1.3), we need the

1

integral Pm(x)Pm(x)dx, n an integer and v unrestricted.
-1

While we have the integral

I Pni(X) I 2dx (n+m)!
(n-m)! (n+1)

the evaluation of the integral requires the expansion

0) sin Trv
Co

(_oni 1 1 ] P-11(cos e),
Tr L V -n v+n+1 n

n=0
(4. 1. 4)

< < Tr, }L> O,

and [11, p. 140]

p-m(z) r( V rn+ 1 ) prn(z
V r(V+111+1 ) V

1 m m
Pv (x)Pn (x)dx - 2 r(v+n1+1) sin Ti(ls/-11-m)

IT r(V (v-n)(v+n+1)-1
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(4. 1. 3)

(4. 1. 5)

Now if we let p. = m in (4.1. 4) and use (4.1.5), then substituting

the resulting infinite series for Pm (x) in the integral and integrate

term by term, using the orthogonality property of the associated

Legendre polynomials, we get (for the details of these calculations

see Appendix B.1)

(4. 1. 6)
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For the special case m = 0 and v t -1 this will reduce to the

known result [11, p. 170] . Use of (4.1. 6) and (4.1.3) in (3.1.3)

leads to

S (v) = (-1)m 2n+1 (n-m)! r(v+m+1) sinTr (v-n)
Tr (n+m)! r(v -m+1) (v -n)(v+n+1),

(4. 1. 7)

and so
oo

f(v) = f(n)Sn(v). (4. 1. 8)

n=0

2. Gegenbauer Functions. Consider the differential equation

[11, p. 178]

(z2- 1)u" (z)+ (2v +1)zut (z) - a(a+2v)u(z) = 0 (4.1.9a)

or

----[ (-
dz 1

The suitable solution is the set of Gegenbauer functions,

r(a + 2v)CV(z) - r(a+1)r(2v) F(a+2v, -a; v+-2-;
a

v - v -1
2 2 du-z )dz] + Xa (1 -z 2) 2u = 0, X.a= a(a+ 2v). (4.1. 9b)

(4. 1. 10)

1

For S (a) 3.1. 3) we need Cv(x) Cv(x)(1-x2 ) dx,
a n

a an
-1

unrestricted real parameter, while from [11, p. 177, Eq. (17)] , we

have



Cm+2(Z) -a

(!)01 -2vin
3

Re v > 0, 0 < < Tr .

If we use (4. 1. 5) we arrive at

m 2 2m! (z-1)2 Pm z),(2m)! a+m(

(cos u-cos Ov-lcos[(v+a)u]du,
0

(4.1.13)
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1

TT -1-(n+2v )ICv(x) I 2 (1 -x)11-2 dx
2v

y > 0. (4. 1.11)
_1 n

n! (v+n)l-2(v)

If we use [11, p. 159, Eq. (27)]

Pli(cos 2 (sin 0)11 .c
= (cos u - cos 0)11 Icosr(v+Du ] du,

r(1-11)
(4.1. 12)

0 < 0 < Tr, Re p. < ,

and [11, p. 178, Eq. (23)]

v 12r(a+2v)I-(v+4.)CV(cos) - 2 Tra I-(v)I-(2v)I-(a+1)

(4. 1. 14)

Re (m+-12- ) > 0 .

Substitute (4. 1.14) into the desired integral and use the result of

(4. 1. 6) , arriving at

1 m+1 m 2
2m!, r(a+2m+1) sin Tr(a-n)s Ca (z)Cn (z)(1-z2) dz = 21(2), 1-(a+1)(a+2m+n+1)7(a-n)-1

Re(rn+ -12-) > 0. (4. 1. 15)



(See the details in Appendix B. 2.) If we now use (4.1.15) and

(4. 1. 11) in (3. 1. 3) we obtain

2 2

Sn(t) - 2
22mm! n! (m+39F(t+2m+1) sin 7r(t-n)
(2m)! (2m+n)! (t+n+ 2m+1 ) F(t+1) 7r(t-n)

(4. 1.16)

Re (m+1) > 0 .

3. Tchebichef Functions . Consider the differential equation

2 2 du
Crx [(1-3c2)(1-x ) dx + Xa (1 -x2)U = 0 , (4. 1. 17)

-which is a special case of (4.1. 9b) where the ambiguous +4 car-

responds to v = 1 and 0 respectively. That is, the two solutions

are

T(x) Ca°(x), (4. 1. 18)

for -4 in (4. 1. 17) and

Ua (x) = Cal(x) (4. 1. 19)

for 4 in (4.1.17). These two Tchebichef functions will reduce

to the Tchebichef polynomials, T(x) and U(x) respectively,

when a = n, an integer. We note that we cannot use our (4.1.15)

result for evaluating Sn(t) for either one of the Tchebichef
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functions since (4.1.15) is restricted to Re (m+4 ) > 0, which is

not satisfied in the present case.

Another explicit but seemingly not as practical a result as

(4.1.15) is found in [11, p. 169, Eq. (1)] , which is restricted to

Re (v) > 0 and so can only be used for (4.1.19) to obtain (see details

in Appendix B. 3)

(t+1)(n+ 1 -2
S (t) - ).ix(t-n)P (x) P (x)+nP (x)P (x)

n 2(t-n)(t+n+2r t+,

(4.1. 20)
1 11- 2

-tP i(x)P (x) ]
n+1 -1

0=0

For p. = m, an integer, the solution of (4.1. 21) which remains

bounded at z 1 is the prolate spheroidal function, Psmv (x, 0);

4. Spheroidal Wave Functions. Consider the differential

2 2

equation

(4.1. 21)

[13, p. 134, Eq. (1)]

2 d2y di(1- ) - 2z + [X +40(1-z )- ] y = 0,
d2 z 1-z2

where X, 0, p. are given real or complex parameters,

complex variable and

z a

X 11 (0) = v (v+1) . (4.1. 22)
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this is bounded at z = -1 only if v = n, an integer. For calcu-

lating S in (3.1.3) we need the value of

1

S Psv (x, 0)Psrn'(x, 0)dx. First we put [13, p. 138, Eq. (22)]
n-1

co

Ps (x, 0) =

r=-00

in the desired integral, then integrate term by term, using (B1.1)

(or (4. 1.4) and (4. 1. 5)) and [13, p. 158, Eq. (11)1

-1 r am (A) Pm (x) (4. 1. 23)v,r v+2r

( am (0) (n+m)!
n',r (n+1)(n-m)!

1

Psmi (x) Prri(x)dx =n n
-1

0, n - n' negative or odd

to get

00
1 m m r(v+2r+m+1) sinTr(v-n1

SI Psni(x,O)Psv (x,O)dx= 2 a an', r v,r 1-(v+2r-m+1)(v+n1+4r+1) Tr(v-n')
-1 r=0

(4.1.25)

(see the details in Appendix B. 4).

We note that this new result reduces easily to the special case

quoted in [13, p. 147, Eq. (6)] , since if we let v = n = n' in

(4.1. 25) we arrive at

, n-n' =2r,

(4. 1. 24)



00
1 m 2 (n' +2r+m)! 1Psrn(x, 0)Psni(x, 0)dx =6 , (a ) I In' nn n ,r (n +2r -m). n' +2r+-1

(4.1. 26)

Zr > m-n'

and when we use [13, p. 147, Eq. (7)] this becomes
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1 2

[Psm(x)] dx -
-1 n

1 (n+m)!
n+1 (n-rn)!

To evaluate S(t) in (3. 1.3) we merely substitute (4. 1.27) and

(4.1. 25).

5. Bessel Functions. The following differential equation is of

interest in signal detection. It appeared in the work of Stone and

Brock [40, p. 28; 41] . It was obtained after differentiation of an

integral equation with a kernel that corresponds to their first order

filter

(4.1. 27)

2(42co u
1hn(u)+ cozh'(u)+ [ 2
x e (col - wz)] h(u) = 0

After simple transformations this reduces easily to the Bessel

equation (see the details in Appendix B. 5)

4v(y-1)
dx x dxi x h(x) = t2xh(x),

(4.1.28)

(4. 1. 29)



SO

h(x) = J (tx), J (t ) = 0 ,2y-1 2y-1 n

n = 1, 2, -

By methods similar to those of Section 3. 2 the sets of functions

and numbers take the form

2tJ2y - 1
(t)

nS(t) - 32y-1(tn)= 0,
n

(t - t2
2) J (t2yn)

(4.1.31)
n = 1, 2,

The real parameter y has the physical significance of band-width

ratio and may well take on quite large values.

6. Fourth Order Differential Equations. A fourth order differential

equation appeared in the same manner as (4.1. 28) but is related to a

second order filter [40, p. 31] (see Appendices A. 1 and B. 6):

4 2 2 2 2, -xD -(m +m )D +m j y(te) =t2e-2xy(te-x),
(4. 1.32)

y(t) 0, y' (t) = 0, n = 1, 2,

In Appendix A. 1 we show that the boundary value problem here is

self -adjoint. The solution which is admissible is defined in terms
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(4. 1. 30)



be the solution of (4. 1. 32) which is orthogonal with respect to the

zeros {t} of y'(t) on [ 0, co] ; it may be referred to as the

Bessel-like function where

00 _2
(tne )

- xe Hmdx = 1t2H" 2.(t ), n = 1, , . (4. 1. 35)2 n m n
0

If we we set u = e and p(u) = u, Hm(tu) is orthogonal with

respect to ft n1, hence satisfies the condition of the Kramer

generalized WKSK sampling theorem (3. 2. 1) for the finite interval.

1

To obtain Sn(t) for (3. 1.3) we need uHm(tu)Hm(tnu)du.
0

For this we consider (4. 1.32) with t replaced by tn,

4 22 2 2_2 x 2 x-(m + )D + m 1 y(t e ) = t y(t e ).n n

We eliminate the constant coefficient terms in 4. 1.32) and (4. 1.36)

in the usual manner, arriving at
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(4.1. 36)

of m and its complex conjugate,

y(te-x) = ym(te (t) - yTh_ (te -x)ym(t),

so the identity boundary condition is satisfied. Let

(4. 1. 33)

Hm(te-x) = C0 y(te-x), (4. 1. 34)



(see details in Appendix B. 6). Now if we use (4.1.37) and (4.1. 35)

we obtain

2t H' (t)

oo22 51 -2x -x 2
(tn -t ) e y(tne-x) y(te )dx = -t tn y'(t)y"

(tn)
0

S (t) -
n (t2 - t2)H" (t )

n m n

4. 2 More on the Comparison of the Two Sampling Theorems.

In this section we will consider functions in the last section

and others that have the same type of integral representation as the

ones Campbell used for Bessel and Legendre functions. In the light

of all these cases we will attempt a simple generalization.

I. Associated Legendre Functions. If

1

f(t) K(t,x)g(x)dx (4. 2.1)
-1

and

K(t, x) = Ptm(x), (4. 2. 2)

we use the integral representation of Pv
(cos 0) in (4.1.12),

63

(4.1. 37)

(4.1. 38).



v(cos 0) = (-2)2 (sill 0)11 ce(cos v-cos 0)-r- 2cos[(v+I)v] dv,
Tr r ( -2- - p, ) 0

(4. 2. 3)

Rep.< 1, 0< 0< Tr

We let 11 = -m, m a non-negative integer, then refer to (4. 1.5)

to obtain

Pm(cos 0) =

(4. 2. 4)
1

2 (
0m r(v+m+1) 121 s in 0)-m

(-1) r(v-m+1) Tr r(-1+m) 51 (cos v-cos 0) cos[(v+-1-)vj dv
0

which may be written as

Pm(cos 0) =

(4. 2. 5)

(-1)rn r(v+m+1) 2 2 (sin 0)-m ge m-1 i(v+ v(cos v-cos 0) 2 e dv.2r(v-m+1) (TT) +m)
-e

If we substitute (4. 2. 5) for (4. 2. 2) in (4. 2. 1), then interchange the

order of the integration we get

64

f(t) r(t+m+1) eitvF(- r(t-m+1) v)dv
-Tr

(see the details of this calculation and the F(v) expression in

(4. 2. 6)



f(t) r(t+2V) eitvG(v)dv-r(t+i)
-Tr
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Appendix B. 7).

We see that the new result (4. 2. 6) is easily reduced to the

special case (3. 3.17) of Campbell [7} , where m is zero, by

comparing (B7. 2) and (A3.2). We conclude that the integral in

(4. 2. 6) can be expanded by the WKS sampling theorem and so we

can obtain a sampling series for f(t).

2. Gegenbauer Functions. If

K(x, t) = C(x) (4. 2.7)

in (4. 2.1) we use the integral representation of Ct (cos 4)) from

(4.1.13) in (4. 2.1) and, after interchanging the order of integration

in a manner similar to that used for Plii(cos 0) above, we obtain

(4. 2.8)

(see details in Appendix B. 8). So, the integral in (4. 2.8) may be

expanded by the WKS sampling theorem and we can obtain a sam-

pling series for f(t).

3. Tchebichef Functions of the Second Kind. We note here that only
0U(x) = Cal(x) and not T(x) = Ca(x) will lend itself to our caleu-

lation of (4. 2.8) since the restriction of (4.1.13) of the integral
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representation of Cv(x) is Re v > 0. Hence, for

.t Ut(x) (4. 2. 9)

in (4. 2.1) we can use (4.1. 13) with v = 1 to obtain

Tr if(t) = (t + 1) g etvG(v)dv. (4. 2.10)

By observing the method of (3. 3.17), (3. 3. 19), (4. 2. 6),

(4. 2. 8), (4. 2.10) we will attempt the following simple generaliza-

tion:

Theorem 4. 2.1. If

a
f(t) = K(x, t)g(x)dx (4.2. 11)

-a

and if

C (x)
K(x, t) = hi (x)h2(t) k(x, )eitTI

-C(x)

(4. 2. 12)

h2(t) 0,

where C(x) > 0 is monotonically increasing or decreasing in

[ -a, a] , either C(a) or C (-a) is zero, then f(t)/h2(t) may

be expressed by the WKS sampling theorem.



Proof: If we substitute (4. 2. 12) into (4. 2.11) we obtain

C(x)
f(t) =

h1
(x) h(t) k(x,dri g(x)p(x)dx, (4. 2.13)

-a -C (x)

where p(x) is a weighting function. Interchange the order of

integration

Hence,

f(t) C(a)
eitriH(n)dr, ,

h2(t) -C (a)

f(t) = h.,(

Figure 1.
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C(a) . a
eit/ h )k( )d di(x x,)()(r1gxpx (4. 2. 14)

-C(a) -1
x=C I )

(4.2. 15)



where H(1) is defined above. Note that 2a is the bandwidth of

g(x) but 2C(a) is the bandwidth for H(1-1) .

Remark. If K(x,t) in (4. 2.11) is band-limited as a function

of t, then f(t) is a band-limited function. Furthermore, f(t)

has the same band limits.

Proof: Let

K(x, t) = k(x, )e di1;
-A

then, as for (4. 2.15) with C(x) = A we get

f(t) = eitH ,
1-A

where

a
H = k(x,l)g(x)p(x)dx .

1

From (4. 2.16) and (4. 2.17) we note that the bandwidth for both

k(x,1 ) and f(t) is 2A .

For the next corollary we will make use of Paley and Weiner's

theorem [29, P. 13] concerning the representation of a function by

a finite Fourier transform.

(4. 2. 16)

(4.2. 17)

(4. 2. 18)
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Theorem 4. 2. 2. "The two following classes of entire functions are

identical: (1) The class of entire functions F (z) satisfying a con-

dition F (z) = o (eAlzI ) and belonging to L2 on the real axis,

(2) the class of entire functions of the form

A
F(z) = f(u)eluzdu,

-A

where f(u) belongs to L2 on (-A, A)" .

Corollary 2. If K(x, t) in (4. 2.11) belongs to the class L2(t),

is entire and is of exponential order, then f(t) is a band-limited

function" .

Proof: The proof follows from the Paley and Wiener theorem and

Corollary 1.

A more general theorem that will include Theorem 4. 2.1 as

a special case is

Theorem 4. 2.3. If

f(t) = K(x, t)g(x)p(x)dx (4. 2. 20)
a

and if

5C
(x)

TiK(x,t) = h1(x)h2(t) k(x, )e d, h2(t) 0(4. 2. 12)
-C(x)

(4. 2.19)
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where C'(x) exists and vanishes only at a finite number of points

on [a, b] , then f(t)/h2(t) is a sum of band-limited funtions.

Proof: From (4. 2.12) and (4. 2. 20) we get

C(x)
f(t) = hi (x)h2(t) k(x, )eitri g(x)p(x)dx (4. 2. 21)

a -C(x)

The closed region { (x, n) a <x < b, H < (x) can be

divided into some n closed regions, each of which can be con-

sidered similar to the one used for Theorem 4. 2.1. Hence, the

order of the integration may be interchanged in the same way to

arrive at

n-1

f(t) = h (t)
j=0

a!

jH.(1-1) e .

a.

The details of an example of the above calculation is given in

Appendix B. 9.

Corollary 1. If C(x) is non-negative and monotonic for a < x < b_

then f(t) is the sum of three band-limited functions, and one band-

limited function if there exists an a < < b, such that C()=0.

Proof: The first part follows easily from the above theorem and its

detailed calculation in Appendix B. 9. The second part follows in the

same way and is the statement of Theorem 4. 2.1.

(4. 2. 22)



4.3 On the Equivalence of the Two Sampling Theorems

In this section we will introduce a few definitions necessary

for a more precise method of comparing the WKS and the WKSK

sampling theorems. We will attempt to find conditions under which

the two sampling theorems are equivalent. Hence, in this sense

only, we speak of the "No advantage of using the generalized (WKSK)

sampling theorem over the Shannon (WKS) sampling theorem" .

On our way to this goal we shall have to prove a few simple results

that may be of general interest for understanding and applying either

one of the two sampling theorems. We shall also quote a lemma of

Wiener [54, p. 80] concerning the finite Fourier transform, and

the Lebesgue (dominated) convergence theorem.

Lemma. "Let H(x) be a continuous function defined over (-00,00),

and vanishing over (-00, -Tr +c) and (Tr- , 00). Let

oo
1h(u) - H(x)e dx .

Then the three following statements are equivalent :
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(4. 3. 1)



(3)

oo

t.ch(u) I du < con .
-co

Lebesgue Convergence Theorem, [ 1 8, p. 21. "Let f
' f2'

be integrable on (-co, oo). If fn(x) I < F(x) a. e. ,

(-co< x < co; n = 1 , 2, ) for some integrable F, and if

urn fn(x) = f(x) a. e. (-oo <x < co), then f is integrable and
nco

lim ,rfn(x)dx = ,rf(x)dx" .

co -co -oo

Now we state some definitions.

Definition 4.3. 1. Whittaker Samplable Functions belong to the class

as defined by

a tW (a) = If
a a(t) I f(t) = g(x)elx dx,

1 -a

g(x)
EL2(-a,

a) and g(x) vanishes for Ix' > la' ]
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co

h(n)I < oo, (4. 3. 2)

n=-00

max I h(u) < co, (4. 3. 3)
n<u<n+1

n=-co

(4. 3. 4)

(4. 3. 5)

(4. 3. 6)
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Definition 4.3.2. Whittaker Sampled Functions belong to the class

as defined by

00

W2 (a)= fa (t) Ifa (t) =

K (a' b) = { f (t) f (t) = K(x, t)g(x)dx,a, b a, b a

f In sin (at-nrr) (4.3.7)
a (at-mr)

Definition 4. 3.3. The class of Whittaker Sampling Functions is

defined as the intersection,

W =
W11m W2

. (4.3.8)

Definition 4.3.4. The class of Kramer Samplable Functions is

defined by

g(X) E L2(a, b), K(x,t)EL2(a,b) and there exists a set of numbers

E = { tn } such that {K(x, tn) } is a complete orthogonal set on

[ a, b] }

Definition 4.3.5. The class of Kramer Sampled Functions is defined

by
CX)

K2(a, b)
{ fa, b (t) I fa, b (t) = f(tn)Sn(t)} (4.3.10)

n=-00

where S(t) is defined by (3.1.3).

(4.3.9)



Lemma 1. If f(t)E W1 (a) then f(t) is bounded.

Proof: From Definition 4.3. 1

a .

fa(t) = eixtg(x)dx, g(x)E L2(-a, a). (4. 3. 11)

Hence,

I fa(t)

By using the Schwartz inequality and the condition g(x) E L2 (-a, a)

we arrive at

1

If g(x) I 2dx] < .(t) I < [ 2a Say I

-a

Lemma 2. If f(t) E W2 such that f(r-11-ra )E then f(t)EWi.

Proof: Since f(t)E W2 Definition 4.3. 2 establishes that

oo

f(t) = mr sin (at-nn)
at - mr

n= -00

So, the triangular inequality yields

00

n=-00

g a
e

.

1Xtg (x) I dx
-a

'el.)! !sin (at -nTr)1
I a II at -norr
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(4. 3.12)

(4. 3.13)

(4. 3.14)

(4. 3.15)



it is clear that

We have

and

I f(t) I < oo

a iw(t - )
at -nrr 2a ,c

sin (at -nrr) 1 a
dw

-oo -oo
n=-00

oo
S' f(t) sin (at-flu) dt = f(1-1-r-r ) .at-nrr a

-oo

(4.3. 16)

(4. 3.17)

, m n,

(4.3.18)

The term by term integration is justified by f()1E and the use
a

of the Lebesgue Convergence Theorem. The orthogonality condition

of (4.3.18) yields

(4. 3. 20)

75

The second factor in each term is clearly < 1; since f(a)E 1

oo
sin (at -nrr) sin (at-rmr) dt =

at -nrr at- MT1
-oo

sin (at-mTr)Multiplying both sides of (4. 3.14) by and integrating
at -MIT

with respect to t we get

co
oo oo

f(t) sin (at -mTr) dt -at mu
nrr sin dt. (4. 3.19)(at -mr) sin (at -nrr)
a at -nu at -nrr



The convolution theorem gives

inrrx
nrr a

g (x)dx ; (4. 3. 21)f() ea -a

by the uniqueness property of the Fourier transform

f(t) ixt
e g(x)dx
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(4.3. 22)

and is a Whittaker sampling function.

-a

SO

f(t) E W (a). (4.3. 23)

Theorem 4. 3. 1 . If f(1-1:-Tra ) E.e f(t)c if and only if f(t) e W2,

SO

f(t)E W . (4. 3. 24)

Proof: (i) f(t)e
W1

implies f(t)e
W2

follows from Theorem

2. 1. 1, which is the Shannon Sampling Theorem. (ii) f(t)E
W2

implies f(t)E
W1

follows from the above Lemma 2 since

f( )E /1. Hencea

f(t)E W1 W2 = W (4.3. 25)



a if.(t) = extg.(x)dx, j = 1, 2, ° , N,
-a

e. , if f.( ) E
W1

(a) for j = 1, 2, N) then

f(t) = f.(t)
3

j=1

f(t)ça iext
-a

is also in
W1

(a) and hence in
W2

(a).

Proof: From (4. 3. 28) and (4. 3. 27) we have

j=1

Hence, by the condition on
g

.(x ), we conclude that f(t) E W1.
J

Then, by using Theorem 2.1. 1 we get f(t)E W2 .
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Corollary 1. If f(t)E Li (-00, CO) and f(t) E Wi with continuous

g( x), then

f(t) E W . (4. 3. 26)

Proof: From the above Wiener's Lemma we get g )E11, so

by using Theorem 4. 3.1 we conclude that f(t) E W.

Theorem 4. 3. 2. If

(4. 3. 27)

(4.3.28)

(4. 3. 29)



Corollary 1. If f. (nTr)Efor j = 1,2, " , N, then
j a l'

f(t)E W. (4.3.30)

Proof: Since f.(-11-1r-)E.2 for j = 1,2, - ,N, f(x--11:-T;) from
j a 1

(4.3.28) is also in 1 and by Theorem 4.3.1 and Theorem 4.3.2
1

f(t)E W.

tCorollary2. If f.( t) E L (-00, 00) forxjN and g.(
1

is continuous for all j then

f(t)EW(a) . (4.3.31)

Proof: This result follows when we use the Wiener Lemma.

Corollary 3. If

a.

f t e.( ) =
3

ixtgi(x)dx,
j= 1,2, ,N, (4.3.32)

-a.

then

f E Wi (a) (4.3.33)

where a = Max a. .

Proof: By definition
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a a2 a
1 N ;at) eixt

g1(x)dx+ eixtg2 (x)dx+ + ej.xl-gN(x)dx. (4.3.34)
-a -a

1 2aN
Since

g
.(x ) = 0 for I xl > I a. I we may write (4.3.34) as

3

e.ixtf(t) =
-a

j=1

.(x)dx,
3

where a = Max a. . From Theorem 4.3.2 we get
j 3

f(t) E Wi (a), a = Max a. .

j 3

tTheorem4.3.3. If f .( ) E W 2(a)
for j = 1,2, N then

3

f(t)tf.( )1 E W2(a).
j=1
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(4.3.35)

(4.3.36)

(4.4.37)

Proof: From the hypothesis it is clear that Definition 4.3.2 leads to

By definition

00 N

f(t) =

n=-00 j=1

f('ar) =

nTr sin (at-nTr)
fj (a ) at -nTr

f.(nIT)
3 a

(4.3.38)

(4.3.39)



SO

f(t)

00

nTr)
sin (at-nTr)

f( a at --nTr
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(4. 3. 40)

n=-00

According to Definition 4. 3. 2 the theorem is proved.

Corollary 1. If f. (11-1-r)e /
1

for j 1, 2, N then f(t) E
W1

(a)
3 a

and hence

f(t)EW(a). (4. 3. 41)

Proof: From (4. 3. 39) we see that f(11-lar)E /1 since

for all j. By Theorem 4. 3.1 we get f(t)EW1 since

Corollary 2. If f.(t) E
W2

(a.) for j 1, 2, , N and
3

for j = 1, 2, ,N, then

f.inTrIE
a / 1

f (nTr)E1
a 1

f .1 nTr)E

a. 1

f(t) E W1 (a)(4. 3.42)

where a = Max a. .
3

nTrProof: Since f.()E,1Q then by Theorem 4. 3.1 fi(t)E Wi(ai),
3 a.

all j. By Corollary 3 of Theorem 4. 3. 2 we have f(t) Wi (a),

where a = Max a. .
. 3

and f(t) E W2' so the corollary is proved.



SO

oo

f(t) = f(mr ) sin (at -nr)
a at -nr

n=-00

But f(t)EKi(c, d) so

(4. 3. 44)
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Theorem 4. 3. 4. For K (x,T-3-1-Ta )E /1 and f(y)Eli, if KEW

then f Ki if and only if f W. That is, KEW (f E Ki<=> f E W

Proof: From Corollary 1 of Theorem 4. 2. 1 we have

KEW1
=> (fEK1=-> fEW1 ). Since f (12-1--ar)E/i => f(t)E W by Lemma

2. Since
W1

C
K1

(eixt is a special case of K(x, t), as

Kramer pointed out in Section 3. 2) then f(t)E W1 --=> f(t)E K1, and

SO KEW1 => (fEK1<--> fW). But since K(11-2-ar)E.f1 then, by

Lemma 2, KEW, hence KEW => (fEKi<=>fEW).

Theorem 4. 3. 5. For K(x,11-: )E and f(-1-1-7-a )E , if f
EK1

is

equivalent to f EW then KEW. That is, (f E W) K E W.

Proof: From f(t) E Wi (a) we have

a .

f(t) = e g(x)dx , (4. 3. 43)
-a

f(nairr K(x, )G(x) dx . (4. 3. 45)



Therefore

CO

f(t); K(x, ILILT)G(x)dxa
n=-00

sbd
00

K(x,
lilt sin (at-mr) G(x)dx.
a at-air

The interchange of the order of integration and summation is justified

by the property K(x, E and the Lebesgue Convergence

Theorem. But f(t)EKi (C, d) so, from (4. 3.46)

CO

K(x, t) =

= -GO

That is, K(x, t) E W2' But K(x, )E11, hence by Lemma 2 we

have K(x, t) E Wi and K(x, t) E W. Finally,

(f E
K1

<=> f E W) => K(x, t) E W.

Theorem 4. 3. 6. For K(x, 111)E/1 and f(r -Tar)E , f(t) E K is
1

equivalent to f(t) E W if and only if KE W.

Proof. The proof follows from Theorems 4.3.4 and 4.3.5.

sin (at-nit)
at -nit

nit
)

sin (at-nTr)
K(x, -a at-nit
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(4. 3. 46)

(4.3.47)
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4.4 Some Suggested Applications for the Kramer Sampling Theorem

The communication engineer uses the Fourier transform

mainly. So, it is no surprise that the WKS sampling theorem

statement appears in terms of a signal represented by a finite

Fourier transform. Also, the ideal low-pass filter, with its nice

time invariant impulse response, is used to give the physical inter-

pretation. In Chapter 2 we have reviewed a number of interesting

extensions and applications that followed the WKS sampling theorem.

At the same time we noticed one important extension of this theorem

that was neglected, especially in applications. This extension was

ixtKramer's generalization of the Fourier kernel e to K(x, t),

as was discussed in Chapter 3. This section is devoted to the pos-

sible reason for this neglect and at the same time will offer some

suggestions in this direction. We will attempt to raise some

questions, similar to the ones raised in Sections 1. 2 and 1. 4, to

show that the Kramer generalization of the sampling theorem might

be a very handy tool. First, this generalization takes us from a

signal represented by a finite Fourier transform to the same signal

represented by another and more general finite integral transform.

Hence, the results that have already been obtained in Chapter 3 and

4 for Kramer's theorem may prove to be of use in the field of finite

integral transforms. In addition, introducing such transforms might
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simplify some communication problems as it did in other fields.

This last question may deal with the possibility of using the general-

ized sampling theorem for the case of a signal which is the output of

a time variant filter. We now note that if such integral transforms

are introduced then Kramer's theorem will play a role similar to

the one played by Shannon's theorem in terms of the finite Fourier

transform. We should be reminded that even if such development

proves useful the road to it will not necessarily be an easy one, since

many of the tools needed may not be available. For example, con-

sider a convolution theorem for a Legendre transform.

Also, we introduce two finite integral transforms as they

appear in the literature [ 37, 38, 46, 47, 54] , namely the finite

Hankel and Legendre transforms, then try to extend their definition

with the help of Kramer's theorem.

1. Finite Hankel Transform [ 37, 47] .

1

7(t ) = f(r)rJ(tpr)dr ,n
P 0

(4.4. 1)

J (t ) = 0, p = 1, 2, ,n p

with the inverse transform



7(t) = f(t )S (t),pp
P= 1

where S (t) is given in (3. 2.14).

2. Legendre Transform {46, 47].

1

f (n) = f(u)P (u)du
_1 n

Let us extend 7(t ) to 1(t) in (4.4. 1) with unrestricted t.

We quickly realize that 7 (t) can be automatically calculated in

terms of 7(t ) by the use of Kramer' s theorem, which gives

00

and

f(u) =

00 274 )
Jn(tpr).J2 (t )

p=1 n+1 p

oo

n= 0

1

2)f (n)Pn(u).
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(4. 4. 2)

(4. 4. 3)

(4. 4. 4)

(4. 4. 5)

We extend T(n) to f (v) and in the same way as above we get

F(v) in terms of T(n), with the aid of Kramer's theorem, to be
00

F(v) f (n)Sn(v), (4.4. 6)

n= -00



where S (v) is given by (3. 2.19).

Next we take the above two examples of finite integral trans-

forms to show their possible advantage for the system function

analysis of filters. In (4.4.1) let the inverse Hankel transform of

T(t) with n = 2 be f(r) = r. In contrast to this the inverse

Fourier transform to the same f (t) is found from (A. 3.1) to be

f(r) - ql-r2(2-3r-r2)
157

86

(4. 4. 7)

This, obviously, is a more complicated system function than

f(r) = r.

Now in (4. 4.4) let f(u) = 1, u = cos 0, be the inverse

Legendre transform of T(v), then using (A. 3. 2) we can show that

the corresponding inverse Fourier transform of r(v) is

3

uf(u) = 2 cos (4. 4.
8)-2

again a more complicated system function than f(u) = 1.

The third question deals with a problem of different nature,

concerning the fact that most linear filters are treated as stationary

ones [48, p. 8] . That is, their impulse response depends on

(t-t' )dt' . For example, the output

oo

x(t) = k(t, t' )f(tI )dt' (4. 4. 9)
-oo



with

k(t, t' ) k(t-t' ). (4.4.10)

A more specific example is the impulse response of an ideal low-pass

filter

87

sina(t-t' )k(t-t' ) - t-t' (4.4.11)

Here we notice the spirit of the Fourier Transform and its corre-

sponding convolution theorem. The question here is that Kramer's

generalization considers K(t, t° ) in general and not only k(t-t° ).

As such it might very well be found to be of interest in the field of

time variant [48, p. 8] linear filter analysis or its output signal

sampling.

Another example that might show an advantage of Kramer's

sampling theorem is given that

a2 al i(x1t1+x2t2)
f(t ,t2 ) = 1 S g(x1,x2)e dx1dx2, (4. 4. 12)

2-rr -a2 -al

where

g(xi , x2) = 0, 1x11 > 1a11, 1x21 > 1a21 (4.4.13)

is a two-dimensional finite Fourier transform. By (2. 9. 2) we need a

product of two infinite series to represent f(t1,t2) in terms of its



sample points, n.11T
n

21Tf ( )

al a2
But if we have f(t) with

2 2 2 2
p = t1 + t2 and such that r \ix1 + x2 then from Sneddon

[38, p. 62j we can write (4.4.12) as

(p) rf(r)J,(pr)dr, (4. 4. 14)
`)0 u

a finite Hankel transform. Then, using Kramer's theorem, f (p)

can be represented by an infinite series in terms of its sample points

P -n
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APPENDIX A

Al. The Self -Adioint Eigenvalue Problem

To illustrate the treatment of the self-adjoint differential

equations we choose the following problem [40] , with fourth

order differential equation. This problem was used in Section 4.1

to illustrate the Kramer generalized sampling theorem:

[ - (m + )D +m m ] y(te x) = t2e-2xy(te-x),4 2 2 2 2-2
(A 1.1)

y(t) = 0, y' (tn) = 0, n = 1, 2, - lim y(te-x) = lim y(tne-)5= O.
x--- 00 x

To show that this problem is self -ad joint we note that the operator

4 2 2 2 2
L = D - (m +m )D + m m (A. 1.2)

has constant coefficients. The weight function p(x) is taken to be

e-2x. So, this is a special case and we will not need all the de-

tails of the general treatment in [ 8] . For the problem stated

in (A. 1.1) to be self-adjoint we need to show that

(Lu, v) =(u, Lv), (A. 1. 3)

for all u and v that satisfy the boundary conditions. That is

it is required to show that

94



I-

co

Lu v dx = u Lv d (A. 1. 4)
0 0

Note that if f, g E L2(a, b) then (f, g) is defined as

(f, g) f g dt (A. 1.5)
a

In this case it is clear that L, so we have to show that

We set

co co oo co
2 _LuVdx-S u LVidx = (-NT D4u-uD4v)dx-(m2+71--12) rv-D2u-uD v)dx

0 0 0 0

But

arid

2 2_ dvD u-un v = dx (17Du - u.D7 ).

oo

Lu v dx = rcuLvdx.
0 0

oo2-2+ m m j (uv-uv)dx.
0
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(A. 1.6)

(A. 1 . 7)

4 4_ d 3 3_ du-uD v = (TiD u-uD v) + (Du D2v-DVD2u), (A. 1. 8)dx dx

(A. 1.9)

Substituting from Equations (A. 1. 8) and (A. 1. 9) into (A. 1. 7) we get



r°LuTrdx - L-Trolx = [TrD3u-uD3V + DuD2V-DVD2u]
oo

0 0

oo
- (a2+b2)[ N7". Du -

uDV-]o
.

So, if we use the boundary conditions in (A. 1. 1) all the inte-

grated terms above vanish, (Lu, v) = (u, Lv), and the problem of

(A. 1. 1) is self-adjoint. This problem was also used to demonstrate

the general and more detailed treatment [8] .

A. 2 Integrals for Bessel Functions

For calculating (3. 2.14) we use the well-known properties of

the Bessel functions:

2

gx J2(ax)dx = [J2(ax)-J (ax)J (ax)]
2 n n-1 n+1

gxJn(ax)Jn(bx)dx - bxJn(ax)Jn-1 (bx) -axJn- 1 (ax)Jn(bx)

Jn-1(x) + J (x) = 2nJ (x)
n+1 x n

Jn-1 (x) = 2J' (x) +
Jn+1

(x)

Jn-1(x) = 11. J (x) + J' (x).x n

Use of (A. 2. 2), (3. 2.11) and (A. 2.3) yields

oo

(A.1. 10)

(A. 2. 1. )

; (A.2. 2)
a2-b2

(A. 2.3)

(A. 2. 4)

(A. 2.5)
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kJne\rt)Jn-le\Ftk)xJ (xNrt)Jn(x\rtk)dxon t-tk

NrtkJn(Nrt)Jn+1(Nrtk)

t-tk

The other half of the orthogonality statement is obtained by use of

(A. 2. 2), (3. 2. 11) and (A. 2. 3),

51
xJ2n(xNrtk)dx = - J ) J (Nit ) = J2 (Nil ). (A. 2.7)

2 n-1 k n+1 k 2 n+1 k
0

Hence,

2t kJn(Nri)
Sk(t) - -

(t-tk)Jn+1(Nrtk)

and from (A. 2.5) and (3. 2. 11) this may be written as

2(n+1)Jne\rt)

Sk(t) (t-t P.' Nit )n+1 k

A. 3 Bessel and Legendre Functions

For getting (3.3. 17) we had
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(A. 2. 6)

, Jn(\ilk) = 0 .

(A. 2. 8)

(A. 2.9)



f(t) =
xg(x) t Ti

[(-2x)
0I\FTr 1"(n+-1-)

1 . n--I
= tn eiwt{ 1 1 xl-n(x2-w2) g(x)dx]

-1 2nr(n+-1)NiTr
od

(A3 1)

= tn eiwt H(w)dw.

For getting (3. 3.19) we had

f(t) =

Tr

eiatH(a )da
-Tr

s,x . n--2
eiwt(x2-w2) dw] dx

-x

0 eiatdaCll.
Tr Nr2 g Nrcos a - cos 0 °cc's e) sin 0 d0

iat 1 rrr g(cos 0) sin 0 d0
e r da

Tr Nr2 Nrcos a - cos 0

98

(A. 3. 2)
511

-Tr



APPENDIX B

B. 1 Associated Legendre Functions

To get (4. 1. 6) the infinite series resulting from (4. 1. 4) and

(4. 1.5) is

Pali/ (x) =

Now

co

m r(v+m+ 1) sin Try V n 1 1 _..rn() r(n-m+1)
1) x,

Tr r(v -mt 1) v -n v+n+1 n
_

(n+m+1)
n=0

(B. 1. 1)

m r(v+rn+1) sin Iry
Trr(v-m+1)

00

= (-1)m
r(v+m+l)sin Try

Trr(v-m+1)

P(x)n'
-1+E n=0

n=0

Using (4. 1. 3) we get

1 (_)m r(v+m+1) sin Try (n'-m)! n'
Sb Prn(x)Prnt(x)dx = (-1) -

v n Tr r(v-m+1) (n'+m)!
-1 (B.1. 3)

1 1 ). (n' +m)! 1

v +n'+l (n' -rn)! n' +1

2 E(v+m+1) sin Tr (v-n' -m)
Tr r(v-m+1)(v-n' )(v+n' +1)

(4. 1. 6)

1

.51 Pm(x)Prn(x)dx
v

-1+E

)11

00

m > 0, x > -1 .

(B. 1. 2)

1 1 m (n-m)!)n )P (x) ,
v -n v+n+ 1 n tn+m)!

11 1 ) (n-m)! rn, x ) pni(x)dx.
v -n v+n+1 (n+m)
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B. 2 Gegenbauer Functions

To get (4. 1. 15) we substitute (4. 1. 14) in the desired integral,

1 m 2 1

Cra+-2(z)C-1 -2-(z )( 1 -z dz - [(2m)! (- m in
a Pa+m n+(z)Pm(z)dz.-1 -1

(B. 2. 1)

Use of (4. 1. 6) for the unrestricted a leads to

in ,m 2m+1 m+1 r(a+ 2m+ 1) sin Tr (a-n)
Ca 2(z)Cn 2(z)(1-z`) dz - [ ml(2m)! Tr r(a+1)(a-n)(a+2rri+n+1)

(4. 1. 15)
Re(m+-1-)> 0 .

B. 3 Tchebichef Functions

To arrive at (4. 1. 20) we use [11, p. 169, Eq. (1)]

1

P11(x)P 14(x)dx- [x(t-cr)P11(x)141(x) + (0-+Ia)P1.1(x)P11 (x)t (t- o-)(t+o-+)(t+1) t o- t cr-1

If, for (B. 3.1) we use
1 -21-1,

4 -1-11,211-2 r(t-L2y)r(P.+0 x2) P 4, Rep. > 0C11(x) -t r(t+1)

(B. 3. 2)

and

1

- (t+4)P11 (x)P11 (x)]
t- 1

(j. -1
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(B. 3.1)



we get

1 1 1

SbUt(x)Un(x)(1- 2dx =S* Ct (x)C1(x)(1-x2)2dx
n

2

-1 -1

Ua (x) Cal (x) (B. 3.3)

2

2F(t+2)F(n+2)[ r(-3)] 1

1 2 -2 2

[x(t-n)P i(x)P (x)
(t )(t+n.+2) r(2)) 2 F(t+1 )n! t + -2- n+

1z - a - 2 - 2
+ n P (x)P (x) - t P (x)P (x)] .

t+-32- n+1 _1

This plus the orthogonal property

1 2

S' U 1n(X) (1 -x2) 2dx = Tr

-1

yields (4.1. 20).

B. 4 Prolate Spheroidal Wave Functions

To obtain (4. 1.25) we first use (4. 1. 23) for the desired integral

to get
00

,c* 1 Psm(x, 0)Psm(x" 0)dx =n-1 r=-0o
(B. 4. 1)

We use the infinite series expansion (B. 1. 1) ofPmv+2r(x) and

integrate term by term, arriving at
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(B. 3. 4)

1

ram (0) S* Psm(x, 0)Pm (x)dx.v, r n v+2r-1



00

1

Psm (x 0)Pmv+2r (x)dx =ni
-1

1n r(v+2r+m+1)(2n+1)r(n-m+1)
r(v+2r-m+1)(v+2r-n)(v+2r+n+1)r(n+m+1)

1

. Psm, (x, 0)Pm(x)dx
-1

If we use 4.1. 24) in the above it becomes

1 2 sin Tr (v -n' )(-1)rr(v+2r+m+1)a17,
Psm(x, 0)Pm (x)dx -n' v+2r ii (v-n')(v+n' +4r+l)r(v+2r-m+1)

(B. 4. 3)

Zr = n-n' , r a positive integer.

If we substitute (B. 4.3) into B. 4. 1) we get (4.1. 25),

co

m r(v+2r+m+1)si Ps mi (x,0)Psm(x,e)dx = (0)an ,r v,r(0) r(v+2r-m+1)(v+114-4r+1)-1 r=0
(B. 4.4)

sin ir (v-n' )
IT (v-n1)

B. 5 Bessel Functions

1

To obtain (4. 1. 29) from (4.1. 28) we let x = e and

y = to get
1 2

(B. 4. 2)
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8(')lyx2xzh" (x) - xhi (x) [ x - 4y(y-1)j h(x) = 0, 0 < x < 1.

(B.5.1)
80.)

If we let h(x) = xv(x) and tz - 1

2v"(x)+xvI(x) + [x2t2-(2y-1)2x ] v(x) = 0,

which is the Bessel differential equation of (4.1.29). Then (4.1.31)
_1

is obtained using (3.2.14) for the case of K(t,x) = x k(t,x) in

(3.1. 3).

B. 6 Fourth Order Differential Eguations (Bessel-like Functions)

The important definition is

y(te-x) ym(te-x)yrii (t) y(te-x)ym(t) (B. 6.1)

and it is clear that y(t) is identically zero. The solution of the

fourth order differential equation of interest here may be written as

y (te-x

CO

m+2n
e -x)

4

we get

n=0 /I: r(m+1+n)111.11+2rn +1+n)1-(inini +1+n)

(B. 6.1)

To obtain (4.1.37) we eliminate the m m y(tne -X)y(te -X) fr om the

two differential equations in the usual way, arriving at
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where F(v) is defined as above.

104

co
-2x_it ..xid ry(te -x)D3 -x(tne )- -xy(tne )D3y(te-x)n e Y n

0 (B. 6. 2)

-Dy(te -x)D2y(tne
-x)+Dy(tne

-x)D2y(te -x)]

oo

-(m2+rii2)[y(te-x)Dy (t e-x)-y(tne-x)Dy(te-x)]
0

-x -x= Dy(te )D2y(tne) -tt2ny'(t)y" (tn) .

x=0

(4.1. 37)

B..7 Associated Legendre Functions (Continued)

From (4. 2. 5) and (4. 2. 1) we get

1-m
1(t)

r(t+m+
r(t-m+l)r(m++)

1)(-1)m d0g(cos 0)sin '
Nr2v

(B. 7.1)

S'

0 _i_

(cos v-cos 0)rn-z ei(t+-i)vdv.
-0

Now interchange of the order of integration leads to

iv
r(t+m+1)(-1)rn itv 2 5,7r 1-m

e e g(cos 0)sin 0(cos v-cos 2d0dvf(t) Nr27r rft-m+1)r(M+1)
-11

(B. 7. 2)

r(t+m+1) eitvF(v)dv,1--(t-m+1)

oo

0



B.8 Ge enbauer Functions Continued)

We can write (4. 2. 7) as

(1)2v 1r(t+2v)r(v+i) . 1-2v S' iv(t+v)(cos ldv.(I))vCv(cos cts) - sin (1) e
NT-Tr r(v)1-(2v)r(t+1)

(B. 8. 1)

We use (B. 8.1) for K(t, cos (1)) in (4. 2.1) to get (after change in

the order of integration)

f(t) - r(t+2v ) eitv 2v-11-(v+ *) ivvr
r(t+1) NrTr r(v)1(2v) e

g(cos)sinOs in 43.(cos v-cos 14dv.2-2v

-Tr

Hence,

'TT

f (t)r(tt++21v))
S

e (v)dv ,

-Tr

Ivl

where H(v) is defined in (B. 8. 2).

105

(B. 8. 2)
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B. 9 Illustration of Theorem 4. 2.3. , p. 69

11

C(b)

C(d)

-C(e)

C (a)

-C(d)

The function in (4. 2. 21),

5,c(x)
f(t) = h1(x)h2(t) k(x, TI)eitridrig(x)p (x)dx,

a -c(x)

-C (x)
-C(b)

Figure 2.

106

(4. 2.12)

for the case of c( x) in Figure 2 can be written, after interchange

of order of integration, as



-1
c-c(a)4+

f(t) = h (t) e".11
h1

(x)k(x,
c(a) x=a

c(d) derti

-c(d) C, -1( )

-1
(MI)

el"(
-c(d)

+
c(e). 5bei[

-c(e) d

+5
c (ill)

c(e)

_c(e) .
[

c ( b ) cl(Ill)

c(b) . b
[

c(e)
c (-1 I 1)

a sum of seven different band-limited functions of the type

a!
3

)f.(

t = h2(t) e
3 a.
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11)g( )P (x)dx)] di

dx}

dx]

dx] di (B. 9. 1)

dx] d1

dx]

dx]

(B. 9. 2)




