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The multimedia capabilities of computers have recently become the focus of 

computer developers due to the increasing demand for advanced computer graphics and 

new media capabilities, such as video conferencing, 3-D visualization, and animation. To 

support these multimedia capabilities, specialized graphics hardware, such as MPEG 

encoding/decoding card, 3-D graphics card, video card, and sound card, are widely used 

today, but the price of a separate board is expensive. Therefore, the processor must be 

redesigned from the ground up to handle new media applications. Although these 

multimedia functions are typically consist of simple operations, their sheer volume of 

computation creates a flood of data. To support such large volumes of multimedia data 

computation, Sun Microsystems implemented a specialized instruction set, called VISTm 

(Visual Instruction Set), which is Single Instruction Multiple Data (SIMD) style of 
instruction. The basic concept behind VIS is to break the pipeline of the Floating Point 

Unit (FPU) into two or four parallel pipelines to perform four or eight separate 16-bit or 

8-bit integer additions in one cycle, instead of one floating-point addition. 

The Electronics and Telecommunications Research Institute (ETRI) in South 
Korea has researched a 64-bit multimedia enhanced on-chip multiprocessor named 

Raptor, which has quad processors and shares a common Graphics Control Unit (GCU). 

Raptor implements multimedia support directly on the processor using specialized 

instructions, GCU Instructions, which are variant of VIS instructions, and hardware 

supports. Each processor of Raptor executes multimedia applications independently and 
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the independent streams or threads of multimedia instructions compute for and share a 

single GCU. 

The major theme of this thesis is to design the GCU architecture and to simulate 

it. The GCU can simultaneously execute the independent instruction streams from four 

General Processors (GP) and resolves the dependencies among the instructions 
dynamically. 
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THE ARCHITECTURE OF A MULTIMEDIA MULTIPROCESSOR  

1 INTRODUCTION 

The multimedia processor or media processor has recently become the focus of 

both software and hardware developers due to the increasing demand for advanced 

graphics and new media capabilities, such as video conferencing, 3-D visualization, and 

animation. Multimedia processor may be defined as a processor that integrates multiple, 

concurrent media processing tasks required for such applications as virtual reality, 

interactive presentation of entertainment or educational titles, video teleconferencing, 

video authoring, or selection and distribution of movies from satellite channels (including 

real-time data compression and encryption) [1]. Now consumers are demanding a new 

class of machines, which incorporate extensive network and collaborative workgroup 

capabilities, rapid access to pictorial databases, and support for real-time video and audio 

at broadcast-level quality. 

There are several approaches for accommodating this explosion in new media 

processing and workplace interconnection. The conventional approach is to expand the 

network bandwidth and increase the processor clock rates, but this cannot suffice all the 

demands. The common method widely used today is specialized graphics hardware such 

as MPEG encoding/decoding card, 3-D graphics card, video card, and sound card and so 

on, but the price of separate board is expensive. Therefore, the processor must be 

redesigned from the ground up to handle new media applications and network computing. 

The processor is responsible for handling high-speed graphics, 2-D and 3-D 

imaging, video processing, and image compression/decompression. Although these 

functions typically consist of simple operations, their sheer volume creates a flood of 

data. To support such large volumes of multimedia data computation, Sun Microsystems 

implemented a specialized instruction set, called VISTM (Visual Instruction Set), which is 

Single Instruction Multiple Data (SIMD) style instructions. The basic concept behind 

VIS is to break the pipeline of Floating Point Unit (FPU) into two or four parallel 
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pipelines to perform four or eight separate 16-bit or 8-bit integer additions in one cycle, 

instead of one floating-point addition. This novel idea was quickly accepted and further 

extended by Intel in their P55C design, and re-emerged as MMXTM [2]. 

Today's integrated circuit technology gives more options to processor designers 

and the technology has matured to a point where the development of on-chip 
multiprocessors is feasible. For instance, the Hydra research group of Stanford has been 

actively studying on-chip multiprocessors and showed that this design has an advantage 

over wide-issue superscalar architecture, especially when the application has large 

number of active processes or independent threads [3]. The Electronics and 
Telecommunications Research Institute (ETRI) in South Korea has performed research on 

64-bit multimedia enhanced on-chip multiprocessor named Raptor, which has quad 

processors and shares a common Graphics Control Unit (GCU). Raptor implements 

multimedia support directly on the processor using specialized instructions, GCU 
Instructions, and hardware supports. Each processor of Raptor executes multimedia 

applications independently and the independent streams or threads of multimedia 
instructions compete for and share a single GCU. The GCU executes its own GCU 

Instructions, which are variant of VIS instructions. 

1.1 Objectives and Scope of the Thesis 

This thesis describes the design and the simulation study of the GCU architecture. 

The objective of the thesis is three folds: First, to study the current trends in multimedia 

processing. Second, to propose and design a new architecture for multimedia processing. 

Third, to perform performance studies using simulation. 

1.2 Outline of the Thesis 

The organization of the thesis is as follows: The background of multimedia 
processing is discussed in Chapter 2. It describes two fundamental aspects of multimedia 
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processings - pixel and color representation, and data compression. Chapter 3 explains 

how the addition of SIMD style instructions, such as VIS or MMX, provide improved 

performance. Chapter 4 discusses the overall architecture of a multimedia enhanced on-

chip multiprocessor, called Raptor, and the architecture of GCU. Chapter 5 provides the 

simulation results of GCU. Finally, a conclusion is presented in Chapter 6. 
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BACKGROUND IN MULTIMEDIA PROCESSING2 

From the user's perspective, the term multimedia refers to computer information 

that can be represented through audio and/or video, as well as image, graphics and 

animation [4]. To understand the architectural requirements of multimedia processing, 

we first need to understand the basics of computer graphics. First, how pixels and colors 

are represented in computer systems is introduced. Second, how images are displayed 

through the monitor is described. And finally, different data compression techniques will 

be discussed. The amount of the multimedia data, especially motion pictures, are 
enormous, therefore data has to be first compressed before they are stored and/or 
transferred. 

2.1 Basics of Computer Graphics 

Computer graphics refer to any data intended for display on an output device, such 

as a screen, a printer, a plotter, a film recorder, or a videotape [4]. Moreover, an image is 

a spatial representation of an object, a two- or three-dimensional scene, or another image. 

An image may be thought of as a continuous function with resulting values of the light 

intensity at each point over a planar region [5]. For digital computer operations, this 

function needs to be sampled at discrete intervals. The sampling quantizes the intensity 

values into discrete levels. The points at which an image is sampled are known as picture 

elements, commonly abbreviated as pixels. The intensity at each pixel is represented by 

an integer, and is determined from the continuous image by averaging over a small 

neighborhood around the pixel location. If there are just two intensity values, for 
example, black and white, they are represented by the numbers 0 and 1. When an 8-bit 

integer is used to store each pixel value, the values range from 0 (black) to 255 (white). 

There are different types of images, e.g., bi-level, gray-scale, color, and 

photographic-quality images. An example of pixel representations for bi-level, gray-

scale, and color images are shown in Figure 2.1. Bi-level or binary images use only two 
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intensity levels, one for the "information" and another for the "background". Therefore, 

each pixel is a single bit, whose value is either 0 or 1. Gray-scale images use multiple 
intensity levels to record the shadings between black and white. Gray-scale imaging 

techniques are appropriate for monochrome photographs and medical images where an 

accurate representation of shading is important. Color and photographic-quality images 

use multiple intensity levels and filtering to capture the brightness level for each of the 

three primary colors in visible light, i.e., red, green, and blue. Each pixel requires up to 

24 bits or more. 

Intensity/Brightness Level 

B 1 bit 

MIMIM == =I NMMII=1===== MIMI MN I=Nomm.12.==min ulm.I.=.11.11. .;tv ==.11UMW IIMIC all IM=1
111116..iriZTT% r IMIIMI=15%.== MI =MI == ii:51=NM = == NEMNIM -----'--------.--------------------------------------------------------- R 

Bi-level 

Gray-scale 

111 

n bits 

G 11 3 x n bits 

Pixel B 11 
Color 

Figure 2.1: Pixel Representation [6] 

2.1.1 Color Representation 

The most common color systems used in computer graphics are the primary 3-

color systems [5]. With such systems, a color is defined by specifying an ordered set of 
three values. Composite colors are created by mixing varying amounts of the three 

primary colors, which results in the creation of a new color. This subsection describes 
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some of the common color systems. Table 2.1 shows the corresponding values for the 

primary and achromatic colors using the RGB, CMY, and HSV color systems. 

RGB CMY HSV 

Red 255,0,0 0,255,255 0,240,120 

Yellow 255,255,0 0,0,255 40,240,120 

Green 0,255,0 255,0,255 80,240,120 

Cyan 0,255,255 255,0,0 120,240,120 

Blue 0,0,255 255,255,0 160,240,120 

Magenta 255,0,255 0,255,0 200,240,120 

Black 0,0,0 255,255,255 160,0,0 

Shades of Gray 63,63,63 191,191,191 160,0,59 

Shades of Gray 127,127,127 127,127,127 160,0,120 

Shades of Gray 191,191,191 63,63,63 160,0,180 

White 255,255,255 0,0,0 160,0,240 

Table 2.1: Equivalent RGB, CMY, and HSV values [5] 

RGB (Red-Green-Blue) 

RGB is the most widely used color system today. It is called an additive system 

because colors are created by adding colors to black to create new colors. Graphics files 

using the RGB color system represent each pixel as a color triplet, three numerical values 

in the form of (R,G,B), each representing the amount of red, green, and blue in the pixel, 

respectively. For example, if the color system uses 24-bit color, 8-bits each for the three 

primary colors. For instance, (0,0,0) represents black, and (255,255,255) represents 

white. When the three RGB values are set to the same value such as (65,65,65) or 

(120,120,120), the resulting color is a shade of gray. 
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CMY (Cyan-Magenta-Yellow) 

CMY is a subtractive color system used by printers and photographers for the 

rendering of colors with ink or emulsion, normally on a white surface. It is used by most 

hard-copy devices that deposit color pigments on white paper, such as laser and ink-jet 

printers. When illuminated, each of the three colors absorbs its complementary light 

color. For example, cyan absorbs red, magenta absorbs green, and yellow absorbs blue. 

This color system is referred to as subtractive because the colors are subtracted from the 

white light by pigments to create new colors. For example, when cyan and magenta are 

absorbed, the resulting color is yellow. The yellow pigment is said to "subtract" the cyan 

and magenta components from the reflected light. When all of the CMY components are 

subtracted, or absorbed, the resulting color is black. The representation of CMY is just 

the opposite of RGB. For example, (255,255,255) is black, and (0,0,0) is white. 

HSV (Hue, Saturation, and Value) 

In the HSV color system, hue specifies a "color" in the common use of the term, 

such as red, orange, blue, and so on. Saturation refers to the amount of white in a hue. A 

fully saturated hue contains no white, and appears pure, and a partly saturated hue appears 

lighter in color due to the mixture of white. For example, red hue with 50 percent 
saturation appears pink. Value (also called brightness) is the degree of self-luminescence 

of a color, which means how much light it emits. A hue with high intensity is very bright, 

while a hue with low intensity is dark. HSV closely resembles the color system used by 

painters and other artists, who create colors by adding white, black, and gray to pure 

pigments to create tints, shades, and tones. 

YUV (Y-signal, U-signal, and V-signal) 

The YUV model utilizes the characteristics of human eyes, which are more 

sensitive to brightness than any color information. Therefore, it is more suitable color 

system than others. It is basically a linear transformation of RGB image data and is most 
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widely used to encode color for use in television transformation. Y specifies the 

brightness information (luminance). The Y of any color can be calculated from the 
following weighted sum: 

Y = 0.3R + 0.6G + 0.1B; 

The scaling is chosen such that the luminance is also expressed by a relative scale 

from 0 to 1 and the weights reflect the contributions of the individual primaries to the 

total luminance. The term chrominance is defined as the difference between a color and a 

reference white at the same luminance. Therefore, the chrominance information can be 

expressed by a set of color differences, U and V, where U and V are defined by: 

U = B Y;  
V = R Y;  

These color differences are zero whenever R = G = B, as this condition produces gray, 

which has no chrominance. The U component controls colors ranging from blue (U > 0) 

to yellow (U < 0), whereas the V component controls colors ranging from red (V > 0) to 

blue-green (V < 0). 

YCBCR 

This color system is closely related to YUV. It uses the same Y coordinate as the 

YUV system, whereas U and V are scaled and zero-shifted to produce the variables CB 

and CR, respectively. The equations are: 

CB = (U/2) + 0.5;  

CR = (V/1.6) + 0.5;  

With this scaling and zero shifting the chrominance values are always in the range 0 to 1. 
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2.1.2 Raster Display 

Current output technology uses raster display, which stores display primitives in a 

Refresh Buffer in terms of their component pixels. Figure 2.2 shows the architecture of a 

raster display. 

(Display Commands) 
(Interaction Data) 

Display Controller 

y Refresh Buffer 
00000000000000000000  
00000000000000000000  
00000000111000000000  
00011111111111111000 111111111111111111.11.16.  
00011111111111111000  
00011110000001111000 Video Controller  
00011111111111111000 
00011111100111111000  
00011111100111111000  
00000000000000000000  

Displyed Image 
Scanned Image (Formed from Raster) 

Figure 2.2: Architecture of a Raster Display [4] 

The Display Controller receives and interprets sequences of display commands 

from the CPU and figures out which pixels are being drawn and what color or value they 

should be, and the pixels are drawn by writing the new values into the Refresh Buffer 

(bitmap). The Video Controller reads the Refresh Buffer and interprets the pixel values 

of the Refresh Buffer into their colors and creates the video signals that drive the monitor. 

The Refresh Buffer is reread each time the monitor image is refreshed. Because this 

http:111111111111111111.11.16
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typically happens 60 to 80 times per second, the Refresh Buffer is effectively displayed 

flawlessly. 

2.1.3 Color Display 

When the Video Controller interprets the bitmap pixel values into their resulting 

colors, it uses Look-Up Tables (LUTs) or called a palette, which is a 1-dimensional array 

of color values. These colors are not stored in the bitmap directly. The main reason is to 

save bitmap memory. If the system uses RGB color system with 256 colors, it would 

require about 2.5 MB for the bitmap if the bitmap has a resolution of 1,024x800 pixels, 

since 256 levels requires 8 bits (28 = 256), or 1 byte, and a full color requires 3 bytes. But 

in practice, 8 bits per pixel is used with LUT. Eight bits allow up to 256 different colors 

on the screen at the same time. The entire 1,024x800 bitmap would then fit into just 1 

MB (1,024x800 = 819,200) of memory. Then, the color numbers have to be interpreted 

into real RGB colors. 

Pixel Value in File 

(1,2,8) 

LUT 
0 

1 

(Palette) 
(255,0,0) 
(255,0,0) Output Device 

2 (255,0,0) 

Looks in 
LUT to 
translate "8" 

3 

4 
5 
6 
7 

8 

9 

(255,0,0) 
(200,10,0) 
(200,10,10) 
(100,0,0) 
(100,0,0) 
(0,0,0) 
(255,0,0) 8 

(0,0,0) is the 
numerical 
values used by 
the device to 
produce black 

means black 

Black Pixel 

Figure 2.3: Using a LUT to specify a color [5] 
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This interpretation is done in the LUT shown in Figure 2.3. The LUT converts the 

color numbers, usually called the color index values or pseudo colors, from the bitmap 

into their assigned RGB colors. There are 256 entries in LUT and each entry holds a 24-

bit (8 bits per color component) RGB value. For instance, if the pixel value in a file is 

(1,2,8), the rendering application reads and examines the pixel value from the file and 

uses it as an index into the LUT, and it retrieves the value of the color from the LUT. 

Finally, it uses the LUT to specify a colored pixel on an output device. 

2.2 Data Compression 

This subsection examines the function of data compression in transforming 
multimedia information. Even the most effective compression technique available today 

cannot overcome all the storage and bandwidth demands of text, graphics, speech, audio, 

image, and video data. Figure 2.4 depicts the storage requirements of the case of a single 

FAX page, image, slide, 5-minute audio, or video presentations. 

Whatever presentation method is chosen, the storage for uncompressed audio, 

images, and video is huge. This makes it difficult to deliver multimedia data in real time. 

But with data compression, the situation is more manageable, except for video. Therefore, 

an efficient compression technique is a critical element in a multimedia system. Many 

advances have been made in compressing multimedia data by exploiting the limitations of 

human auditory and visual systems. Humans, who usually are the end receivers of the 

data, do not need, or cannot use, all the information captured during digitization. 
Powerful and complex models for speech, audio, image, and video data have been created 

using what is described as perceptual coding techniques that exploit the limitations of 

human ears and eyes [6]. Among these compression techniques, JPEG (Joint 
Photographic Experts Group) is an international standard for still images, and MPEG 

(Moving Picture Experts group) is an international standard of motion pictures. The 

following subsections briefly introduce these two compression algorithms. 
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Uncom pressed Corn pressed 

MB 
100,000 

10,000 

1,000 

100 

18M 

10 4.5M 

1.6M 
1 468K 

0.1 79K 
4:1 

32K 

0.01 
4K 

2K 
20:1 

15:1 
0.001 2:1 

Text Fax Computer 35MM 
Image Slide 
SVGA 

1Page 1Page llm age 1Slide 

37G 

1.1G 620M 
342M 

53M 46M 

11M  
4.9M  

60:1 

25:1 
5:1 70:1 

Audio Videoconf- TV- HDTV 
CD- erence Quality High-
Quality ISDN Quality 
Stereo Video-

Quality 
....<___ 5 Minute Presentation 

Figure 2.4: Storage Requirement [6] 

2.2.1 JPEG 

Uncompressed photographic-quality images are too expensive to transmit or store, 

because they typically use 24-bits per pixel (8-bits each for the RGB components). JPEG 

group accomplishes 10:1 compression ratio with visually lossless image fidelity. It takes 
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advantage of the redundancy and the irrelevancy of the image. There are two kinds of 

redundancy in image compression. One is a statistical redundancy, which occurs in a 

sequence of symbols. This can be removed by lossless compression algorithms, such as 

Huffman and arithmetic entropy coding, which JPEG uses in its final stage of coding. 

The basic idea of statistical coding, which includes Huffman and arithmetic coding, is 

that by observing how often particular symbols occur, shorter codewords are assigned to 

frequently occurring, more-probable symbols, and longer codewords are assigned to 

infrequently occurring, less-probable symbols. For example, the Huffman code is 
constructed by building a binary tree where the leaves of the tree are the probabilities of 

the symbols to be coded. The tree is built starting at the leaves and working toward the 

root of the tree, which is shown in Figure 2.5. 

Root 

11.0 
0 

0.5 
0 

0.25 
0 

0.125 
I0 

Probability 0.5 0.25 0.125 0.0625 0.0625 

Symbols A B C D E 

Code 1 01 001 0001 0000 

Symbol: AECBD Huffman code: 10000001010001 

Figure 2.5: Huffman Coding [5] 
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To begin the process, the symbols are ranked in order of their frequency of 
occurrence. Next, the two symbols with the smallest probabilities are replaced by an 

intermediate node representing a subgroup whose probability is the sum of both symbols. 

Then, the next least frequent pair of symbols or subgroups is located and replaced by an 

intermediate node. The process continues until all the symbols have been combined into 

a single structure called a Huffman code tree. The final step is to assign codewords to the 

symbols. This is accomplished by tracing the tree beginning at the root node and 
continuing to the leaf node for each symbol. 

The other redundancy is a spatial redundancy. Within images, neighboring 

elements for any one of the RGB or YCBCR matrices are highly correlated because all the 

pixels in a region of the image tend to represent the same luminance, or chrominance. 

JPEG also uses irrelevancy of the image through the quantization technique. The 

human eye is less sensitive to chrominance than to luminance, meaning that fewer bits are 

needed for chrominance information, and it can be coded more coarsely than for 
luminance information. And the human eye is most sensitive to mid-spatial frequencies 

and not so sensitive to low- and high-spatial frequencies. This allows designers to make 

compromises in the fidelity of edge contours where rapid transitions in brightness occur. 

Also, the human eye is less sensitive to quantization distortions at high luminance levels, 

and this allows more coarse quantization to save bits. 

These data compression concepts are embodied in the JPEG standard for still, 

color image compression. Figure 2.6 shows the basic mode of JPEG encoding and 
decoding. To begin the process, the components of digitized image are decomposed into 

sequence of 8x8 pixels and placed in a Frame Store. The algorithm operates on each 

component of the image. It produces a single compressed image for gray-scale images, 

one for each of the RGB color components or YCBCR luminance-chrominance 
components, or whatever the chosen image representation it is. JPEG does not specify 

how the image should be represented, so any color transformation, for example RGB to 

YCBCR transformation, where luminance-chrominance differences can be best exploited, 

must precede before it is placed in a frame store. 
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Figure 2.6: JPEG Encoding and Decoding [6] 

The JPEG encoding algorithm breaks each image component into blocks of 8x8 

pixels and processes each block as follows: 

Spatial redundancy within the image is removed with Discrete Cosine 
Transform (DCT) coding. The objective of transform coding is to decorrelate 

the image pixels; that is, statistically dependent image elements are converted 

into independent coefficients in a transformed space, where the energy of the 

image is concentrated onto as few coefficients as possible. This allows 

removing the irrelevant components within the image during the next step. 

Irrelevancy reduction occurs when lossy compression is applied and the DCT 

coefficients are quantized. Quantization, which is the process of scaling the 

DCT coefficients and truncating them to integer values, allows us to reduce 

the accuracy. This is very important in image compression, as it tends to make 

many coefficients zeros, especially those images with high spatial frequencies. 
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Statistical redundancy reduction occurs when lossless compression is 

performed using Run-Length and Huffman entropy coding. 

By reversing the encoding sequences, the JPEG decoder produces an approximate 

representation of the original input image. Let examine the JPEG encoding and 

decoding process more closely as shown in Figure 2. , which shows how JPEG processes 

blocks of 8x8 pixels. This figure shows the transformation of a small, a set of shaded 

gray squares in a field of white. After decoding the actual value is changed, but the 

human eye cannot distinguish the differences. The steps JPEG uses to process images are 

also used in the video compression algorithm such as MPEG. 

The encoding process starts with the DCT step that transforms the two-
dimensional block of pixels from the spatial domain to a two-dimensional array of 
frequency coefficients in the frequency domain, where only a few data points are required 

to represent the image. Before the DCT step, the spatial domain pixel values are 
threshold shifted by 128, becoming positive and negative values. Figure 2.7.a shows a 

spatial representation or spatial domain [6], which represents the 8x8 matrix of 64 
values, each with x and y coordinates. 

Figure 2.7.b shows the DCT coefficients after DCT conversion step. Row 0, 

column 0 has the DCT coefficient of -784, which is much larger than the other 63 
coefficients, and is called DC coefficient. The DC coefficient represents an average of the 

overall value of the 8x8 input matrix. The other 63 coefficients are called AC 
coefficients and the AC coefficients become smaller and smaller in value as the distance 

from the DC coefficient increases. This means the reduction in data representation, since 

only a small set of values is really useful in defining the matrix of Figure 2.7.b. 
Obviously this is lossy step, but fortunately the human eye may not detect the loss of data. 

Figure 2.7.c shows the quantization step, which reduces the number of bits 
required to store the values of the matrix. JPEG uses quantization tables, derived from 

extensive empirical experimentation. This process attempts to determine what 
information can be safely discarded without a significant loss in visual fidelity. 
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Encoder	 Decoder 

0 0 0 0 0 0 0 0 0 1 2 I 1 2 1 0 

0 32 32 32 32 32 32 0 0 32 38 14 14 38 32 0 

0 32 64 64 64 64 32 0 2 39 66 68 68 66 39 2 

0 32 64 128 128 64 32 0 4 17 69 130 130 69 17 4 

0 32 64 128 128 64 32 0 4 17 69 130 130 69 17 4 

0 32 64 64 64 64 32 0 2 39 66 68 68 66 39 2 

0 32 32 32 32 32 32 0 0 32 38 14 14 38 32 0 

0 0 0 0 0 0 0 0 0 1 2 I 1 2 1 0 

(a)	 (f) t IDCTDC Coefficient DCT 

`784 0 -164 0 -16 0 -19 0 - 784 0 -160 0 -24 0 0 0 

0 32 0 0 0 0 0 0 0 32 0 0 0 0 0 0 

-164 32 137 0 -21 0 11 0 -168 32 144 0 -40 0 0 0 

0 32 0 0 0 0 0 0 0 32 0 0 0 0 0 0 

-16 32 -21 0 48 0 -9 0 -18 32 -37 0 68 0 0 0 

0 32 0 0 0 0 0 0 0 32 0 0 0 0 0 0 

-19 32 11 0 -9 0 23 0 0 32 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(b)	 (e)
Quantization Highest Frequency Dequantization

Coefficient 

0 ;16_ 0 ,-1_ 0 0 0 - 49 0 -16 0 -1 0 0 0 

Q' 9' 9-- ,fr fr Q-- frf 0 0 0 00 0 0 0 

-IV" 9,- /9/ ,G-' -12 0 9 0 -1 0 0 001 -	 )0,-' ;I' 9.-- o-' 0 0 0 0 0 0 0 0 

, o- 0,---q,--"o; -1 0 -1 0 0 0 01 

A-' ,O" Q.- 0, a 0 0 0 0 0 0 0 0 

9-' 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

(c)	 (d) 
-49 0 0 -12 0 0 0 0 EOB 

Transmit 

Figure 2.7: JPEG 8x8 Pixel Block Coding [6] 
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Table 2.2 shows a sample quantization table. For example, DC coefficient is 

quantized to integer number - 49, which is calculated by - 784 divided by 16, the first row 

of first column of the quantization table. 

16	 11 10 16 24 40 51 61 

12 14 19 26 58 60 5512 
14 13 16 24 40 57 69 56 
14 17 22 29 51 87 80 62 
18 22 37 56 68 109 103 77 
24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 99 

Table 2.2: Quantization Table [7] 

The quantized coefficients are further compressed by the entropy coding such as 

Huffman coding and arithmetic coding. To get better compression ratio, JPEG reorders 

the sequence of the quantized DCT coefficients in a zigzag sequence, shown in Figure 

2.7.c. By doing this, the zero coefficients are grouped well. Finally, the decoding 

sequence is reverse the order of the encoding sequence. 

2.2.2 MPEG 

In 1998, the Moving Picture Experts Group (MPEG) began working to develop 

international standards for digital audio and video transmission and storage. They 

produced MPEG-1 and MPEG-2, and MPEG-4 will be introduced in 1998 [6]. Table 2.3 

shows these standards. 



19 

MPEG-1 MPEG-2 MPEG-4 

Final Draft 1992 1995 1998 

Data Rate 5_ 1.86 Mbps 5_ 4 Mbps 64 Kbps 

Resolution - Maximum 720 x 576 1920 x 1152 na 

- Typical 352 x 240 Varies by Application na 

Frame Rate - Maximum 30 fps 60 fps na 

Coding Methods DCT & BMCP DCT & BMCP DCT & BMCP ? 
(bidirectional 
motion-compensated Object Oriented ? 

prediction) 

Applications < SDTV-quality SDTV HDTV- Video on PSTN 
video storage on quality storage & and mobile 
CD-ROM & transmission networks Video 
transmission on low-capacity 

storage devices 

Table 2.3: MPEG Parameters [6] 

MPEG-1 was designed for playback of stored multimedia and, by performing 

significant between-frame compression on limited-resolution pictures, aimed to get 

visually acceptable picture quality at the 1.2 Mbps video data rate provided by CD-ROM. 

In contrast, MPEG-2 is intended for both playback and conferencing, providing 
considerable flexibility in the amount of between-frame processing and the use of much 

higher-resolution pictures at higher data rates. MPEG-2 can produce the video quality 
needed for multimedia entertainment piped to the home and for more demanding business 

and scientific applications as well. MPEG-2 also supports the picture resolution and 

quality needed for HDTV. MPEG-4, still in the process of becoming a standard, has a 

different set of objectives. It is to provide video on low-bandwidth transmission links or 

for low-capacity storage devices where no existing standardized video compression 

algorithm has proved satisfactory [6]. 

The MPEG video compression standard has the identical algorithms to the JPEG 

algorithm during the initial stages. In addition to the JPEG algorithm, MPEG applies 

several more levels of block-based motion-compensation techniques to reduce temporal 
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redundancy that all video sequences contain because persons or objects in the scene do 

not move very much from frame to frame. Motion compensation compression and 

coding discard frames whose absence would not significantly deteriorate the perception 

of the human eye and brain. 

Moving pictures consist of sequences of video pictures or frames that are played 

back a fixed number of frames per second. Furthermore, to achieve the requirement of 

random access, a set of pictures can be defined to form a Group of Pictures (GOP), 
consisting of one or more of the three types of pictures, which are intrapictures (I), 
unidirectionally predicted pictures (P), and bidirectionally predicted pictures (B) [8]. 

Figure 2.8: MPEG Group of Pictures (GOP) [5] 

Figure 2.8 shows a MPEG GOP. A GOP consists of consecutive pictures that 

begin with an I-picture. The I-picture is coded without any reference to any other picture 

in the group. I-pictures can be placed anywhere in the sequence and can be utilized for 

random access to the sequence. P-pictures are interframe coded with a reference to the 

closest past I- or P-pictures, and motion compensated prediction is used for interframe 

coding. P-pictures provide more compression and serve as references for bi-directional 
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prediction for coding B-pictures (those between I- and P-pictures). B-pictures are coded 

using both past and future pictures as reference. They provide the most compression. B-

pictures are never used as references. In other words, an I-picture or P-picture is utilized 

to code the current B-picture by using motion compensation. 

Motion compensation is the basis for the MPEG compression algorithm. The idea 

is to reduce the number of bits to be transmitted by finding the temporal redundancy that 

exists between frames in the video data stream. The intensity and color of an object will 

change only slightly from frame to frame. Also, if the object moves, its motion is slight. 

Therefore, when coding a new frame, it uses frames that have already been encoded to 

predict what the object will be and where it will be. To make it easier to compare frames, 

a frame is not encoded as a whole. Instead, it is split into blocks, and the blocks are 

encoded. For each block in the frame to be encoded (that is, the current frame being 

addressed), the best matching block in the reference frame (for example, the I-frame) is 

searched among a number of candidate blocks. For each block, a motion vector is 
generated. A motion vector may be viewed as an analytical indication of the new location 

in the frame being encoded from an existing block in the reference frame. In a sense this 

is an attempt to match up the new location of a moved object. Figure 2.9 shows the 

motion compensated prediction. 

tolBest 

......"... 

-v5,-6, 
to be Coded 

3\06(
1\fkot01\lectovFame 

Fverepve\Aolvaoo S 

v 6( Y 

Figure 2.9: Motion Compensated Prediction [6]. 
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The process of matching up can be based on prediction or interpolation. 
Prediction requires only the current frame and the reference frame. Based on the motion 

vector values generated, the prediction approach attempts to find the relative new position 

of the object and confirms it by comparing some blocks exhaustively. The motion vector 

is a pair of x-offset and y-offset, that specifies the differences from current block. In the 

interpolation approach, the motion vectors are generated in relation to two reference 

frames, one from the past and the next predicted frame. The best-matching blocks in both 

reference frames are searched, and the average is taken as the position of the block in the 

current frame. 

The MPEG standard allows the encoder to choose the frequency of occurrence of 

I-, P-, and B-pictures based on application-specific needs for random accessibility, coding 

delay, visual image fidelity, and compressed video stream bit rates. Coding the bit stream 

with only I-pictures improves random accessibility and editibility but achieves low 

compression. Coding with only I- and P-pictures achieves moderate compression while 

still allowing random access and fast-forward/fast-reverse searches through the encoded 

bit stream. Using I-, P-, and B-pictures provides the most compression, as B-pictures can 

be coded in very few bits, leaving more bits for I- or P-pictures. It is advantageous to use 

more B-pictures but, as can be deduced from Figure 2.8, there is a drawback. When the 

number of B-pictures in a GOP is increased, the random access points into the video 

stream grow further apart and the encoding (and decoding too) delay time grows longer, 

characteristics that many applications cannot tolerate [6]. 
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3 BENEFITS OF SIMD APPROACH 

This chapter explains how SIMD (Single Instruction Multiple Data) model such 

as the VISTM from Sun Microsystems or the MMXTM from Intel provide the performance 

improvement on multimedia applications. This chapter also presents some examples that 

highlight the performance benefits of SIMD model on multimedia processing. 

3.1 Introduction 

The multimedia applications, which include MPEG 1/2 video encoder/decoder, 

music synthesis, speech compression, speech recognition, image processing, 3-D graphics 

in games, video conferencing, modem, and audio applications, are built out of a few key 

computing-intensive routines. Where the applications spend most of its execution time to 

that routines and have the following common characteristics [9]: 

Small, native data types (for example, 8-bit pixels) 

Regular and recurring memory access patterns 

Localized, recurring operations performed on the data computing-intensive 

Most of the multimedia data operands' sizes are either 8-bits or 16-bits, and 
multimedia processing typically involves performing the same computation on a large 

number of adjacent data elements. This common behavior is well suited with SIMD 

model of computation because the data elements (8 and 16-bits) can be packed together 

and operated in parallel. Figure 3.1 illustrates the performance advantages of a packed 

four 8-bit by 16-bit data multiplication. It performs four 8x16 multiplication in a single 

cycle instead of four separate multiplication. This type of computation is needed when 

manipulating the images. For example, alpha blending blends two images together. The 

formula of this function is as follows: 

dst = (alpha/256) * s1 + (1-alpah/256) * s2; 
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For each pair of corresponding pixels in two images 's l' and 's2', a corresponding 

pixel is computed from a third control image 'alpha', which is loaded as a 16-bit variable. 

Without SIMD model instruction, only one multiplication can be performed, but SIMD 

model instruction shown in Figure 3.1 can perform four multiplication in a cycle. 

A B C D/ / / i 
31 /15 7 

63 47 7 31/ 15 

W Z Z/
Xi Yi 

x x x x 

msb 47 msb msb 15 msb63 31 
V V V V 

A x W B x X C x Y D x Z 

Figure 3.1: Four Multiplication Performed in a Single Cycle [10] 

3.2 Data Formats for Graphics 

The data types used in SIMD model are implementation dependent, but VIS and 

MMX chose 64-bits based on their design considerations. They use partitioned data 

format or packed data format to store pixel information. Usually, pixel information is 

stored as four 8-bit integer values. Typically, these four values represent the RGB color 

components and the alpha information. Fixed data formats provide an intermediate 

format with enough precision and dynamic range for filtering and simple image 
computations on pixel values. For example, 3-D rendering requires a smooth 
interpolation between the maximum and minimum intensity. By expanding an 8-bit color 

component to a 16-bit format, this operation is able to retain sufficient precision for a 
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smooth interpolation. In the case of VIS, the visfexpand0 instruction converts 8-bit 
element to 16-bit element by inserting four zeroes to the right and to the left of each byte. 

Figure 3.2 shows these two data formats. 

Figure 3.2: Data Formats [10] 

3.3 Performance Advantages in Multimedia Applications 

Let us inspect some examples of multimedia applications to understand how 
SIMD-style instruction set boosts the performance. 

3.3.1 Alpha Blending 

Alpha Blending is an application where two images are blended together and is 

used by software game developers. For example, alpha blending allows racing cars to 
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drive realistically through fog or smoke, provides a more realistic view of fishes in water, 

or a rabbit in a translucent tube. The alpha portion of the pixel value (RGBa) is a 
measure of how transparent the pixel is. The equation to calculate the blended image is 

as follows: 

dst = (alpha/256) * sl + (1-alpah/256) * s2 [9] 
= (sl -s2) * (alpah/256) + sl 

For example, image sl and s2 are to be blended, and the alpha value is 255, the 

image sl is fully opaque and we won't be able to see the image s2. If the alpha value is 0, 

the image s1 is fully transparent and has no effect on the result pixel values. Figure 3.3 

illustrates the images of a flower and a swan blending when alpha is 230. When the alpha 

value is 230, the resulting picture is 90 percent flower and 10 percent swan. On close 

examination, some of the swan image appears in the resulting picture. 

*2301255f * 1 - 230/255 

Figure 3.3: Alpha Blending [11] 

Figure 3.4 shows the main loop of alpha blending from VIS User's Guide [9]. The 

'dbl_sl' and 'dbl_s2' represent 64-bit source data of images s 1 and s2, and each source 

data has two pixels (a, R, G, B, a, R, G, B). The VIS code executes two images at a 

time, where the regular application executes only one component at a time. Therefore, 

VIS can perform six times more execution in a cycle. The algorithm used in VIS code is 

as follows: 
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First, the high half of the source data is read and the 8-bit component is expanded 

to 16-bit component, and the image s2 is subtracted by the image sl. Second, the result 

of the subtraction is multiplied by the a value, and added to image sl. The lower half of 

the source data is processed in the same manner as the higher half. As a final step, the 

16-bit component of the computation result of the higher half and lower half are packed 

to an 8-bit, and stored as a 64-bit variable. 

db1_s1_e = vis_fexpand (vis_read_hi(db1_s1)); P High half of image s1 */ 
db1_s2_e = vis_fexpand (vis_read_hi(db1_s2)); /* High half of image s2 *1 
db1imp2 = vis_fpsubl6 (db1_s2_e, db1_s1_e); /* s2 - s1 */ 
r alpha * (s2 s1)*/ 
db1Jmp1 = visimul8x16 (vis_read_hi(quad_a), db1imp2); 
db1sum1 = visipadd16 (db1_s1_e, db1imp1); r si + (s2 -s1) * alpha */ 

db1_s1_e = visfexpand (vis_read_lo(db1_s1)); P Low half of image s1 */ 
db1_s2_e = visfexpand (vis_read_lo(db1_s2)); /* Low half of image s2 */ 
db1 Jrnp2 = visfpsub16 (db1_s2_e, db1_s1_e); 
db1imp1 = visimul8x16 (vis_read_lo(quad_a), db1_tmp2); 
db1_sum2 = vis_fpaddl6 (db1_s1_e, db1 Jrnp1); 

P rd [63-32] = packed sum1, rd [31-0] = packed sum2 */ 
db1_d = visfreg_pair (vis_fpackl6 (db1_sum1), visfpack16 (db1_sum2)); 

Figure 3.4: Blending two images using VIS [10]. 

The visfpack16 instruction is controlled by the Graphics Status Register (GSR), 

which allows programmers to clip the input values to the dynamic range of the output 

format as the application demands. The vis_fpack16 instruction takes four 16-bit values, 

scales, truncates and clips them into four 8-bit components. This is accomplished by left 

shifting the 16-bit component as determined from the scale factor field of GSR and 

truncating to an 8-bit unsigned integer by rounding and then discarding the least 
significant digits. If the resulting value is negative, zero is returned, and if the value is 
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greater than 255, then 255 is returned. Otherwise, the scaled value is returned. Figure 3.5 

illustrates vis_fpack16 operation. 

63 47 31 15 0 

16-bit component 23 5 7 0 

8-bit component 

3 0 3 0 

GSR.scale_factor 1010 GSR.scale_factor 0100 

15 0 15 0 

16-bit component 16-bit component 

76/ 014 10 0 
r 1_, 

i000p000000 0000 
25 19 

8-bit pixel 8-bit pixel 
7 0 7 0 

Figure 3.5: vis_fpackl6() Operation [10] 

Table 3.1 shows the efficiency of the SIMD model of computation. It compares 

the instruction counts with and without MMX technology for alpha blending. To perform 

the alpha blending operation, MMX requires 1 billion fewer instructions than without 

MMX. 
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Number of Instructions Number of Instructions withOperation without MMX Instructions MMX Instructions 
Load 470 million 117 million 

Unpack 117 million 

Multiply 470 million 117 million 

Add 235 million 58 million 

Pack 58 million 

Store 235 million 58 million 

Total 1.4 billion 525 million 

Table 3.1: Comparing Instruction Counts with and without MMX [11] 

3.3.2 Chroma Keying 

Green Background 

Spring Blossom 
(a) 

Xl=green X2!=green X3=green X4!=green 

pcmpeqw green green green green 
I 

bitmask OxFFFF Ox0000 OxFFFF Ox0000  

4 pixel/cycle  
(b) 

Figure 3.6: Chroma Keying [11]. 
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Chroma keying is an image-composition method used by the television industry 

shown in Figure 3.6. We can easily see a weatherman who seems to be standing in front 

of a weather map. The weatherman stands in front of green wall shown in Figure 3.6.a, 

called a green screen [12]. Her image with the green background is chroma-key overlaid 

onto the video from the remote site. The remote image is displayed wherever the 

weatherman's image is green, meaning the wall behind her. This gives the impression of 

the weatherman standing in front of whatever is going on. The color green in the weather 

map was chosen because it is the most opposite hue (the degree of the brightness) to the 

skin color. 

Figure 3.6.b depicts how the woman from the background is chosen with the 

MMX instruction. This example executes 16-bit pixels in parallel. The top row of the 

data of the Figure 3.6.b is generated by taking four pixels from the picture with the 
woman on a green background, and represents pixels that alternate between green, not 

green, green, and not green. The compare instruction PCMPEQW (Packed Compare 

Word for Equality) builds a mask for that data. That mask is a sequence of words that are 

all ones or all zeros representing the Boolean values of true and false. To extract the 

shape of a woman, the pixels of the zero masks, which represent a woman, are kept, and 

the pixels of the one masks are discarded, and the shape of a woman is shown using a 

shadow picture in Figure 3.6.b. 

Figure 3.7 shows the process of overlapping a woman on the spring blossom. The 

bitmask is now used on the same four pixels from the picture with the woman and the 

equivalent four pixels from the spring blossom. The PANDN (Bit wise Logical AND 

NOT) and PAND (Bit wise Logical AND) instructions use the bitmask to identify which 

pixels to keep from the picture of the woman and the picture of the spring blossom. The 

first row of Figure 3.7 shows the bitmask and PANDN instruction inverts the bitmask and 

performs a logical AND with the four pixels of the picture with the woman on a green 

background. So the result is just X2 and X4 field which are not green pixels, i.e., the 

shape of the woman. The PAND instruction performs a logical AND with the four pixels 

of the picture of the spring blossom, and the results are Y1 and Y3 field, which are not 

woman's shape. And the POR (Bit wise Logical OR) instruction builds the final 
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overlapped picture. In this example, four pixels were mapped using only four MMX 

instructions without any branches. Without MMX, each pixel has to be processed 
separately and requires a conditional branch when choosing which pixel is selected to 

overlap. Therefore, the MMX instructions provide a significant performance advantage. 

Figure 3.7: Overlapping a Woman on the Spring Blossom [11]. 

3.3.3 Sum of Absolute Differences in Motion Compensation 

As already discussed in Chapter 2.2.2, the MPEG is the standard for moving 
motion compression technique. Among the stages of MPEG compression, calculating the 

motion vector, which is called motion compensation, is the most computing intensive 

stage. The motion compensation requires the calculation of an absolute sum of the 

differences between pixel values of two different 16x 16 blocks of the frames, and finds 

the best match. 

Figure 3.8 shows the main loop to compute the sum of differences with C code. 

The src 1, src2, srclPtr, and src2Ptr are pointers to data in the two frames. The processor 
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spends most of the time in accum += abs(*srcl - *src2), which accumulates the absolute 

sum of differences. This code assumes the input frames to be 8-bit gray scale. 

accum = 0; 
for (j =0; j < 16; j++){ 

for (i = 0; i < 16; i++){ 
accum += abs ( *srcl - *src2); 
src1++; src2++; 

} 
src1Ptr = srcl = src1Ptr + stride1; 
src2Ptr = src2 = src2Ptr + stride2; 

} 

Figure 3.8: C Code of 16x16 Sum of Absolute Differences [13]. 

Figure 3.9 shows the same loop code when using VIS instructions. A single VIS 

instruction, vispdist, performs the sum of absolute differences. Each vispdist 
instruction replaces approximately 48 regular C instructions, and the 32 vispdist 

instructions, which are required for a 16x16 pixel block, replace approximately 1,500 

conventional instructions [13]. The VIS code in Figure 3.9 provides a 5.5 times speedup 

over the C code. In terms of cycles, the VIS code required only 441 cycles, compared to 

the C code which required 2,429 cycles. The vis_pdist instruction will be discussed 

further in the next Chapter. 
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for (j = 0; j < 16; j++){ 
for(i = 0; i < 2; i-H-){ 

r load 8 bytes of source data from frame1 *1 
r load 8 bytes of source data from frame2 */ 
accum = vis_pdist (sdl, sd2, accum); 
sal += 8; r next 8 bytes from framel *1 
sa2 += 8; r next 8 bytes from frame2 *1 

} 

} 

Figure 3.9: Sum of Absolute Differences using VIS [13]. 
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4 THE ARCHITECTURE OF ON-CHIP MULTIMEDIA ENHANCED 
MULTIPROCESSOR "RAPTOR" 

Raptor is an experimental architecture proposed by ETRI shown in Figure 4.1. It 

is an on-chip multiprocessor, which has quad 64-bit processors that share a common 

GCU. The External Interface (EI) and four GP blocks are being implemented, and the 

simulator, called Rapsim, which simulates Raptor except GCU, is being developed by 

ETRI. I have designed GCU architecture and defined GCU ISA, and implemented a 

simulator to simulate GCU. 

Chapter 4.1 discusses the organization of Raptor, and Chapter 4.2 shows how to 

resolve dependencies between GP and GCU. GCU ISA and GCU architecture are 
discussed in Chapter 4.3 and Chapter 4.4, and five stage pipeline of GCU is explained in 

Chapter 4.5. The simulation study of GCU will be discussed in detail in Chapter 5. 

/ 
CPU #1 CPU #2  

LT]

0 0

External CPU #3 CPU #4  
Interface  

,  

Figure 4.1: Organization of the Raptor 

4.1 Organization of Raptor 

Raptor has quad General Processors (GP), each having the same structure as 

U1traSPARCTM of Sun Microsystems except the Floating Point Unit (FPU). Figure 4.2 

shows the overall organization of the on-chip multimedia multiprocessor, Raptor. 
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The FPU of U1traSPARC has the Graphics Unit consisting of the Graphics Adder 

and Graphics Multiplier to execute VIS instructions. In Raptor, the four GPs share a 

single GCU. The basic design of GCU consists of four Instruction Buffers (IBs), four 

Graphics Register Files (GRFs), and four Functional Units (FUs). It executes a variant of 

VIS instruction set, which will be defined in the latter part of this Chapter. 

Reg. ALUO 
Fetch & Inst. Inst. File 
Decode Buffer Dispatcher (1) ALU1 

ITLB & 
!cache 

GPI 

(7-3) 

Reg. 
File 
(1) 

(5-3) 

LD/ST 

FADD 

FMUL 

SQT 

GP2 

1 

I 

GP3 

GP4 
AMIN 

..,.. 

-

Graphics 
Dispatcher 

GRFs 
(4) 

(5-3) 

GADD 

GMUL 

GBMU 
I GCU Inst. Buffers GSAD 

RAPTOR 

Figure 4.2: Block Diagram of Raptor 
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The GP pre-decodes instructions and identifies the GCU instructions and passes 

them to IBs of GCU. From the IBs, multiple instructions that have no dependencies are 

issued to the FUs. The GCU has four sets of Reservation Stations (RSs), GRF, and 
Reorder Buffers (ROBs) to support four independent instruction streams from GPs. 

However, the multiple threads share a common set of FUs. The Load/Store Unit of a GP 

is responsible for loading and storing graphics data to/from the GRFs, so all the data that 

GCU needs are obtained only through GRFs. 

1 2 3 GP PipelineI C I 

Rf I FE1 1 FE2 I FE3 1 FPU Pipeline 

GD I GI I GE1 I GE2 I GEi I GW I GC I GCU Pipeline 

Figure 4.3: Pipeline of Raptor. 

Raptor's pipeline structure is similar to an U1traSPARC, except it has a separate 

pipeline for the GCU. Figure 4.3 shows the pipeline of Raptor. Each field represents one 

stage and their meanings are as follows: 

F: Fetch Instructions. 

D: Decode Instructions. Send GCU Instructions to GCU. 

G: Grouping Instructions and Dispatch Integer/Load/Store Instructions. 

E: Execute in Integer ALU. Calculate Address for Load/Store. 

C: Access DTLB and D-Cache. Resolve Branch on Integer Operation.  

Rf: Decode more in FPU.  

GD: Dispatch and Schedule GCU Instructions.  

GI: Issue GCU Instructions.  
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FEi: Execute in FPU. 

GEi: Execute in GCU.  

Ni: Determine D-Cache hit/miss  

N2: Wait for the Floating Point Pipe.  

N3: Resolve Traps.  

Wi: Write results to the corresponding Register File.  

GW: GCU Write Back and Data Forward.  

GC: GCU Commit. Write results to the corresponding GRF.  

The D stage of the Integer Pipeline (IP) decodes the instructions and sends the 

GCU Instructions to the IB of GCU, and the G stage in the IP checks dependencies and 

groups instructions to be issued together. The Ni and N2 stages of IP allow more time 

for the FPU to complete operations, while N3 stage is used to synchronize two pipelines 

before the write stage. 

4.2 Resolving Dependencies between GP and GCU 

Raptor issues out-of-order and completes in-order. Dependencies within a GP are 

resolved by the Grouping stage, and the dependencies within the GCU are resolved using 

its own RSs and ROBs. However, there are also dependencies between GPs and the 
GCU. For example, in the instruction sequence shown in Figure 4.4, $g10 in the Load 

instruction has RAW (Read After Write) dependency with GCU instruction GADD. 

Load $g10, $g2, 100; (1) 

GADD $g10, $g5, $g10; P Graphics ADD */ (2) 

Store $g5, $g10, 100; (3) 

GMUL $g7, $g3, $g8; P Graphics Multiply*/ (4) 

Figure 4.4: Sample Instruction Stream. 
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In order to resolve RAW dependencies, the GRF has two additional fields: a 

valid_gp field and a valid_gcu field. When a GP dispatches the Load instruction in 

Figure 4.4 in the G stage, the valid_gp field of $g10 of GRF is set to zero, which means 

that the $g10 does not have a valid value. Therefore, GCU cannot issue the GADD 

instruction until the Load operation is completed and the valid_gp field is set. When the 

Load operation completes, valid gp field of $g10 is set to one indicating the value is now 

available. The dependencies between the GADD and the Store instructions are checked in 

the G pipeline stage of GP. The G stage checks the dependencies between the GADD and 

the Store instructions and sets the valid_gcu to zero indicating the $g 1 0 is not valid, and 

eliminates the entry of GADD when grouping the instruction for IP and FP Pipelines. The 

reason that the G stage checks this inter-unit dependency is because of timing problems. 

If GADD is stalled in the IB of GCU, and cannot be checked for the dependency in 

Dispatch stage of GCU, the Store instruction might use invalid result from the Load 

instruction. 

4.3 GCU Instruction Set 

The GCU Instruction set is based on a combination of VISTM of SUN 
Microsystems and MMXTM of Intel. The VIS can be categorized into conversion 
instructions, arithmetic/logical instructions, address manipulation instructions, memory 

access instructions, and a motion compensation instruction. Among these instructions, 

address manipulation instructions such as ALIGNADDR operates on the integer register 

file, and memory access instructions such as Block Load and Block Store instructions 

transfers data between memory and floating-point registers of the UltraSPARC. 
Therefore, the GCU ISA does not include these instructions because GCU executes only a 

data from the GRF. MMX has several instructions that VIS does not support. The 

saturation mode addition/subtraction and shift instructions of MMX are useful in 
manipulating pixels. Therefore, some of these instructions were integrated into the GCU 

ISA. 
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4.3.1 Data Types 

The most commonly used data types in multimedia applications are 8-bit and 16-

bit unsigned integers. Pixels typically consist of four 8-bit unsigned integers represented 

within a 32-bit word. For example, a true color often consists of 8-bit values for red, 

green, blue, and a transparency coefficient a. To support this characteristic, GCU has 

four different kinds of partitioned data types. Figure 4.5 shows the partitioned data types. 

For example, partitioned byte can hold two pixels, which is composed of 8-bit R, G, B, 

and a components, and partitioned word can contain four 16-bit elements. 

Partitioned Byte (8 8-bit data) 

Partitioned Word (4 16-bit data) 
I I I 

Partitioned Double Word (2 32-bit data) 

Partitioned Quad Word (1 64-bit data) 

Figure 4.5: Partitioned Data Types 

4.3.2 GCU Instruction Format 

Figure 4.6 shows the format of GCU instructions. Each GP pre-decodes 
instructions and checks the Main-op field. If it detects GCU instructions, they are sent to 

the IBs of the GCU. 
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31 24 23 19 18 14 13 12 11 10 9 8 5 4 0 

Main-op Rd Rsl t p m Sub-op Rs2 

Figure 4.6: GCU Instruction Format 

Main-op: The field is for detecting GCU Instructions. When instructions are  

dispatched to GCU, the Main-op field is discarded.  

Sub-op: This field defines what operation is to be performed in GCU.  

Rsl, Rs2, and Rd: These fields identify two source registers and the  
destination register, respectively.  

t: This field is used to determine which FU is required for the operation, and 

Table 4.1 shows the tag field and the corresponding FU. 

Tag field (t) FU of GCU 

00 GALU 

01 GMUL 

10 GBMU 

11 GSAD 

Table 4.1: Tag Field. 

m: The mode field shows the wrap-around/saturation, shift right/left, greater 

than/less than, double precision/single precision, and high/low of the result of 

the computation. For example, we can distinguish GMULH (Graphics 
Multiply High) and GM ULL (Graphics Multiply Low) according their mode 

field. 



41 

p: This field shows the partitioned data types, and Table 4.2 shows the 
contents of each field. 

p field Partitioned Data Type 

00 Bytes 

01 Words 

10 Double Words 

11 Quad Words 

Table 4.2: p Field. 

4.3.3 GCU Instruction Set Category 

GCU instructions are grouped based FU categories. GCU instruction uses only 

registers for the source operands. Figure 4.7 shows how instruction names are composed, 

and in what follows, how some of the GCU instructions operate will be illustrated. A 

detailed description of VIS ISA can be found in VIS User's Guide, Sun Microsystems, 

1997 [10]. 

High/Low of result data 
Operation Saturation Mode 

GMUL8X16hs sI 
GCU Instruction i Single Precision 

Size of each operand 

Figure 4.7: Composition of GCU Instruction Name 
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GMUL (Graphics Multiply) 

Table 4.3 shows the GMUL instruction set. The issue latency of GMUL 

instructions is one cycle and the operation latency is three cycles. 

Mnemonic SubOp t m Operation Description 

GMUL8x16 0000 01 Rd = (Rsl x Rs2) Multiply 8x16 

GMUL8x16h 0001 01 0 Rd = (Rsl x Rs2)H Multiply 8x16 High 

GMUL8x161 0001 01 1 Rd = (Rsl x Rs2)L Multiply 8x16 Low 

Rd = (Rsl x Rs2) Multiply 8x16 HighGMUL8x16h half 0001 01 1 alfHalf 

Rd = (Rsl x Rs2)GMUL8x161 half 0001 01 1 Multiply 8x16 Low Half 
Half 

Multiply 8x16 HighMultiplyGMUL8x16hs 0001 01 Rd = (Rsl x Rs2)L1 Precision 

Multiply 8x16 LowGMUL8x161s 0001 01 1 Rd = (Rsl x Rs2)L Single Precision 

Table 4.3: GMUL Instruction Set [10] 

GMU L8 x 16 shown in Figure 4.8 multiplies each unsigned 8-bit component within 

the 32-bit pixel by the corresponding signed 16-bit fixed-point component within the 

scale and returns the upper 16-bits of the 24-bit product as a result. The 8th bit is added 

by one and shifted eight bits to right to scale down 24-bit to 16-bit. 
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Pixels B I G 1 D. 

31 23 15 7 0 

Scale W I X Y Z 
I 

63 y MSB 47 y MSB 31 y MSB 15 MSB 

Result AxW BxX C x Y D x ZI 1 

Figure 4.8: GMUL8x16 Operation [10] 

Both GMUL8x16h_half and GMUL8x161_half perform half a multiplication. 

GMUL8x16h_half multiplies the signed upper 8-bit of each 16-bit signed component by 

the corresponding 16-bit fixed-point signed component. The upper 16-bit of the 24-bit 

product is returned in a 16-bit partitioned result. This is the same as GMUL8x16. This 

operation is illustrated in Figure 4.9. GMUL8x161_half on the other hand multiplies the 

unsigned lower 8-bits of each 16-bit element by the corresponding 16-bit element. Each 

24-bit product is rounded at 16th bit and 16-bits are shifted to right with sign-extended 

and the upper 16-bits of the sign extended value are returned. 

AB C D E F G H 
63 55 47 39 31 23 15 0 
63 47 31 15 

\ X \ Y \ Z 

63 y MSB 47 y MSB 31 y MSB 15 MSB 

Result AxW C x X E x Y G x Z 

Figure 4.9: GMUL8x16h_half Operation [10] 
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GALU (Graphics Arithmetic and Logical Unit) 

Table 4.4 shows the GALU instruction set. The arithmetic operation supports 

saturation and wrap-around mode, and the issue and operation latency is one cycle. 
Saturation means that if an addition results in an overflow or a subtraction results in an 

underflow, the result is clamped to the largest or the smallest representable value. For an 

unsigned, 16-bit word, the largest and the smallest representable values are OxFFFFh and 

Ox0000h, respectively. For a signed word, the largest and the smallest representable 

values are Ox7FFFh and Ox8000h, respectively. This saturation function is important for 

pixel calculations to prevent a black pixel from unexpectedly turning to a white pixel. 

Mnemonic SubOp t m p Operation Description 

Addition Partitioned 16-
GADD16 0000 00 0 01 Rd = Rsl + Rs2 bit with Wraparound 

Addition Partitioned 32-
GSADD32 0000 00 0 10 Rd = Rsl + Rs2 bit with Wraparound 

Addition Partitioned 16-GADD16 s 0000 00 1 01 Rd = Rsl + Rs2 bit with Saturation 

Addition Partitioned 32-GADD32 s 0000 00 1 10 Rd = Rsl + Rs2 bit with Saturation 

Addition Partitioned 16-
GADD16s 0001 00 0 01 Rd = Rsl + Rs2 bit with Wraparound, 

Single Precision 

Addition Partitioned 32-
GADD32s 0001 00 0 10 Rd = Rsl + Rs2 bit with Wraparound, 

Single Precision 

Table 4.4: GALU Instruction Set [10] 
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Mnemonic Sub Op t m p Operation Description 

GSUB16 0010 00 0 01 Rd = Rsl - Rs2 Subtraction Partitioned 
16-bit with Wraparound 

GSUB32 0010 00 0 10 Rd = Rsl Rs2 Subtraction Partitioned 
32-bit with Wraparound 

Addition Partitioned 16-
GADD16s s 0001 00 1 01 Rd = Rsl + Rs2 bit with Saturation, 

Single Precision 

Addition Partitioned 32-
GADD32s_s 0001 00 1 10 Rd = Rsl + Rs2 bit with Saturation, 

Single Precision 

GSUB16 s 0010 00 1 01 Rd = Rsl - Rs2 Subtraction Partitioned 
16-bit with Saturation 

GSUB32 s 0010 00 1 10 Rd = Rsl - Rs2 Subtraction Partitioned 
32-bit with Saturation 

Subtraction Partitioned 
GSUB16s 0011 00 0 01 Rd = Rsl Rs2 16-bit with Wraparound, 

Single Precision 

Subtraction Partitioned 
GSUB32s 0011 00 0 10 Rd = Rsl - Rs2 32-bit with Wraparound, 

Single Precision 

Subtraction Partitioned 
GSUB16s s 0011 00 1 01 Rd = Rsl - Rs2 16-bit with Saturation, 

Single Precision 

Subtraction Partitioned 
GSUB32s_s 0011 00 1 10 Rd = Rsl - Rs2 16-bit with Saturation, 

Single Precision 

GCMPEQ8 0100 00 0 00 Rd = Rsl :: Rs2 Compare Equal 
Partitioned 8-bit 

Table 4.4: GALU Instruction Set (Continued) [10] 
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Mnemonic SubOp t m p Operation Description 

GCMPEQ16 0100 00 0 01 Rd = Rsl :: Rs2 Compare Equal 
Partitioned 16-bit 

GCMPEQ32 0100 00 0 10 Rd = Rsl :: Rs2 Compare Equal 
Partitioned 32-bit 

GCMPGT8 0101 00 0 00 Rd = Rsl > Rs2 Compare Greater Than 
Partitioned 8-bit 

GCMPGT16 0101 00 0 01 Rd = Rsl > Rs2 Compare Greater Than 
Partitioned 16-bit 

GCMPGT32 0101 00 0 10 Rd = Rsl > Rs2 Compare Greater Than 
Partitioned 32-bit 

GCMPLE8 0101 00 1 00 Rd = Rsl < Rs2 Compare Less Than 
Partitioned 8-bit 

GCMPLE16 0101 00 1 01 Rd = Rsl < Rs2 Compare Less Than 
Partitioned 16-bit 

GCMPLE32 0101 00 1 10 Rd = Rsl < Rs2 Compare Less Than 
Partitioned 32-bit 

GAND32 0110 00 0 10 Rd = Rsl & Rs2 Bit wise Logical AND 

GAND32s 0110 00 1 10 Rd = Rsl & Rs2 Bit wise Logical AND 
Single Precision 

GANDnot32 0111 00 0 10 Rd = Rsl & Rs2 Bit wise Logical AND 
NOT 

GANDnot32 
s 

0111 00 1 10 Rd = Rsl & Rs2 Bit wise Logical AND 
NOT Single Precision 

GOR32 1000 00 0 10 Rd = Rsl I Rs2 Bit wise Logical OR 

GOR32s 1000 00 1 10 Rd = Rsl I Rs2 Bit wise Logical OR 
Single Precision 

Table 4.4: GALU Instruction Set (Continued) [10] 
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Mnemonic Sub Op t m p Operation Description 

Bit wise Logical OR
GORnot32 1001 00 0 10 Rd = Rsl I Rs2 NOT  

Bit wise Logical OR 
GORnot32s 1001 00 1 10 Rd = Rsl I Rs2 NOT Single Precision 

GXOR32 1010 00 0 10 Rd = Rsl A Rs2 Bit wise Logical XOR 

Bit wise Logical XOR
GXOR32s 1010 00 1 10 Rd = Rsl A Rs2 Single Precision 

GNOT32 1011 00 0 10 Rd = Rsl Bit wise Logical NOT 

Bit wise Logical NOT
GNOT32s 1011 00 1 10 Rd = Rsl Single Precision 

Table 4.4: GALU Instruction Set (Continued) [10] 

GADD16 and GSUB16 perform partitioned addition and subtraction between two 

64-bit partitioned variables. These instructions are illustrated in Figure 4.10. 

A B C D 

63 47 31 15 0 
63 47 31 15 

W \X Y \Z 
1 1 L 

+1- +/-
63 47 31 157- I. 

VT V 

Result A +1- W B +1- X C +/- Y D +/- Z 

Figure 4.10: GADD16 and GSUB16 Operations [10] 
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GSAD ( Graphics Sum of Absolute Difference) 

Table 4.5 shows the GSAD instruction, which is the only instruction for GSAD 

FU. Its issue latency is one cycle and the operation latency is three cycles. 

Mnemonic Sub Op t m Operation Description 

Pixel Sum of Absolute 
GSAD 0000 11 Rd = GSAD (Rsl, Rs2, Rd) Difference 

Table 4.5: GSAD Instruction Set [10] 

Figure 4.11 illustrates the GSAD operation. GSAD takes three double-precision 

arguments rsl, rs2, and rd. rsl and rs2 contain 8 pixels each in raw format. The pixels 

are subtracted from one another, pair-wise, and the absolute values of the differences are 

accumulated into rd. Note that the destination register rd contains an integral value. The 

GSAD instruction is used for accelerating the motion compensation to support real-time 

video compression in such applications as MPEG-1, MPEG-2, and H.320. 

8 bit 8 bit 8 bit 8 bit 8 bit 8 bit 8 bit 8 bit 

8 bit 8 bit 8 bit 8 bit 8 bit 8 bit 8 bit 8 bit 
MIMPI1111111=111111=111=IIMIMIIIIMIIMMI  

ABS ABS ABS ABS ABS ABS ABS ABS  

Accumulate the Absolute of Differences 

Absolute Sum of Differences 

Figure 4.11: GSAD Operation 
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GBMU (Graphics Bit Manipulation) 

Table 4.6 shows GBMU instruction set. GBMU manipulates the result of other 

instructions as demanded by the application. Its issue and operation latency is one cycle 

each. 

Mnemonic Sub Op t m p Operation Description 

Logical Shift Left
GLSHL16 0000 10 0 01 Rd = Rsl «< Rs2 filled with zeros 

Logical Shift Left
GLSHL32 0000 10 0 10 Rd = Rsl «< Rs2 filled with zeros 

Logical Shift Left 
GLSHL64 0000 10 0 11 Rd = Rs1 «< Rs2 filled with zeros 

Logical Shift Right
GLSHR16 0000 10 1 01 Rd = Rsl «< Rs2 filled with zeros 

Logical Shift Right
GLSHR32 0000 10 1 10 Rd = Rsl <<< Rs2 filled with zeros 

Logical Shift Right
GLSHR64 0000 10 1 11 Rd = Rsl <<< Rs2 filled with zeros 

Arithmetic Shift 
GASHR16 0001 10 1 01 Rd = Rsl >> Rs2 Right filled with the 

sign bit 

Arithmetic Shift 
GASHR32 0001 10 1 10 Rd = Rsl >> Rs2 Right filled with the 

sign bit 

Arithmetic Shift 
GASHR64 0001 10 1 11 Rd = Rs I >> Rs2 Right filled with the 

sign bit 

Table 4.6: GBMU Instruction Set (Continued) [10] 
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Mnemonic SubOp t m p Operation Description 

Rd = shufflRs2) e (Rsl,GSHFH8 0010 10 0 - Pixel Shuffle High 

Rd = shuffle pixelGSHFL8 0010 10 1 - xel Shuffle LowRs2) 

Rd = gwchangeGWCHG8 0011 10 - - Pixel Word Change(Rsl) 

Join Two SingleRd = gregpair(Rsl ,GREGPAIR32 0100 10 - Precision OperandsRs2) to Double Precision 

Pixel Truncate,GPACK16 0101 10 01 Rd = pack16 (Rsl) insert and Pack 

Rd = pack32 (Rsl, Pixel Truncate,GPACK32 0101 10 - 10 Rs2) insert and Pack 

Rd = pack16_s(Rsl, Pixel Truncate,GPACK16 s 0110 10 01 Rs2) insert and Pack 

Rd = pack32 _s(Rsl, Pixel Truncate,GPACK32 s 0110 10 - 10 Rs2) insert and Pack 

Rd = pand8GEXPAND8 0111 10 - - Pixel Unpack
(Rslgex) 

Rd = andl6hGEXPAND8h 0110 10 0 Pixel Unpack High
( 1 ) 

Rd = gexpand161GEXPAND81 0110 10 1 - Pixel Unpack Low(Rsl) 

Table 4.6: GBMU Instruction Set (Continued) [10] 
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Figure 4.12 shows the operation of the GREGPAIR32 instruction. GREGPAIR32 

instruction joins two 32-bit variables into a single 64-bit variable. 

Rs2 

Result Rs2 

Figure 4.12: GREGPAIR32 Operation [10] 

Figure 4.13 illustrates GSHFH/L8 and GWCHG8 instructions. These instructions 

support geometric transform and transformation from band sequential data to band 

interleaved data. Band interleaved data format stores the data such as RGBaRGBa 

RGBaRGBa, and band sequential data format stores the data such as RRRRGGGG 

BBBBccacca. 

Rs1 all a12 a13 a14 a21a21 a22 a23 a24 

Rs2 a32 a33 a34 a41 a42 a43 a44 

GSHFH all a21 a41 a12 a22 a32 a42 

GSHFL a13 a23 a33 a43 a14 a24 a34 a44 
(a) GS HFH/GSHFL8 (Graphics Pixel Shuffle High/Low) 

Result a12 a21 a22 
(b) GWCHG8 (Graphics Word Change) 

Figure 4.13: GSHFH/GSHFL8, GWCHG8 Operations. 
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4.4 GCU Architecture 

This subsection discusses the microarchitecture of the GCU. GCU's 

microarchitecture is basically identical to that of a superscalar architecture except GCU 

has four independent IBs, RSs, ROBs, and GRFs. Figure 4.14 shows the organization of 

the GCU. Each component of the GCU is discussed below: 

Instruction Buffer (IB) 

Four independent IBs are used to store instructions pre-decoded from the GPs and 

the number of entries in the IB is four. 

Rd: The Destination Register Number.  

Rs1/2: The two Source Registers Number. 

Op: The Opcode of the Instruction. 

t : Indicate which FU is required for this Instruction. 

m: The Mode Field. 

p: Indicate the Partitioned Data Types.  

PC: Program Counter.  

Reservation Station (RS) 

The GCU has Distributed Instruction Window to issue instructions out-of-order. 

Each FU has its own set of RS and together with the corresponding ROB checks the 

RAW dependencies. The RS holds instructions dispatched by the t field of an instruction. 

Each RS entry has ten fields: 

Op: The Opcode of the Instruction. 

T 1 /2 : The ROB entry number or the tag that will produce the corresponding Source 

Operand. 

S r c 1 /2 : The Value of the Source Operands. 

Busy: Indicate that this RS is Full. 
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Tag : The ROB entry number, which is the Destination for the Result. 

m : The Mode Field. 

p : Indicates the Packed Data Types. 

GPI D: Indicate from which GP this Instruction comes and used for determining the 

Destination ROB. 

Instruction Instruction Instruction Instruction  
Buffer I Buffer 2 Buffer 3 Buffer 4  

IDispatch/Scheduler r 
111M11 4 NEMININIIIMMINI  

Reservation Reservation Reservation Reservation  
Station Station Station Station  

GALU GMUL GBMU GSAD 

----T---
4  i  

ROB 1 ROB 3 ROB 4  
I  

4 V V  

GRF 1 GRF 3 GRF 4  
I  

I  

GP 1 GP 3 GP 4  
I  

I Ld/St Ld/St Ld/St I I  

I I  

Figure 4.14: The Architecture of the GCU 
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Functional Units (FU) 

FUs execute the instructions by copying Op, Src1/2, Tag, m, p, and GPID fields 

from the RS. FUs are composed of GALU, GMUL, GBMU, and GSAD. The GALU is 

organized as 4 independent 16-bit adders named A, B, C, and D as shown in Figure 4.15 

Figure 4.15: Structure of the GALU [14] 

These adders do not propagate carries between them. In addition, for 32-bit 

operations, a carry is generated by adder A and C and is used to select one of two results 

computed by adders B and D. One result assumes that the incoming carry is zero and the 

other result assumes that the incoming carry is one. Selection of the correct results is 

based on the value of the carry bits of adders A and C. This scheme is analogous to a 

conditional sum adder [15]. GMUL is composed of four 8x16 multipliers. 

One of the characteristics of GCU design is GSAD unit, which is dedicated to 

motion compensation calculation. This is the most expensive operation involving motion 

video compression. Motion compensation involves searching a reference frame for the 

closest match to a 16x16 block of pixels in the target frame. The closest match is 

determined by finding the block with smallest absolute difference between the target and 

the reference frames. Therefore, the GSAD should be able to accumulate back-to-back 

distances in consecutive cycles. As shown in Figure 4.16, the GSAD has three 4:2 

counter, two 11-bit carry propagate adder, and a 53-bit incrementer. 
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8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 
ABS ABS ABS ABS ABS ABS ABS ABS 

4:2 Adder 4:2 Adder 

10-bit V 

4:2 Adder 

11-bit 
Third Source (Accumulator) 10:0 

63:11 

53-bit incrementer 

S [10:0]S [63:11] 

Figure 4.16: GSAD Logical Implementation [14] 

The 4:2 adder receives four inputs (actually it's five because of the carry-in of 
previous column) and the outputs are Carry (i + 1), Sum (i), and Cow (i + 1) as shown in 

Figure 4.17. This adder reduces four rows of 8-bit absolute values to two rows of 10-bit, 

and the final 11-bit result of 4:2 adder is added by 11-bit adder. In addition, the 12-bit 

result is added to the corresponding 12-bit of the accumulator to accumulate the absolute 

sum of differences. The third source operand comes only from the destination register or 

accumulator because the operation is done using Rd = GSAD (Rs1, Rs2, Rd). 
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(3,2) 

Cout (i+1) 
Cin (i-1) 

Figure 4.17: A (4:2) Adder [15] 

Reorder Buffer (ROB) 

The GCU has four independent ROBs. Each ROB is hard-wired with the 
corresponding IBs to keep the correct program sequences from each GPs. ROB holds 

either the pending or the completed results of instructions that may have finished 
execution but have not yet committed. Each field is composed of four fields. 

D: Destination Register Number.  

Dst : Result Value.  

V: When Set, signifies that Dst field holds a Valid Result.  

PC: Address of the instruction.  

Graphics Register File (GRF) 

The GCU has four 32x64 bits Register Files. Each GRF has 3 reads/2 writes ports 

to supply the data efficiently. Two reads ports are for source operands and one read port 

is for the load instruction of GP. One write port is needed for the result and the other 
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write port is for store instruction from GP. In addition, as discussed in Chapter 4.2, GRF 

has two extra fields, which are valid_gp and validgcu fields, to synchronize data 
between the GCU and the GPs. 

Implementing GCU with separate Register Files has several advantages. First, it 

leaves GPs free for address and branch computation. Second, GCU instructions do not 

affect the main integer pipeline. Instruction operands in the GRF can refer to either single 

or double precision registers. Many of the instructions have formats that use either a 32-

bit single precision or a 64-bit double precision register as an operand. This is because 

the Sparc V9 architecture defines 32 single and 32 double precision registers [16], and 

various algorithms implemented with VIS instruction use this functionality. Figure 4.18 

shows the layout of the GRF. 

Graphics Status Register (GS R) 
$g31  

* 
* 

$g16 

$s30 $s31 $g15 
$s28 $s29 $g14 

* 
* 
* 

$s2 $s3  $g1 

$s0 $s1  $g0 
63 31 0  

Figure 4.18: The Layout of Graphics Register File [13] 

The 32 single precision registers corresponded to the first 16 double precision 

registers, and single precision operands cannot access the last 16 double precision 
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registers. This arrangement allows the GCU to access and update the high and low 32-bit 

halves of a 64-bit double precision register. As shown in Figure 4.18 the last register 

($g3 I ) is reserved for a special register, which is called Graphics Status Register (GSR). 

The GSR is used for conversion between formats and for memory alignment. The fields 

of the GSR are shown in Figure 4.19 [10]. 

63 76/ 32 I 0 

scale factor alignaddr offset 

Figure 4.19: Graphics Status Register [10]. 

4.5 Five-Stage Pipeline of the GCU 

The GCU has five-stage pipeline, which are Dispatch, Issue, Execution, Write-

back and Commit stages. 

Dispatch stage 

Figure 4.20 depicts the Dispatch stage. If there are empty slots in the RS and in 

the ROB, the Dispatcher dispatches the instructions. Dispatching is based on the t field 

of the instruction, which indicates which FU is required for the instruction. The 
Dispatcher dispatches one instruction each from IB1 to IB4, as a basic scheme. For each 

instruction dispatched, the following operations are performed: 

1. Pop an instruction from Instruction Buffer and assign it to an RS entry. 



59 

2. Allocate the next entry in the ROB. Place the Tag value pointing to this entry 

3. 

into the Tag field of the allocated RS entry, and the number of this field is 

used to tag the result when the execution is done. 

For each of the source registers s1 and s2, perform an associative search in the 

appropriate ROB for the latest entry where the destination Register D field 

matches the source Register number. 

a) If found and the result value Dst is valid, update the appropriate source 

fields (Src 1 or Src2) with the value from the Dst field. If the result value 

Dst is not valid, update the tag fields T1 and T2 with the Tags of the 
entries in the ROB. 

b) If not found, read the matched Register File for the source register. 

Dispatch/Scheduler 

op 

t1 

tag srcl 

t2 m 

GALU 

src2 RS 

GMUL 

JMID, "IMIJ 
RS 

GBMU 

RS 

GSAD 

.0 
a. 
ea0 

dst 

ROB 1 

ROB 2 3 ROB 4 

Figure 4.20: Dispatch Stage of the GCU 
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Issue Stage 

An instruction can be issued to a FU when all the operands are ready in the RS. 

This is done by 

Copy Op, Src1/2, Tag, m, p, and GPID from the RS to the FU and set the busy  

field of the FU.  

Free the entry of RS.  

Execute Stage 

Number of cycles required depends on the FU and the latencies can be obtained 

from "VIS Speed New Media Processing," IEEE Micro, 1996 by Tremblay et al. [13]. 

Table 4.7 shows the latencies of each FU. 

FU Issue Latency Operation Latency 

GALU 1 1 

GMUL 31 

GBMU 1 1 

GSAD 1 3 

Table 4.7: Latencies of each FU 

Write-back Stage 

When an instruction completes, its result is posted in the ROB as well as 
forwarded to RS. This is done by followings. 
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1.	 Post the result in the Dst field of the entry in the ROB pointed by the Tag field 

and GPID filed, and set V to indicate that the result is valid. 

2.	 Forward the result back to the RSs where the Tag field of the completed 

instruction matches the source Register tags T1 and T2 in the RSs. For each 

match, copy the result into the respective Src1/Src2 fields. 

Commit Stage 

When an instruction reaches the head of the ROB and its V field is set, update the 

result and set the validgcu bit to indicate to GPs that the computation by the GCU is 

done, and free the entry in the ROB. 
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5 TRACE DRIVEN GCU SIMULATION 

A trace driven simulator for the GCU has been implemented. This simulator 

accepts the input files, which are traces of GCU instructions. Because this is an 
experimental architecture and the ISA was quite different from either VIS or MMX, there 

were no real benchmark programs to run on the simulator. Therefore, instruction streams 

were generated from sample codes of VIS and MMX to test the simulator. In order 

words, VIS or MMX codes generated for sample multimedia applications were converted 

to GCU instructions. 

This Chapter discusses the structure of the simulator, some examples of 
multimedia application codes for the GCU, and the results of the simulation study. 

5.1 Structure of the GCU Simulator 

Figure 5.1 depicts the structural overview of the Simulator. The simulator was 

written in C with GNU gcc library and a compiler on a Linux platform running 266 MHz 

Pentium- II processor. The input file is composed of four different files that represent the 

four GP instruction streams. 

Simulator Source (C file) Simulator Source (header file)  
(sim.c, regs.c, gcu_inst.c) (sim.h, regs. h ,i nst_p ro to h) . 

om RESULTS 

Figure 5.1: Structural Overview of Simulator 
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The simulator uses dynamic data structures to implement IB, RS and ROB. 
Figure 5.2 illustrates the doubly linked-list data structure, which is used to implement 

these components. The previous and next fields within an RS structure are linked to 

other RS structures and are used to search, delete, and add elements. The tag field of RS 

keeps the pointer to a ROB entry to write the result of the computation at the Write-back 

stage. The RS_LIST structure has three pointer fields and a full flag. The head field 

points the first RS entry and tail points the last RS entry, and the full flag will be set when 

the number of entries in the linked-list is equal to the maximum number of RS entries 

defined by the simulator. The ROB also has a similar structure to the RS structure. 

full 

* head  
*tail  

* point  

RS LIST 

full  

* head  
*tail  

* point  

* previous *tag * next 

I op I 

RS 

p I 

RS 

1 
I 

* previous 

rd I v 

ROB 

I 

* next 

V 

ci I 

ROB 

ROB LIST  

Figure 5.2: Doubly Linked List Structure for RS and ROB 

Simulator Code File Description 

The following list describes the functionality of the C code files in the GCU 

simulator. 
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gcu_insts.c: Defines all the GCU Instructions. 

inst_proto.h: Holds the prototypes of all the GCU Instructions.  

regs.c: Defines the GCU Registers.  

regs.h: Header file of the regs.c.  

sim.c: Performs all the initialization and contains the main loop.  

sim.h: Defines the data types for the simulator and the function prototypes,  

and contains the data structure.  

Options of the Simulator 

The GCU simulator can accept several command-line options. The number of 

entries for IB, ROB, and RS can be changed, as well as the Fetch and Dispatch 
bandwidths. It can execute arbitrary number of instructions by using the argument 

input_num, and the number of FUs can be doubled. It can also print out all the status and 

statistical information of the pipeline stages, including information such as Instruction Per 

Cycle (IPC), total cycle time, number of FU busy, etc. 

5.2 Out-of-order Simulation Timing 

The main loop of the simulator is structured as follows: 

sim init( ); /* Initialize the Simulator */  
sim_main( );  
while{  

Issue_Execute( );  
Write_Back( );  
Commit( );  
Fetch( );  
Dispatch( );  

This loop is executed once for each cycle. The Dispatch( ) stage is executed at the 

last step to keep the cycle count correct. At the first cycle, only the Fetch( ) and the 
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Dispatch( ) stages are executed. The Fetch( ) stage is used to supply instructions from an 

input file to the Dispatch( ) stage. For each cycle, it fetches one instruction from each of 

the four input files and enqueues them in the appropriate IBs. 

In the Dispatch( ) stage, instructions are dispatched to RSs. This is done by 
adding another entry onto the RS and writes the instruction's information on to it. 
Moreover, it looks up the ROB to check for RAW dependencies. If dependencies exist 

and the value from the ROB is valid, it is copied as the source operand. If the value is not 

valid, the tag field is updated to point to that entry of the ROB so that the result can be 

written back when the computation is done. If no dependencies exist and the value of the 

corresponding Graphics Register is valid, which is checked by the regs_valid_gp field, 

the source operand is updated by the value of the GRF. 

The Issue Execute( ) stage tries to issue instructions out-of-order from RSs when 

dependencies are resolved and corresponding FU are not busy. If the operands are ready, 

it sends the instruction to the execution stage and the busy flag of the FU is set for the 

duration of the FU's latency. The Execution stage executes the instruction using the 

opcode, t field, m field, and p field. It has a nested case statement to execute instructions 

which are distinguishable by its unique combination. After the execution is completed, 

the result is saved to a FU WB. The FU WB structure keeps the result data, the entry 

number of the ROB, the GP's ID to write-back to the corresponding ROB, and the 

operation latency to decrement the latency time once in a cycle. The Write_Back( ) stage 

writes back the result to the corresponding ROB and forwards the result to the RSs that 

have their tags pointing to this ROB entry. 

The Commit( ) stage commits up to four instructions starting from the head of the 

ROB. If the valid bit in the head of the ROB is set, the instruction can be committed, and 

the next instruction is examined if the valid bit is set or not, and if the instruction has a 

valid bit, it can be also committed. But if the instruction does not have the valid bit, it 

will not be committed and the next entry will not be examined at the same cycle. 

Therefore, the GCU can commit upto 16 instructions per cycle. 



66 

5.3 Code Examples 

The followings are some code examples illustrating the applications of the GCU 

instructions. The main characteristic of these examples is that the core portion of the 

codes is short and nested within a loop. The GP executes the data alignment and load 

operations, and then the GCU executes the computation intensive GCU instructions. This 

subsection illustrates sample codes, which are Alpha Blending, Conversion, and Motion 

Estimation. 

Alpha Blending 

This example illustrates an application where two images are blended together. 

For each pair of corresponding pixels in two images 's 1' and 's2', a corresponding pixel is 

computed from a third control image 'alpha'. The following equation is used to compute 

dst: 

dst = (alpha/256) * sl + (1-alpah/256) * s2  
= (sl-s2) * (alpah/256) + sl  

This program calculates each half of the image 's 1' and 's2' and merges them together, and 

the code below shows the processing of one scan line. 

$1 = Gexpand($2); /* $2: high half of sl */  
$3 = Gexpand($4); /4' $4: high half of s2 */  
$5 = Gsub16($1, $3); /* (sl - s2) */  
$6 = Gmul8x16($7, $5); /* (sl-s2) *alpha/256, $7: alpha/256 */  
$8 = Gadd16($1, $6); /* (sl-s2) *alpha/256 + sl */  

$10 = Gexpand($2); /* $2: low half of sl */  
$11 = Gexpand($4); /* $4: low half of s2 */  
$12 = Gsub16($10, $11); /* (sl - s2) */  
$13 = Gmul8x16($7, $12); /* (sl-s2) *alpha/256, $7: alpha/256 */  
$14 = Gadd16($10, $13); /* (sl-s2)*alpha/256 + sl */  

$8 = Gpackl6($8); /* Packing 64-bit data to 32-bit data */  
$14 = Gpack16($14); /* Packing 64-bit data to 32-bit data */  
$15 = Gregpair32($8, $14); /* Join two 32bit variables into one 64bit variable */  
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Conversion 24-bit True Color to 16-bit High Color 

Many applications provide RGB data with the assumption that the video display 

will use 24-bit true color data, which contains one byte of Red, one byte of Green, and 

one byte of Blue data. However an abundance of video display can only support 16-bit 

high color display, thus the conversion from RGB (8-bit, 8-bit, 8-bit) to RGB (5-bit, 5-bit, 

5-bit) is needed. The algorithm used here is called "mask-shift-or method". This 

algorithm takes each 24-bit true color element stored in the three least significant bytes of 

a double word, masks each 8-bit color, shifts it right three bits, and ORs the result into a 

register. By using GCU instructions, four pixels can be processed at the same time. 

/* $1: Two 24-bit RGB in 64-bit register. 
$2: Two 24-bit RGB in 64-bit register. 
$3: Blue Mask: OxFF000000FF. 
$4: Green Mask: OxFF000000FF00. 
$5: Red Mask: OxFF000000FF0000. 
$6: Shift Amount 3 to get Blue pixel. 
$7: Shift Amount 6 to get Green pixel. 
$8: Shift Amount 9 to get Red pixel. */ 

$9 = Gand32 $1, $3; /* Mask out all but the 5 MSB Blue bits */ 
$10 = Gand32 $2, $3; /* Mask out all but the 5 MSB Blue bits */ 
$11 = Glshr32 $9, $6; /* Shift Blue bits to bits 0-4 */ 
$12 = Glshr32 $10, $6; /* Shift Blue bits to bits 0-4 */ 
$13 = Gand32 $1, $4; /* Mask out all but the 5 MSB Green bits */ 
$14 = Gand32 $2, $4; /* Mask out all but the 5 MSB Green bits */ 
$15 = Glshr32 $13, $7; /* Shift Blue bits to bits 5-9 */ 
$16 = Glshr32 $14, $7; /* Shift Blue bits to bits 5-9 */ 

$17 = Gor32 $11, $15; /* Or in the Green bits with the Blue bits */ 
$18 = Gor32 $12, $16; /* Or in the Green bits with the Blue bits */ 

$19 = Gand32 $1, $5; /* Mask out all but the 5 MSB Red bits */ 
$20 = Gand32 $2, $5; /* Mask out all but the 5 MSB Red bits */ 
$21 = Glshr32 $19, $8; /* Shift Red bits to bits 10-14 */ 
$22 = Glshr32 $20, $8; /* Shift Red bits to bits 10-14 */ 

$23 = Gor32 $17, $21; /* Or Blue and Green bits with Red bits */ 
$24 = Gor32 $18, $22; /* Or Blue and Green bits with Red bits */ 
$25 = Gpack32_s $23, $24; /* Pack the four 16-bit pixels into one quadword */ 
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Motion Estimation 

This example presents a single iteration of a motion vector estimation process. A 

16x16 block of pixels of frmae2 is taken and a search within a specified area in frmamel 

is performed to determine if something "similar" to the 16x16 block from frame2 exists. 

If it does, then a motion vector is estimated from this location. The "similar" is estimated 

by the absolute sum of differences, i.e., "cliff" between the two 16x16 blocks. The 

absolute sum of differences is computed in accordance with the following relationship 

and we can select similar block by searching minimum of "diff". 

15 15 

diff = EEI frame2(i, j) framel(i, j) 
0 

Selected block = min(diff) 

The speedup capability of GCU instruction is illustrated by processing 8 bytes at a time. 

/* All the aligned source data are supplied by GP. Search four different blocks  
simultaneously */  
$1: Accumulated Sum of Difference 1.  
$2: Accumulated Sum of Difference2.  
$3: Accumulated Sum of Difference3.  
$4: Accumulated Sum of Difference4.  

$5, $6: 8 Bytes of source data from framel and frame2. 
$7, $8: 8 Bytes of source data from framel and frame2. 
$9, $10: 8 Bytes of source data from framel and frame2. 
$11, $12: 8 Bytes of source data from framel and frame2. */ 

/* One loop is repeated 32 times to cover 16x16 blocks. */ 

$1 = Gsad8 $1, $5, $6; /* Calculate 8 bytes of row at a time */  
$2 = Gsad8 $2, $7, $8;  
$3 = Gsad8 $3, $9, $10;  
$4 = Gsad8 $4, $11, $12;  
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5.4 Simulation Results 

The simulation was performed assuming that four GPs execute different 
multimedia applications and the dependencies between GPs and GCU are not considered 

during this simulation. Four input files were generated from different applications and 

were fed into the simulator. GP1 executed Alpha Blending, GP2 executed Conversion, 

GP3 executed Convolution, and GP4 executed Motion Estimation. Each input stream 

consists of approximately 2 million instructions, and thus total of 8 million instructions 

were executed. Figure 5.3 depicts the default execution result shown by the simulator. 

james:/simulator/GCU-beta$sim -n2000000 
-- Graphics Control Unit Simulator designed by Keungsik,Choi. 

Input Number 2000000 
Simulation started © Wed Apr 29 22:40:351998 
===== Simulation is done!! _ _ 
= = = == Statistics ===== 
--Fetch Stage--
1BI FULL: 2213413 IB2 FULL: 2436671 IB3 FULL: 5237833 
IB4 FULL: 5999859 
--Dispatch Stage--
RSI FULL: 1178505 RS2 FULL: 2262559 RS3 FULL: 3869814 RS4 FULL: 0 
ROBI FULL: 2060694 ROB2 FULL: 326300 ROB3 FULL: 1368022 
ROB4 FULL: 5999874 
IB1 EMPTY: 3787704 1B2 EMPTY: 3564444 IB3 EMPTY: 763286 
1B4 EMPTY: 1248 
--Issue Stage- -
Operands not Ready: 4089422 
GALU Busy: 2918672 GMUL Busy: 4265260 GBMU Busy: 1607909 
GSAD Busy: 5999997 

Total Instruction Count: 8000000 
Cycle Time: 8001122 
IPC:0.999860 
The Execution Time is: 584.255095sec 
The End Time is: Wed Apr 29 22:50:20 1998 

Figure 5.3: Default Simulation Result shown by the Simulator 
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The IB FULL indicates the number of times the IB was full when the Fetch stage 

tried to fetch the instruction, thus instructions could not be fetched. The IB EMPTY 

indicates the number of times the IB was empty when the Dispatch stage tried to dispatch. 

The Operands not Ready indicates the number of times one of the operands was not 

ready thus it could not be issued. The FU BUSY indicates the number of times the 

instruction could not be issued because the FU was busy. The result shows that FU 

BUSY are highly related to what kinds of GCU instructions are used by the applications. 

GMUL and GSAD are suffered a lot of FU BUSY conditions because the operation 

latencies of those FUs are 3 cycles. The FUs are not pipelined by default. 

Figure 5.4 shows the percentages of usage of each FUs. GALU and GSAD are the 

most frequently used FUs in this simulation. This can be varied by the simulated 

applications. 

1 Lou A 

80% 

60% 

40% 1 
20% 

0% 
GP1 GP2 GP3 GP4 TOTAL 

GSAD 0 0 0 100 25  

GBMU 38.5 41 3 0 20.6  

GMUL 23 0 48.5 0 17.9  

GALU 38.5 59 48.5 0 36.5  

Figure 5.4: The Usage of FUs 
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Figure 5.5 shows the relative IPCs for different numbers of FUs, which are 

doubled and tripled, and pipelined. By adding FUs, the IPC increases linearly, and 

GMUL and GSAD FUs have a benefit when the FUs are pipelined as shown in Figure 

5.6. GALU and GSAD are the busiest FUs even though the FUs are pipelined and 
doubled, because GALU and GSAD are the most frequently used ones. If the 
applications use all the four FUs evenly, the performance will be the best. 

No Pipe  
Pipeline  

1 -F U 2-FU 3-FU 

Figure 5.5: IPCs on various number of FUs 

1111-FU 2-FU 3-FU 
7000000 
6000000 
5000000 
4000000 
3000000 
2000000 
1000000 

0 

GALU GMUL GMUL/P GBMU GSAD GSAD/P 

Figure 5.6: FU BUSY Conditions on Various number of FUs 
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As we've seen from Figure 5.5, the IPCs go up by adding more FUs, but the price 

and area of added FUs should be considered, and because the input streams are not real 

benchmark programs, the result of the simulation is not reliable enough. Therefore, the 

simulation is focused on exploiting all the design aspects of default configurations, rather 

than adds more FUs. First, several dispatch schemes are simulated, because the 
dependencies among the instructions and the utilization of FUs are depend on the 

instructions dispatched in the RS. 

The sequential dispatch scheme is a default dispatch scheme, which dispatches 

one instruction each from IB1 to IB4. The random dispatch scheme is a dispatch 
scheme, which choose IBs to dispatch two or four instructions at a time from chosen IBs. 

Figure 5.7 shows the comparisons between these two schemes, and the numbers of slots 

of RS/ROB are also varied to determine the efficient size. 

1.375 

1.37 

1.365 

1.36 
a. 1.355 --

1.35 

1.345 

1.34 
8-RS/ROB 16-RS/ROB 32-RS/ROB 64-RS/ROB 

0 1-FU/P, 
Sequential 

1-FU/P, 
Random-2 

1-FU/P, 
Random-4 

Figure 5.7: IPC Comparisons for different Dispatch Schemes 

The result shows that when two IBs are chosen randomly and two instructions are 

dispatched from the chosen IBs, the performance is the best. Figure 5.7 also shows an 

interesting effect by changing the size of RS/ROB. When the size of RS/ROB is eight, 

the performance of random-2 dispatch scheme is the best, and the reason why the IPC 

goes down when the size goes bigger is that the dependencies among instructions are 
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increased and FU BUSY conditions are increased. Figure 5.8 shows the FU BUSY 

conditions when ramdon-2 dispatch scheme is used, and Figure 5.9 shows the number of 

Operands not Ready conditions. 

3500000 

3000000 
2500000 

8-RS/ROB 
2000000 16-RS/ROB 
1500000 32-RS/ROB 
1000000 64-RS/ROB 
500000 

0 

GALU GMUL GBMU GSAD 

Figure 5.8: FU BUSY Conditions among varied RS/ROB size 
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16-RS/ROB 

1000000 

500000 

O 32-RS/ROB 

M 64-RS/ROB 

0 
RS1 RS2 RS3 RS4 

Figure 5.9: Operands not Ready Conditions among varied RS/ROB Size 
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As shown in Figure 5.8, the FU BUSY conditions of GMUL are increased a little 

bit when the size of RS/ROB is bigger. Figure 5.9 shows the Operands not Ready 

condition also increased when the size of RS/ROB is increased. 

Figure 5.10 shows the IPCs when the FETCH/DISPATCH-bandwidths are varied. 

The 2-F indicates the bandwidth of FETCH is two, and 2-D indicates the bandwidth of 

DISPATCH is two, which means each GP fetches two GCU instructions and GCU 

dispatches two instructions at a time from each IB. 

1.3706 

1.3704 

M Random-2, 2-F  
1.3702 

Random-2, 4-F  

1.37 
IPC Random-2, 2-F/2-D 

1.3698 
Random-2, 4-F/2-D  

1.3696 
Random-2, 4-F/4-D  

1.3694 

1.3692  
8- 16- 32- 64-

RS /ROB RS/ROB RS/ROB RS/ROB  

Figure 5.10: IPC Comparisons among various FETCH/DISPATCH Bandwidths 

As shown in Figure 5.10, the IPCs are saturated to 1.370485. Based on this 

simulation, the most efficient configuration is the random-2 dispatch scheme with 2-F/2-

D and 8-RS/ROB size. 

Finally FUs are doubled to see how the IPCs are increased, and the same dispatch 

schemes are applied as the simulation of one FU shown in Figure 5.7. 
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Figure 5.11: IPC Comparisons for different Dispatch Schemes when FUs are doubled 

This results also show random-2 dispatch scheme utilizes the resources better 

than sequential dispatch scheme especially when the size of RS/ROB is small, and 

comparable with random-4 dispatch scheme. 

Looking at the graphs shown above, the performance of GCU is dependent on the 

number of FUs, dispatch schemes, and FETCH/DISPATCH bandwidths. But there are 

two issues that have to be resolved in GCU simulation. One is the real benchmark 

programs. To simulate more realistic simulation, the actual instruction streams generated 

by the four GPs are needed. The other is the dependencies between GPs and GCU. This 

problem will be resolved when the Rapsim and GCUsim are integrated together. 
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6 CONCLUSION AND FUTURE WORK 

The multimedia functionality of today's computers is becoming more and more 

demanding, and the applications such as video teleconferencing, 3-D visualization, 

animation, and image display through the network, etc., are rapidly becoming a must for 

the users. Until now these applications require specialized graphics hardware. But the 

price of separate board is expensive. Therefore, on-chip multiprocessor with GCU, 

Raptor was proposed by ETRI to remove the need for separate boards and to obtain better 

overall system price-performance by supporting these applications directly on the 

processor. Raptor utilized matured IC processing technology and SIMD instructions. 

Especially, the GCU provides a big performance advantage for computation intensive 

multimedia applications. 

The GCU simulation was performed to verify how effective the GCU instructions 

are and how well GCU can be utilized by the four GPs. However, the current status of 

the GCU simulator is still in its infancy and therefore rather limited. First, more fine-

tuning of the architecture is required. Second, the GCU simulator must be integrated into 

RapSim, which is still being developed by ETRI to simulate the Raptor. Without it, the 

real benchmarks cannot be generated to properly validate critical timing issues between 

the GPs and the GCU. In particular, issues such as how well the GPs can supply and 

schedule instructions and data to the GCU will become the critical factor that determines 

the overall performance. Therefore, the next stage of this project is to integrate GCU into 

RapSim. 
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