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SOME MÊTHEMATICAL MODELS IN ECOLOGY 

BACKGROUND 

Many people have studied population dyzìim1os. Vito 

Volterra was one of the first people to study this subject. 

After World War I, lt was assumed that the number of food 

fish in the Adriatic would be greater than before the war, 

since the population had not been exploited by fishing for 

several years. However it was found that the number of 

food fish (bottom fish) was smaller and the number of 

elasmobranchs which prey on the food fish, greatly increased. 

This situation aroused the interest of Vito Volterra. He 

set up systems of differential equations for the study of 

biological associations. 

In his study of two species one of which feeds upon 

the other, he uses two differential equations. 

1 (E _-vm 
d,t ' , 

(-c d2 2 . 

Here /i' is the number of individuals in the prey species, 

and i is the number of individuals in the predator spe- 

cies. -, represents the coefficient of increase of the 

prey species if the predator species did not exist. 

represents the coefficient of decrease of the predator spe- 

cies if the prey species did not exist, in which case it 

would suffer from lack of food. The coefficients and Ç 
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measure the aptitude of the prey species to defend itself 

and the means of offense of the predator species. and 

are the change in the populations /t' and with re- 

spect to time (the first derivative of 4 and 4 with re- 

spect to time.) 

By means of these equations, Volterra showed that 

there would be a periodic fluctuation of the number of in- 

dividuals of the two species. He also shoved that the 

averages of the numbers of individuals of the two species 

are constant so long as the coefficients of increase and 

decrease of the two species and those of protection and 

offense (f;, ; , remain constant. 

In explaining the situation in the Adriatic, Volterra 

showed that 1f an attempt is made to destroy the individuals 

of the two species uniformly and in proportion to their 

number, the average of the number of individuals of the 

prey species decreases and the average of the rmmber of in- 

dividuals of the predator species increase. 

In considering a biological association where two 

species compete for the same food, Volterra found that one 

species would be driven to extinction in that area. The 

differential equations which he used vere: 

7;; 4;(,; 4it2/ 
-A&J 

Here and are the coefficients of increase, while 

and j are the effects of competition for the same food 
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(overpopulation.) If > the second species continu- 

ally decreases and the number of individuals of the first 

species approaches (8, p. 1.-15, 19-27). 

About the same time as Volterra was doing his work 

on population dynamics, Alfred J. Lotka was working on the 

same subject in the United States. Lotka's equations and 

methods for handling populations are essentially the same 

as Volterra's. 

According to Lotka when one species eats members of 

two other species, it is possible for one of the two prey 

species to be exterminated. When the number of individuals 

of one of the prey species becomes small, the number of 

of the predator species Is not necessarily re- 

duced since the second prey species may provide enough 

food. Thus the number of predators can be large even when 

the number of individuals of one species of prey is small. 

This situation may lead to the extermination of one species. 

Lotka also studied growth and mortality curves of a 

single species, especially man. He showed that the age 

distribution of a species is variable, but only within 

somewhat restricted limits. With his equation he showed 

that the normal age distribution once established perpetu- 

ates itself, barring external change. 

C (a) 

c(a) is the number of organisms in one age group (from a 

to a + da.) 



p(a) is the survival factor for that age group, e(o) b, 

b - a r where d is the death rate per head. The normal 

age distribution, Lotka showed, will spontaneously return 
after being disturbed by a temporary change, such as a war 

In mari. (5, p. 9+-95, 110-115). 

Many objections to the mathematical models of Volterra 
and Lotka are given by H. G. Andrewartha and L. C. Birch. 

In considering a population composed of one species, they 
believe that the logistic theory, 

Is the Innate capacity to increase) cannot be used unless 

the population has a stable age-distribution and this age- 

distribution is maintained. They feel that tmich of the 

experimental data on population growth cannot be directly 
Interpreted by the logistic theory since a stable age- 

distribution was not obtained in the experiments. 

In the case of two species competing in the same en- 

vironnient, Andrewartha and Birch wrote Volterra's equations 

in this form: /(/_4//V) 
- 

« 
They consider this model unrealistic for the following 

reasons. 

1. The assumptions of the logistic theory are repeated 

twice in this model. 

2. The assumption Is made that and , are constants which 



are Independent of' the numbers of each species. 

3. The solution of the equations poses a biological situa- 

tion which amounts to a contradiction. They claim that 

IV i cannot be greater than which is its value 

whenO and'1" reaches its asymptotic value after 

ill" approaches zero. Then, by using similar reasoning 

they make the statenient that il" /7,'1' cannot be greater 

than K" . With these two assumptions neither species 

can approach zero (2, p. 3+7-35l, O7-+l2). 

Gause cultured Paraecium aurelia and E. caud&tum 

together, so that both were competing for the same rood. 

. caudatur! eventually died out, leaving a dense popula- 

tion of E. aurelia (+, p 97-113). Andre!:artha and Birch 

say that in nature where space is not confining this situa- 

tian is not likely to occur (2, p. 1f56-17). 

. J, Nicholson and V. A. Bailey, whose work will be 

discussed later, criticized the Lotka-Volterra prey-predator 

models on the following grounds. 

1. Lotka and Volterra's equations seem to imply that the 

reaction when a predator encounters a prey is neces- 

sarily instantaneous. This objection, however, is 
taken care of in the fourth chapter of Volterra's book, 

Lecons sur la Théorie 4athématiaue de la Lutte Pour la 

i, where he uses integral-differential equations to 
handle the factor. 
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(8, p. 1+1-15). 

2. It Is implicIt in the Lotka-Volterra models that each 

individual In the populations of prey and predator is 

exactly equ:tvaient tc every other individual of the 

safle species. 

3. Lotka and Volterra used the methods of calcì1us, which 

requires continuous chance rather than discrete change 

(6, p. 551-52, 97-598). 

Andrewartha and Birch state that the mere observa- 

tion of oscillations In natural populations whether of prey 

or predator or both, provides no evidence of a. causal re- 

latlonship between predators and oscillations nor yet con- 

firms either the premises or the conclusions of the rathe- 

matical models (2, p. 

A. J. Nicholson and V. A. Bailey also made a mathe- 

matical model for the study of biological populations. Their 

model Is quite restrictive and only considers prey-predator 

situations where the predator lays eggs upon the prey. The 

prey is considered to be uniformly distributed over an area. 

Weather and food for the prey are held constant. It Is as- 

sumed that the predator searches at random for the prey. 

Later Nicholson and Bailey break their equations into 

year classes (generations), and use the methods of finite 
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differences, By doing this, they obtain oscillations in 
the population densities. They are also able to handle 
situations where three species are involved. The parasite 

has a parasite which in turn laid eggs upon it. They dId 

not have the difficulties that Volterra had when he con- 

sidered the interaction of an odd number of species. Vol- 

terra's conclusions will only hold when the number of prey 

species equals the number of predator species. Nicholson 

and Bailey believe that Volterra's difficulty arose from 

not considering the effect of age distributIon (6, p. 551- 

555, 581-585, 590-592, 597-598) (8, p. 50-52). 

Oliver P. Pearson made a mechanical model for study- 

ing population dynamics. The model is a long inclined 

plane into which a large number of holes have been drilled 

and down which balls are rolled. Three types of mortality 
can be considered in tuis model: proportional, compensa- 

tory, and densIty-independent. To achieve low rates of 

proportional mortality Tygon plastic bumpers were fitted 
on pegs behind each hole in such a way that a ball travel- 
ing by itself would not bounce readily into a hole. The 

tygon bumpers are replaced by rubber bumpers or the pegs 

are removed to simulate higher mortality rates. When 

several balls are rolled together, they may bump Into each 

other and knock one or the other ball into a hole. Thus 

we have compensatory mortality. Density independent mor- 

tality Is achieved by removing a certain number of balls 
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per unit time by haiid. 

if one of the balls comes safely through one "field" 

(a section of the board) . it crosses a bronze strip which 

triggers the entrance cf sever'l niere bails. This 1nni1ates 

reproduction. The board has five fields, thus five differ- 
ont age classes can be considered. Compensatory nortality 

and reproductive rates cari be changed for each age class. 
Balls which reach the end of the board are put back at the 

beginning of the fifth field and can go through lt again 

and again as long as they survive. A census of the popula- 

tion is made by a 35-min. camera which periodically takes 

a picture of the board (7 p. }+911_5Ol). 

Mr+y çther workers have applied the methods of mathe- 

matics to various phases of population dynamics. Fish and 

game management groups and forestry groups have typically 
been concerned with the effects of human prodatlon upon a 

single prey species and with determining the exploitation 
rate that will produce the maximum sustained yield from a 

given population of prey. In these fields, the mathemati- 

cal. treatment has been concerned mainly with the interaction 
between man, as a predator, and the exploitable adults of 

the species being studied. 
ib.ich recent work in ecology and oceanography has 

dealt with the passage of energy through a food chain com- 

posed of several different species. llore, rather than 

studying the numbers of organisms., the passage of energy 



(food measured in calories) from one level of the food 

chainì to the next is studied. Since the literature in 
both of the above fields is voluminous, and since the 

aims and approach differ niore or less widely from those 

used in thIs study, no attempt will be made to review 

this work in detail. 

fuch work has been done in the study of the growth 

and development of populations consisting of one species. 

The field of demography studies the development of humri 

populatìoìs. The term population does not necessarily 
mean the whole species. It can mean the inhabitants of 

one small, dIstinct area or even more specifically just 
the members of one sex in an area. 

Life tablez are extremely useful in the study of 

human populatIons, especially actuarial work. The life 
table Is a life history of a hypothetical group of people, 

as it is diminished gradually by death. This group is 

closed against immigration and emigration. It starts 

with a fixed group of births, say 1,000, 10,000, or 100,000; 

and follows this group through each year of Its life re- 
cording the number of the original group surviving at each 

age. Except for the first year of life, it is assumed the 

deaths occur evenly throughout the year. 

The iníormation used in the construction of life ta- 
bies Is obtained from census figures and records of vital 
statistics. G. W. Barclay In his book on population 



ix 

analysis discusses the reliability of this in.foration and 

the techniques of making life tables. He also discusses 

the problem of determining human fertility. This is more 

difficult than studying fertility in animals since there 

is more of an element of choice in hnmn reproductive 

rates (3, p. 5, 55-92, 93, 9, 11-115, 168-170). 
In Prinile of Animal Eco1ocy, Allee, W. C. 

give a rather complete discussion of population studies. 

They include all the major ideas discussed so Lar in this 

paper. However in applying the logistic curve to human 

populations, they expected the world population increase 

which began wIth the industrial revolution to begin level- 

Ing off in 1960. This of course did not happen. 

human population boom seems to be advancing as rapidly as 

ever. This shows one of the dangers of extrapolation from 

data (L p. 313-315). 
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1ETIIODS AND PROCE1JRES 

Since interspecific relationships in nature are 

usually governed by a number of factors interacting in a 

complex way, any mathematical model that closely simulates 

nature Is likely to Involve a great deal of computation. 

Therefore, I used ari Aiwac III-E digital computer, which 

allowed me to perform rapidly many more arithmetic cal- 

culations than would have been possible otherwise. I was 

able to write rather elaborate programs. I have considered 

three different situations: the case of one species by 

Itself; the caso of two species and their interactions; 

and the case of three species which are allowed to inter- 

act with each other in several ways. 

The Single-Species Model 

First let us consider the changes in a one-species 

population over a period of tinie. The population is 
first divided Into age classes. The notation Ntis used 

to designate the number of organisms in the population 

which are 1 years old and were born in year j. The unit 

of time I, and j, could also be considered In weeks, days, 

or hours if this better fits the population to be studied. 

The number of young born In a particular year (j) is given 

by N. This is taken equal to 
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+ k K 
'-=1 1 
where K1 is the average number of offspring an 1-year-old 

animal will produce in the l'th year, and where n is the 

maximum possible age attained by a member of this species. 
The K's can be either greater or less than one. The nu-m- 

ber of animals one year old or older present at a particu- 

lar time can be expressed in terms of the number of an!- 

mais of the same year class present the year before. Thus 

[/;ì 
where N is the number of i-year-olds born in year j. 

is the number of 1-l-year-ol born In year j. (I.e. The 

number of members of the j'th year class alive last year.) 

Is the probability that an organism which has lived 

1-1 years will survive to the next year (the 1th year) 

under conditions of no predation or food deficiency and 
with a normal climate for the area. 

/ .. 
ç- A 

L_ / is the total number of organisms alive In the pop- 
¿z.:o '1"- '1'--- 
ulatlon in year j f i - i.Z .k - 4 

;i.;-3 a o 

Iv .iL-:+iI 
cf/ii Is the effect of overpopulation (compensatory 
4'C 
mortality.) When the population is not too dense e will 

be taken as zero. If the population is very sparse so 

that the effects of underpopulation (depenatory mortality) 

appear, the term may be changed to p is 

the reduction of the population by predators, and Is a 
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function of the size of the predator population, g is the 

effect of the climate over the last year. This factor 

allows us to include the effect of extremes in the weather; 

drought, floods, hard winters, or 'by changing the sign 

even exceptionally favorable weather. 

By use of a jump switch lt Is possible to put in a 

different factor for g (climate) each year. This factor 

can come from a table of random numbers. By moving another 

switch the machine will stop at the end of any year and 

changes may be typed into the program. Thus the rate of 

predation, the effects of over- or under-population, and 

the basic probability of an organism living to the next 

year can be changed. The nunibers in the year classes 

can also be changed in this manner, thus introducing 

Immigration, emigration, or density independent mortality. 

,,1 

The program was written so as to keepZ,.., jk 
between zero and one. Since it is Impossible for a nega- 

tive number of organisms to be present, when this factor 

became negative, zero was substituted for it. Again 

when this factor became greater than one, one was substi- 

tuted for it, since barring Immigrations, it is impossible 

to have more members in the N11 class next year than there 

were in the N1 class this year. It may be argued that even 

under Ideal conditions all the organisms in one year class 

would not live until the next year. By changing the 



program slightly, it could be made so that all values of 

Ii C flj.?wou1d be replaced by .95. a-jO 

A ?!odel for the Study of Two Species 

The two-species model is similar to the one-species 

model. This model Is in somewhat the same general form 

that Volterra used, but differs from the Volterra equations 
In that the populations are separated into age classes, and 

in that there Is a factor for climate and a factor for a 

predator on the predator. Also, in contrast to Volterra's 

model, the changes are assumed to be discrete rather than 

continuous. The equations which were used are as follows 

(I) 
- / 

t U-/ -cWrM1,] 
C) 

- 

, -/ 
M' j - a -/ -1 

&) /W M, I4 _J 

N Is the number of prey. 

M is the number of predators. 

I Is the age of the organism. 
j Is the year of birth of the organism. 
N' and M are the number of young born in year j 

0 
to the prey and predators respectively. 



K1 is the average number of 
1-year-old prey will pro 
year. 

is the ave'age number of 
i-year-old predator will 
given year. 

offspring an 
.uce in any given 

offsprin an 
produce in any 

f1_1 and are the probabilities that an organism 
which has lived 1-1 years will survive 
to the f-rh year, when prey-predator ef- 
fects and climatic effects are not con- 
sidered. 

/4-/ 'n' 

C/ andCM account for the effects of overpopulation. 

n is the max1rmm possible age attained by 
the prey. 

In Is the maximum possible age attained by 
the predator. 

I tA/q/:rîct/ is the effect of predation, which Is 
directly related to the size of the pred- -c ator population. 

Is the effect of the food supply on the 
a'd a., predator. 

Possibly this last factor should be combined with the i's, 

or d'sved from positive to negative as the food varies 

from a mean value. This will of course depend on how large 

a factor this partIcular prey Is in the survival of the 

predator. g is the effect of climate, and can be either 

positive or negative. Is the effect of a predator on 

the predator if there is one. This factor may or may riot 

exist, and can also be dealt with by putting in a third 

animal. 

The same general comments that apply to the one- 

species model still hold. Climate may be changed each year 
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by use of random numbers. The climate factor for the prey 

does not need to have the same value as the climate factor 

for the predator. These two factors may be the same, com- 

pletely independent of each other, or have some relation- 

ship between these two extremes. 

All the other factors in equations one to four may 

be changed at the end of each year (cycle). The factors 

[,CiV A4/] 
and 

IVIa., 

-7 

are held between zero and one in the manner already dis- 

eu sse d. 

A del for the Study of Three Species 

The three-species model is a general model which can 

be used for many types of interactions between different 

species of organisms. It Is written in such a way that 

more than three species could easily be added without 

changing the form. The basic equations are as follows: 

( LtL 
I J 

(') 
Lf-L 

r 
- 

-/ 

- - o 

(7J 

(1 / 
LLf 



ftn_ - 

C?) M' kìi 

00) A4J M, [L, 
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In equations 5 to 10, the notation resembles that for the 

previous situations; specifically the three species are 

divided into age classes. It is assumed that the period 

from I to I-1 is the same for all three species, but this 

period is not necessarily a year. 

L, Nt, M I Is the "age" of the organism 
j is the "year" of birth of the organism. 

L, N, Wt 
a 

indicate the number of young born In a a 
particular "year" (time period), in each 
species. 

K1, 
j, are the average number of offspring an 

1-year-old member of each species will 
produce during the given "year" (time 
period). 

fi_l, ni1 are the probabilities that an organism 
which has lived I-1 "years" will survive 
to the fil) year", when the other factors 
such as cZL tzw , p, and g are not 
considered. These factors allow for the 
effects of infant mortality and of higher 
death rates in older animals. 

C, d, e c is the effect of overpopulation or 
underpopulatlon of species L. d and e 
are the predation effect or beneficial 
effect of species N and M on species L. 
e, d, and e can be either positive or 
negative. 

-e., a, - a Is the effect of overpopulation or un- 
derpopulation of species N. and are 
the predation effect or beneficial effect 
of sec1es I. arid M on species N. , 

, 

and e can be either positive or negative. 



, , is the effect of 
underpopulation of 
are the predation 
effect of species 

, 
, and I can be 

negative. 

overpopulation or 
species M. c and d 
9ffect or beneficial 
L and N on species M. 
either positive or 

p, , represent the effect of predation other 
than that considered above, or exploitation 
by man. 

g, , are factors for climatic effect. They can 
be positive or negative or changed yearly. 
g, , and ' are not necessarily equal. 

1, n, in are the maximum possible ages of Indi- 
viduals in species L, N, and M respec- 
tively. 

The saine general comments which were given for the 

other two species still hold. However if a prey-predator 

relation is such that one species has much effect on a 

second, but the second species has little effect on the 
m 1_- 

first, then instead of using the factor ¿W 
(-n 1-o-i 

the ratio would be better 

An example of this is the situation where a predator has 

more than enough food, so a change in the number of prey 

has little effect upon the population size of the predator. 

In this case the rate of predation would be proportional 

to the ratio of predator to prey. When the prey has a 

stronger effect on the size of the predator population, 

this effect is taken care of in equation eight where the 

size of the prey population affects the size of the 

predator population. 
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Climatic variations may be s1nu1ated by using random 

numbers. Any of the other factors can be easily changed 

at the end of each year (cycle) if so desired. If the p's 

represent exploitation by man, the program may be modified 

so a different value of p Is used for different age groups. 

This may be necessary, since man usually protects the 

young organisms from exploitation. The restriction that 

L/L 
[,+ ] and 

have values between zero and one inclusive, must also hold. 
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RESULTS 

Single-Species Populations 

Using the program for one species, I chose the fol- 

lowing values for the different factors and initial values. 

N 100 f0 .65 

60 f1 .96 K1 = .3 

r2 .96 K2 .3 

N3 50 f3 = .96 K3 

N '+5' 
f'+ .90 + .'+ 

N;5 '+0 f5 .80 ic5 

30 f6 .70 K6 3 
20 f7 .50 K7 .2 

lo 
8 .30 K8 .l 

2 f9 =.10 ¡(9 0 

N: = O 210 0 K10 O 

¿IN '+12 

c .001 p .002 g .0003 

without making changes in any factor, the program was 

allowed to run for 198 cycles (years). It reached a 

steady population of '+98.5, with very little variation 
from this value (Figure I). The age classes in this stable 
population are given in Table I. 
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Table I 

123 
iS2- 

35 

N - 71- 
11 

N7 23 

67 
,qo 

N1 10 

61 = 2.5 

N 55 N,0 Z O 

N 
3 

Using this stable population, the value of the f's 

were changed to siiinilate an epidemic. The new values for 

the f's were: 

fo '33 f6 Z 35 
f1 £7 .25 

- f z .15 

13 = f9 z .05 

f14 = )+5 f10= o 

f = 

Alter two cycles (years) with the f's at these values, 

they were returned to their origin1 values. At the end 

of the second cycle the population reached a minimum of 

117. Then it gradually returned to its original value 

of 98. After 86 cycles the population size was 1+93 

(Figure II). 

Next, 500 individuals were placed in the zero year 

class to simulate the development of a population placed 

in a virgin territory. The factors for climate, predation, 
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probability of survival of each year class, and overpopu- 

latlon were the sanie as In the first situation. The popu- 

latlon reached a low of 387 the first cycle. Then it 

rose to a maximum of 609 in the fifth cycle. From there 

the population gradually returned to the stable size of 

It was 98.97 after 82 cycles (Figure III). The 

population decreased from the fifth to the ninth cycle 

and then maintained approximately the same value of 562 

and 561 in cycles nine, ten, and eleven. This plateau 

is due to the larger number of 'births" in cycles four 

and five which have now reached the older age groups and 

which act to retard the gradual decrease of the total 

population (Figure IV). 

The values of g were thei varied by use of random 

numbers while everything else was held in the stable 

condition of the first situation. This, of course, 

caused the population size to oscillate irregularly. 

Interactions Between Two Species 

In the two-species model, there was a damped oscil- 

lation in the number of prey organisms and the number of 

predator organisms (Figure V). In this case the constants 

inì Table II wore used. 
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When the values for d and were smaller the fluctua- 

tions were smaller, and if d and were small enough 

no fluctuatIons occurred. Whenever the values for the 

were larger, this species did riot show oscillation. 

Such a situation occurred when the Tm's were taken as 

3 f6 

- .6 .2 

= .6 .1 

f3 - .6 f9 - .05 

.6 io 0 

T5 .5 

and the values of d and were both .0001. In this 

case neither species showed oscillation, but both level 

off t a steady value for each species. The effect of 

climate as a random factor was then studed. 

Starting with the same values as were used for 

Figure V, the program was allowed to go through four 

cycles before changing the climate. From then on, for 

each cycle a different number was used for g and . 

Numbers were obtained from a table of random numbers and 

were coded In the fol1owIn way. 
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Number Value for g or 

o o 

i .001 

2 .002 

3 

1 .008 

5' -.001 

6 -.002 

7 -.00+ 

8 -.008 

The number nine was skipped. The first number was used 

for the prey species, g; the second number was for the 

predator species, . The third number was used in the 

next cycle for the prey, and so on. As cari easily be seen 

in Figure VI, the fluctuations are re erratic and are 

not damped as they are in Figure V. (Cycle 2 in Figure V 

corresponds to cycle i In Figure VI. i.e. The time nuin- 

bers in Figure VI need to be moved one to the right to 

correspond exactly with Figure V.) 

Next the case where two species compete for the 

same food was examined. The factors and initial values 

in Table III were used. 
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Table III - continued 

.Fiist Species second Species 

.65 .75 

f, - .8 f, - .9 

- .8 f .9 

r3-.85 f .9 

- .8 = .9 

i 

?i. z.6 

f7 - f7 

f .2 '3 

f9 - .1 = .1 

o o 

Since dm is negative, ari increase in the size of the popu- 

lation of species one has a negative effect on species 

two; as also an increase in the size of species two has 

a negative effect on species one. In this situation the 

population of species two went from l2+ individuals to 

zero individuals in 16 cycles (Table IV). 

The value of c was changed to .00015 and of d11 to 

.00015, and everything else kept as it was above. This 

time the size of the population of the first species went 

from 1325 individuals to '+ individuals in 13 cycles (Table 

V). 

Next, the value of d was changed to .0001 and the 

other factors kept as they were in the second case. Now 
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Table IV 

Çycle First $tecies Second Sece 

0 1325 l2+ 
1 1362 1190 
2 l35 1053 
3 1602 829 

1735 681 
5 
6 

1878 536 
2039 +00 

7 2197 280 
8 2355 i8+ 
9 24-91 112 

10 2593 6 

11 2675 3 
12 27+6 11 
13 2769 5 

2780 3 
15 2786 1 

16 2790 0 

Table V 

0 1325 
1 92+ 1191 
2 77+ 1316 
3 713 

651 1523 
5 583 1667 
6 506 18'+8 

7 1+22 2070 
8 277 2528 
9 187 2885 

10 110 3288 
11 52 3722 

1+11+6 12 18 
13 1+ missIng 
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the population of species two went from 1+2+ individuals 

to 92 Individuals in 27 cycles (Table VI). The number of 

Individuals in species two formed a monotonic decreasing 

sequence of terms with each one smaller than the one 

before. 

This seems to indicate that lt would be very diffi- 

cult to get two ecologically similar species to survive 

together in the same environment, since slight changes 

in the factors for the relationships between the two 

species will tip the balance and cause one species or the 

other to go to extinction. To find a set or values so 

that they would both survive would be quite difficult. 

These values would have very narrow limits within which 

both species would survive. This type of situation would 
be very unlikely to occur In nature. 

Interactions among Three Species 

In the first three-species situation species L was 

eaten by species M and species M, while species M also 
ate species M. The factors and initial values of Table 

VII were used. 

In this case the sign Is important, since all factors 

are assumed positive unless there Is a negative sign. 

Damped oscillations were obtained In all three species, 

as shown in Figure VII. 
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Table VI 

Cycle Firßt Sec1es Second Spç 

0 1325 
i 111f]. 1191 
2 1111 11+l 
3 1105 lii 

1109 108 
5 1119 1062 
6 1132 1031 
7 1166 967 
8 1199 910 
9 1219 871 

10 1260 805 
11 1302 733 
12 l33+ 686 
13 1366 637 
1 1398 587 
15 132 537 
16 11f67 +86 
17 1502 +36 
18 1537 389 
19 1568 31F3 
20 1605 300 
21 1636 259 
22 1665 223 
23 1692 189 
2+ 1717 160 
25 1736 
26 1758 111 
27 1776 92 
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Table VII - continued 

SEecies Species ¡ Species li 
K6 1.2 .3 

K7 - .8 K7 - .2 

: tf C 

K?: O K9- O 

O i/o O 

.75 = 3 = .35 

f, .95 = .s - .5 

95 '5 C 5 

.95 = .5 = 

f, C 95 T, .5 .2 

f5 : .92 .1F O 

5 .9 E .3 

r7 - .8 = .2 

rl .7 .1 

= .3 f9 - .05 

o 



Next the reprodu 

14 were changed to 

K3 

-J-) 

ctive rates of the predator species 

elf 

r 
.) 

elf 

.2 

o 

and all the other factors left the same as in the former 

situation. In this case species M went to extinction. 

After 112 cycles there were five organiss left, whereas 

in the former situation the number of organi.snis in species 

M oscillated about 1100 organisms. Species N averaged 

about 830 organisms, while in the previous example lt had 

varied around 280 organisms. Species L fluctuated around 

11+80 indivIduals, while in tlie first case its eventual 

value Was around 2000. Thus the presence of species M 

kept the population of species N low and allowed species 

L to reach a higher value. This outcome makes good sense, 

since the program was arranged to make the predation of 

species N greater on species L than the predation of 

species M (Figures VII and VIII). 

The next situation considered was that in which 

one predator, species M, eats t.io prey, species L and N. 

There is no relationship between the number of indi- 

viduals in species L and N. The factors and initial 

values which were used are given in Table VIII. 



.0002 

Oj -.0003 

pl o 

g1 O 

L: 

290 

161+ 

92 

52 

29 

L7 

3 

14? 

o 

15Qç 

1.8 

K3 2 

2 

1.8 

Tabj0 VIII 

N 

O 

a:;1 -.000j 

.001 

¡Ç 150 

82 

¡ç3 

25 

15 

N6 

'cl 3 

2 

i 

N,;'0 o 

759 

.7 

= .9 

K3 

i 

.9 

.0001 

.0002 

-.0003 

1 
-.001 

212 

'cl 75 

Ì4 1+1 

25 

13 

8 

1+ 

2 3 

2 

i 

o 

M 381+ 

.1+ 

.5 

IC3 

5 .5 

.5 

-) i. 
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Table VIII - continued 

_p_Q_Q k 

K l)i- Ç .7 Ç 
K?. .9 .ç = . 7 - .3 

K. .5 ; = .3 ; : .2 

K .2 
, 

.1 ; : 

K,0 O 
/O 

/ O 

fo .6 = .75 .3 

f, .95 r, . l .5 

1a 
.9 

f, .95 = '9 ?j .5 

; = .95 f,, .9 ' 

f., .92 ?- .9 
4_ 

f6 .9 6 9 ! .3 

f7 .8 r.7 .3 TI,, .2 

ç .7 t 
: 7 .1 

.3 z 3 .O 

f,0 = O = O z O 



Lotka reported that it was possible for one prey species 

to go to extinction In this type or situation. Neither 

of the prey species in this program became extinct, but 

they do have rather violent fluctuations. If Figure IX 

Is studied closely, lt will be seen that the size of 

species M increases after species L and/or species N be- 

come large. When the size of species L and N is small, 

the population of species M immediately decreases. The 

many large fluctuations seem to indicate that this popu- 

lation structure is not very stable and that one species 

could become extinct rather easily. 
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FURTJR DEVELOPMENTS AND COMMENTIS 

The thzee-species model cari easily be extended to 

include any number of species. The only limit is the 

memory size of' the computer. On the Aiwac III-E there 

is room to store at least 20 species. The general form 

of the three-species model would be used. 

4(,tpt,] 

constitutes a general form of the equations. Here N1 

stands for the first species, not an age group, N2 stands 

for the second species, and so forth. The types of re- 

lationships between any two species would be determined 

by the size and sign of the a's. 

If two or more organisms reproduce at different 

Intervals this situation can also be handled. Assume 

one organism has three litters per year while another has 

only one . The program could be so coded that the computer 

would go through three cycles for the first species each 

time it went through one cycle for the second. To con- 

sider a more complex case, let us assume one species has 

three litters per year while another has two. In this 

case the numbers three and two would be placed so that on 

each cycle they would be reduced by one. 'When one of 

these numbers became zero the computer would calculate 

the population of the species corresponding to that number 

and replace the zero with a three or two. 



In some f1e1ds especially fisheries, instantaneous 

mortality rates are important. As an example, let us 

assume that a fish population has a natural mortality rate 

of 2 per cent and a fishing mortality rate of 30 por cent. 

At the end of a year the total mortality rate would not 

be per cent of the population at the beginning of the 

year. The population size would be gradually lowered by 

natural deaths and fishing during the year. Therefore 

the 30 per cent fishing mortality would be acting on a 

different size population at one time than at another 

time. 

To handle this type of situation the time Intervals 

would have to be shortened. Since this is a discrete 

model, only close approximations could be made. The 

time interval could be tckeri as a week or a month Instead 

of a year. Here, if the population reproduced annually, 

the N0 class would be added only every 52 or 12 cycles. 

Taking the time interval as a day would present diffi- 

culties, since the program must go through 365 cycles 

to cover one year. This could be prohibitive because of 

the time Involved. 

If a population has a high birth rate with a large 

infant mortality, the first year could be better handled 

if It were divided into smaller time Intervals, say 

monthly intervals. Thus the N0 class would go through 
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12 cycles to become the N1 class. After these cycles the 

rest of the population would go through one cycle and a 

new N0 class would be formed. Without the above considera- 

tion, lt would be very difficult to find a satisfactory 

value for This is true because first-year mortalities 

are likely to occur at a shifting instantaneous rate. 

If the size of the different age classes in a popu- 

lation are known, or can be estimated over a period of 

years, this program can be modified to give estimates of 

other factors. In other words, if everything but d is 

known or estimated in the equation t 

can be solved for d. By repeating this procedure over 

several years and age classes, estimates may be made of 

compensatory mortality, predation pressure, and other 

factors. 
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