Ragnar Arnason*

Profits, rents and resource rents

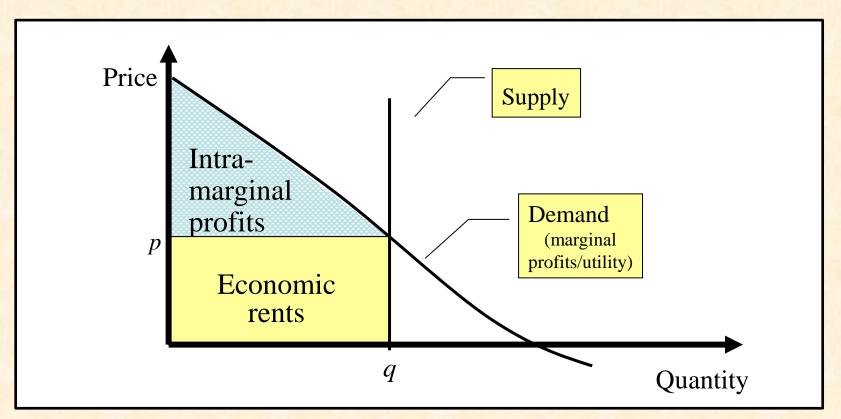
North American Association of Fisheries Economists Biannual Conference, 2017

> La Paz, Mexico March 22-24, 2017

Why consider rents?

- Much employed in natural resource economics
 - Land rents, mining rents, fisheries rents, location rents etc
- Often loosely employed
 - Typically no definition offered
 - Often used as synonymous with profits
 - Tenuous relationship with the theoretical (classical and neoclassical) concept

My claim


- 1. Rents can be precisely and usefully defined
- 2. Rents ≠ profits [The classical & neo-classical view]
 - Rents are greater or less than profits
- 3. Rents in resource use are <u>not</u> resource rents!
 - In the sense that the resource generates (is the source of) the rents

Modern Definition of Economic Rents Alchien (New Palgrave 1987)

Economic rents are "payments to a factor in fixed supply"

Neo-classical mainstream (e.g. Marshall and others)

Illustration (Alchian 1987)

A closer look

- Fixed supply is not convincing
 - Especially not in the long run
 - Definitely not for natural resources, ..even in the short run.
- What is analytically crucial is:
 - Limited (not fixed) supply (at a point of time)
 - Supply price above marginal cost
- It doesn't matter how or why supply is limited!
- A "factor" is an unnecessary restriction

Economic rents: Generalized definition

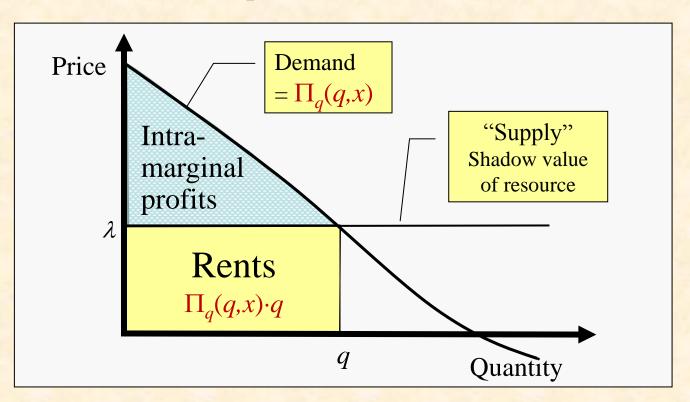
Economic rents are "payments to a variable above the marginal cost of supplying it"

Generalization:

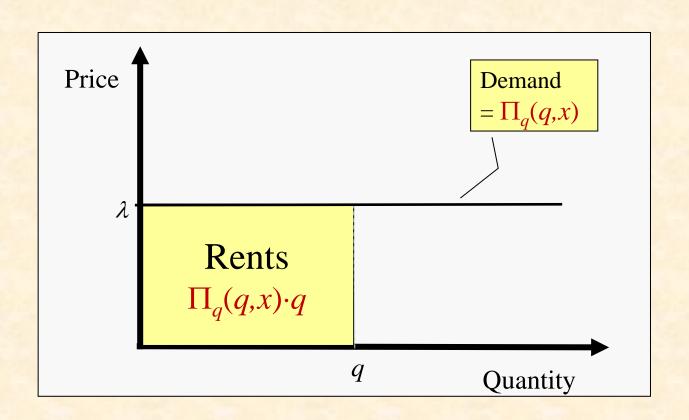
- 1. Factor \rightarrow variable (either input or output)
- 2. Fixed supply \rightarrow payment above marginal cost of supply
- Note 1. Includes Alchian's definition as a special case
- Note 2. Fits with Dasgupta & Heal's (1979) & Hanley et al.'s (1997) definitions
- Note 3 Includes rents in resource use, monopoly rents and other types of rents

Useful expressions

Profits: $\Pi(q) = D(q) \cdot q - C(q)$

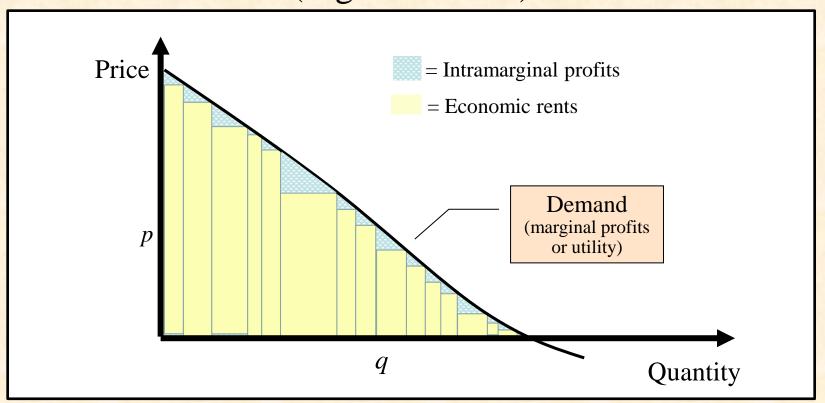

Rents: $R(q) = \prod_{q}(q) \cdot q = (D_{q}(q) \cdot q + D(q) - C_{q}(q)) \cdot q$

Rents in production : $R(q) = \Pi_q(q) \cdot q$


Rents in consumption: $R(q) \propto (U_q(q)-p)\cdot q$

Rents in natural resource use

Benefit (profit) function: $\Pi(q,x)$



If linear profit function

Many heterogeneous units

(E.g. land rents)

Calculating rents in natural resource use

Rents: Formal expression

$$R(q,x) = \prod_{q} (q,x) \cdot q = \lambda \cdot q$$

So, to calculate rents only need to know:

- (1) Level of resource extraction (use), q
- (2) Marginal profits at this level of extraction

Rents and Profits

Exact Taylor expansion of profit function:

$$\Pi(q) = \Pi(0) + \Pi_q(q) \cdot q - \Pi_{qq}(q)$$

⇒ No determinate quantitative relationship!

Relationship between profits and rents				
	Profit function			
Fixed costs	Linear, $\Pi_{qq} = 0$	Strictly concave, $\Pi_{qq} < 0$		
Positive ($\Pi(0) < 0$)	$\Pi(q) < \Pi_q(q) \cdot q$?		
Zero ($\Pi(0) = 0$)	$\Pi(q) = \Pi_q(q) \cdot q$	$\Pi(q) > \Pi_q(q) \cdot q$		

Rents and resource rents

- Rents: $R(q,x) = \prod_{q} (q,x) \cdot q = \lambda \cdot q$
- Profits depend on many variables
 - Prices, technology, management, enterprise, transaction costs, infrastructure, organization and resources
 - $\Rightarrow \Pi_q(q,x)\cdot q \rightarrow \Pi_q(q,x,z)\cdot q$, z long vector
- \Rightarrow Cannot attribute profits to just one of these variables.
- ⇒ Meaningless (even misleading) to do so

ENT

Historical background

- Physiocrats (18th century). Only true net product
- Smith (1776). Rents ≠ profits; unproduced profits
- Malthus (1814, '15). Corn laws
- Ricardo (1817). Theory of land rents

Common thread

- A component of profits.
- Profits without production [⇒ unearned (Henry George)]
- Price at which the "good" could be rented out

Historical background (...cont.)

Major role in classical economics
Ricardo-Mill-Marx: Increasing land rents ⇒ falling profits

Schumpeter:

Classical economics hopelessly confused about rents Neo-classical (marginal) economics clarified the concept

The concept of rents

- Initiated by A. Smith (1776) [rents \neq profits]
 - An occasional component of profits, stemming from specially advantageous positions
 - Little or nothing to do with enterprise or initiative
- Further developed by Ricardo (1817) [land rents]
- Important role in classical economics (Ricardo-Mill-Marx; [increasing land rents ⇒ falling profits in

manufacturel

Historical roots

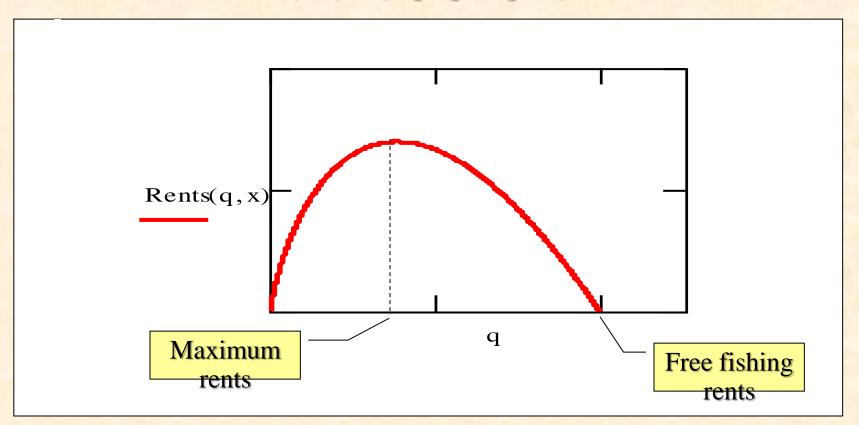
- Physiocrats (18th century). Only true net product
- Smith (1776). Rents≠profits, rents⊆profits.
- Malthus (1814,'15). Corn laws
- Ricardo (1817). Theory of land rents

Common thread

Component of profits. Profits without production => unearned (Henry George)

Major role in classical economics
Ricardo-Mill-Marx: Increasing land rents=> falling profits

Natural Resource Rents Some useful results


- (1) Theory independent of management! (not just optimal extraction)
- (2) Natural resource rents generally depend on
 - (i) extraction rates
 - (ii) stock levels
 - (iii) other variables (prices, technology, expectations etc.
- (3) If extraction is profitable \Rightarrow maximum rents>0

Shape of Fisheries Rents Function

- Rents increase with extraction if elasticity of demand (E(p,q)) is sufficiently high (>-1)
- Rents are maximized where E(p,q)=-1
- Rents increase in biomass iff $\Pi_{qx}>0$

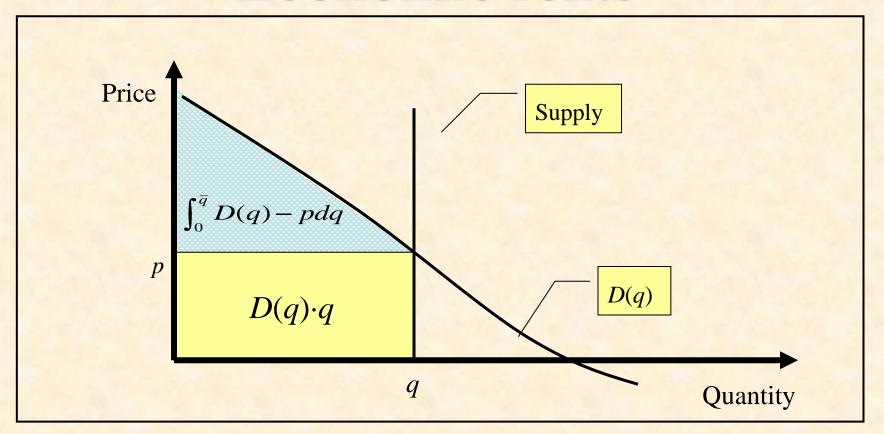
Fisheries Rents Function: An Example

$$(\Pi(q,x)=p\cdot q-c\cdot q^b/x)$$

Natural Resource Rents

Model

Profit function: $\Pi(q,x)$


Resource evolution: $\dot{x} = G(x) - q$

 \Rightarrow Demand (optimal): $\Pi_q(q,x) = \lambda$

Supply (optimal): $\dot{\lambda} - r \cdot \lambda = -\Pi_x - \lambda \cdot G_x$

 $\dot{x} = G(x) - q$

Economic rents

Useful Relationships

Inverse demand: p = D(q)

If production : $D(q) = MP(q) \equiv \Pi_q(q)$

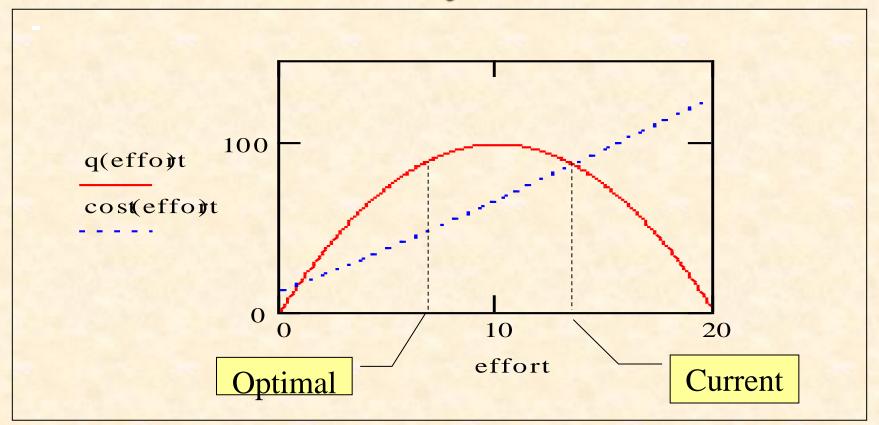
If consumption: $D(q) \propto MU(q) \equiv U_q(q)$

 \Rightarrow Rents: $R(q) = D(q) \cdot q$

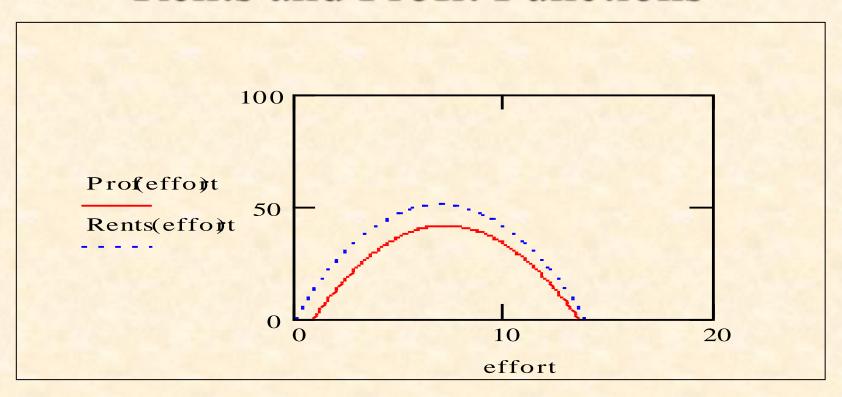
If production : $R(q) = \Pi_q(q) \cdot q$

If consumption: $R(q) \propto U_q(q) \cdot q$

An Example Global Fisheries Rents Loss


Model

Harvesting function: $Y(e,x) = \varepsilon \cdot e \cdot x$


Resource evolution: $\dot{x} = a \cdot x - b \cdot x^2 - \varepsilon \cdot e \cdot x$

Harvesting costs: $C(e) = c \cdot e^f + fk$

Global fishery: Illustration

Global Fishery: Rents and Profit Functions

Global Fisheries Rents Loss

Sustainable global fishery: Current and profit maximizing outcomes

		Profit	Difference
	Current	maximization	(optimal –current)
Fishing effort	13.9 m. GRT	7.3 m. GRT	-6.6 m. GRT
Harvest	85 m. mt	93 m. mt.	+8 m. mt.
Biomass	123 m. mt	254 m. mt.	+131 m.mt.
Profits	-5.3 b. USD	41.6. b.USD	46.9 b.USD
Rents	0 b. USD	50.8 b. USD	50.8 b. USD

Global fishery: Stylized description

Stylized description of the global ocean fishery				
A1	Maximum sustainable yield (MSY)	100 million metric tonnes/year		
A2	Maximum biomass (utilized species)	400 million metric tonnes		
A3	Current catch per unit effort (cpue)	6.0 metric tonnes/GRT		
A4	Average landings price per metric tonne, p	1 USD/kg		
A5	Elasticity of variable costs, f 1.1			
A6	The global fishery is currently:	Close to sustainability		
A7	A7 Current competitive profits (excl. subsidies) -5 b. USD/year			
A8	Global fishery Close to economic equilibrium			
A9	Global fish harvest is currently	85 m. metric tonnes		

Global fishery: Implied model parameters

Model parameters					
Parameters	Values	Units			
а	1.0	Time ⁻¹			
b	0.0025	(Metric tonnes·time) ⁻¹			
ε	0.05	GRT ⁻¹			
p	1	USD/kg.			
С	4.3	USD/GRT			
f	1.1	No units			
fk	13	Billion USD/year			