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Abstract approved: 

DSA (Diffusion Synthetic Acceleration) has been developed to accelerate 

the SN transport iteration. We have developed solution techniques for the diffusion 

equations of FLBLD (Fully Lumped Bilinear Discontinuous), SCB (Simple Corner 

Balance) and UCB (Upstream Corner Balance) modified 4-step DSA in x-y 

geometry. Our first multi-level method includes a block Gauss-Seidel iteration for 

the discontinuous diffusion equation, uses the continuous diffusion equation 

derived from the asymptotic analysis, and avoids void cell calculation. We 

implemented this multi-level procedure and performed model problem calculations. 

The results showed that the FLBLD, SCB and UCB modified 4-step DSA schemes 

with this multi-level technique are unconditionally stable and rapidly convergent. 

We suggested a simplified multi-level technique for FLBLD, SCB and UCB 

modified 4-step DSA. This new procedure does not include iterations on the 

diffusion calculation or the residual calculation. Fourier analysis results showed 

that this new procedure was as rapidly convergent as conventional modified 4-step 

DSA. 

We developed new DSA procedures coupled with I-Cl (Cell Block 

Inversion) transport which can be easily parallelized. We showed that 1-Cl based 
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DSA schemes preceded by SI (Source Iteration) are efficient and rapidly 

convergent for LD (Linear Discontinuous) and LLD (Lumped Linear 

Discontinuous) in slab geometry and for BLD (Bilinear Discontinuous) and 

FLBLD in x-y geometry. 

For 1-Cl based DSA without SI in slab geometry, the results showed that 

this procedure is very efficient and effective for all cases. We also showed that 1-Cl 

based DSA in x-y geometry was not effective for thin mesh spacings, but is 

effective and rapidly convergent for intermediate and thick mesh spacings. 

We demonstrated that the diffusion equation discretized on a coarse mesh 

could be employed to accelerate the transport equation. Our results showed that 

coarse mesh DSA is unconditionally stable and is as rapidly convergent as fme 

mesh DSA in slab geometry. For x-y geometry our coarse mesh DSA is very 

effective for thin and intermediate mesh spacings independent of the scattering 

ratio, but is not effective for purely scattering problems and high aspect ratio 

zoning. However, if the scattering ratio is less than about 0.95, this procedure is 

very effective for all mesh spacing. 
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COARSE MESH AND ONE-CELL BLOCK INVERSION BASED
 
DIFFUSION SYNTHETIC ACCELERATION
 

CHAPTER 1 
INTRODUCTION
 

The Boltzmann transport equation was first formulated for the study of the 

kinetic theory of gases a century ago. This transport equation has been applied to 

analyze the motion and interactiOn of radiation with an underlying medium. The 

widespread application of the linear transport equation includes radiation transfer of 

stellar atmospheres, radiation imaging and oncology, and neutron behavior in 

fission reactors. [Lew 84] 

It had been tried to get the analytical solution for the lmear transport 

equation. Although several elegant methods were developed, they were restricted to 

semi-infinite media and highly idealized problems. Therefore, these analytical 

methods are not relevant to most problems encountered in engineering analysis. 

Concurrently, numerical methods have been developed to solve the linear transport 

equation for multi-region and multi-dimensional transport problems. This coincided 

with the development of the increasing computational power of digital computers. 

There are two major distinct approaches to solve computational particle 

transport problems: Monte Carlo methods and deterministic methods. The Monte 

Carlo method is a numerical technique that uses random numbers to sample from 

probability distributions describing an empirical situation. In the deterministic 

method, all the parameters are to be discretized. In general the parameters include 

space, angle, energy and time. While Monte Carlo methods are very efficient when 

a small amount of accurate information is needed, deterministic methods are 

efficient when global information is needed. Monte Carlo simulations are able to 
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treat very complicated geometries, but can be very expensive in calculating large 

systems with high accuracy. Deterministic simulations can be very cheap and fast, 

but are not often able to model complicated geometries explicitly. [Lar 99] 

A recent trend is the development of "hybrid" computational transport 

methods that make joint use of Monte Carlo and deterministic methods in ways that 

are not possible by using one technique alone. [Lar 99] 

In this research we focus on deterministic methods and the development of 

the speedup techniques for transport calculations. 

1.1 Speedup of Iterative Numerical Methods for the SN Equations 

The transport equation can be solved numerically using several iterative 

methods, two of which are source iteration and cell block inversion. The iterative 

convergence can become exceedingly slow in "diffusive" problems i.e., problems in 

which the scattering ratio goes to 1.0. To illustrate, Source Iteration (SI), the 

iteration scheme employed by most deterministic methods, is based on calculating 

components of the nth collided flux; each iteration accounts for one collision. If a 

problem is one in which many particles undergo large numbers of collisions, then a 

comparably large number of iterations are necessary to achieve convergence. 

Acceleration methods, such as Chebyschev, Rebalance and synthetic 

acceleration, have been developed to deal with this difficulty. Chebyschev and fme­

and coarse-mesh Rebalance have not been successful. The newer scheme, Diffusion 

Synthetic Acceleration (DSA), is highly efficient for problems in which it has been 

successfully implemented. But there are still many research areas that must be 

addressed for DSA to be considered a' universally viable acceleration technique. 

DSA includes the solution of the diffusion equation as a means of preconditioning 

to the transport equation, in which the diffusion solution accelerates the diffusion 

characteristics in the transport equation. 
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A transport synthetic acceleration (TSA) method has also recently been 

developed. ISA is less efficient than DSA .on problems for which DSA can be 

implemented, but is effective on arbitraiy grid problems where DSA has not yet 

efficiently been implemented, and is much more efficient than other available 

methods (such as rebalance). [Ram 97] 

In recent years, computer performance has been greatly. enhanced due to 

innovations in computer architecture and improvements in hardware design. 

Specifically, vector and parallel architecture computers are now widely available, 

and microchips have become more compact, thus allowing faster signal processing. 

These advancements have created a revolution in scientific programming by 

allowing larger and more complex physical systems to be modeled. Simultaneously, 

a need has arisen for improvements in current computer algorithms to take full 

advantage of the new capability. 

Another powerful acceleration tool is the multi-grid method. Multi-grid is a 

very efficient technique for improving the performance of iterative methods which 

do a good job of attenuating high frequency components of the error. However, 

since multi-grid is highly dependent . on the iteration scheme, its range of 

applicability is limited. 

1.1.1 Diffusion Synthetic Acceleration 

Kopp [Kop 63] developed DSA for the first time. His method was used 

initially to solve one-speed problems in slab geometry. He used the continuous 

forms of both the diffusion and transport equations, and his results were quite good, 

although they were necessarily limited to simple problems. 

Crawford and Chambre [Cra 64] extended Kopp's method to anisotropic 

scattering problems. 

Crawford and Friedman [Cra 65] implemented this method for multi-region 

two-dimensional problems and used Monte Carlo to evaluate integrals over 
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transport Green's functions and numerical integration to evaluate integrals over 

diffusion Green's functions. 

Gelbard and Hageman [Gel 69] were the first to incorporate the synthetic 

method to accelerate two-dimensional SN transport calculations. They attempted to 

accelerate the x-y geometry discrete ordinates diamond-differenced transport 

equation; a diffusion equation an4 an S2 discrete ordinates equation were both tried 

as low-order operators to accelerate the "high-order" equation. From the analysis of 

an infinite medium problem using the continuous equations, they found that the 

spectral radius (convergence rate) of the method using diffusion is less than O.23c 

and that of the other method using S2 is less than c/(2-c) where 'c' is the scattering 

ratio. They presented numerical results for some x-y geometry problems that were 

in good agreement with their predictions. 

Reed [Ree 71] performed a more detailed analysis of the diffusion synthetic 

method in slab geometry with Diamond Differencing (DD), and derived a necessary 

condition for stability which could be fulfilled by modifying the diffusion 

coefficient. (He did not derive a sufficient condition for stability.) Even with a 

redefmed diffusion coefficient, the, diffuthoñ-synthetic method was found to be 

inferior to a new fine-mesh rebalance algorithm Reed presented; DSA had yet to 

"arrive" as a practical computational tool [Ada86}. 

The instability problem of DSA methods was finally solved by Alcouffe 

([Alc 76] and [Alc 77]). He recognized that the key to stability lies in the scheme 

used to spatially difference the equations. The diffusion equation should be 

"consistent" with the transport equation in discretization. Beginning with the 

diamond-differenced discrete ordinates transport equation, he derived three 

different forms of the differenced diffusion equations which were "consistent", in 

some sense, with the differenced transport equation. Two forms were always 

nonlinear; the third was nonlinear ingeneral but linear for the constant-mesh and 

constant-cross section model problem; hencç the third form could be analyzed. 

Alcouffe's analyis was not detailed, but was sufficient to demonstrate 
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unconditional stability (p<l .0) for all mesh sizes given the infinite-medium model 

problem. Both one- and two-dimensional production codes were released utilizing 

Alcouffe's DSA with Diamond Differencing (DD). Since his method is nonlinear, 

negative fluxes are not permitted. However, negative fluxes arise often when DD is 

used; hence fixups are mandatory in a DSA code with DD. The main problem with 

fixups is that they effectively alter the transport differencing scheme, making it no 

longer "consistent" with the diffusion differencing. The result is instability if fixups 

are used too often [McC 82]. Another problem in Alcouffe's DSA with DD was its 

reliance on the relatively inaccurate DD scheme; also, it has to date been 

implemented only on orthogonal meshes. 

Morel [Mor 82] extended Alcouffe's method to highly anisotropic scattering 

problems and derived a different DSA method employing a different diffusion 

coefficient. 

Larsen ([Lar 82] and [MeC 82]) generalized Alcouffe's idea and developed 

linear DSA: a "four-step procedure" that is unconditionally stable and effective 

(p<l/3) for several slab geometry differencing schemes. He derived the differenced 

acceleration equations directly from the differenced transport equation. The method 

of transport differencing was virtually unrestricted. That is, not only were the 

equations linear, but DSA was no longer limited to diamond differencing. He 

introduced DSA methods for Weighte Diamond (WD), Linear Characteristic (LC), 

Linear Discontinuous (LD) and Linear Moment (LM) discretizations. Here, Larsen 

applied the P1 approximation to derive the "low-order" diffusion acceleration 

equations. Larsen was able to analyze the stability of these methods by performing 

a Fourier analysis. This. analysis is a vital tool in designing iterative acceleration 

techniques for numerical transport. Larsen's procedure for deriving stable DSA 

equations has been very successful in one-dimensional geometries. In multi­

dimensional geometries, however, only the less accurate DD scheme has been 

efficiently solved using DSA (and implemented in production transport codes). 
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Larsen [Lar 84] posttilated that in multi-dimensional geometries or with 

more advanced differencing schemes (such as discontinuous finite element 

methods), it may not be possible to reduce the acceleration equations, which arise 

from the 4-step method, to a tractable system of diffusion equations. 

Khalil [Kha 85] presented a synthetic method for accelerating nodal 

transport equations which is not consistent between transport and diffusion 

discretizations. He derived the discretized equations from the continuous transport 

and diffusion and tried to retain as much consistency as possible. Test results 

indicated no stability problems and convergence comparable to that of the 4-step 

procedure and DD DSA. The requirement of strict consistency was no longer 

necessary. 

Azmy and Larsen [Azm 87] have shown by Fourier analysis that if one 

could solve the Pi acceleration equations in place of the single diffusion equation, 

then one would have a stable and effective acceleration method. 

Anghel [Ang 87] developed coarse-mesh diffusion acceleration technique 

for DD discretization in slab and x-y geometry. He introduced the general idea for 

the coarse mesh diffusion acceleration including the smoothing, restriction and 

prolongation operation. However, since the Fourier analysis was performed only for 

slab geometry with the scattering ratio of 0.95, it is hard to see the overall 

efficiency of this procedure. 

There have been a number of breakthroughs in the constructiOn of DSA 

methods for advanced transport differencings in multi-dimensional geometries. 

AboAlfaraj and Larsen [Abo 91] developed a DSA method for the LD 

scheme in x-y geometry, which was rapidly convergent for all problems except 

those that are optically thick. 

Adams and Martin ([Ada 91a] and [Ada 92a]) have introduced a "modified 

4-step procedure" which is almost identical to the standard "4-step procedure". 

They were able to derive unconditionally stable DSA methods to accelerate 

discontinuous finite element methods in slab, spherical, x-y and r-z geometries. 
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This method was much shtipler to use than the "4-step method", but is only 

applicable to finite element methods. Another problem was that an efficient 

solution technique was not given for these low order equations in x-y geometry. 

Conceptually the discretization of the low order equation was "inconsistent" with 

that of the high order transport equation. 

Wareing, Larsen and Adams ([War 91] and [War 92]) have used the method 

of asymptotic analysis to derive a consistently discretizd diffusion equation for 

various LD schemes in slab geometry and a Fully Lumped Bilinear Discontinuous 

(FLBLD) scheme in x-y geometry. They derived a continuous finite element 

discretization for the diffusion equation and used it as the low order equation with 

fmal updating through local FLBLD equations. Although the low order diffusion 

equation in x-y geometry can be solved easily, the spectral radius for the overall 

acceleration technique approaches 1.0 for problems with high aspect ratio zoning. 

Morel, Dendy and Wareing [Mor 93] have developed a multi-level solution 

method for the low-order diffusion equation of the "modified 4-step procedure" 

with xy-geometry bilinear discontinuous discretization. They showed that the 

bilinear continuous equations could be used to accelerate the iterative solution of 

the BLD diffusion equations and these BLC equations can be solved efficiently by 

multi-grid methods. Wareing, Walters, and Morel [War 94] found that they could 

use the same acceleratiOn equations to accelerate the bilinear nodal transport 

discretizätion. Adams and Wareing [Ada 98] later used exactly the same equations 

to accelerate the bilinear characteristic scheme. 

Wareing [War 93] has introduced new DSA methods for the slab and x-y 

geometry transport equation with corner balance (CB) differencing. 

Palmer and Adams ([Pal 91] and [Pal 93]) applied DSA methods to 

curvilinear geometry with Simple Corner Balance (SCB), Fully Lumped (FL), 

Upstream Corner Balance (UCB) and FLBLD schemes. 
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Recently DSA methods have been aj,1ied to the second order forms (even­

and odd-parity and seif-adjoint angular flux equations) of the SN transport equations 

([Mi! 91], [Mor 95] and [Ges 99]). 

1.1.2 Multi2rid Method and Cell Block Inversion 

Alcouffe et al. [Aic 81] first used the multi-grid method to solve the 

diffusion equation. 

Nowak, Larsen and Martin [Now 87] applied the multi-grid method to 

accelerate SN transport Source Iterations (SI) with WD differencing. The shape of 

the eigenvalues for SN transport equation with SI with WI) discretization is that the 

eigenvalue at 2*zlx 0.0 is unity and decreases as frequency increases up to it.
 

However, as the mesh spacing increases, the spectral radius at higher frequencies 

approaches 1.0. Therefore, as the fine mesh becomes coarser, the relative advantage 

of the multi-grid method decreases. Later they [Now 88] used the multi-grid 

method to accelerate the low-order pseudo-S2 equation in x-y geometry transport SN 

calculations. The concept of one-cell block inversion was employed to obtain the 

proper eigenvalue vs. frequency dependency for incorporating the multi-grid 

method. Although the shape of the eigenvalues could be improved by using one-cell 

block inversion, the maximum eigenvalue of the high frequency mode goes to 1.0 

for thick mesh spacings. 

Barnett, Morel and Harris ([Bar 87] and [Bar 89]) employed two-cell block 

inversion with SI to improve the eigenvalue vs. frequency dependence to allow the 

use of the multi-grid method in slab geometry. They could get the maximum 

eigenvalue at the high frequency mode to be less than 0.6 for all mesh spacings 

with isotropic and anisotropic scattering problems. 

Morel and Manteuffel [Mor 91] developed an angular multi-grid method for 

SN equations and showed that this method was more effective than DSA for highly 

forward-peaked scattering problem. 
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Oliveira [Oh 93] parallelized the multigrid method with SI and two-cell 

block inversion ofSN equations in slab geometry. 

Manteuffel et al. ([Mali 94], [Man 95] and [Man 96]) used only two-cell 

block inversion with the multi-grid method for SN equations in slab geometry. They 

parallelized it and analyzed it for two specific cases: pure scattering and absorption. 

All the multi-grid methods with two-cell block inversion were successful in 

slab geometry, but there is no successful implementation of this in multi-dimension. 

Two-cell block inversion in x-y geometry will not be effective because of the lack 

of x-y coupling between the two spatial directions which does not reduce the 

diagonal error modes effectively [Now 88b]. 

1.2 Overview of Thesis
 

The perfect acceleration technique will have all the following properties 

[Ada 86]: 

(1) Unconditional	 stability and rapid convergence (i.e., spectral radius 

significantly less than unity for all mesh sizes) 

(2) Generality with respect to geometry 

(3) Generality with respect to discretization scheme 

(4) Generality with respect to mesh shape 

(5) Easily solved low-order equation 

(6) Accelerated solution equal to unaccelerated solution 

No DSA methods satisfr all the above requirements yet. The ultimate goal is to 

develop a method that satisfies the above requirements. 

DSA has technical difficulties associated with its stability requirement, in 

which a discretization scheme for the "low-order" problem must be consistent with 

the discretization scheme chosen for the transport problem. This "consistency" 

requirement has created many difficulties for example, effective and robust DSA 
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schemes have only been developed for special discretization schemes in 

multidimensional geometries, and here only for rectangular meshes [Lar 99] 

In DSA, a diffusion equation is used to precondition the standard Source 

Iteration (SI) technique. SI on the,first-order form of the transport equation typically 

involves "sweeping" the grid along directions of particle travel. Currently, 

sweeping is an inherently serial operation and may be difficult to do efficiently on a 

parallel machine. 

Although DSA has been very successful in accelerating SI, DSA schemes 

for some advanced discretizations have not yet been developed for 

multidimensional geometries. DSA schemes are too complicated and restrictive to 

be analyzed and implemented for some advanced discretizations and on 

unstructured meshes. 

In DSA, a diffusion equation is used to precondition the standard Source 

Iteration (SI) technique. SI on the first-order form of the transport equation typically 

involves "sweeping" the grid along directions of particle travel. One- and two-Cell 

block Inversion (CI) methods can be used as an alternative to SI. CI allows for the 

independent (and perhaps parallel) solution of scalar flux unknowns in each one- or 

two-cell block. Although one- and two-Cl are "parallel friendly", they are currently 

limited in their applicability. The iterative performance of one-Cl degrades as the 

cells become optically thick: the spectral radius approaches unity. One-Cl is not 

unconditionally stable for some multi-dimensional discretizations, such as the 

linear discontinuous (LD) finite element method. Two-CT is effective in one spatial 

dimension, with parallelization and multigrid, but not for x-y geometry because of 

the x-y coupling problem. The goal of our work is to construct a one cell block 

inversion technique that will be unconditionally stable and convergent for 

multidimensional finite element discretization techniques. 

It has long been known that the success of a diffusion synthetic acceleration 

(DSA) scheme is very sensitive to the consistency between the discretization of the 

transport and diffusion acceleration equations. Acceleration schemes involving 
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"inconsistent" discretizations have been successful, but no prescription is available 

that determines apriori an allowable degree of inconsistency. It is notable, 

however, that all current DSA schemes involve diffusion equations discretized on 

the spatial mesh used to solve the transport equations. Often the solution of a large 

number of low-order equations is an expensive part of the transport simulation. We 

therefore desire to find stable and rapidly convergent acceleration schemes that are 

discretized on a mesh that is coarse relative to the transport mesh. 

Another goal is to develop a technique in which the low order diffusion 

acceleration equations can be solved on a mesh coarser than that used for the 

transport equation. Coarse mesh DSA should be unconditionally stable and be as 

rapidly convergent as a DSA method discretized on the transport mesh. We are 

using Adams and Martin's modified 4-step acceleration method (M4S) applied to 

the linear and bilinear discontinuous (LD) finite element transport equations in slab 

and x-y geometries. 

The remainder of this thesis will include the following chapters and 

contents: 

In Chapter 2, we introduce the Boltzmann linear transport equation in the 

general geometry. We then introduce the angular and spatial discretizations 

including Discontinuous Finite Element methods and Corner Balance methods. 

We also introduce the iteration methods commonly used to solve the transport 

equation numerically, such as source iteration and cell block inversion. We also 

consider the various speedup techniques to get a result quickly for the transport 

iterations. Among the many speedup techniques, we focus on Diffusion 

Synthetic Acceleration and multigrid method. We introduce the concept of 

these speedup techniques. We also introduce the concept of a Fourier analysis to 

analyze the convergence features and Asymptotic analysis to derive the low 

order equation and analyze how the transport equation has the characteristics of 

low order equat.ion in the asymptotic limit. 
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In Chapter 3, we introdttce the solution techniques for the low order diffusion 

equation with LD and SCB discretizatioñ in slab geometry. We develop the 

solution technique for the low order equations with FLBLD, SCB and UCB 

discretizations in x-y geometry. The similar solution technique developed by 

Morel et al. was for BLD, linear-bilinear nodal and linear-bilinear 

characteristics methods. This technique includes the extra "void cell" 

calculations, 9-point continuous equation and corner-form bi-linear 

discontinuous equations. Our method includes asymptotic continuous equation 

of 5-point stencil with 1-point removal term without the "void cell" calculation 

and can be applied to FLBLD, SCB and UCB without any modification. The 

results of the Fourier analysis are given and compared with the observed 

spectral radii in the four model problem calculations. And another suggestion 

and the results of Fourier analysis are given to simplifr the multi-level method. 

In Chapter 4, we consider a new DSA procedure in slab and x-y geometry 

which is a combination of 1-Cl and DSA derived from 1-Cl. This procedure 

consists of two different procedures. The method-i is as follows: 

- A source iteration for SN transport equation 

- 1-cell block inversion for SN transport equation 

- Solution for the low order diffusion equation derived from the 1-cell 

block inversion. 

In this procedure the equations of 1-cell block inversion can be reformulated in 

a simple form to get the scalar flux directly. The method-2 is as follows: 

- 1-cell block inversion for SN transport equation 

- Solution for the low order diffusion equation derived from the 1-cell 

block inversion. 

This procedure is to be combined with multigrid method to get better 

convergence performance. 



13 

In Chapter 5, we develop the coarse-mesh diffusion synthetic acceleration 

method in slab and x-y geometry. This new procedure involves the solution of 

the high order transport equation on a fine-mesh and the solution of the low 

order diffusion equation on a coarse-mesh. We show that the coarse-mesh DSA 

is as effective as the conventional DSA and that computing time can be saved in 

the diffusion calculation. 

In Chapter 6, we discuss our new DSA methods, summarize our findings and 

draw some conclusions about the efficiency and effectiveness of our new 

methods. We also include some ideas to improve our methods for future work. 
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CHAPTER 2
 
BOLTZMANN LINEAR TRMSPORT EQUATION
 

2.1 Introduction 

In this chapter, we review all of the concepts that are fundamental to this 

research. We introduce the continuous and discretized Boltzmann linear transport 

equations and the numerical iteration methods to be used in this thesis. We begin 

with the continuous transport equation with some definitions in general geometry. 

We consider only the mono-energetic within group transport equation throughout 

this thesis, and therefore we dropped the energy-dependent subscript in the 

following derivations. We also consider only Cartesian geometiy problems, 

especially slab and x-y geometry, throughout this thesis. We introduce the transport 

equation with the boundary conditions in slab and x-y geometries. We then 

introduce the angular discretization called SN or "discrete ordinates". 

We describe Fourier analysis, for a procedure which helps to predict the rate 

of convergence of an iteration scheme. Fourier analysis is a powerful tool and can 

be used to predict the spectral radius of iteration schemes of the continuous and 

discretized transport equations. Since Fourier analysis was first introduced in 

computational nuclear engineering by Larsen [Lar 82], it has been widely used to 

predict the spectral radius for newly-developed speedup iteration and discretization 

schemes. There are limitations to the applicability of the Fourier analysis procedure. 

Since a traditional Fourier analysis assumes an infinite and homogeneous medium 

model problem, it can not predict exactly the convergence rate of heterogeneous 

iterations or finite systems. Fourier analysis also cannot be directly applied to 

nonlinear iterations but to linear iterations. 
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We also discuss acceleration techniques for the linear transport calculation 

including synthetic acceleration and multi-grid. Since transport source iteration is 

very slowly convergent or not convergent for the optically thick problem, much 

effort has gone into overcoming the drawbacks of source iteration (SI). Synthetic 

acceleration has been very successful at accelerating the source iteration. Synthetic 

acceleration methods include diffusion synthetic, transport synthetic and boundary 

projection. Here we consider diffusion synthetic acceleration and include 

description of the basic concept, the derivation procedure and the characteristics of 

its convergence. 

We include the asymptotic analysis method in which the asymptotic limit of 

the transport equation is identical to the diffusion equation. The asymptotically 

derived continuous diffuSion equation can be' used to accelerate the discontinuous 

diffusion equation in x-y geometry. [Mor 93] 

This chapter also includes descriptions of advanced spatial discretization 

methods such as the Linear Discontinuous Finite Element Methods (LD), the 

Simple Corner Balance (SCB) and the Upstream Corner Balance (UCB) Methods 

in slab geometry, and several Bi-Linear Discontinuous (BLD) Methods, the SCB 

and the UCB Methods in x-y geometry. We introduce several representative 

numerical solution techniques such as Source Iteration (SI) and Cell Block 

Inversions (CI). 

2.2 Linear Transport Equations 

2.2.1 TranSport Eauations inGeneral and Cartesian Geometry 

The neutron transport equation is the balance equation between the neutron 

gain and loss in some domain V with boundary S.[Lew 84] The gain mechanisms 

include: 

(1) Any neutron sources in V (e.g., fission) 
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Figure 2.1 An arbitraryvolume V with surface area S. 

(2) Neutrons streaming into V through the surface S. 

(3) Neutrons of different E',	 ' suffering a scattering collision in V that 

changes E', )' into the E', ' of interest. 

Loss mechanisms include: 

(4) Neutrons streaming out through the surface S. 

(5) Neutrons in V suffering a collision. (It is obvious that an absorption 

interaction removes a neutron from V; and since by definition a scattering 

collision changes E, ' and since we are only keeping track of neutrons in 

V with this specific energy and direction, a scattering collision also amounts 

to a loss of neutrons.) 

The neutron transport equation can be written as follows:1 V' + 
(2.1) 

= jd' fdE'a5(E'* E,2'- c)E',)',t)+qQ,E,,t) 

where 

=	 angular flux at 1 with energy E, angle Q 

o (7, E) = macroscopic total cross section at r with energy E 
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o (E' - E, ' - O) = macroscopic scattering cross section. 

Now that we have an equation to represent the physics of neutron transport in a 

medium, we focus our attention on how to solve it. Unfortunately, analytic 

solutions to this general equation do not exist except in very special one-

dimensional cases, so we mUst discretize all the variables in eq. (2.1) and thus 

obtain a series of equations which hopefully can be solved by numerical methods. 

For the general three-dimensional problems there are seven variables which must be 

represented: three spatial, two angular, energy and time. 

This work concentrates on the time-independent problem and the energy 

dependence is usually handled via multi-group techniques. So we can rewrite eq. 

(2.1) in a simpler form as follows: 

OVWg +atgQ;)yIgQ:,) 

= 1d5(c2'- )WgQ')+ qgQ), g = l,...G 
2.2) 

The group-to-group coupling inherent in this equation is typically handled by an 

"outer" iteration. The difficult part of the transport calculation is the "within-group" 

problem, which has the form: 

= fdC(ô'* O)v (,')+qQ). (2.3) 

For simplicity of the problem, we are considering only isotropic scattering and 

sources. We have simply: 

2 V (F, O) + o (vQ, £) = 2!Q) + .---q(7), (2.4) 
42r 4,r 

where q(F) is a scalar flux, which is defmed by 

= (2.5) 

Another important quantity is the current, which we defme as 
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x 

Fig 2.2 Cartesian geometry coordinate system 

J(7)=[dthv(7,c).. (2.6) 

Boundary conditions for eq. (2.4) can be periodic, reflecting, partially reflecting 

(albedo), or simply a specification of the incident angular flux. 

The incident boundary condition is expressed as: 

rES andñO<O, (2.7) 

where ñ is the outward normal unit vector at boundary point 7. 

The reflecting boundary condition is expressed as: 

çv(7,)=(F,Q'), r5D and ñ<O, (2.8) 

where is the angle that would reflect onto . 

In this thesis we consider only the Cartesian geometry shown in Figure 2.2. 

We can rewrite eq. (2.4) as follows: 
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(9 (9pv(F,))+ i7'(F,Q)+ v(,)+ i'QT) 

where 

p=ñ, =L (2.10) 

The slab geometry transport equation and boundary conditions are given as follows: 

5pv(x,u)+ o!,(x)v(x,1u) = 1 
0< x <a, (2.11) 

where 

v(0,p)=f(p), O<pl, (2.12) 

v(a,p)=gu), lp<O. (2.13) 

The x-y geometry transport equation and boundary conditions are given as 

1ufiI(x,y,u,77)+ ,7!_yi(x,y,p,i) + o1(x,y)yi(x,y,p,i) 
(2.14) 

0<x<a, 0<y<b
2,r 2ff 

where 

= f(O,y,1u,i), p >0, 0< y <b, (2.15) 

v(a,y,p,i)=f(a,y,p,i), p <0, 0 <y <b, (2.16) 

i'(x,0,p,77) = f(x,0,p,i), i >0, 0< x <a, (2.17) 

v(x,b,p,?7)=f(x,b,p,77), i >0, 0< x <a. (2.18) 

2.2.2 Angular Discretized SN TransDort Equation 

In this section we discretize the angular variables of the integro-differential 

form of the within-group equation given in eq. (2.4). The discrete ordinate method 



20 

has become the dominant means for obtaining numerical solutions to the integro­

differential from of the transport equation. 

In slab geometry, the SN transport equation is as follows: 

Pm fYm (x) + o, (X)Vm (x) = + q(x), m = 1,..., N, (2.19)
 

where the number of discrete directions in the chosen quadrature set is N, and the 

scalar flux is defmed in terms of the quadrature sum: 

g(x) = WmWm(X). (2.20) 

The quadrature weights, Wm, are normalized in the following manner: 

Wm = 2.0. (2.21)
 

mlI
 

The direction cosine, , can be positive or negative, and thus the directions of 

neutron travel ("sweeps") are divided into the following quadrants: 

l.L.lm>O, left to right; 

2.Pm<O, right toleft; 

The angular flux along each discrete direction is computed by "sweeping" through 

the spatial grid, propagating incoming boundary information and interior sources to 

the outgoing boundary. 

In x-y geometry, the SN transport equation is as follows: 

Pm fWm("Y) 1m m@t,Y)+ l7(X,Y)YIm(X,Y)
 

(2.22)
 

1
 
=....Lb(x,y)+q(x,y), m=1,...,N
 
2r 2,r
 

where the number of discrete directions in the chosen quadrature set is N, and the 

scalar flux is defmed in terms of the quadrature sum: 
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b(x,y) = WmVIrn(X,Y). (2.23) 

The quadrature weights, Wm, are normalized in the following manner: 

Wm=27V (2.24) 

Table 2.1 
SN quadrature sets for slab geometry 

Level n Wm 

S2 1 0.5773502692 1.0000000000 

S4 1 0.8611363116 0.3478548451 

2 0.3399810436 0.6521451549 

S8 1 0.9602898565 0.1012285363 

2 0.7966664774 0.2223810344 

3 0.5255324099 0.3 137066459 

4 0.1834346425 0.3626837834 

512 1 0.1252334085 0.2491470458 

2 0.36783 14989 0.2334925363 

3 0.5873 179542 0.203 1674267 

4 0.769026741 0.1600783286 

5 0.904i172563 0.1069393260 

6 0.9815606342 0.0471753364 

516 1 0.9894009350 0.0271524594 

2 0.944575023 1 0.0622535239 

3 0.8656312024 0.0951585117 

4 0.7554044084 0.1246289713 

5 0.6178762444 0.1495959888 

6 0.4580167777 0.1691565194 

7 0.2816035508 0.1826034150 

8 0.0950125098 0.1894506105 
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Table 2.2
 
Level symmetric SN quadrattire sets for x-y geometry
 

**Djscrete OrdinateLevel n Wm
 
Configuration
 

S4 1 0.3500212 0.0833333 1 

2 0.8688903 1 1 
1
 

S6 1 0.2666355 0.04403 16 1 

2 0.6815076 0.0393018 2 2 

3 0.9261808 1 2 1 

58 1 0.2182179 0.0302469 1 

2 0.5773503 0.0226852 2 2 
3 0.7867958 0.0231482 2 3 2 
4 0.9511897 1 2 2 1 

512 1 0.1672126 0.0176907 1 

2 0.4595476 0.0139703 2 2 
3 0.6280191 0.0093344 3 4 3 
4 0.7600210 0.0125705 3 5 5 3 
5 0.8722706 0.0064628 2 4 5 4 2 
6 0.9716377 1 2 3 3 2 1 

S16 1 0.1389568 0.0122468 1 

2 0.3922893 0.0103324 2 2 
3 0.5370966 0.0053082 3 5 3 

4 0.6504264 0.0064052 4 6 6 4 
5 0.7467506 0.0090122 4 7 8 7 4 
6 0.8319966 0.0036147 3 6 8 8 6 3 
7 0.9092855 0.0086240 2 5 6 7 6 5 2 
8 0.9805009 0.002 1295 1 2 3 4 4 3 2 1 

* =
 
urn jUm
 

** Discrete ordinate configuration for one octant showing ordinates of equal weight 
e.g., for S6, the ordinates (pi, ui), (pi, i) and (ps, iii), each have a weight 
Wi; the ordinates Cui, 772), (p1 lii) and (P1 772), each have a weight w2. 
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The direction cosines, pm and can be positive or negative, and thus theurn,
 

directions of neutron travel ("sweeps") are divided into the following quadrants: 

1. Pm >0 and 77m >0, left to right, bottom to top 

2. Pm <0 and 77rn >0, right to left; bottom to top 

3. pm >0 and ui,,, <0, left to right; top to bottom 

4. Pm <0 and urn <0, right to left; top to bottom 

As a result, each iteration consists of four groups of sweeps corresponding to the 

four quadrants. For general applications, it is best to treat each of the four quadrants 

equally with a level symmetric quadrature set. That is, the same N/2 (N is the 

quadrature order) values of the direction cosines are used in each quadrants. The 

direction cosines (pm and urn) and angular weights (Wm) for slab and x-y geometries 

are shown in Tables 2.1 and 2.2, respectively. 

2.3 Iteration Method 

At this point, we have discretized the continuous form of the transport 

equation in the energy, angular and spatial variables. Although we have discretized 

equations, we must now develop a solution strategy, both of which involve 

iterations. In numerical methods, the solution can be obtained through the iteration 

by reducing the error between the ttue value and the assumed value. There are 

several iteration approaches: Source Iteration (SI) and Cell Block Inversion (CI) are 

the most common. In this section we introduce the concepts behind these two 

methods. 

2.3.1 Source Iteration 

Source Iteration is the simplest and most widely used iteration algorithm for 

the transport equation. it is assumed that the scattering source is known at the 

beginning each iteration. In other words, the scattering source is from the previous 
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iteration level and updated after the turrent iteration. The calculation proceeds in 

the direction of neutron travel, starting from a known boundary condition and 

ending at the other boundary. This procedure is called transport sweeping. Using 

eq. (2.22) with an iteration index, .we can write the SI for the transport equation as 

follows: 

1(1+1) 

+ im c?W(i+J) + .Jq$(1) (2.25)Pm Wm m 2,r 2,r 

where 

= (2.26) 

and (1) and (1+ 1) are previous and current iteration indices, respectively. Note that 

the transport sweep is a Gauss-Seidel iteration in that the new edge flux information 

is inirnediately used in the calculations for the cells directly. 

The disadvantage of using SI is its slow convergence for problems which 

are dominated by scattering; i.e. the scattering ratio (c=crjc.rt) is close to unity. The 

reason for this may be explained by the following physical interpretation: if the 

iteration process is started with an initial guess of zero for the inscatter source, then 

the 'l'th scalar flux iterate, , is the scalar flux due to neutrons which have 

experienced '1' collisions after emission from the source. If the scattering ratio is 

close to unity, the iteration will not converge until the neutrons have suffered many 

collisions: This explains why SI converges slowly for these types of problems. 

2.3.2 Cell Block Inversion (CI) 

The most widely used Cell Block Inversion methods are one-Cl and 2-Cl. 

One-Cl involves the selection of a single spatial cell as a "block" and two-Cl 

groups a pair of cells as a "block" in slab geometry as shown in Figure 2.3. The cell 

block inversion method has been used in conjunction with multigrid method 

because analyses have shown that it perfectly damps spectral radius at the high 

http:c=crjc.rt
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frequency components of the solution. In the cell block inversion method, the 

incoming fluxes toa block are taken to be those at the previous iteration level. As 

an example, a two-cell block inversion involves solving for all the fluxes internal to 

cells i and i+1 simultaneously, given only the incoming fluxes. Note that the two-

cell block inversion equations in LD contain 2N variables in each cell for a total of 

4N equations. There are two options in using Cell Block Inversion. The first one is 

to use Source Iteration followed by Cell Block Inversion. The second one is to use 

CI independently. While the equations in the former case can be rewritten in a 

simple form, the equations in the latter case may be complicated. 

Although we did not introduce the spatial discretization yet, we include the 

1-Cl for the LD SN transport equations: 

Os,,(l+1)
Pm (*) (2.27)Wm,iiji) + +.q1,
2 

2L + q, (2.28)+ - 2')+ 
2 2

(Wm,i+1/2 

i
i+1,7 1'i+1 x 

(One-Cell Block Inversion) 

i i+lI I 

(Two-Cell Block Inversion) 

Figure 2.3 Domain discretization with one-cell and two-cell block inversion 
(Slab geometry, LD) 

x 
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where 
(*) 

+ Pm > 0 ' (2.29)Y'mj+112 r m,i m,i '
 

(1)

+ Pm >0 (2.30)
m,i-1/2 Y'm,i-i m,i-1' 

'
 

(S) (1) -
 Pm <0 , (2.31)
m,i+1/2 !/"m,i+i m,j+1'
 

(1+1) x(l+1)
(*)
 

Wm,i-1/2 Y'm,i Y'm,j ' Mm <0 (2.32) 

2.4 Fourier and Asymptotic Analysis 

2.4.1 Fourier Analysis 

Frequently in mathematical physics we encounter pairs of functions related 

by an expression of the following form: 

g(a) = (2.33)£f(t)K(a,t)dt, 

f(t) = .g(a)K(a,t)da. (2.34) 

The function g(a) is called the integral transform off(t) by the 'kernel' K(czt). This 

operation can be understood as mapping a function of f(t) in t-space into another 

function in a-space. [Arf 85] Fourier transforms use Fourier kernel as follows: 

g(a) 1 
fmf(t)e'dt, (2.35) 

f(t) 1 fg(a)e"da. (2.36) 

Here we consider the transform of a function in spatial space into a function in 

frequency space. In this case, frequency has the units of inverse length rather than 

the more familiar inverse time. Since we are going to apply the Fourier transform to 

the iterative Boltzman transport equation, our spatial space is the real domain, 

symbolized by 7. The frequency space is the complex domain parameterized by a 

real 2. For example, the Fourier transform of the angular flux represents a 
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mapping of the angular flux in the spatial domain, '(7, ), to the frequency space, 

A(,à). The Fourier transforms (ansatz) in 3-dimensional Cartesian geometry are 

as follows: 

1 
(2.37) 

.J(2,r) 

1 = j d3AA(,% , )e"'. (2.38) 

Since we are attempting to solve the neutron transport equation, we apply this to the 

transport equation in 3-D Cartesian geometry. The continuous transport equation in 

3-D Cartesian geometry with source iteration is as follows: 

V y/''(7,) +a (F)wv+1) (7 ) = [ di° (i:,) + q(7). 2.39)
4ff 

We subtract eq. (2.39) from the converged transport equation as follows: 

V'(7,)+ o ()t+1)(7,) 2( d°(7,O), (2.40)4,rlr 
where 

(1+1) (7, ) = v(7, ) (7, O), 2.'41) 

i/° (7,) = v(F, O) (7, £). t2.42) 

We substitute eq. (2.38) into eq. (2.40) and we obtain the following equation: 

.[ d3%[o.1 ( . + 1)A' ( £) - .2i. d2'A (it, 0 (2 43)(4,r S 

The linear independence of the Fourier modes eb0iM implies 

C d&'A'(,ñ'), <A <, (2.44)
4p(c2.i)+1) 

where c= a5 / o is the scattering ratio. 
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Integrating eq. (2.44) over we obtain the following equation: 

(d'A('"(A,c')= w(2) fdñ'A(OcZ,c2'), (2.45) 

where 

. (2.46)4,r ,r(.))2 

A'L,) and co(s) are the eigenfunctions and eigenvalues, respectively, of the 

iteration scheme. Since we considered the error equations for the iteration, the 

meaning, of eigenvlues is the possible convergence ratios in the frequency space. 

The absolute value of the maximum eigenvalue is called the spectral radius, p, and 

defined as: 

(2.47)p = mx froc%)I.
-m<.%<m 

Since traditional Fourier analysis assumes an infinite and homogeneous medium, it 

can not predict exactly the convergence rate of the heterogeneous or finite 

problems. Fourier analysis also cannot be directly applied to nonlinear iterations. 

2.4.2 Asymptotic Analysis ([Lar 87] and [War 93]) 

Here we discuss the asymptotic diffusion limit for the transport equation in 

slab geometry. Asymptotic analysis has been used to derive the diffusion equation 

from the transport equation in a "diffusive limit" and to explain the relationship 

between the diffusion and transport equations. We consider the monoenergetic SN 

transport and diffusion equations: 

-
(z) + &, (Z)çi (z) WmYIm (z) + .-(z), (2.48)Pm 

2 m=I 

d 1 --(z) + 'a@) '(z), o z a, (2.49)
dz 3(z) dz 

where 
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(2.50) 

Eq. (2.49) is good approximation for eq. (2.48) with the following three 

assumptions: 

(1) the physical medium is many mean free paths thick (i.e., is "optically 

thick"); 

(2) the collision process is scattering-dominated (i.e., absorption cross sections 

are small); 

(3) the angular flux, cross sections, and source are continuous and vary spatially 

by, at most, a small amount over the distance of a mean free path. 

The goal here is to derive diffusion eq. (2.49) using an asymptotic expansion from 

the transport equation. To begin, we consider & (z), 5 (z), '(z), wm (z) and 

q5(z) in eqs. (2.48) and (2.49) to all be continuous, smoothly varying functions of z, 

and we define a "scale length" p for these quantities to be a typical distance over 

which they vary by, at most, an 0(1) amount. We define a dimensionless distance 

variable in terms of z and the scale length p by 

z
 
(2.51) 

p
 

1(z) 
(2.52) 

(&:) 

t3(z)
o5(x) (2.53) 
@S) 

rn(z) 
'm (x) (2.54) 

(V'm) 

q(x) (2.55) 

q(x)=U1,
 (2.56) 
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where the quantities, (j'), are typical values of f(z). Then o '/'m , q and 

their derivatives vary by, at most, an 0(1) amount over 0(1) distance in x. Using 

eqs. (2.51)-(2.56), we can rewrite eqs. (2.48) and (2.49) as follows: 

8 P(al)7S(X)WY,(X)+
Wm (x) + p(51 )o (X)Wm (x) q(x), (2.57)Pm
 

m1 2(1/fm)
 

d 1 

dx 3p(51)cy,(x) dx 
(2.58) 

q(x),() p 

As a next step, we defme s' as follows: 

1 typical mean free path- (2.59)
p(ff,) scale length 

Substitute eq. (2.59) into eqs.. (2.57) and (2.58) and we obtain the following 

equation: 

8 a (x) o (x) 
Pm Wm (x) + (x) (x) + q(x), (2.60)

2eWm
 
m=1 2(1/fm)
 

d s d--_____ at(X)_as(X)q5(x)P)q(x) Ox.f!, (2.61)
dx 3a1(x) dx e (b) 

Here we formulate three assumptions in such a way that eq. (2.61) can be 

asymptotically derived from eq. (2.60). First, the assumption that Win varies by a 

small amount over the distance of a mean free path and an 0(1) amount over a scale 

length implies 

£ <<1, (2.62) 

and the assumption that the system is optically thick is met by requiring the system 

to be comparable to (or larger than) a scale length: 

http:2.51)-(2.56
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l. (2.63) 
p 

The assumption that the collision process is scattering dominated is met by defining 

o (x) = a1(x) - 82cT (x). (2.64) 

We set 

____= =6, (2.65) 
('m) () 

which implies that the source and absorption terms have the same magnitude and 

the infinite-medium solution, = q/o, is 0(1).
 

Inserting eqs. (2.64) and (2.65) into eqs. (2.60) and (2.61), we obtain the following
 

equation:
 

lIcr(x) £q(x) 
Y'm (x) Y'm (x) 8O, (x) WmWm (x) (2.66) 

+ 6 8 + 2L Jm=I
 
Pm 

- did 
J
 

(x) + 0a (x)(x) = q(x), 0 x .-, t2.67)
dx 3 0 

where eq. (2.67) is independent of the scaling parameters. 

To derive eq. (2.67) from eq. (2.66), we use asymptotic expansionas follows: 

Wm(X) = v(x)+ ev(x)+ s2v(x)+ e3v(x)+... (2.68) 

Substitute eq. (2.68) into eq. (2.66) and equate the coefficients o&, s and s', then 

we obtain the following equations: 

(2.69) 

(2.70)
2mi 2 dx 
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:
 

m=I
 

. (2.71)
 

cr0(x)g$"(x)
_.&L_[(')(X)... Pm d° q(x)
=

2dL o,(x) dx] 2 2
 

Eqs. (2.69) and (2.70) implies 

i' (x) !0) (x), (2.72) 

Pm dq°
 
(x) (x) (2.73)
 

2o(x) dx
 

Taking w[eq.(2.71)] and substituting eqs. (2.72) and (2.73), we obtain the final 

diffusion equation: 

d 1
 

--g5°(x)+ aa(x)#°() = q(x). (2.74) 
dx 3a1(x) dx 

This asymptotic analysis will be used to derive the continuous diffusion equation 

which will be used to accelerate the discontinuous diffusion soution in multi-level 

method in x-y geometry. 

2.5 Speedup Techniques 

2.5.1 Inefficiency of Source Iteration 

Here we discuss the inefficiency of source iteration for highly scattering 

problems, which was originally presented by Larsen [Lar 82]. The continuous 

transport equation in slab geometry is as follows: 

(2.75)
pv(x,p)+o(x)yi(x,p)= a(x) b(x)+q(x),
2 

where 

http:w[eq.(2.71
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b(x) = jv(x,p)dp. (2.76) 

Eq. (2.75) is balances on the particle loss (Jeft hand side) and gain (right band side). 

The first terth on the left hand side represents neutron leakage, and the second term 

is the loss due to interactions. The first term on the right hand side is the scattering 

source and the second is the internal source. We now solve eq. (2.75) using a source 

iteration, and introduce the iteration index: 

__,(l+1/2) (x, p) + (x)y 1+1/2) (x, 
(x) 

) (x) + q(x), (2.77)
2 

= fl+1/2)(xp)c4(
 (2.78) 

Source iteration begins with an assumed scattering source and updates the angular 

flux and scalar flux. If we begin a particle emission on the right hand side, the 

particle will undergo leakage and a finite number of collisions in the left hand side. 

In this case, SI is guaranteed to converge because the particle will be leaked or 

absorbed sometime. However, the rate of convergence is directly linked to the 

number of collisions in a neutron lifetime. If the number of collisions is small, the 

SI scheme will converge rapidly. If the medium is optically thick and highly 

scattering (no or little absorption), the particle will undergo a large number of 

scattering events between emission and leakage or absorption. Therefore, a large 

number of iterations is required for source iteration to obtain the converged answer 

for optically thick problems. 

We can quantify the convergence rate theoretically using Fourier analysis 

assuming a homogeneous infinite medium. We rewrite eqs. (2.77) and (2.78) in 

terms of the error in the solution as follows: 

(1+1/2) (x p) + a (1+1/2) (x, p) = (x), (2.79)
2 

=
 1h/2)(x,p)dp, (2.80) 

where 
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= (2.81) 

(1+1I2) (x, p) = w(x, ) 
(I+1/2) (x, p). (2.82) 

We choose the following "ansatz" (or separation of variables expansion): 

(x) = a(%)' A()e', (2.83) 

= c(A.)'b(1%,p)e'", (2.84) 

where 

iJT, oo<Z<oo. (2.85) 

Here A(,%)e'° and co(,%) are the eigenfunctions and eigenvalues of the iteration 

scheme. Substituting eqs. (2.83) and (2.84) into eqs. (2.79) and (2.80), we obtain 

the following equations: 

bt,p) +]A (2.86) 

(2.87)'°()11l+2 C)12 =ftanhi%, 

The spectral radius (p) is defmed as the magnitude of the largest iteration 

eigenvalue: 

p = maxfr(A)I = to(0) = C. (2.88) 

The maximum eigenvalue will be c at =0, and if the medium is purely scattering, 

c1 .0, the spectral radius will be 1.0 at X=0. For a finite problem the X0 mode 

cannot be present and consequently SI is convergent and stable for c 1. The 

eigenvalues for SI as a function of X are shown in Figure 2.4. We note that the most 

slowly converging eigenvlaues occur when ?. is near zero. 
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1 

0.6 
Cl) 
a, SI 
a)>
C 
a)
a) 
a) 

0.2247 
0.2 

0 SI I I 

0.0 .1.0, 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Figure 2.4 Eigenvalues as a function of ?. for the analytic SI and DSA 
in slab geometry (c=1 .0) 

2.5.2 Four-Step Diffusion Synthetic Acceleration [Ada 92] 

We introduce two DSA methods, which are the standard four-step and the 

modified four-step methods. The former was developed by Larsen [Lar 82] and the 

latter was developed by Adams and Martin [Ada 92]. We apply diffusion synthetic 

acceleration (DSA) to an analytic transport problem with one energy group and 

with isotropic scattering. We begin with the equations for source iteration: 

v 1112 (F, ) + 0, (F)'"2 (F ) = .L') (F) + q(F) (2.89)
4,z 

= '"2(F) = j dflI2)(F,ñ). (2.90)
if 
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This iteration scheme converges very slowly for problems in which particles are 

likely to undergo a large number of scattering collisions before they are removed 

from the system via leakage or absorption. Because many problems of practical 

interest have this property, we are very interested in iteration schemes that converge 

faster than source iteration. DSA is one such scheme. DSA iteration also involves a 

transport sweep, but uses a diffusion solution to obtain the new scalar flux. 

We shall derive DSA here using a four-step procedure that was first 
1Stpresented by Larsen [Lar 82]. In step 1, we take 0th and angular moments of 

equation (2.89), obtaining 

v (1+1f2) (F) + o (F)'112 (F) = (F) + q0 (F), (2.91)
4,r 

fv1+1/2 (F) + .v (I+I/2) + o (F)'"2 (F) = (F), (2.92) 

where 

(1+1/2) (F) =" current"= [dc 11"2 (F, )), (2.93) 

Q+1/2) (F) ="second moment tensor" 
(2.94)

= Id (mm 1)'"2(F,) 

q0(F) = dcq(F,2), (2.95) 

(F) = dQäq(F,ö). (2.96) 

In step 1, we have made no approximation; we have simply obtained some 

equations that are satisfied at the end of each transport sweep. 

In step 2, we define "acceleration equations" that will determine our end-of­

iteration scalar flux and current. In this step, we rewrite eqs. (2.91) and (2.92) with 

all of the iteration indices changed to (1+1) except the second moment tensor: 

V (F) + o (F)'' (F) = Ø' (F) + q0 (F), (2.97)
4,r 
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(F) + V Q+1/2) + a (F)' (F) = (i) (2.98) 
-} 

We emphasize two things about these "acceleration equations". First, they are a 

coupled set of equations that completely determine the end-of-iteration scalar flux 

and current. It has long been recognized that forcing balance at the end of each 

iteration can accelerate transport iterations. This observation helps us understand 

why DSA succeeds. 

Step 3 is simple algebra; we subtract eqs. (2.91) and (2.92) from eqs. (2.97) 

and (2.98) and rearrange: 

f) (F) +aa {Q+1/2) (F)(F)fo''
V (F) o. 
1+1) (F)], (2.99) 

Vf0 (F) + o (F)f' (F) =0, (2.100) 

where 

f(I+I) (F) (1+II2) (F), '" (F) (2.101) 

f'(F) = (2.102) 

0a(F) =a,(F)cY(F). (2.103) 

Step 4 is more algebra: We eliminate the current vector f1 from this system 

to produce a diffusion equation for the scalar flux correctionfo: 

f0( [(l+1/2) (F)(F)+ o (F)f'° (F) = o '+D (F)]. (2.104)
31(F) 

The complete DSA iteration scheme is therefore given by 

. vfr"2 (F,ñ) + o (p),(l+II2) (F,O) =2iqs0(/) (F) + qF), (2.105) 
4,r 

(l+I/2)
('')
 
(F) (F) = ''12 (F, ) , (2.106)

if 
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and 

v.	 f0"(F) + cr(r)f0(:'+(r) = cr[Ø''2(r) _Ø'()], (2.107)
3o(7) 

(1+1) /2)
f(l+I) Q:)
 (2.108)=
 

It is easy to show that this DSA scheme converges very rapidly. Here we 

discuss the convergence speed through Fourier analysis for the analytic transport 

equation in slab geometry. In slab geometry, SN transport with SI and the low order 

diffusion equations in errors are as follows: 

pço12(xp)+ '112(x 1ii) = -q(x), (2.109) 

(I+1/2) (x) 1+hi'2) (x, p)dp,	 (2.110)£
 

and 

ldJ(1+1)

(x) + Oa1' (x) = a(/2 (x) ') (x)), (2.111) 

= ''2(x) -f'(x) .	 (2.112) 

So as to do Fourier analysis, we set the following ansatz: 

q1) (x) = w' (..%)a(.Z)e1°"	 (2.113) 

= w'(,t)b(%,p)e'°,	 (2.114) 

(1+1/2) (x) ti,' 
()c()e'°',	 (2.115) 

=
 '(A)d(.Z)e'°.	 (2.116)
 

Substituting eqs. (2.1 13)-(2.1 16) into eqs. (2.109)-(2.1 12), we obtain the 

eigenvalues as a function of?: 

,%2 1 1 3p2 3c
a(%) =
 
c[ 

For c= 1, the spectral radius (,p) is given by 
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I

pmaxfcj l-.3p1
I<O.2247c. (2.118)

i+,.21u2 

The eigenvalues as a function of ? are shown in Figure 2.4. The DSA method for 

the analytic transport equation in slab geometry is unconditionally stable and 

rapidly convergent for all 0c1. 

2.5.3 Modified Four-SteD Diffusion Synthetic Acceleration [Ada 92] 

We use the modified four-step method in this thesis because this method is 

simple and well developed for the discontinuous finite element methods and the 

spectral radius approaches zero as the mesh spacing increases or decreases. 

In the early development of DSA, DSA iteration schemes were unstable 

after the discretizations of eqs. (2.109) and (2.111). Alcouffe [Alc 76] overcame 

this problem when he realized that the discretizations of the transport and diffusion 

equation must be consistent with each Other. Larsen generalized and developed this 

standard 4-step method for obtaining a consistent discretization of the diffusion 

equation for any given transport discretization. His DSA scheme is rapidly 

convergent for all transport discretizations in slab geometry. The prevailing wisdom 

among researchers at that time was that complete consistency was probably the only 

way to guarantee stable and effective DSA methods. In general, the standard linear 

DSA discretization of eq. (2.111) is algebraically complicated and potentially 

difficult to solve. In particular, it may not be possible to eliminate the current 

vectors from the discretized version of eqs. (2.99) and (2.100) in general 

multidimensional problems. 

The consistency of discretization has precluded the wide use of DSA. Khalil 

[Kha 85] has devised an inconsistent DSA procedure for nodal methods which 

employs diffusion equations which are simple to derive. Adams and Martin [Ada 

92] developed the modified 4-step method for deriving DSA equations which does 

not require consistency of discretization. The modified 4-step method is very 
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simple and easy to derive diffusion equation, and is unconditionally stable. 

However, the modified 4-step method has been applied only to discontinuous finite 

element discretization methods. In this thesis we are using the modified 4-step 

method to derive the diffusion acceleration equation. 

There are two methods to derive the modified 4-step diffusion equations. 

Both are shown in Figure 2.5. The first begins with the analytic diffusion equation 

and mimics the derivation of discontinuous finite element method transport from 

the analytic transport equation. This method corresponds to the lower-left path in 

Figure 2.5. The other technique begins with the discretized transport equation and 

corresponds to upper-right path in Figure 2.5. l'his second method is compared with 

the standard 4-step method in Table 2.3. Adams and Martin showed that the two 

derivations produce identical diffusion discretizations. Here we consider the 

"mixed" method in Cartesian geometry, which also results in identical discretized 

diffusion equations. This mixed method is reformulated the modified 4-step method 

by the combination of two paths as shown in Figure 2.5, which is easier and simpler 

to derive the diffusion equation. At first we rewrite eq. (2.89) with weight, v(F), 

and basis, b (F), functions in a discretized DFE equation as follows [Ada 92]: 

K Jk 
(2.119)

k-I iI 

K J 
(2.120) 

k=I 1=1 

fd2rvkj(F)ñk Jd2rv,cj(F)ñkmWm mWm() 
[incoming öZk ], (outgoing 8ZkJ_ 

+ Jd3r(_ Y'm& Vv + q(F)J (2.121) 

liJk, 1kK 
where Zk is subdomain of D, 1kK and 1iJk. 
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Table 2.3
 
Comparison of standard four-step procedure with modified four-step
 

procedure [Ada 92]
 

Description
Step
 

Stazidard 4-Step Modified 4-Step
 

1	 Take 0th and l angular moments of Same
 
discretized transport equation.
 

2 Change iteration indices to (1+1) except Same, except do not change 
on second and higher moment terms. indices on certain 0th and 1 

moment terms 

3	 Subtract acceleration equations from Same
 
unaccelerated equations to reduce
 
algebraic complexity
 

4	 Eliminate 1 moments from resulting Same, always possible 
system, leaving a discretized diffusion 
equation for the scalar fluxes. May not be 
possible given high-order discretization 
schemes in multi-dimensions. 

Spatially DiscretizedAnalytic Transport Spatial
or Discrete Ordinates D,scretization Transport or 

Discrete Ordinates 

Expand Angular Flux; \ Expand Angular Flux;
 
Take Moments Take Moments
 

Mixed 

IAnalytic Diffusion	 Spatial \ Spatially Discretized 
J ( Discretization ) DiffusionI
 

Figure 2.5 Two paths leading from analytic transport to discrete diffusion [Ada 92] 
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Step 1 is the integration of the discretized transport eq. (2.12 1) over angle 

[i.e., operate with mWmJ, which gives 

Jd2r v ()[J(1+1/2) () rV+112) (F )]+ Jd3r((/2) Vv4 + vo.Ø(12))
inco mm g 

Zk 
,(2.122) 

= liJk, 1kK 

where 

j(l+l/2) (F'= W,flj; m(,h/2)Qc_),outgolng\ k / (2.123) 
ñ*.(_>O 

j(l+l/2) (i?+) Wfl/ 2mWhI2)Qi7), (2.124)incoming k
 
flkC<0
 

= Wm 2.125) 
m 

We can expand the angular fluxes as follows: 

Wm =1(q0 +32m +h.o.t.). (2.126)
4ff 

We use P1 approximation which implies 

(1+l/2) (7) = a''2 (Fk) + V1k 
(1+1/2) () (2.127)outgoing 

i-(l+l/2) -+ (1+1/2) (I+1/2)(p)
mcommgfrk ) =aq 

where 

1 -
47tñk.>O 

a---­

(7)+k (2.128) 

21Wfl = (2.129) 

WmikTm!. (2.130) 

In the diffusion equation, the current, (i), is defined by Fick's law: 

= DVq52(F). (2.131) 
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Step 2 is to define acceleration equation by changing the iteration indices to 

(1+1) in eqs. 2.121)- (2.131). 

Step 3 is to subtract eqs. (2.l2lH2i31) from theacceleration equations. 

Step 4 is to rearrange the equations as follows: 

(1+1)Jd2rVk, (F)[gg (Fk) gincoining (j )]+ Jd3r(f'') Vv1 + VkIOOfO) 
äZk 

(2.132)Jd3rv (1+I/2)(F)_q1)(r_)),= lIJk, 1kK 
Zk 

where 

(1+1) 7(1+1)(F)goutgomg (Fk )= Q%c) + +k (2.133) 

,(1+1) (F) = c10'' Q7) ik j(''(F) (2.134)omcommg 

7(1+1) (F) = -DVf0' (F), (2.135) 

and 

g(I+I) (±) = j(I+I) (it) -J(1+1/2) ±
(rk ), (2.136) 

and f0(l+I) and f) are defined on eqs. (2.101) and (2.102). 

The boundary conditions for eqs. (2.132)-(2.135) are as follows: 

,(1+1) (+ Jcio(l+1) () ++k .7(/+1) (j) : vacuum 
gmg (_) incomthg V k / (2.137) 

0 : reflecting' 

where .i5, is on problem boundary. 

2.5.4 Multirid Method ([Bri 87] and [Bar 87]) 

Multigrid methods were originally applied to simple boundary value 

problems which arise in physical applications. Multigrid can be applied to an 

iteration method in which the magnitudes of the higher frequency errors are reduced 

more than the magnitudes of the lower frequency errors. The purpose of the 

multigrid method is to deal with the low frequency error. In multigrid method, the 
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low frequency components can be eliminated by the sequence of calculations on 

successively coarser domain. Figure 2.6 shows how the low frequency error can be 

converted into the high frequency error. This figure shows two different 

discretizations of the same domain; the upper grid is composed of four cells and 

the lower is composed of two. The solid line in the upper grid indicates the highest 

possible frequency on that grid, varying from positive one to negative one over a 

single cell. The dashed line represents a lower frequency since it only varies from 

positive one to zero over the cell. Notice, however, that on the coarser grid below, 

this lower frequency becomes the highest frequency. 

To understand the algorithm, we begin with the following diffusion 

equation with Gauss-Seidel iteration; 

L'' +Q, (2.138) 

where subscript k denotes the number of grid. 

[Fine grid] 

[Coarse grid]
 

Figure 2.6 High-frequency functions on fine and coarse grids
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A typical multigrid algorithm is as follows: 

(1) Iterate eq. (2.138) with the initial guess in the finest grid 1, and obtain 

Lq1'' =Sq$° +Q, (2.139) 

(2) Calculate the residual as follows: 

r1 = Q (2.140) 

(3) Perform restriction operation on the residual 

(2.141) 

where I is the restriction operator from grid 'k' to grid 'g'. 

(4) Repeat procedures (1)(3) on successive coarser grids with the residual 

instead of Q as follows: 

Lb'' =S0 +Irk_l, k=2,...,K-1, (2.142) 

r = r - (2.143)(L'' S'),
 
Ikrk, (2.144) 

where 'K' is the coarsest grid. 

(5) Solve the equation and obtain the exact solution the coarsest grid as follows: 

. (2.145) 

Perform a prolongation operation for the exact solution as follows: 

PK9K, (2.146) 

where P is the prolongation operator from grid 'g' to grid 'k'. 

(6) Since we obtain the exact solution on the coarsest grid, we perform the 

calculations for the finer grids. Here we set the initial guess equal to the sum 

of the previous scalar flux and the prolongated scalar flux as follows; 

AQ) - A(11) k ç(l'+I)
 

Y'k Y'k k+1'#'k+I
 

Iterate the following equation with this initial guess and the residual used in 

eq. (2.142), and perform a prolongation operation: 
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Lq$"' =Sq +Ikrk_1, k=K-1,1, (2.148)
 

P'
k 'k 
(2.149)
 

(7) Procedures (1)-{6) is a multigrid cycle, which will be repeated until the 

error satisfies the convergence criteria. 

The above procedure is called a "V-Cycle" scheme. There are several cycling 

schemes according to the schedule of grids as shown in Figure 2.7. 

We discuss here the efficiency of the multigrid method. First, the multigrid 

method might appear to require a considerable amount of work because of its 

recursive nature, but there is not an extraordinary amount of programming. We 

need only the subroutines for the residual calculation and the analytic solution in 

the coarsest grid. One multigrid pass corresponds to two fine grid sweeps as 

follows: 

1+1/2+1/4+1/8+. =2
. .
 .
 

Thus, a single multigrid pass requires about twice the work of a single fine grid 

sweep. If the multigrid pass has an effective spectral radius less than where p 

is the spectral radius of the unaccelerated iteration matrix, then the multigrid 

method will be an improvement over the unaccelerated algorithm. 

2.6 Spatial Discretization 

All the independent variables in the linear transport equation have been 

discretized except space. Spatial discretization is the most difficult and complicated 

part in the numerical solution for the neutron transport equation. There are lots of 

methods for spatial discretization. In this research we include several representative 

advanced discretization methods, which are the Linear Discontinuous Finite 

Element Method (LD), Lumped Linear Discontinuous Finite Element Method 

(LLD), 
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Finest grid 

id 

[V-cycle] 

Finest grid 

Coarsest grid 

[W-cycle] 

Finest grid 

Coarsest grid 

[FMV-cyclei 

Figure 2.7 Schedule of grids 
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the Bilinear Discontinuous Finite Element Method (BLD), Fully Lumped BLD 

(FLBLD), Simple Corner Balance Method (SCB) and Upstream Corner Balance 

Method (UCB). We derive these discretizations in slab and x-y geometies. 

2.6.1 General 

The first step is to divide the domain of the problem into a finite number of 

cells. Each cell is specified by the coordinates yj) and has cross sections and(xb
 

(which are assumed to be piecewise constant throughout the domain). The 

spatial boundaries for cell V are half-integers and depicted in Figure 2.8. To derive 

difference relations for cell we integrate eq. (2.22) over X..112 < x <x,+rn and Yj­

IL?<y <Yj+112.
 

To simplify our notation, we define 

i',+I/2
 fl'j+i,


dx=I dx, dy. (2.150)
=
 S 
/2
 

Integrating our transport equation over a cell gives: 

Pm i1yEy1m (x1112 ' Y) Ym (1-I,2 , y)] + 7m JdX[Y/m (x,y1+112) Y'm (x, Yf-1/2 )1 
,(2.151)
 

p 

+ o Jdx Jdym (x, ..v) Jdx db(x, y) + 
a.

cfrj dyq(x, y) 
2,r J: 2,r J i 

i
 

Now we define cell edge (line average) and cell interior (area average) quantities as 

follows: 

Jl5l;ifm(Xi+ii2,Y), (2.152) 

hIm,i,J+1I2 = __jdX/.Im(X,Yj+ii2), (2.153) 

1
 

Wm,i.j
 Jdx jh3'm (x, y), (2.154)
 

Jdx J4(x,y), (2.155)
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Yj+1/2
 

Yj-1/2
 

xi+1/2
 

Figure 2.8 Spatial coordinates for cell V 

fdxjdyq(x,y), 2.156)
&.tY 

where 

Ax,= x.112 - 2.157) 

LY1=Y+112 YJ-1/2' (2.158) 

x.=(x,112 +x,_112)/2, (2.159) 

y= (YJ+1,2 + y_112)/2. (2.160) 

If these definitions are substituted into eq (2.15 1), we obtain the spatial balance 
equation as follows: 

Wm,i-112,j) + "(Wm,i,j+I/2 Wm,i,j-I/2) + o,,jspmjj
 

(2.161) 
Oicjj 1 

Y'i,j q12,r 2,r 
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This spatial balance equation is the basis for the discretization methods. According 

to the discretization method, the additional equations will be derived in the 

following sections. 

For slab geometry, equation (2.161) can be written as follows: 

Wm,i+iI2 Y/m,i_ii2)+at,iWm,i	 
°,, b1 +q1. (2.162) 

2.6.2 Linear Discontinuous Finite Element Method (LD) in Slab Geometry 

The linear representations for the cell-average flux and cell-edge fluxes on 

the two faces of the cell are given by the following equations. 

Wm(X)=Wm,j +---(x-x1),1,	 (2.163) 

There are three unknowns in this representation: the cell-average flux (u), cell 

interior slope (f,), and one exiting cell-edge flux (iI,J/2). Therefore, two more 

equations are needed and can be generated with the following integrations including 

two different weight functions: 

Jdxbk(x)[eq. (2.19)], (2.164) 

where 

b1(x)=1.O, (2.165) 

(2.166) 

The following two equations are resulting equations: 

('m,i+1/2	 m,i-i/2)gjWmJ =!-f-q51 +2q1, (2.167) 

= .-!q$7 ± (2.168)(Wm,i+112 + Wmj_j/2, 21//mi) + 
L 
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The closure equation is as follows: 

Wm,i±i/2 = Wm,, ±W,,, Pm° , (2.169) 

The boundary conditions are given as follows: 

Y'm.I12 = fm' Pm >0, (2.170) 

mJ+I/2 fm' Pm <0. (2.171) 

In eq. (2.168), 6=3 is for the conventional LD scheme and 61 for the mass-

lumped LD scheme. Experience with these schemes indicates that conventional LD 

is more accurate for optically thin cells, while mass-lumped LD is more accurate for 

optically thick cells. 

2.6.3 Bilinear Discontinuous Finite Element Method (BLD) in i-v Geometry 

The linear representations for the cell-average flux and cell-edge fluxes on 

the four faces of the cell are given by the following equations. 

2 2 
Y'm@,Y) Wmj,j + (XXi)YImij +.(yy)çv, 

(2.172)
+--(x-x.)-2---(y Y)WZ,, 

V'm (x1112 'Y) = VmjI/2,j + _(Y y )vJI/2,J, (2.173) 

Wm (x,y1_112) = Wm..j-I/2 + x1 )',i,j-I/2' (2.174) 

Yi'm(Xi+112,Y) = yij1/2j +--(yy1)v1112, (2.175) 

2 
'P'm (x,yJ+I,2) = Wm,i,j+112 + ---(x - x. )w.1,1+112. (2.176) 

There are eight unknowns in these representations: the cell-average flux (t#j), two 

cell interior slopes y/,, and t'xY,j), two exiting cell-edge fluxes (Yfi+1/2j and 
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/ij+J/2) and two exiting cell-edge slopes (W"i+J/21 and yl'ij+rn). Therefore, four more 

equations are needed and can be generated by integrating the transport equation 

multiplied by four different weight functions: 

Jdx Jcy bk (x, y)[eq. (2.22)], (2.177)
 

where 

b1(x,y)=1.0, (2.178) 

2 
b2(x,y) =(x--x1), (2.179)
 

b3(x,y) = -2(y (2.180)
 
Lxy
 

2 2
b4(x,y)=(xx)(yy). (2.181)

/xi 

The resulting equations are 

Wm,i-i/2,j) + (Y1m,i,j+1/2 Wm,i,j-1/2) + 

(2.182)
 

1 

2,r 2ff
 

iJ m m 
('m,i+1/2.j +1P'mj..112j (,I,J+II2 Wrn,i,j-112)

yj 
, (2.183) 

sJ+ Ot,j,j1ImX,i,j çb7 +
 

9.77
 mm y y \L .j _, 
A km,i+1/2.j WmJ-1/2,ji A '31m.i.j+I/2 +!IImj,j_1/2 '4'm,i,j 

(2.184)
 

y sli y y+ +
 
"
 

2ff
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8:,jPm -2)+ °i,Jm
(W,i+1/2,J +m,i_l/2,j (,i,j+1/2 +m,i,j_I/2 -2)

yj (2185)a.. 1+ayi q +q. 

The four closure equations are as follows: 

lJ
 
JWm,i+1/2,J 

+(X2 
xWmJ,j , 

Pm (2.186)
2 

IPmI
 

(.a_+i (,% -1' 
y JWm2 + Ayi 1m (2.187)JYtm.i.J_1/2 x '' 2 2I 171mJ 

-1 Pm 
mj,j 

2 2 
)'m.1_1 2j xWm,i,j' x (2.188)

.
 

1
 JY IPmI 

(+i
m,i,j JWm.i.J+h12 +(2JwflJ,f_1I2 2yrn,i,j' A=- (2.189)

2 frim I
 

Here, 9,=3 are for the BLD scheme, O,pl for the FLBLD scheme. 

The boundaiy conditions are as follows: 

Y'm,112.j = fm,112,j' Pm > 0, (2.190) 

rn,1/2,j f1,2,J' Pm >0, (2.191) 

WmJ+I/2.j fmJ+I/2.j' Pm <0, (2.192) 

Y'mJ+j/2,j fm',1+1,2,j' Pm <0, (2.193) 

m,i,1/2 fmj,1/2' 1m >0, (2.194) 

'rnJ,I2 1m >0, (2.195) 

m,i,.J+I/2 fm,i,J+112' 1m <0, (2.196) 

trn,i,J+u/2 = fni,j+ii2, 1m <0. (2.197) 
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2.6.4 Simple Corner Balance Method (SCB) in Slab Geometry 

SCB is a finite volume method in which there are three unknowns in slab 

geometry: the left cell-average flux (yI,L), right cell-average (R), and one exiting 

cell-edge fluxe (y/,+1/2). Therefore, three equations are needed and can be generated 

with the following left- and right-cell integrations: 

and (2.19)]. (2.198)rdx[eq. (2.19)],
1-1/2 I
 

The resulting equations are 

=Z-q$1
Y1mjR 2 Wm,i-2) gjLY'mZ, +2-q1,, (2.199) 

0s,iR 1 

(2l/fmi+1/2 WmJL WmJR)+0t,ERY'm,iR tR 
(2.200)

2 

The closure equation is as follows: 

Pm >0 , (2.201)m,i+1/2 = Wm,IR' 

Pm <0 . (2.202)Wm,i-112 = Wm,iL' 

The boundary conditions are given as follows: 

m,I/2 = fm' Pm >0, (2.203) 

Wm,I+l/2 = fm' Pm <0. (2.204) 

2.6.5 Simple Corner Balance Method (SCB) in x-y Geometry 

There are eight unknowns in x-y geometry: the left-bottom cell flux (Y'iLJB), 

right-bottom cell (i'RfB), ), left-top cell (LjT), right-top cell (çt'RjT), and four 

exiting cell-edge fluxes (çv,+J/2j5, Wz-'-I/2jT, YIzLj+J/2, and Y/iRj+1/2). The cell indices 

and unknowns for SCB are shown in Figure 2.9. Therefore, eight equations are 

needed and can be generated with the following integrations: 



55 

dx dy[eq. (2.22)1, dx 
(J dy[eq. (2.22)], 

1-1/2 j-I/2 j-112
I 

(2.205).
 

f dx cy[eq. (2.22)], and dy[eq. (2.22)] 

The resulting equations are 

+WmjjB 2 Y'm,i_I/2,jB)+ (l/ImjB + V1m,iL fT 2V'mJL,j-1/2) 

(2.206) 

+ r,iL,jBV'm,iL,jB ØL,JB + 

_&L(2Yfmj+1i2j3 V1m,IL,jR Wm,IR,JB) + + WmjR,jT 2Ym,iR,j-1/2)
T


,(2.207) 
°sjR,jB 

+ 0tJR.JRWmJR.fB 1R,JB + qfB 

!ViLJ+1/2 V/jR ,j+J 

)'j+ 1/2 

V//UT ziT V/i+1/2jT 

xj-1/2 

V'IUJB 1VERJB Yii+ii.j. 

IYj-1i2 

X'+J,2 

Figure 2.9 Cell indices and unknowns for >0 and 7m >0 in x-y geometry
 
SCB and UCB schemes
 

http:0tJR.JRWmJR.fB
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+ Y'm,IR.JT 21/Im,j..1/2,jT) + Wm.LL,jB Vm,L,jT) 

(2.208) 
0s.iL,jT+tjjrYIiLJ7 91L,JT ±jqILir 

Vim 1+1/2 fT Wm,IL,jT - P'm,LR,jT) + (2Yim,iR,j+1/2 !Vm,IR,jB Wm,IR,jT) 

(2.209) 
0s ER fT 1 

+ 0tERjTWm,II.fT 1R,JT + 1R,fT
2ir 

The closure equation is as follows: 

Pm >0 , (2.210)Wm,i+1/2.j8(T) = !PmJR,jB(T)' 

Pm <0 , (2.211)Wm.i-1/2,jB(T) WmjL,jB(T)' 

im > 0 , (2.212)VimjL(R),j+112 Wm.th(R).f1' 

<0 (2.213)= Vim.LL(R),JB' 

The boundary conditions are given as follows: 

Pm >0, (2.2 14)Vim,1/2,jB(T) = fm.1/2.JB(T)' 

Pm <0, (2.215)!P'm,1+1/2,jB(T) = fm,1+1/2.jB(T)' 

> 0, (2.216)VimJL(R),1/2 = fm,th(R),I/2' Tlm 

lm <0. (2.2 17)Vim,iL(R),J+1/2 = fmJL(R),J+112' 

2.6.6 Upstream Corner Balance Method (LJCB) in Slab Geometry 

UCB method was devised to achieve the following [Ada 97]: 

A discretization that, allows transport sweeps to proceed corner by 

corner, instead of having all coupled in an-N-sided polygon; 

Better performance than SCB on cells of low and intermediate 

thickness; 

http:Wm.th(R).f1
http:0tERjTWm,II.fT
http:Y'm,IR.JT


57 

A leading-order solution in thick diffusive problems that is identical to 

the SCB solution, at least on rectangular grids. 

The SN transport equations with UCB method in slab geometry are as follows: 

..&(wQ+h/2) 0so,i (2.218) 

w'2) = + L 
(2.219) 

where 

(1+1/2) (/+1/2) 11 [(a+Q (ob+Q') 1
Wm,i Y'm,IL +j.:2-[t%,_ 

O (2.220) 
(1+1/2) (/+1/2) 

+ fi(.njmz. )(L(mjL Wm,iIR)' Pm >0 

(/+1/2) (/+1/2) 11 [(oQ') (o3cb+Q') 1
Y'm.i WmjR ' ° ).i' (2.221) 

(/+1/2) (1+1/2)+ fi(r.L )('m,ii Wm,i+IL)' Pm <0 

a(r)
/3(r) (2.222) 

3+4r+4ar2a(r) = a0 = 0.455, (2.223)
2 + 2r + 4r2 

1x.1,LL(R) I 
rm IL(R) 

. 

, (2.224) 
21/JmI 

2.6.7 Upstream Corner Balance Method in i-v Geometry 

The UCB SN transport equations in x-y geometry are as follows: 

2Pm (/+1/2) (1+1/2) (/+1/2) (/+1/2) (/+1/2)' 
Wm,i,j Wmj_1/2,jB \Y'm,IL,j V'm,iL,j_1/2)+0t,i,jY'm,IL,jB 

(2.225) 
1 1 

s0,i.jiLjB +-Q18
2,r 2,r 
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(1+1/2) (1+1/2)(1+1/2))+2hlm (/+1/2)
2IUm(V(l+l/2)m,i+I/2,jB Wm,i,jB (Y'mji,j ImjR,j_1/2)+at,i,jY1m,iR,jB 

AY1
 
(2.226) 

1
 = sO,i,jiRJB + QIR,JB2,r 2,r 

211m (1+1/2) (1+1/2) 27m (1+1/2) (/+1/2) (/+1/2)
(Wm,:,jr 'm.i-I/2.jT) (Wm,iL,j+l/2 Wm,iL,j )+OtijWmj 

(2.227) 
1
 = 2,rsO,i,jiLjT + 

2,r 

2Pm g' (1+1/2) , (1+1/2) 27m( (1+1/2) (/+1/2) (/+1/2)

'Vm,i+1/2,jT '41mj,jT I + 'Y'm,iR,j+1/2 Wm,IR,j I + 01,i,jWm,iR,jT
£X 

(2.228) 
1 (1) 1 

= sOj,jiR,jT +Q//7 

where
 

1 1 
[(,.(1)±Q (o0)+Q(1+1/2) (/+1/2) 

V'mJ,jB(T) Wm,iL.jB(T) i 1 
2 2ir o. (2.229)

[ ).jB ).jB(T) j, 
+ )( (1+1/2) (1+1/2) \ 

Wm,IL,jB(T) Y'mj-IR,jB(T))' Pm > 0 

1
(1+1/2) (/+1/2) 1[oso0 +Q] +Q 
1
1/'m,i,jB(T) Wm,IR,jB(T) + 

2 2,r o (2.230)),jB(T)]' 
( (1+1/2) (/+1/2) 

+ fl(,IR,fB(r)) 1'm,LR,jB(T) Wm,i+IL,jB(T) Pm <0 

(1+1/2) (1+1/2) 11 (O$O +Q') (o-0° +Q') 
VmJL(R),jB 

2 2r t\ 0 II\ , (2.23 1)JR.JT )iL(R),JB 

-I-. 
(1+1/2) (/+1/2) \

P 'mJL(R),jB IkWmJL(R).jB Wm,IL(R),jT p 7m > 

,,(1+1/2) ,,.(l+l/2) 1 1 1('OsO +QJ (o' +Q) 
r m,1L(R),j Y' m,IL(R),jT __J

2 22z.LL O1 (2.232)
 

( (1+1/2) (1+1/2)+ fi(r(R)JT) V'm,i(R),jT Wm,1L(R),jB <07m 

3+4r+4a0r2 
(2.233) 

2 + 2r 4r2 

http:IkWmJL(R).jB
http:m.i-I/2.jT
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DrnJL(R)jB(T) (2.234) 

s,JL(R),JB(T)'Yf
y 2 235mJL(R),jB(T)
 

2111m1 

2.7 Summary 

In this chapter we reviewed the concept of Boltzmann linear transport 

equation in general and Cartesian geometries. We have introduced the time-

independent within group transport equation which will be used in the remainder of 

this thesis. We have discussed the angular and spatial discretizations. We have 

introduced the advanced discretization schemes including Linear and Bilinear 

Discontinuous Finite Element methods and Simple and Upstream Corner Balance 

methods in slab and x-y geometry. All these discretizations will be used in the 

remainder of this thesis. 

We also have introduced the iteration methods commonly used to solve the 

transport equation numerically, such as source iteration and cell block inversion. 

Source iteration is composed of two processes. The first one is that the scattering 

source is known at the beginning of each iteration. In other words, the scattering 

source is from the previous iteration level and updated after the current iteration. 

The second one is the transport sweeping that the calculation proceeds in the 

direction of neutron travel, starting from a known boundary condition and ending at 

the other boundary. In cell block inversion the incoming fluxes to a block are taken 

to be those at the previous iteration level, while the scattering source is taken from 

the previous iteration level in SI. 

We introduced Fourier analysis, a procedure which helps to predict the rate 

of convergence of an iteration scheme. Fourier analysis will be used in this thesis to 

predict the spectral radius of iteration schemes for the newly developed acceleration 

schemes. We also included the asymptotic analysis used in deriving the asymptotic 
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continuous diffusion equation. The asymptotically derived continuous diffusion 

equation can be used to accelerate the discontinuous diffusion equation in x-y 

geometry. 

We considered diffusion synthetic acceleration and included description of 

the basic concept, the derivation procedure and the characteristics of its 

convergence. We are going to use the modified 4-step method because of its 

advantages. We also introduce the multigrid method to be used in accelerating the 

solution for the asymptotic diffusion equation. 
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CHAPTER 3
 
MULTI-LEVEL TECHNIQUES FOR THE SOLUTION OF
 

DISCONTINUOUS DIFFUSION ACCELERATION
 
EQUATIONS IN X-Y GEOMETRY
 

3.1 Introduction 

The low order diffusion equations in slab geometry for advanced spatial 

discretizations such as the LD (Linear Discontinuous) method, LC (Linear 

Characteristics) method and nodal methods can be solved easily by a tn-diagonal or 

band-diagonal matrix solution technique. However, the solution of the discretized 

DSA equations for advanced transport discretizations in x-y geometry is still an 

outstanding research problem. Morel, Dendy and Wareing [Mor 93] developed the 

multi-level method to solve the diffusion equation of the modified 4-step method 

applied to BLD transport in x-y geometry. It was proven that this method with the 

same equations could be used to accelerate the SN transport equations with Linear-

Bilmear Nodal method [War 94] and Lmear-Bilmear Characteristics method [Ada 

98]. The reason this works is that these three discretization schemes all limit to the 

same diffusion solution in the asymptotic diffusion limit [Ada 2Ka]. The multi­

level method consists of the following steps: 

a) Source iteration for the standard BLD SN transport equation in corner 

forms; 

b) Line-Jacobi for M4S BLD diffusion equation; calculate for the void cells 

just outside the boundaries for the BLC (Bi-Linear Continuous) diffusion 

equations 

c) Residual calculation and restriction operation 
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d) Solve the BLC diffusion equation using black box multi-grid method [Den 

82]; BLC diffusion equation is derived by summing 4 equations around a 

vertex, and has a nine-point stencil with a one-point removal term. 

In this research we develop a similar procedure for FLBLD, SCB and UCB, 

but our new procedure avoids the use of void cells. While Morel et al. derived the 

BLC diffusion equation from sunmiing the 4 unknowns around a vertex, we used 

the continuous diffusion equation derived directly from the asymptotic analysis for 

the FLBLD transport equation. The asymptotically derived FLBLC diffusion 

equation has a symmetric five-point stencil with a one-point removal term. The 

SCB transport equation in x-y geometly is completely equivalent to FLBLD. Gulick 

and Palmer ([Gui 2Ka] and [Gui 2Kb]) showed that the UCB transport calculation 

can be accelerated by an SCB derived diffusion equation. Therefore, we can 

accelerate the calculation for SN transport equation with FLBLD, SCB and UCB by 

the same acceleration procedure. We develop the multi-level procedure as follows: 

a) Source iteration for the SN transport equations with FLBLD, SCB and UCB 

schemes 

b) Block (cell) Gauss-Seidel iterations for modified 4-step FLBLD diffusion 

equation for each direction 

c) Residual calculation and restriction operation on the residual 

d) Solution of the asymptotically derived FLBLC diffusion equation;FLBLC
 

diffusion equation has a symmetric five-point stencil with a one-point 

removal term and can be solved by standard multi-grid methods. 

We perform a Fourier analysis of this acceleration procedure and compare these 

results to the behavior observed when the method was implemented. The results 

show that this procedure is very effective and rapidly convergent. 

We also suggest the simplified multi-level technique which avoids the 

iterations for the diffusion calculation and enables to predict the spectral radius 

exactly. 



3.2 Solution Technique in Slab Geometry 

3.2.1 Linear Discontinuous Finite Element Methods (LD) 

The SN transport equations with LI) discretization schemes are as follows: 

= + (3.1) 

-( +! -2y 1/2)).1/2) =!o.o.qsx(1) +.Q, (3.2) 

(1+1/2) (/+1/2) + x(l+1/2) 
1m,i±1/2 Y1m,i '. Pm >0 

where 

(l+1i2) 
= Wm!/4:;"2, (3.4) 

Wm=2.0 (3.5) 

Here 9=3 is for the conventional LI) scheme and 9=1 for mass-lumped LD scheme. 

The conventional LD scheme is more accurate for optically thin cells, while the 

mass-lumped LD scheme is more accurate for optically thick cells. 

The LD diffusion equation in slab geometry was derived to be 

unconditionally stable for the first time through the application of the standard 4­

step method [Lar 82}. Adams. and Martin developed the modified 4-step method 

(M4S) which has a simpler and easier tO derive diffusion equation. Since we use the 

M4S method throughout this thesis, we consider only M4S here The low order 

diffusion equations derived through M4S are as follows: 

(1+1) (1+1) ç(l+1) (J(l+l/2) A(O\g.112 g._112 I 

x(1+1) 

050 tx (x(1+1/2) x(l)0 g112 -9 a1' (3.7)bi-1/2 49D1 " +oajxjf' ), 

where 



'S
 

g112 = g;112 + g112
 

DfX 38
D
 
= [a(f01 + f) ] [a(f + 0<1 <I
 

(1+1) =
 WmW"2 + f(l+l) , (3.9)
 

gi+1/2 is the current at the interface x+m, and '+' and '-' denotes the positive and 

negative directional partial currents , respectively. The boundary conditions for eqs. 

(3.6) and (3.7) are that the incident current corrections (gjij or gj+j,j) at the 

boundary are zero for vacuum or incident boundaries and the net current corrections 

(gm or g+y) are zero for reflecting boundaries: 

[a(f01f0)+1°'];vacuum boundary 

g112=g,2+g,2= , (3.10)
 

0 ; reflecting boundary 

[a(j 1-0 ;vacuum boundary 

.
g1112 =g112 +g112 = (3.11)
 

0 ; reflecting boundary 

The LD diffusion equations in slab geometry have a band-diagonal matrix form 

with a band width of 7 which can be solved easily by standard band-diagonal 

matrix inversion routines. Adams and Martin derived the M4S diffusion equations 

in two tn-diagonal matrix forms easy to solve. In slab geometry, the low order 

diffusion equation in DSA with LD schemes can be solved easily and in a 

computationally efficient manner. 
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3.2.2 Simple Corner Balance Method (SCB) 

The slab geometry SN transport equations with SCB spatial discretization are 

as follows: 

(W(1+1/2) 

m,i Y'm,i-1/2, 0sO,i1 +-Q, (3.12) 

2/1?n(w(l+i/2) ,,/1+1I2) 
) a (l+i/2) = °.0,1q$j1) +QER' (3.13) 

where 

(3.14)''12 
+/2) w''2) 

(1+1/2) (1+112) (3 15tmj+1/2 V"m,iR ' Pm 

(/+1/2) (1+1/2) __. ( 16Wm,i-1/2 Wm,th ' Pm " 

The low order diffusion equations derived by the M4S method are as follows: 

2(g1 -g)+ OaiIXifi,L = a0ix, ((.1/2) /2), (3.17) 

g(l+l)) (,(.1/2)2(g + Uai ii sOJi (3.18) 

where 

g.112 = g;.112 + g,.,.112 

(h iL) D11 (i+IR J+IL) .
. (3.19)

0<1 <I
ER [+ ],2& I 

The boundary conditions for eqs. (3.17) and (3.18) are that the incident current 

corrections (gj,j or gj+j,j) at the boundary are zero for vacuum and incident 

boundaries and the net currents (grn or giv) are zero for reflecting boundaries: 

DI(flRf)
] : vacuum boundary

2& 
g112=g2+g2= , (3.20) 

0 : reflecting boundary 

http:sOJi(3.18
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D1 (fl,R[CL : vacuum boundary
+ 2x1

g1112 = g112 + g112 . (3.21) 

0 : reflecting boundary 

The low order diffusion equations resulting from M4S applied to the slab geometry 

SCB transport equation also have a band diagonal matrix structure, which can be 

easily and cheaply solved by standard band diagonal matrix solvers. 

3.2.3 Upstream Corner Balance Method (UCB) 

The SN transport equations with UCB method in slab geometry are shown in 

Section 2.6.6. Gulick and Palmer ([Gui 2Ka] and [Gui 2Kb]) showed that slab 

geometry UCB transport Source Iterations can be accelerated by the M4S equations 

derived from the SCB transport equations. Therefore, eqs. (3.17)-(3.21) are 

effective low order acceleration equations for UCB SN transport calculation 

3.2.4 Fourier Analysis and Numerical Results 

The SI of the SN transport equation and the acceleration diffusion equation 

can be written in matrix forms as follows; 

± i.is inc±(1+112) ' (1)
S 4, t(I+112) + 2mLm,i1Im m,i R 

j.(l))+ + D3f,= SR((DI (3.23) 

where 

)T,= (q, b,R (3.24) 

_(± ±y±m.i±1 Wm,i±1L' Y"m,i±lR) , 25 

j(1+1) ([) (11) ([) (1+1/2) (3.26) 

The matrices of DSA schemes with LD, LLD, SCB and UCB in slab 

geometry are 2x2 matrix as follows: 

http:3.17)-(3.21
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(3.27)
 

where 

S = Wm1(Si'm +S;me)1 +(S +S;e''y']SR, (3.28) 

D=(D1 +D2e'' +D3e'')'SR, (3.29) 

'1' is an iteration index, co is an eigenvalue, 'A' is an eigenfunction vector of length 

2, and 'I' for the identity matrix. 

The results of Fourier analysis for DSA with LD, LLD, SCB and UCB 

schemes in slab geometry are shown in Figures 3.13.4. Fourier analysis was 

performed for a purely scattering infinite medium and S16 for the Gaussian 

quadrature set In Figure 3 1, the spectral radii for LD, LLD, SCB and UCB 

schemes are depicted as a function of mesh spacing. As shown in the figures the 

eigenvalues of LLD and SCB are completely equivalent. Although their 

discretization schemes are derived by different methods, the structures are identical. 

The highest spectral radius is 0.50 at 3.0 mfp for LD, 0.46 at 1.0 mfp for LLD and 

SCB and 0.29 at 1.0 mfp for UCB. As the mesh spacing increases, the spectral 

radius goes to zero for all discretization schemes. 

Figures 3 .2-3 .4 show the eigenvalues as a function of Llx for various mesh 

spacings from 0.01 mfp to 100.0 mfp. As shown in the figures, the eigenvalues at 

the high frequency mode (w'2<1%L1x2r) are less than those at the low frequency 

mode (0<Mxw'2) for the thin mesh spacings ( 0.1 mfi). But the eigenvalues for 

high frequency modes are greater than those for low frequency modes for thick 

mesh spacings (>1.0 mjj). This fact makes further convergence acceleration with 

standard multigrid technique impossible. Since the solution techniques for the 

various DSA schemes in slab geometry are easy and simple, we do not include the 

comparison between the theoretical spectral radii from Fourier analysis and the 

observed ones from the sample problem. We only consider 2-dimensional solution 

technique for the diffusion equation in the advanced discretization schemes. 
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Figure 3.1 Fourier analysis for LD, LLD, SCB and UCB M4S DSA
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Figure 3.2 Fourier analysis forLD M4S DSA in slab geometry (c=1.0, S16) 
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3.3 Multi-Level Technique in x-y Geometry 

The low order diffusion equations in mUlti-dimensional geometry are in the 

form of highly sparse matrices, which, if they are symmetric, can be solved using 

techniques such as the CG (Conjugate Gradients) method and, if they are 

asymmetric, GMRES (Generalized Minimum Residual) Method. However, those 

are computationally expensive and not efficient sometimes. Morel, Dendy and 

Wareing [Mor 93] developed a multi-level technique for the solution of these 

equations, which in a general sense is a type of multigrid method. The low order 

diffusion equations with standard BLD on the fine grid can be accelerated by the 

BLC Wi-Linear Continuous) equations which exist on a coarse grid. They derived 

the BLC equation by summing the four unknowns around a vertex. The continuous 

equation also can be accelerated by the spatial multigrid method. Wareing [War 94] 

and Adams [Ada 97] showed that this same multi-level acceleration procedure can 

be used to accelerate linear-bilinear nodal and linear-bilinear characteristics SN 

transport calculations as well. The reason for this is that these three discretization 

schemes have the same solutions in the diffusion limit. Here, we develop a similar 

multi-level procedure to accelerate FLBLD, SCB and UCB schemes. 

3.3.1 Asymptotic Continuous Diffusion Equations for FLBLD 

The FLBLD SN transport equations derived in Chapter 2 are as follows: 

Pm( (1+1/2) (1+1/2) \7lm( (1+1/2) (1+1/2) (/+1/2)lP'm,i,j_1/2/+0i,j,jP'm,j,jk1Pm,i+112,j Wm,i-1/2,j1 Wm,i.j+1/2 
Y 330 

sO.i,ji,j +Q, 
hlfl7(
/1?fl( (1+1/2) (/+1/2) (/+112)\ x(l+1/2) x(1+1/2)+ 

A 'Wm,,+hi'2,j + Wm,i-1/2,j Wm,i,j A ''m,/,J+1/2 'm,i,j-1/2 

(3.31) 
:x(1+1/2) tx(1) x+OtijY/mij 0sO.i,j9'i,j + 

If
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/1m( y(II/2) y(l+l/2) ' 7lm (1+112) (1+1/2) ' (1+1/2) 
Wm,i+1/2,j 1P'm,i-112,j1 + !Pm,i,j+1!2 Wm,i,j-112 'Wmj,j 

332 
y(l+1I2) 1 y(l)+ Ot,j,jYIm,,,j 2r °SO,i,jY'i,j " 2ir 

Pm( y(/+I/2) y(/+1/2) ', y(1+1/2)\1lm( x(1+1/2) x(l+1/2) ' x(l+112)
'.Wm,i+ii2,j + "m,i-1I2,j '41mj,j / 3Vm,i,j+1/2 + m,E,j-1I2 '4'm,i,j 

YE ,(3.33) 
,..WXYfl/2) 0sOijjj 

where 

(1+1/2) (1+1/2) x(1+1/2) 
!P'm,i±1/2,j WmJ,j 1m,i,j ' Pm <" 

y(l+l/2) - y(1+112) + xy(1+112) 0, (3.35)Wm,i*1/2,j !I1mj,j !/1m,i,j ' Pm 

(1+1/2) (1+1/2) + y(l+l/2) 
Y'rn,ij±112 Wm,i,j Y'm,i,j ' Tlm <1, 

x(/+1/2) x(1+1/2) + xy(1+112)
 >0 (3 37
Wm,i,j±1/2 Pmj,j !/1m.i.j ' 77m < 

Morel et al. [Mor 93] derived the continuous equation by summing four BLD 

diffusion equations around each vertex and assuming continuity of the flux. Since 

the BLD diffusion equations in corner notation were not sufficient to generate the 

continuous equation at the boundaries, "void cell" equations are developed to 

provide the extra information. Here we derive the continuous equation directly from 

the asymptotic analysis. The asymptotic analysis was performed by Wareing ([Ware 

92] and [War 91]) for the first time. We change the iteration indices, (1+1/2) and 

(1), of eqs. (3.30)-(3.33).into (1+1), and subtract eqs. (3.30) -<3.33) from these new 

equations to obtain equations for iterative corrections to the angular fluxes. We 

introduce the following relationships: 

ç(/+I) (1+1) (1+1/2) 3 38I m,i,j Y'm,i,j !Pm,i,j 

,ex(1+1) x(/+1) x(1+1/2)
 

I m,i,j Wm,,j !Pm,i,j , 

,y(1+1) - y(l+l) y(1+l12) (3 40I m,i,j Wm,i,j Wm,i,j ' 
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fXy(I+1) xy(!+1) xy(1+112) 
rn,,,j 'm,i,j '	 (3.41) 

f(l+I)	 (1+1) (1+1/2)- ,	 (3.42) 

fX(I+1) x(1+1) x(1+1/2)
cb	 (3.43) 

ey(1+I)	 y(1+1) _11Y(l1/2) 
1,,j ,i,,j (344) 

fXy(l+l)	 9.y(l+1) _xy(l+1I2)
Ji,j ij i,j	 (345) 

j(1+1/2) (l+I/2)
Ji,j i.j 1,1 '	 (3.46) 

rx(1+1/2) x(/+1/2) çfx(l) 
., 1,) i..i i,j , (3.47) 

fY(l+l/2) YVhu/2) _.v(l)Ji.J i,j ,	 (3.48)i,j 

f.xY(/+l/2) ,*Y(I+1/2) xy(l) 
i,j 1,j	 (349) 

Next, as described in Section 2.4.2, we scale our correction equations in a way that 

is consistent with optically thick and diffusive problems: 

&L.. ç(l+1) (1+1) (1+1) f(l+D °fj,j (1+1)mj+iij fm,i-2,j) (f j+112 m 1fl12) + j
8 

(3.50) 
1 1(1+1) +6a0. fQ+l/2)=[ °a,i	 'f '.i2r 

°i,jPm (1+1)	 x(1+1) x(l+1)2 (1+I)) +.!!_((fm,,+112,j + 2.j Jmj.j -' mj,j+1/2 fm,i,j-112) 

(3.51) 
1

+	 çx(/+1) [°Y.J 1 çx(/+1/2)
J m.i,j sO,i,jf i,j8 6	 2,r 

y(I+I)	 fY(/+l) ,) + 9i,j7m (1+1)
(fm.i+1/2.j .' m,i-1/2 (fm,I.j+112 + f,,;'_112 2 ç(D

Jm,i,jI.x Av1 
(3.52)

°"-' fY(l+I) [0t.i.J 1 1 çy(l+I/2)+	 1 YD+eam,i,j a,i,j	 sO ,1 ,jJ i,j6 2r 2r 

i,jPm çy(l+1) çy(l+1) ,, çy(l+I) i,j7lm ,' çx(1+1) çx(1+1) -, jx(1+1)'Jm,i+1/2,j +Jmi..I/2j 'Jmj,j j+ '.Jm.i,j+1/2 +Jm,i,j_I/2 Jm.i,j-1/2 

,(3.53) 

+ °tii fY(l+l) [01.I.J - +--00, f.Y(I+l/2)
 
6 6 2r 2r
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where 

(1+I/2) ((1+1/2) fx(1u'2)
Jm,i±I/2,j .' m,i,j ± J m,i,j ' Pm 0, (3.54) 

fYO+l/2)
m,i±1/2,j 

(1+1/2) 
Jm,i,j±112 

.cx(1+1/2) 
Jm,z,j±1/2 

ey(1+l/2) ±fP(1+h1'2)
.i m,i.j m.i,j Pm 0, (3.55) 

f(l+I/2) ± çy(I+I/2)
m,i,j Jm,i,j ' Tim >0, (3.56) 

fX(I+I/2) ±fvb'2)
m,i,j m,i.j ' Tim 0. (3.57) 

The asymptotic analysis [War 92] yields the following information for s<<l: 

1 (1+)
J m,:,j V i+1/2,j+1/ 2 + fI i/2f+1/2 + f,+I/2,f-1/2 + t;-I/2.J-1/2 )+ 0(s), (3.58) 

1 1(1+1) (1+) (1+) (1+)
IJ+1f2,j+1I2 +fI_1,2.J+1,2 +J4112,J_j/2 +f4,2,J_1/2), (3.59) 

fX(l+l) 1 / (1+) (1+) + fQ+) (1+)1fiI/2,J+I/2 i-I/2,j+1/2 i+1/2,j-1/2 f1_i2.1_i2) (3.60) 

1 /fY(I+I) (1+) (1+) (1+) (1+) 
fI+1/2,J+1/2 +fI_I/2,f+1,2 fI+1/2,J-I/2 f1_1/2,f_1/2)' (3.61) 

fY(l+I) 11 (1+) (1+) (1+) (1+)
-f+1/2,J+1/2 f-I/2,f+1/2 f+II2,J-I/2 fE_I/2,J_1/2), (3.62) 

(/+1) 

x(l+1)
Ji,j+I/2 

f(1+1) 
+1/2,j 

cy(I+l)
Ji+1/2,j 

.v3 gI+l/2, g-112, , gI,f+I/2 g-,J-l/2 
(3.67)

f(l+I/2)=Ex1Ly1crsO,i,jJ i,j 

( (I+l) u(l+l) )+ q(I+1) 

l(f(I+)
ii-1/2,j+1/2 

1((i+) 
i1/2,j+1/2 

- l(f(!+)
i+1/2j+I/2 

l(f(l+)
:+1/2,j+1/22 

I 

+ fl_1/2,J+1/2) (3.63) 

(3.64)Ji_1/2,j+1/2)' 

+ f.I/,f_I/2). (3.65) 

(1+) 
(3.66)f1+1/2.J_I/2)' 

q(1+1) )+ xof'' 
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.u(1+I) x,(I+1) x,,7(I+l) \ 
(gp(1+1) 

+ 2g'° )+ x (g,+1,2 g1,-112 ,'i+1/2,j g-112, 
(3.68)

x(I+1/2)+ iYj0a,i,jf''" =1,) 

( ( q(l+1)
LXYJ g1+112, g1-112, + g7)2 - 2g7')) 

(3.69) 
+ 

( yj,(l+1) y,p(l+I) x,i(1+I) + g'LXy g+112, + -2gf;' )+ t.x -2g'') 
(3.70)

fXY(l+l/2)+ ix.Ay .o = LxAycrj a,iJ..' i,j sO,i,j z,j 

(g1+1) giv+I (3.71)) fI-I/2,J+I/2)' 

y. (gc1+1) gYP(I41) .i(f,v.112
) .1_1/2J_1/2)' (3.72) 

(gçl+1) j ( (1+') (1+1)+ )= Ay 
f1+,j +1/2,j-1/2)' (3.73) 

DX 
A ( ,(/+1) x,,(1+1)'_ __(.i+i ç(ì+I)i\ l,J 1,1 1 A \Ji-112,j+112 fI-112,j-1/2/' (3.74) 

'-1)/i 

Using eqs. (3.58)-(3.74), we can get the following continuous diffusion equations 

for the FLBLD scheme: 

1rDY [DY. D.+1 Dz+1.j+1 (I+I) (1+1) 1' +1 I( (1+1) (1+1)-2 + + 2 +I( f+1/2J+1/2 I fi+1/2.J+1/2 f_l/2.J+l/2)
&i+1L J L 

Di+1,j+I (1+1) (1+1) [2-'_. + 
D1 1( (1+1) (1+1)+ 1(fI1/2f+3/2 f+l12 )+ \fE+1/2,J+1/2 f+1/2,J-I/2 )[Ay byLi' j 

ç(l+l) (1+1/2)+ 4(AXAYOa )'+1/2.j+1/2 ./1+1/ 2j+1/2 4(tAYSOf)I+l/2,J+l/2, 

(3.75) 

where 

4(&CLYOa )'+1/2,j+I/2 = 1AY j0a,i,j + I+lYJa,I+1,J 
(3.76) 

+ &i+1Yj+i0.a,i+1,j+1 

http:3.58)-(3.74
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= &Lyjoo (f + + + 

+ (f+ J,J + f)
+f1j -f1)+ 

A. A (f _fX _fY fXY 
'-'"i+1'Yj+10sOJ+I,j+1 'J i+i,j+i 11+1,1+1 J i+1,j+i .i i+i,j+i 

DT= ,. (3.78)
30.',i,j 

Dx. (3.79)I,) 

The above bilinear continuous diffusion equations have a five-point stencil with an 

one-point removal term. 

The Fourier analysis of the Gauss-Seidel iteration applied to the bilinear 

continuous diffusion equation in a purely scattering medium is shown in Figure 3.5. 

The eigenvalues of the Gauss-Seidel iteration are given by: 

5e'' +8 e'' 
(3.80)[(5 +52)(2e1' _e/)+0.25*ajj]' 

where 

1 
, (3.81) 

1 
(3.82)

3o,,1Ay 

Since the eigenvalues for high frequency error modes are always less than 0.5 as 

shown in the figure, the multigrid method can be used to solve the asymptotic 

continuous equation. In problems with absorption (c1), the maximum eigenvalue 

(spectral radius) at the zero frequency mode (&c=zy =0) will be bounded less than 

1.0. 
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Figure 3.5 Fourier Analysis for Asymptotic Continuous Equation (c= 1.0, ExAy) 

Since asymptotic boundary condition can not be used, Marshak boundary 

conditions are used instead [War 93]. These boundary conditions have the form: 

Left edge 

2[J ]&3+1/2 f]+1/2) 

+ 2.1-(f1) (1+1) 
D1x+1 I -(1+1) (1+1) \ 

1/2,j+I/2 f112,J-1/2 )- 2 kJ1I2,j+3/2 .1112.j+1/2) 

+ [L (Ay + Ay+1) + + &1AyJ.1.O 1/2,jI/2 (3.83)a 1,j+1 Jf('+') 
( ç(l+l/2) fX(I+112) fXY(l+I/2) 

sO,1,j '.J I,j 1,j + 
.1 l,J 

f(l+I/2) I,çx(1+112) 
1,j+1 

,y(l+I/2) f'V'2)+ +sO,1,j+1 ( 1,j+I .1 1.j+I 1,j+I 
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11 vacuum boundary
 
5L(R,B,T) 

0 reflecting boundary
=1
 

Right edge
 

[DY.
 D'.
1,j+I (1+1) (1+I)2 + J1_112,f+I/2)[Ax, Ax, 

D11 (1+1) (1+1) (1+1) (1+1)+2---(f/2j+'/2 f,+1,2,J-1,2 J 2 f,+112,+312 

+ 116R (Ay + Ay1) + Ax ,AYj°a1 i + Ax1Ay1c 1 f(l+i)
a I,j+1 JJ 1+1/2,1+1/2 

(((1+1/2) +fX(I+I/2) +f/'''2 +f,1+h/'2))J,j'JI,j 
(1+112) x(1+112) y(1+1l2)

+ Ax1Ay+1cr01+1 (f,,.,+1 + f1,j+1 11,1+1 + 

Bottom edge 

D,X+11 
1(
 (1+1) (1+1)-2[!_+ 1h/2,3'2 ./+1/2,1/2) 

LA_i'1 Ay1 j 

D D(1+1) fj,1 ((1+D (1+1)
+ 2 f(l+I l-112112 )- 21+1/2,1/2 Ji+3/2,1/2 J1+1/2,1/2) 

1 i(1+1)+ [B (Ax1 + + AXiAYiOaii + Ax11Ay1aaj+1,1jJi+112,112 

rx'(l+I/2)f.(l+lI2)
= Ax,Ay1o1011 (,f(1l+I12) + ) 

( ((1+1/2) rx(1+1/2) fY('I/2) + xY(l+1I2))+ Ax,1Ay10-5011 I 'J i+i,i J i+i,i 1+1,1 J 1+1,1 

Top edge
 

rDx DX
 
(1+1) (/+1)21 u- +
 (i+ii,j+ f,+1i2,_1i2) 

]
 

D D
(1+1) j+1 (1+1)+ 2-_-(f"' 2z+1/2,J+1/2 f_1/2,J+1/2) (1+3/2,J+1/2 )Ax1 

1 (l+1)
+ [o (Axe + +AxiAYjaij + Ax11Ay.a :+1,J JJI+l/2,J+l/2 

(f(,1,+112) fXjI+l/2) f'7+1I2) fç(l+l/2))= Ax,Aya301 + + +

'(1+112) fX(/+1/2) c_xY(/+l/2))+ Ax11 Ay 0s0 i+1J (Ji+i,j + fY.'2)
J s+1,J i+1,J J:+i,.i 

(3.84)
 

(3.85)
 

(3.86)
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The corner boundary conditions can be derived in the same manner. 

Left-bottom corner 

- JY D(1+1) (1+1) (1+1)
2
 

(13/2,1/2 11/2,1/2) 2 (.11/2,3/2 f 1/2,1/2) 

jfrl+l)
+ + 5B&1 + &1Ly1c7 . (3.87)a 1,1 1/2,1/2 

11Y1Q+I/2) + f(h12))
f(l+lI2)= &c1Ly1o011 (f+l/2) 

Right-bottom corner 

DX
JY
 (1+1) (1+1) 1,1 (1+1) (1+1)
2 f1+12,12 Jl-1/2,1/2 ) 2 (11+1/2,3/2 11+1/2,1/2) 

+ [oRiY1 + SB&I &c11y1cT Jf(l+I) . (3.88)a,I,1 1+1/2,1/2 

(1+1/2) 11xl+1/2) f1Y1(!+i/2) f1X(l+l/2))= ix1Ay1o011 (ui + 

Left-top corner 

DX
 

.'(1+i) (1+1 (1+1) (+1) \ 
2 J3I2+1I2 _fI/2J+1/2)+2(fl/2,J+1/2 f1/2,J-1/2)

Ay
 

+[8LLyJ +S.2x1 +XjO'a 1,J 1/2,J+1/2 . (3.89)JfQ+1) 

ç(l+l/2) x(I+1/2) + fy(I+l/2) .j'xy(1+1/2)= XyjO,(j -fr,., i,j JI,J ) 

Right-top corner 

(1+ (1+1)2_L(f1)

J+1/2,J+1/2 f1-1 J1+l/2,J+lI2 fI+I/2,J_1/2)i2J+1/2)( "(1+1) 

+ [8RAYJ + 8TLXI + LXjLYjO'aj,j ]1+1/2,J+I/2 . (3,90) 

/ (1+1/2) f,x+l/2) + fYV+112) + j 
,g'xy(1+1/2) 

i.,f,,, +
= )
 

The above asymptotic continuous diffusion equations will be used for the 

acceleration of the iterative solution of the FLBLD diffusion equations. This 

continuous diffusion equation can be solved by the multigrid method. We discuss 

the implementation of multigrid for these equations, but do not present numerical 

results for this here. This is left as future work. 
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3.3.2 BLD Diffusion Equations from Modified 4-Step Method 

By taking 0th 
(Ewm) and 1 (WmT1m and EWmpm) angular moments, we can 

derive the low order equation through the modified 4-step method. The following 

equations are from the 0th (Ewm) angular moments of the BLD transport equations: 

(1+1) (1+1) 
g+112, g._1121 j+ i.X, g,+112 g,-112(1+1) )+ &C1y1001( ( J 1,)

(1+D 

(3.91)
(l,(1+112) _(l))=ryo ,i,j'. i.j i,j 

( ('+1) (1+1) x(I+1) x(1+1) \g.112,1 + g.112 -2g'' )+ ox ( g,-1121 
(3.92)

,cx(I+1) x(l))+ = xbyo (1,x(1+112)a,i,jJ i,j sO,i,j' i,j i,j 

Ay (g; g'S )+ ex, (g,2 + g',2 2g7''))
' 3 93 

Y(I)) 

(g' + g117 2g7f'' )+ .Ax1 (gj% + g)2 2g7') 
(3 94) 

(oXY(I+II2) Y(I))+ 

The current equations can be derived from the 1st (Wm1m afld wmI.Lm) angular 

moments as follows: 

g+112, = g,.i,2j + g1121 

D.. D. (3.95)
1=[a(j, +J)__f,x,]_[a(J+11 -f1,)+ " J] 

- L
g+112, g+112, g1+112, 

D.. D. , (3.96)=[a(f,, +f)-- J]-[a(f -i) 

g1,+112 g;+112 + g;-+112 

D1 (3.97)
[a(j +f)- ][a(f1

yj yj+1 

x x 
g1,+112 g1,+112 g1,+112 

(3.98)=[a(f 
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with the cell-average currents given by: 

2D..
 
(3.99)
g:j =
 

2
 
g; = (3.100)
 

gY 2L.
 
(3.101)
 

2.
 
(3.102)
 

The boundary conditions are that the incident partial current is zero for vacuum or 

incident boundaries, and the net current is zero for reflecting boundaries: 

g112, = g2 +
 

0[a(f1
 

_f1)+LLf] ; vacuum boundary ' (3A03) 

0 ; reflecting boundary 

flY - Y+
 
6I/2,j g112, + g112,
 

(3.104)
0 [a(f	 f') + --f1'] ; 
vacuum boundary ' 

0 ; reflecting boundary 

g1+112, = + g+112,
 

{Ea(fii +f1x)_Lf1x}_0	 vacuum boundary ' (3.105) 

reflecting boundary 

y - 3'­

g1+112, - g1+112, + g1+112,
 

{[aui +f1')_&!1.f]_0 vacuum boundary ' (3.106) 

reflecting boundary 
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g,112 = g,112 + 

0 {a(f J) + ; vacuum boundary , (3.107) 

0 ; reflecting boundary 

x x+

g.,112 - g.112 + g.112 

0 [a(f f) + j] ; vacuum boundary (3.108) 

0 ; reflecting boundary 

g1,j+112 = gj+112 + g112 

D.
[a(f, + f,) -j ] 0 ; vacuum boundary (3.109) 

LIYj 

0	 ; reflecting boundary 

g,112 = g112 + g)112 

[a(J, + fj) - jj] 0 ; vacuum boundary (3.110) 
yJ 

0 ; reflecting boundary 

3.3,3 Simple Corner Balance Method 

The x-y geometry SCB SN transport equations are as follows: 

2UIfl((1+1i2) 21m (1+112) (1+112) (1+1/2) 
m,z,jB ''12 WmJL,j_1/2) +m,:_1/2,jB) + '(Vm,iL,j 

(3.111) 
1 

O.,f'AL,f8 +QILJB2,r
 

2jU
 (1+1/2)	 (/+1/2) (1+1/2)(/+I/2))+2hlm	 (/+1/2)
(Wm,i+1/2.JB Wm,i,jB (P'm,ü,j mJR,j_1I2)+t,i.jWm,iR,jB 

, (3.112) 
=	 1 

Osojj5fB + QIR.JB
2ff 

2Pm (/+1/2) (/+1/2) )+2'lm (/+1/2) (1+1/2) (/+1/2)

T1VmJ,jT 1P'mJ-1/2,jT ('P'm,ii.,j+ii P'm,1L.j )+Ctij/fmjT
 

(3.113) 
1 (/)

° O,i,jiL,jT +Q1
2ff 

L.X 

http:Wm,i+1/2.JB
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211?fl(w,(1+1/2) (1+1/2)) +277m (1+1/2) (1+1/2) (/+1/2) 
m,i+1/2,jT Wm,i,jT (WmJR,j+112 !Pm,IR,j ) + 0:,i,jVm,iR,jT

A 

1 

= O,I,J'ARJT +
2,r 

where 

,,,(l+112) 1 (1+1/2) (/+1/2) 
Y m,i,jB(7') (Wm,iI.,jB(T) + VmJR,jB(T)), 

1
(/+1/2) (/+1/2) (/+1/2) 
WmJL(R),j (WmJ1.,J8 +Wm1L(R),jT)' 

(/+1/2) (/+1/2) 
Vm,i1/2,jB(T) = Wm,i-1R.jB(T)' Pm > 0, 

,,,(l+h/2) (/+1/2)
 
T m,i+1/2,jB(T) = Wm,iR,jB(T)' Pm > 0,
 

(1+1/2) 
Y' m,i-1/2,jB(T) = Wm,IL,jB(T)' Pm <0, 

,,,(1+112) (/+1/2) 
Pm <0,r m,i+112,jB(T) = Y'm,i+1L,j8(T)' 

(1+1/2) (/+1/2) >
Wm,iR(L),j-1/2 = Wm,IR(L),j-IT' 1m 

Yi+I,2
 

iLjT(4) iRjT(3)
 

iLjB(1) iRjB(2)
 

Yi-112
 

xi+1,2
 

Figure 3.6 Cell indices in SCB scheme 

(3.114) 

(3.115) 

(3.116) 

(3.117) 

(3.118) 

(3.119) 

(3.120) 

(3.121) 



83 

(/+1/2) (1+1/2) 
Wm,IR(L),j+1/2 Wm,IR(L),jT' Tim >0, (3.122) 

,,(l+I/2) 
mJR(L),f-1/2 Y m,1R(L),jB' Tim <0, (3.123) 

(/+1/2) (/+1/2) 
!/m,iR(L),j+1/2 !I'm,iR(L),J+IB' Tim <0, (3.124) 

By taking 0th (Ewm) and 1st 
(Ewmllm and ZWmpm angular moments, we 

can derive the low order equation through the modified 4-step method. The 

following equations are from the 0th (Zwm) angular moments: 

(g(1I)2Ay3 g-I,2,JB )+ 2Ax1 (g g)112 )+ Ax1AYia1if 
(3 125)((1+i/2) - ,ç(l)- AX A \ 

: Yj0sOj,j Vt'IL,jB Y'IL,JB) 

2Ay (g&JB )+ 2Ax1 (g g:I/2 )+ AXiAYjaaijJ' 
(3 126) 

- A A (A('2) _(1)
.'#'iR,jB Y'IR,jRI 

2Ay (g;;) )+ 2Ax, (g112 g )+ 
(3 P7((1+1/2) ,c(l) \
Ax ó , Yj0so,i,j '.s'iL,jT Y'L,JTJ 

2AyJ(g'JT g!))+ 2&/(g).1/2 -gj))+ &1Ayo01f1) 
(3 128

- Ai (AQ'12)Axi'1fj sO,i,j 'Y'LR,jT Y'IR,JT 

The current equations can be derived from the 1 (Ewml7m and wmfIm.) angular 

moments as follows: 

g1-1/2.JB(T) = i-1/2,fB(T) + g1,2,fB(T) 

D.
 

= [f-1R,jB(r) 2Ax;, (f,_.IR,JB(T) fl-IL.JB(r))]' (3.129) 

D..
 
[c
 L,JB(T) + (fR,JB(r) f.JBr)I

2Ax1 

= iL(R),J-1/2 + 

D..
i,j-1 j
LF /L(R),j-17' A ' IL(R),j-IT I 1L(R).j-IB )J' (3.130) 

D..
 
[tL(R,JB + (fR,Jr fiL(R),JB)]

2Ay 
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D
 
(3.131)
g.JB(T) = --(f,R,fB(T) fiL.jB(T))' 

D..
 
(3.132)
g(R),J = (f,fl f(R),JB) 

The boundary conditions are that the incident partial current is zero for vacuum or 

incident boundaries, and the net current is zero for reflecting boundaries: 

g112.JB(T) = gU2,JB(T) + g2,JB(T) 

o
 fri,LjB(r) + (fiiw fiL,JB(T))] ; vacuum boundthy 
(3133)
 

0 ; reflecting boundary 

gJ+1,2,JB(T) = J+II2,JB(T) + gJ+I,2,JB(T)
 

- 0
(frn.jr fi IL.JB(T))] vacuum boundary 
, 3.134) 

j[(%fj,
 

0 ; reflecting boundary 

= L(R),1/2 + g,j,,2 

D..
 
°[f,L(R),jB (f(R),Jr f(R),fn)] ;vacuumboundary 

, (3.135)+ 

0 ; reflecting boundary 

gaL(R),J+1/2 = gL(R)+I,2 +
 

[fiL(R),Jr (fIL(R),.n fIL(R),JB )J 0 vacuum boundary
2 (3.136)
 

0 ; reflecting boundary 

Before we proceed, we should point out that in x-y geometry, the SCB diffusion 

equations are completely equivalent to the FLBLD diffusion equations. In Section 



85 

3.3.2, we used the average- and slopeunknowns to describe the FLBLD schemes, 

but through a change of basis functions, we could write the equations in terms of 

corner unknowns. While the four unknowns in FLBLD are corner values, the four 

unknowns in SCB are the average values for the flux in each quarter cell. However, 

the equations of the FLBLD scheme are identical to those of the SCB scheme. 

3.3.4 Upstream Corner Balance Method 

The x-y geometry UCB SN transport equations are shown in Section 2.6.7. 

Gulick and Palmer ([GuI 2KaJ and [Gui 2Kb]) have shown that UCB transport 

iterations can be accelerated by the SCB-derived M4S diffusion equations. 

Therefore, eqs. (3.1 25)- (3.128) can be used as the low order acceleration equations 

for the UCB SN transport calculation. 

3.3.5 Fourier Analysis for x-y Geometry 

The matrices of Fourier analysis for M4S DSA schemes with BLD, FLBLD, 

SCB and UCB in x-y geometry are as follows: 

co''A=co'[S+cW'(S-I)]A, (3.137) 

where 

øs;,+ (OmS,+ O)mS'm] (3.138)2r m>> <o,,j>o 

and A is for eigenfunction vector of factor 4, S, Sirn, S2m, S3m and S4m are 4x4 

matrices from the source iteration of SN' transport equation, D is 4x4 matrix from 

the diffusion equation, I is 4x4 identity matrix, and 'c' is the scattering ratio. 

The results of Fourier analysis for BLD, FLBLD, SCB and UCB are shown 

in Tables 3.1-3.5. Fourier analysis was performed assuming the infinite 

homogeneous medium for the purely scattering problem (c1 .0). We include the 
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results of Fourier analysis for S16 with standard BLD and S4 and S16 with standard 

FLBLD, SCB and UCB. We note that, as expected, the results of Fourier analysis 

for FLBLD and SCB are exactly the same. The largest spectral radius is 0.50 at 3.0 

mfp for standard BLD DSA. In FLBLD and SCB DSA schemes, the highest spectral 

radii are 0.43 and 0.46 at 1.0 mfp for S4 and S16, respectively. For UCB DSA, the 

largest spectral radii are 0.40 and 0.38 at 3.0 mfp for 54 and 516, respectively. As the 

mesh spacing increases, the spectral radius goes to zero for the three discretization 

schemes analyzed. 

Table 3.1
 
Level-symmetric quadrature Fourier analysis results for BLD M4S DSA
 

in x-y geometry (c1.0, S16)
 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.21 

0.1 0.21 0.21 

1.0 0.39 0.39 0.39 

3.0 0.50 0.50 0.50 0.50 

10.0 0.29 0.29 0.39 0.50 0.29 

100.0 0.21 0.21 0.39 0.50 0.29 0.04 
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Table 3.2
 
Level-symmetric quadrature Fourier analysis results for FLBLD and SCB
 

M4S DSA in x-y geometry (c=1.0, S4) 

ct1Y
 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.25 

0.1 0.25 0.26 

1.0 0.44 0.43 0.43 

3.0 0.33 0.33 0.43 0.33 

10.0 0.15 0.20 0.43 0.33 0.14 

100.0 0.14 0.20 0.43 0.33 0.13 0.01 

Table 3.3
 
Level-symmetric quadrature Fourier analysis results for FLBLD and SCB
 

M4S DSA in x-y geometry (c1 .0, S16)
 

aAy 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.23 

0.1 0.24 0.24 

1.0 0.46 0.46 0.46 

3.0 0.34 0.34 0.46 0.34 

10.0 0.23 0.24 0.46 0.34 0.14 

100.0 0.23 0.24 0.46 0.34 0.14 0.02 
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Table 3.4
 
Level-symmetric quadrature Fourier axalysis results for UCB M4S DSA
 

in x-y geometry (c1 .0, S4) 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.25 

0.1 0.25 0.25 

1.0 0.34 0.36 0.39
 

3,0 0.32 0.36 0.39 0.40
 

10.0 0.20 0.26 0.33 0.30 0.23 

100.0 0.15 0.19 0.33 0.23 0.13 0.03 

Table 3.5
 
Level-symmetric quadrature Fourier analysis results for UCB M4S DSA
 

in x-y geometry (c=1.0, S16)
 

ax_______ 
0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.22 

0.1 0.23 0.23 

1.0 0.32 032 0.36 

3.0 0.33 0.35 0.37 0.38 

10.0 0.26 0.28 0.32 0.30 0.22 

100.0 0.22 0.23 0.30 0.23 0.13 0.03 
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3.3.6 Multi-level Technique Description 

The multi-level technique for solving the low order diffusion equation is 

diagrammed in Figure 3.7. The procedure begins with source iteration for the SN 

transport equation where L and S are transport operators. From a source iteration, 

the residual is calculated and will be used in the FLBLD diffusion calculation. Here 

we used four Gauss-Seidel iterations from each corner, while Morel et al. used x-

and y-line Jacobi iterations. 

Since line Jacobi includes band-diagonal matrix with a band width of 16, it 

is more expensive to solve than Gauss-Seidel. To accelerate the FLBLD diffusion 

calculation, the asymptotic diffusion equation is used. From the FLBLD diffusion 

calculation, another residual is calculated and the restriction operation is performed 

on the residual. This restricted residual is used as the source in the asymptotic 

diffusion calculation. The asymptotic diffusion equation can be solved easily by the 

multigrid method as shown in Section 2.5.4, but we have not yet performed this 

implementation, will not discuss results here. The number of iterations on the 

FLBLD-asymptotic DSA solve is set to 3. Our final updated flux is obtained by 

applying the DSA correction, as illustrated in the figure. 

3.3.7 Numerical Results 

We provide the computational results to show that our procedure is efficient 

and rapidly convergent for FLBLD, SCB and UCB. We have performed four model 

problem calculations. 

The first three model problems are from Morel, Dendy and Wareing's paper 

[Mor 93] as shown in Figures 3.7-3.9. 

Problem # 1(Figure 3.8) demonstrates the effectiveness of our technique in 

terms of error reduction per iteration. This problem includes a homogeneous region 

with isotropic scattering, a scattering ratio of unity, and a constant isotropic 

distributed source. The rectangular domain has reflective boundaries on the bottom 
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Guess Scattering Source : 

UCB SN Transport Calculation (sweeping) 
Lv'" =S4 +Q 

Residual Calculation for FLBLD Diffusion 
RF1 =Q-(Lw 

FLBLD Diffusion Calculation (Gauss Seidel) 
LDf"1'2 -SDf =RF1 

Residual Calculation for Asymptotic Diffusion 
R =RF1-Df" -SDf') 

Restriction Operation on Residual 
R2 =IF-,C RF2
 

Asymptotic Diffusion Calculation
Lcg' -Scg' Rc2
 

Spatial Multi-Grid Method/Gauss-Seidel Iteration 

Prolongation Operation & Update
L_;;;ereH (k+I)_ f(k+1/2)1 (k+i) f(l+I) 

Final Scalar Flux Update 
I
(I+1) =4)('"2)+f('')) 

I 

conyergedf Not
 

Converged 

END 

Figure 3.7 Flow diagram for the multi-level technique 
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and left sides and vacuum boundaries on the right and top sides. There are 25 cells 

along the x-axis and 25 cells along the y-axis. All of the calculations were 

performed with the S4 quadrature set. 

Problem # 2 (Figure 3.9) is designed to show the overall efficiency of our 

procedure as a function of scattering ratio. The geometry is identical to that of the 

first model problem. We fix the x- and y-mesh spacing at 1.0 mfp. The scattering 

ratio is varied from 1.0 to 0.1, and each calculation is performed once without 

acceleration and once with acceleration. 

Problem # 3 (Figure 3.10) demonstrates the effectiveness of our technique 

for inhomogeneous problems. It consists of a rectangular region that is 50 cm in 

length and width with an inner region 10 cm in length and width. The rectangle has 

reflective boundaries on the bottom and left sides and vacuum boundaries on top 

and right sides. Both the inner and outer regions have a total cross section of 1.0 

cm' and a uniform isotropic distributed source. The inner region has a scattering 

ratio of 1.0 while the outer region has a scattering ratio of 0.95. The number of 

spatial cells varies between calculations. All of the calculations in this model 

problem were performed with the S4 quadrature set. 

Problem # 4 (Figure 3.11) involves a heterogeneous medium with isotropic 

scattering, and a heterogeneously distributed source. The scattering ratio is 1.0 and 

the source is 1.0 in the inner region, while the scattering ratio is 0.95 and the source 

is 0.1 in the outer region. The rectangle has vacuum boundaries on the left, right, 

bottom and top sides. There are 30 cells along the x-axis and 30 cells along the y-

axis. All of the calculations were performed with the S4 quadrature set. Since we 

have not yet implemented the multigrid method to solve the asymptotic diffusion 

equation, this iteration converges very slowly or does not converge for opposing 

reflecting boundaries. This test problem demonstrates this poor convergence 

behavior, and how it drastically improves for problems with vacuum boundaries. 
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Vacuum 

25y Reflecting acuum 

Reflecting 

25& 

Figure 3.8 Geometry for Problem # 1 

Vacuum 

25Ay Reflecting acuum 

II 

Reflecting 

25& 

Figure 3.9 Geometry for Problem #2 
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VacuUm 

Reflecting 

50 
c-0.95 
Q=O.l 

Vacuum 

4 
10 

c=l.01 

Q1.0 
J 

f4 

10 

4, 

50 

Reflecting 

Figure 3.10 Geometry for Problem #3 

Vacuum 

Vacuum 

3oy lO&. 

c0.95 
Q=0.1 

Vacuum 

c=1.0 
Q=1.0 

loIy 

30& 

Vacuum 

Figure 3.11 Geometry for Problem #4 
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The scalar flux in every calculation was subject to a point-wise relative 

convergence criterion of lO. The spectral radius for each calculation was 

estimated according to the following expression: 

q,g)
 

H
P (3.139) 
g-1 ....g-2)
 

H
 

where 

= vector of scalar fluxes obtained from 1' th iteration 

lixil = standard Euclidian norm of x 

The spectral radii for problem sets 1, 2, 3 and 4 are shown in Tables 

3.6-3.9. Table 3.6 contains the results for Problem # 1, in which the new DSA 

schemes are rapidly convergent for .11 mesh spacings. According to the results of 

our Fourier analysis, as the mesh spacing gets thicker, the spectral radius is reduced 

down to 0.0. However, the spectral radii and number of iterations for the thick mesh 

spacing are greater than those for the thin mesh spacing. The reason for this is due 

to the unconverged solution for the asymptotic continuous diffusion equation. Since 

we do not implement the multigrid step to solve the asymptotic continuous 

equation, the effective spectral radius for the Gauss-Seidel iteration for the 

asymptotic diffusion equation is near 1.0 for thick mesh spacings. There is almost 

no leakage for the cases with thick mesh spacings; this causes difficulty for the 

asymptotic diffusion solution technique. To better illustrate this effect, we have 

included the Problem #4, which has all vacuum boundaries. 

Table 3.7 contains the results for the Problem # 2 to see the overall 

effectiveness of the new DSA procedure. Number of iterations for DSA schemes 

without acceleration and with acceleration were compared. Table 3.7 shows that 

our DSA scheme is very efficient for problems with scattering ratios near unity. The 

computing time in the transport calculation is related to the SN quadrature order. 

Therefore, as the quadrature order is increased, the SN transport calculation becomes 

much more computationally costly and the CPU time spent solving the DSA 
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scheme becomes a smaller fraction of the total simulation time. The scattering ratio 

at which DSA becomes inefficient will rapidly approach zero as the quadrature 

order is increased. 

The results for Problem # 3 are shown in Table 3.8. The number of 

iterations and spectral radii for our DSA schemes are given for the inhomogeneous 

problem. The results of the third model problem are very similar with those of 

Problem # 1. There is also the effect that the asymptotic diffusion equation is not 

converged well enough for the thick mesh spacing. 

Table 3.9 shows the results for Problem # 4 to see the effect of boundary 

conditions on the convergence of the asymptotic diffusion iteration. We used all 

vacuum boundary conditions to make the asymptotic diffusion calculation converge 

well. Since leakage was increased, the overall spectral radii and the number of 

iterations were reduced. The spectral radii and the number of iterations for the thick 

mesh spacing are decreased significantly. Therefore, the overall trend of spectral 

radii corresponds well to the results of Fourier analysis. 

3.4 Simplified Multi-level Method 

The multi-level technique to solve the diffusion equation for BLD, linear-bilinear 

and linear-bilinear chnracteristics M4S DSA in x-y geometry is very complicated. 

We used the similar multi-level technique to solve the diffusion equation with no 

void cell calculation and the block Gauss-Seidel iteration instead of line Jacobi. 

Although DSA with this technique is unconditionally stable and rapidly convergent, 

the procedure is too complicated and we can not predict the analytic spectral radius. 

The observed spectral radius will vary with the number of asymptotic diffusion V-

cycles performed and the maximum. number of outer iterations for the 

discontinuous and continuous diffusion calculation. We suggest a new simplified 

multi-level technique without outer iteration. We do not need the residual 

calculation and call predict the analytic spectral radius for this calculation. 
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Table 3.6
 

Numerical results for Problem # 1 (S4, c=1 .0)
 

FLBLD/SCB UCB 

(mf) (mip) Iterations Spectral Iterations Spectral 
Radius Radius 

0.01 0.01 6 0.10 6 0.11 

0.01 0.1 6 0.16 6 0.12 

0.01 1.0 5 0.08 7 0.22 

0.01 3.0 5 0.07 6 0.09 

0.01 10.0 5 0.07 5 0.07 

0.01 100.0 5 0.07 5 0.07 

0.1 0.1 8 0.26 8 0.27 

0.1 1.0 8 0.36 9 0.21 

0.1 3.0 8 0.20 8 0.16 

0.1 10.0 7 0.18 7 0.19 

0.1 100.0 7 0.21 7 0.19 

1.0 1.0 8 0.34 7 0.32 

1.0__­ 3.0 8 0.32 8 0.32 

1.0 10.0 8 0.27 8 0.25 

1.0 100.0 8 0.27 8 0.25 

3.0 30 8 0.38 8 0.38 

3.0 10.0 8 0.30 9 0.33 

3.0 100.0 6 0.12 6 0.13 

10.0 10.0 9 0.40 9 0.39 

10.0 100.0 8 0.28 8 0.28 

100.0 100.0 9 0.35 9 0.35 
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Table 3.7
 
Numerical results for Problem #2 (S4. c=0. 1-4.0)
 

Scattering FLBLD/SCB UCB 

Ratio 
Unaccelerated Accelerated Unaccelerated Accelerated 

1.0 1123 8 1123 7 

0.9 67 7 67 7 

0.8 36 6 36 7 

0.7 24 5. 24 6 

0.6 18 5 18 5 

0.5 14 4 14 5 

0.4 11 4 11 5 

0.3 9 4 9 4 

0.2 7 4 7 4 

0.1 5 3 5 3 
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Table 3.8
 
Numerical results for Problem #3 (S4, c=1.0)
 

Mesh Size & and Ay FLBLD/SCB UCB 

(mfp) Iterations Spectral Iterations Spectral 
Radius Radius 

5 x 5 10.0 9 0.28 8 0.25 

lOx 10 5.00 7 0.17 8 0.21 

15 x 15 3.33 7 0.21 8 0.18 

20 x 20 2.50 7 0.20 8 0.16 

25x25 2.00 7 0.17 8 0.17 

30x30 1.67 7 0.17 8 0.19 

35x35 1.43 7 0.17 8 0.21 

40 x 40 1.25 7 0.16 8 0.22 

45x45 1.11 7 0.16 8 0.24 

50 x 50 1.00 7 0.16 8 0.27 

60 x 60 0.83 7 0.17 8 0.29 

70 x 70 0.71 7 0.15 8 0.27 

80 x 80 0.63 7 0.18 8 0.25 

90 x 90 0.56 7 0.20 8 0.19 

100 x 100 0.50 7 0.22 7 0.24 

120 x 120 0.42 8 0.24 7 0.22 

140 x .140 0.36 8 0.25 8 0.25 

160 x 160 0.31 8 0.25 8 0.19 

180 x 180 0.28 9 0.27 9 0.27 

200 x 200 0.25 10 0.34 10 0.34 
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Table 3.9 
Numerical results for Problem #4 (S1. c1 .0) 

& FLBLD/SCB 

(mfp) (mfp) rteratious Spectral Radius 

0.01 0.01 6 0.07
 

0.01 0.1 .6 0.11
 

0.01 1.0 5 0.04
 

0.01 3.0 5 0.03
 

0.Ol 10.0 5 0.03 

0.01 100.0 5 0.03
 

0.1 0.1
 7 0.20 

0.1 1.0 7 0.27
 

0.1
 3.0 6 0.16
 

0.1 10.0 6 0.16
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The procedure is as follows: 

1) SI with transport sweeping for each direction 

2) Solution of the asymptotic continuous diffusion equation using 

multigrid with certain convergence criteria 

3) One x- and y-line Gauss-Seidel for the M4S FLBLD diffusion equation 

This new procedure does not include the iterations of the asymptotic 

continuous and FLBLD diffusion equations. Since multigrid for the asymptotic 

diffusion equation is computationally very cheap and this new procedure does not 

need to calculate the residual, this procedure is simpler and more efficient. We have 

performed a Fourier analysis for the BLD, FLBLD and UCB M4S DSA equations 

solved by this technique. Table 3.10 shows that this technique does not work well 

for BLD M4S DSA scheme. 

Table 3.10
 
Fourier analysis results for BLD. M4S DSA with simplified multi-level
 

technique in x-y geometry (c=1 .0, S4)
 

cy 
0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.25 

0.1 0.25 0.28 

1.0 0.60 0.59 0.54 

3.0 0.70 0.69 0.63 0.58 

10.0 0.50 0.48 0.41 0.54 0.54 

100.0 0.57 0.57 0.61 0.54 0.64 0.67 
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Table 3.11 
Fourier analysis results for FLBLD/SCB M4S DSA with simplified multi-level 

technique in x-y geometry (c=1 .0, S4) 

YtLY
 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.25 

0.1 0.25 0.26 

1.0 0.43 0.43 0.43 

3.0 0.33 0.33 0.43 0.33 

10.0 0.18 0.20 0A3 0.33. 0.14 

100.0 0.14 0.20 0.43 0.33 0.13 0.03 

Table 3.12
 
Fourier analysis results for UCB M4S DSA with simplified multi-level
 

technique in x-y geometry (c=1 .0, S4)
 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.25 

0.1 0.25 0.25 

1.0 0.44 0.43 0.39 

3.0 0.37 0.37 0.39 0.40 

10.0 0.20 0.26 0.34 0.30 0.23 

100.0 0.15 0.19 0.33 0.23 0.13 0.03 
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However, Tables 3.11 and 3.12 show that this technique works quite well 

for FLBLD, SCB and UCB M4S DSA schemes. The analytic spectral radii with this 

technique for FLBLD, SCB and UCB are almost the same as those obtained with 

our previous technique, which assumes an exact solution for the FLBLD diffusion 

equation. Compared to the multi-level technique applied to BLD DSA, this 

technique is much simpler. This technique avoids the void cell calculation, the 

outer iteration and the residual calculation. 

3.5 Summary 

In this chapter we discussed the solution technique for the low order 

diffusion equations of M4S DSA in slab geometry for advanced transport 

discretizations such as LD, LLD, SCB and UCB. The low order diffusion equation 

of DSA in slab geometry can be solved easily by band-diagonal matrix solvers. 

We developed a multi-level technique to solve the diffusion equation of 

FLBLD, SCB and UCB M4S DSA in x-y geometry. This multi-level method is 

slightly different from Morel's multi-level method in the following ways: 

1) It uses the block (cell) Gauss-Seidel iteration for the M4S discontinuous 

diffusion equation 

2) The continuous diffusion equation (five-point stencil with one-point 

removal term) is derived directly from the asymptotic analysis 

3) Void cell calculations are not used. 

We implemented this multi-level procedure and performed four model 

problem calculations. The results showed that FLBLD, SCB and UCB M4S DSA 

schemes with this multi-level technique are unconditionally stable and rapidly 

convergent. 

We suggested a simplified technique which avoids outer iterations and a 

residual calculation. In this technique, the transport sweep is followed by a 

converged solution of the asymptotic continuous diffusion equations. x- and y-line 
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Gauss-Seidel iterations are then used on the FLBLD equations to transform this 

continuous correction into an effective discontinuous correction. The asymptotic 

continuous diffusion equation is solved using multigrid and to expand the 

continuous solution into the discontinuous solution. While the previous multi-level 

method could not be Fourier analyzed exactly to get the analytic spectral radius, this 

procedure has been Fourier analyzed. The results of the Fourier analysis show that 

this new procedure is rapidly convergent. l'his procedure requires a well-converged 

solution for the asymptotic continuous diffusion equation, but this is very cheap if 

using multigrid. 
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CHAPTER 4
 
DIFFUSION SYNTHETIC ACCELERATION BASED
 

ON 1-CELL BLOCK INVERSION
 

4.1 Introduction
 

Many techniques are being used to provide efficient numerical solutions to 

the transport equation, including Diffusion Synthetic Acceleration (DSA), multigrid 

([Now 88] and [Bar 89]) and parallel processing [Man 94]. In DSA, a diffusion 

equation is used to precondition the standard Source Iteration (SI) technique. SI on 

the first-order form of the transportequation typically involves "sweeping" the grid 

along directions of particle travel. One- and, two-Cell block Inversion (CI) methods 

can be used as an alternative to SI. CI allows for the independent (and perhaps 

parallel) solution of scalar flux unknowns in each cell block. Although one- and 

two-Cl are "parallel friendly", they are currently limited in their applicability. The 

iterative performance of 1-Cl in slab geometry degrades as the cells become 

optically thick: the spectral radius approaches unity. One-Cl is not unconditionally 

stable for some multi-dime risional discretizations, such as the linear discontinuous 

(LD) finite element method [Now 88]. Two-Cl is effective in one spatial 

dimension, with parallelization and multigrid, but not for x-y geometry because of 

the x-y coupling problem [Bar 87]. The goal of our work is to construct a one cell 

block inversion technique, that will be unconditionally stable and convergent for 

multidimensional finite element discretization techniques. We do this by 
considering a DSA technique which can be used in conjunction with CI. In this 

thesis, we include two different DSA procedures for slab and x-y geometries. The 

first procedure is composed of SI and 1-Cl: SN transport equations and diffusion 
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equation derived from 1-Cl. The second One is simply 1 -CI SN transport equation 

followed by a diffusion solve. We derived the low order diffusion equation from 1­

CI to obtain a rapidly convergent DSA procedure. We perform a Fourier analysis of 

our iterative techniques and compare our analysis results with the results of 

numerical test problems. 

4.2 Method-i in Slab Geometry (SI+i-CI+DSA) 

4.2.1 Procedure 

Our new method has three stages: 

a) a SI sweep for SN transport equations 

b) a one-cell block inversion iteration for SN transport equations 

c) a DSA solve to make the system unconditionally stable and quickly convergent 

In the standard slab geometry one-Cl method (two spatial unknowns per cell), for a 

given SN angular quadrature set there are 2N angular flux unknowns in each cell 

which can be obtained directly from a 2Nx2N matrix inversion [Bar 89]. By 

including a SI sweep as our first step, we can solve for scalar fluxes in the cell 

without this matrix inversion. 

The SI technique applied to the slab geometry transport equation with LD 

and LLD spatial discretization (in corner notation) with SN angular discretization 

and isotropic scattering has the following form 

Pm(y,(1+113) (1+1/3)
(''))+.!_(
m,i+1/2 !P'm,i-1/2 

(4.1) 
_0SO.i(,,(/) +).(Q4 

9i/m [.(l+1I3) (1+1/3) (1+1/3) (1+1I3))]i (1+1/3) (/+1/3))
Y'm,i+1/2 +l/'m,/1/2 +YImjR (WmjR Wm,iL2 

(4.2) 
0s0,i 

( 
(1) 

4 
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rc
 
(/+1/3) (/+1/3) 

Pm > 0 (4.3)Wm,i+1/2 Wm,iR 

,,(l1/3) (1+1/3) 
Y'm,i-1/2 = Wm,IL ' Pm <0 , (4.4) 

and Wm,LL and WmiR are the left and right edge angular fluxes at cell i. The scalar 

flux unknowns, ,/,+213), are obtained after a one-Cl calculation, as shown in eq. 

(4.5): 

(1+2/3) +(l+1/3) w (I+113)\= El AC J Wm (A B + + Am m m.i-1 m m m,i+1 ) 
;s_>0 , (4.5) 

where 

= iR)' (4.6) 

W _( ± ± 
A m,i±1 '..Wm,i±1L'Pm,i±1R/ (4.7) 

A = wrn(A' +A'), (4.8) 

1 Pm1 
2a11 O4X1

A (4.9) 
1 

m °iPm_ 
2o, 2o 

1Pm1 
20!r, 2o,K (4.10) 

1 1°JPm 
2cr, 2o 

Pm 

B m (4.11) 
9iPm0 
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Pm 
o 

B , (4.12) 

ajxi 
1 1], 

(4.13) 
o 1 1 

and 

(4.14) 

The superscript '+' and '-' refer to the angular fluxes in the positive and negative 

directions, respectively. Compared with SI, CI allows every cell to be calculated 

independently, eliminating the need for a sweep. 

The diffusion synthetic acceleration equation is derived using the "modified 

four step" technique of Adams and Martin [Ada 92] with one small modification: 

the current at the cell interface is divided into two parts, one from the previous step 

and the other at the current iteration index. These equations are presented below: 

(/1+1) j')=O.O , (4.15)g12 g,,2 + 

4(&/2 +g,2 2g,)+°° (f f')=O.O , (4.16) 

D1 ([(1+1) (1(1+2/3) ç(l+2/3){q'" -- il _j))]_ Fnf(1213) + VL' :+IL Vi+IR 1,+IL ,J, (4.17)tx 

(*)g1_1,2=[3) ,ç(/+2/3) _f(i+2I3))]_[j(l+l) (f(I+l) _j'))],
VI-IR (4.18)

2A1 

- __ (J(l+I) _fI)),
g1 IR (4.19) 

where 

(I+1) jI+II3) (4.20) 
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j(1+I) ,j1+I) ,/,(I+213) (4.21) 

We rewrite eqs. (4.1 5>-(4. 18) in matrix form as follows: 

r r i<'') 1 r j(1') 1 r(I1,2) -dcV) 1 r(z+1/2) ,ç(l)I 'ILI'+' i 
I ' i-IL +IL I Y-1LI i+IL I I 'i+IL I Y'-1LI 'DIL 

I ' 2L ,t(I+I) I 31.1 j(1+1) 21.! A(l+112) -A(') f 31.1 A('u'2) ,(I)I 

LI ER J U I+IR J LI i-IR J LY'+IR S"z+IRJ LY-IR Y-IR 

where 

2 
DIL (4.23)GD, G.D o,,&-G,a---- 00LSX1 

2 2 

D.1 D1-a+ 
2Lx11 

M2L (4.24)GDI 1+1 _er+1-Ga+ 
2&,+ 

D.1-a+ 
2&, 2&D3L (4.25)

91D1...1 Ga­
2 ' 2& 

4.2.2 Fourier Analysis 

We have performed a Fourier analysis of this technique for the purely 

scattering problem. Since the 1-Cl equations include the incident angular fluxes, the 

scalar fluxes should be divided into two directional values. The ansatz used in the 

Fourier analysis for LD and LLD SI+l-CI+DSA equations in slab geometry is as 

follows: 

(4.26) 

= w'amj, (4.27) 
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(1+2I3)
 = (428) 

j(l+1)
 a (4.29) 

where 

+(l) I+(') -(1) 2-(oTW (A 30' 'riR ' Li. 'rR 1
 

+(l+i/3) - ( "+(1+113) -+(1+113) -(1+1/3) '-(1+1I3)\T (A
1
m,i 'Y'mjL 'Y'm,IR 'm,iL 'm,iR 

I(1+1) - ( +(l+1) ?+(l+1) -(l+1)
 
I. 

(4 32"JLL 'fiR 'JiL 'fiR I'
 

A1 (Aei2i_I/2, Ae112
 Ae') , 4.33) 

+
- ( i-II2 + I+II2 ,A,r,112 \T
amj amiLe ,amiRe I , 
(A 34

, ,
 

'P - (R- i-II2 Q i+112 7 i-I/2 7 :,+u2T (A35,
 ,
 
iR
 

- ( + LAXI_L12 + i2x+t,2 - - i2x,112 T

C1 - ce , ce , ce , ce (A 36

,, .
 

The matrix of Fourier analysis for SI+1-CI is as follows: 

(4.37) 

where the matrix C is from 1-Cl, 

C=(ISICR)' comSBmSm (4.38),
 

p->0
 

and the matrix Sm is from source iteration: 

Sm = (Sirn Bm)'CR. (4.39) 

where 

[A: 0 
1
 (4.40)0 Aj'
 

m 
U M

o.

1 , (4.41) 
I
 

J4x4
 

ID Dl
 
(4.42)CR=[D
 Dj44'
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S1 = wmSCR, (4.43) 
u_ >0 

and I is 4x4 identity matrix. 

The results of our Fourier analysis are shown in Figure 4.1. We include only 

the results of LLD CI+1-CI, since the eigenvalue shape of LD SI+l-CI is nearly the 

same. The spectral radius is always 1.0 at the Mx=O mode. As the mesh spacing 

becomes thicker, the eigenvalues approach 1.0 for all modes. However, since the 

eigenvalues for high frequency modes (it/2Xit) are negative, the effective 

convergence rate may be improved by averaging. Multigrid can then be applied to 

get rapid convergence as shown in 2-Cl [Bar 91]. We use a simple averaging of the 

scalar fluxes before and after 1-Cl: 

(1+2/3) ...1+8#(l+I/3) +_(/+2/3) (444) 

The matrix of Fourier analysis is from eq. (4.37): 

coA1=8I+128C)A1. (4.45) 

The results for LLD SI+l-CI with averaging are shown in Figure 4.2, in which we 

used 6=0 for simplicity. However, the eigenvalues for thick mesh spacings 

approach 1.0 for all modes with any value of 8. The shape of the eigenvalues is 

almost identical to that of SI. However, the eigenvalues for high frequency modes 

are slightly less than those of SI. The multigrid method for SI+l-CI is not effective 

for the thick mesh spacings, and SI+1-CI procedure needs another step to reduce the 

thick mesh spacing eigenvalues at the high frequency modes. Therefore, we include 

the DSA step as a final stage to obtain less eigenvalues. The final matrix for 

method-i (SI+l-CI+DSA) is as follows: 

= co{C+D'R(CI)JA1, (4.46) 

where the matrix D'R is from diffusion equations, 
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[D1L +D2Le'' +D3Le1D 1 , (4.47)
0 D1L + D2Le'' + D3Le J4X4 

[- D2e" D3Le' - D3Le1' 1R 1 
. (4.48) 

D2Le' D3Le" D2Le1' D3Le' J44 

The results of our Fourier analysis for LD and LLD SI+1-CI+DSA are 

shown in Figures 4.3 and 4.4 and Tables 4.1 and 4.2. Figure 4.3 shows that LD 

SI+1-CI+DSA scheme in slab geometry is unconditionally stable and the maximum 

spectral radius (pa,i.) happens at 0.01 mfp. Fourier analysis was performed for S4 

and S16 equations as shown in Table 4.1. As the mesh spacing gets thicker, the 

spectral radius goes to zero. Compared to M4S DSA, the spectral radii for thin 

mesh spacings (0.1 mfp) are higher than those of M4S DSA. 

1.5 

100.0 mfp 
1.0 

0.5 
C,)
a) 

a) 

a)
0)fl-I 

0.0 

-1 .0 

-1.5 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Figure 4.1 Eigenvalues as a function of X& for LLD SI+1-CI 
(no averagmg, c1 0, Sjo) 
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Figure 4.2 Eigenvalues as a function of Xzx for LLD SI+1-CI 
(averaging with 6=0.0, c=1 .0, Si6) 
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Figure 4.3 Eigenvalues as a function of Mx for LD SI+1-CI+DSA 
(no averaging, c1 .0, S16) 
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-0.8 

-1 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Figure 44 Eigenvalues as a function of Mx for LLD SI+1-CI+DSA 
(no averaging, c=1 .0, Si6) 

However, the spectral radii for intermediate and thick mesh spacing ( 1.0 mfp) are 

less than those of M4S DSA. We can make a simple estimate the efficiency of this 

procedure. Let us assume that the diffusion solve is comparable to one SN transport 

calculation. (In slab geometry, this is ti3le for low order discrete ordinates, but not 

for high order discrete ordinates because it is cheap to solve the diffusion equation 

in slab geometry). With this assumption, one M4S DSA iteration corresponds to 

two SI sweeps and SI+1-CI+DSA corresponds to three. Three iterations of M4S 

DSA are comparable to two of SI+l-CI+DSA. Therefore, we can perform a 

calculation as follows: 

mfp M4SDSA SI+l-CI+DSA 

1.0 0.484 =0.113 0.3082 =0.095 

3.0 0.520 =0.141 0.2612 =0.068 

10.0 0.286 =0.023 0.1432 =0.020 
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There is a benefit on convergence ratio at (1.0 mfp zlx 10.0 mfp). In multi­

dimensional geometries, it is sometimes very expensive to solve the diffusion 

equation for some acceleration schemes. Since one diffusion solve may be 

comparable to many transport iterations, most of the computing time is spent in the 

diffusion calculation. Since the extra 1-C! calculation is not a big portion of the 

calculation, it is important to reduce the overall spectral radius. 

Figure 4.4 shows the eigenvalues as a function of X4x for LLD SI+1­

CI+DSA where the spectral radius is less than 0.364 for zix1.0, but greater than 

1.0 for 4x_<ti 1. The maximum eigenvalues for zlxO. 1 are negative, though (see 

Figure 4.4). This allows us to stabilize the technique using a simple averaging of 

intermediate results: 

fll+l) l+5Ø14U3) +!(1+2I3) +j') . (4.49) 

Table4.l
 
Spectral radii for LD SI+l -CI+DSA and LD M4S DSA (c1 .0)
 

Analytic Spectral Radii ObservedMes 
Spectral RadiiSpacing 

M4S DSA Method-i 

S4 S16 S4 S16 S4 S16 

0.01 0.180 0.216 0.425 0.407 0.417 0.389 

0.1 0.165 0.200 0.409 0.414 0.385 0.396 

1.0 0.484 0.385 0.308 0.266 0.305 0.255 

3.0 0.520 0.496 0.261 0.249 0.230 0.221 

100 0286 0287 0143 0144 0122 0126 

100.0 0.035 0.03.6 0.018 0.018. 0.017 0.017 
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Table 4.2
 
Spectral radii fOr LLD SI+CI+DSA and LLD M4S DSA
 

Mesh 
Analytic Spectral Radii Observed Spectral Radii 

Spaclflg Not Averaged Mod. 4-step Not Averaged 

Averaged (8=0O) DSA Averaged (8=0.0) 

0.01 1.192 0.587 0.220 1.160 0.569 

0.1 1.017 0.539 0.245 1.016 0.534 

1.0 0.364 - 0.462 0.334 ­

10.0 0.062 - 0.135 0.039 ­

100.0 0.007 - 0.149 0.005 ­

The matrix of Fourier analysis for'SI+1-CI+DSA with averaging is as follows: 

[1sc 1_SD1R(cI)]Aa,A (450) 

The results are shown m Table 42, m which the analytic spectral radii (pa,i) for 

L1xQ. 1 were reduced to <0.6 by averaging with 8=0. We may be able to further 

improve the results by finding optimal value of 8. It is expected that a variable 8, 

which is a function of mesh spacing, will yield in the best results. 

4.2.3 Numerical Results 

The model problem is a 1000 cell homogeneous medium with vacuum 

boundary conditions and constant and purely scattering cross sections (c1 .0) 

divided into three regions with different constant sources. (see Figure 4.5) 
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cTt=1.O cTtl.Ocyl.OVacuum Vacuumc=l.O c=l.Oc=I.O
 
Q=O.O1 Q=O.O1
Q=l.O 

250x& 5OOxLx 250x& 
f
 

Figure 4.5 Model problem Geometry 

We have used a random initial guess of the scalar flux. The spectral radii observed 

in our program for the model problem compare well with our analytic results as 

shown in Tables 4.1 and 4.2. Compared to modified 4-step DSA applied to SI, the 

Panal. from SI+CI+DSA are higher for thin mesh spacing, but are lower for thicker 

cells for LD and LLD schemes. 

We have shown that SI coupled with CI and DSA can be unconditionally 

stable and efficient in slab geometry. The scheme is also very rapidly convergent 

for optically thick spatial meshes. This is a significant improvement over previous 

one-Cl implementations, whose spectral radii approach unity for these meshes. Our 

belief is that the addition of DSA will also cause one-Cl to be stable and efficient in 

multi-dimensions, where previous one-Cl schemes have been unstable. It is 

important to note that this technique will be more expensive per iteration than 

standard SI+DSA, but overall may take less CPU time. 

In the next section, we include art algorithm without SI, which includes only 

CI and DSA and describe this technique applied to multi-dimensional transport 

problems. 

It is also possible that SI+1-CI+DSA with or without multigrid may work 

well for the anisotropic problems, since 51+2-Cl with multigrid method in slab 

geometry has shown to work well for these problems [Bar 89]. 
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4.3 Method-2 in Slab Geometry (i-CI+DSA)
 

4.3.1 Procedure 

Here we remove the first stage of SI, and so our new method includes just 1­

CI and DSA based on 1-Cl. In the standard slab geometry one-Cl method (two 

spatial unknowns per cell), for a given SN angular quadrature set there are 2N 

angular flux unknowns in each cell which can be obtained directly from a 2Nx2N 

matrix inversion. Manteuffel et al. ([Man 94], [Man 95] and [Man 96]) showed that 

the algebraic manipulations required to perform the matrix inversion in the 2-cell 

block inversion method in slab geometry is not computationally expensive. 

Therefore, 1-Cl matrix inversion in slab geometry is easier and simpler than 2-Cl. 

Since the primary goal of this research is to achieve an unconditionally stable 

scheme, we leave the development of an efficient algebraic matrix inversion 

method for future work. 

While SI is typically performed by x-line relaxation, 1-CT must be 

performed by tiine relaxation. The matrix for by j.tline relaxation of the 1-CT 

transport equation is as follows: 

I-W B1+I-\ -WJ, -V,. 
-9,B1 -I+\ IW W,, 

- B1+I\ I -W. 
x 

w w i+w O.B.+IWm m m : i m
 
2Nx2N
 

(4.51)
#(i#1I2) + +(I) '
 

m,JL OjL ' I m,i-1R
 

JF.(l+I/2) + 4<1)
 

m,IR O,IR "1 I m,s-IR
 

y-(I+112) ..
 

m,iL 'OJL I m,i+IL
 

¶(i+1/2)
 +,B1'I'
2Nxl 2Nxl
 

where 
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1...00 
1=0 (4.52)0..

0

10 
iN 

22 

/1O 0 0 

2
/2 

(4.53)B.=. 
0 0 

..:pNi 0 

o o ... 0 

WIW2...W1W 

(4.54)
2 

... 

w w2 wi:1 
2 2

N N 
22 

The low order diffusion equation is different from the diffusion equation 

used in method-i (SI+1-CI+DSA). When we used the diffusion equation described 

in the previous section, the 1-CI+DSA scheme was unstable. In this new method, 

the incident currents are calculated directly from the 1-Cl. The current equations are 

generated by taking the 0th angular moment (Wm()) of eqs. (4.1)-(4.4). The 

equations are the same as those derived in method-i, and are: 

+Oc;: (f(l+l)f'10g1,2 -g1_112 , (4.55) 

4(z11,2 +g1_112 -2g)+°' J" -')=0O , (4.56) 

where 

-i-(I+1) (11/2) / .i<1+I). (1+112) (1+1)g1112 g1112 + g1112 mPm WmiR WmIR )+ Wm/_1m(Y1m,i+1L -w211J (4.57) 
/4n 

j 
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+(l+112) +g / .4<1+1) .,+(l) ,,..l+1/2)a + Wm/1m(l/i(I+1)i-II2 - = Wm/JmI,,ylR rm,i-1R, .,.- ), (4.58) 

g+(I+I) +g;-(I+l) +(i+1I2)) (i+1I2))
= Wmpm&:ij' + WmPm(W" (4.59) 

/4O 

While method-i eliminates the current corrections in favor of differences of scalar 

flux corrections, here method-2 replaces the currents with functions of local scalar 

flux corrections half-range sums of the angular flux corrections. We can rewrite 

eqs. (4.57)-(4.59) as follows: 

.4<1+1) -(1+112)
g,112 -g1112 +g1112 ­

[(.(1+1) f(l+l))][jQk1) +(j) _j;))J,(1+1) (4.60) 

-(1+112)+ WJ m(Ym,i*lL -/'21L 

.4<1+1/2) -(1+1)
- g_112 +g,_112 ­

(f) f(l+l))][j(I+l) 1 (f(/+l) _f+l))]
E (4.61)2x 
+ WmPm(YF2) 

_._.L(f('1) _f+l)),g1 (4.62) 

where 

1(1+1) (1+1) jp+I/2) (4 63JIL(R)Y'IL(R) Y'IL(R) 

Therefore, the final low order diffusion equations are as follows: 

(f(/+I) +j1))g -g 
(4.64)

=WJ1m(W2 -vL) +(w42 ç4<)' 

(ito _f(1+I))4(g +g -2g')° 
, (4.65)

-(1.44/2) -(1) '. 4(14412)-
kWf+1L i+u7(Wni-u 

http:4.57)-(4.59
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g( [qC(l+l) {f) fI+l))}[j(I+l) _j;))], (4.66) 

g(/ _fQ+l))}_[qr(!+I) (f(1+1) _jf+l))] (4 67) =[4) _' (t 

gcl+I) (/1+1) _J.+1)) (4.68) 

We rewrite eqs. (4.64) and (4.65) in matrix form as foliws: 

r <i+i1 rf(1+1)l 1r(1+1)l r,,(/+1/2) 11+1/2)1
I 1L I I S"m,i+IL 'ny+1L ID 

(1+1) 
I + D3 

<l+1) I 
Wm/JmDRI U+1/2) U+1/2) I' (4.69) 

>OLi iR J U i+IR J Li i-ui J L"1'i+1L n,i+1L J 

where 

[1 ii 
DR=[9 (4.70)-d' 

and D1L, D2L and D3L, are defined in qs. (4.23H4.25). 

As shown in eq. (4.69), they re different from the conventional DSA in the 

point that this new DSA includes e current terms from the 1-Cl. When just the 

scalar fluxes are taken from the l-CI the DSA scheme is not unconditionally stable. 

However, taking the current frorn the previous 1-Cl, the DSA scheme is 

unconditionally stable. This fact will be shown in Fourier analysis. Finally, the 

angular fluxes are updated by the following equations: 

i1R 
!f _&fQ+') _f+I)) 47i) 

Here we used P1 approximation to get the angular flux from the diffusidn 

calculations. 

http:4.23H4.25
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4.3.2 Fourier Analysis 

While the Fourier analysis for method-i was performed for the scalar 

fluxes, the Fourier analysis for method-2 must be performed for the angular fluxes. 

The ansatz of LD and LLD i-CI+DSA in slab geometry is as follows: 

4,h/2) w'a, (4.72) 

4,+(14.112) = o.)aR, (4.73) 

4(1+1/2) = co'a, (4.74) 

4,-(i+1/2) 
= (D arniR (4.75) 

(1+1)
 
o 'c1 , (4.76) 

where 

+ +(1+1/2) +(1+1/2) +(1+1/2) +(1+1/2) +(1+112) \T (4 77m,iL P'1,iL ' P'2EL ' '1N/2-1,th 'WN/2,iL ) 

+ +(1+112) - ,' '+(1+1/2) +(/+1/2) .- +(l+112) - +(1+1/2) T
 
m IR 'Y't,iR ' 2$ ' '' N /2-1,IR '' N 12$ '1 '
 

-(1+112) - I -(1+1/2) " -(1+1/2) -(/+1/2) -(/+1/2) 'T (4 794, .1
miL kW1,IL ' W2,IL ' '1P'N12-1.IL'WNI2,IL ') ' 

+ -(1+1/2) - - -(/+1/2) -(/+1/2) -(/+1/2) -(/+1/2) \T 
m,iR .!P1,/R ' 2$ ' '"N/2-1$ 'Y1N/2,/R '1 ' 

.(I+1) - ( (1+1) (1+1) (1+1) (l+1) .(1+1) (l+1)T

1
 '.JIL 'fiR 'JiL 'fiR ' 'JIL 'fiR ) , 

(4 

+ - + Lax,..112 + sax,_112 + sax,_,2 + IA.X1_112 \7'am a1e ,a2e ,...,aN/2...1/)e ,aN/2/Je ,,
 

+ - ( + iA.r,..112 + iA.x,,112 + ,Ax,I,2 + \T
z.ax,+,2
amiR aI,Re , a2e ,... ,aN,2 IRe ,, 

- i2x,.112
- I 'i-II2 'i-I/2 "é-1/2 \ T
amiL - , ae ,.. ,a),/_1e- ,aN,2e 
-
 - ( - IA.X1.1/2 - ,ax,112 - ax,+,2 ,2x,112 Tam,R - a1111e a2,Je ,... ,aJ,,,2_11)e ,aN,2 IRe 

c1 = (cILels_u2, ce'12, ,ce'1_/2, cIRe1/2 )T (4.86 

The matrix of Fourier analysis for 1-Cl without averaging is as follows: 
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+ 
am 

a 
= Arn'D (4.87) 

amiL 

a amER 

where 

IWm Bj+IWm Wm Wm 

OjBjI+Wm IWm Wm WmAm	 , (4.88)
Wm Wm Bi+IWm I W
 

Wm Wm I+Wm 9.B.+I-W
I I m 2Nx2N 

o	 B1e o o 

0 -B,e'' o 0 
(4.89)

o 0 B1e 0 

o 0 I I 09.B.e" 
2Nx2N 

and matrices I, W and B are defmed in eqs. (4.52}-(4.54). The Fourier analysis 

results for LLD 1-C! without averaging are shown in Figure 4.6. Since the shape of 

the eigenvalue vs. frequency curves for LD and LLD are virtually identical. We 

only include the LLD curves. The spectral radius is always 1.0 for all mesh 

spacings. But since the eigenvalues at the high frequency modes (,il2Mx,r) are 

negative, they can be reduced by averaging. If the eigenvalues at the high frequency 

mode are less than the eigenvalues at the low frequency mode (OX&v'2), 

multigrid method can be used to improve convergence. For the averging case, the 

matrix for 1-C! is as follows: 

+ + 
'm,iL 

=	 iRO)''	 
amER 

, (4.90) 
arniL 2 2 amiL 

a amER 

where 'I' is an identity matrix and oranges from 0 to 1. 

http:4.52}-(4.54
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The Fourier analysis results for S-0 are shOwn in Figure 4.5. Unfortunately, as the 

mesh spacing increases, the eigenvalues approaches 1.0 for all modes. T1is 

averaged 1-Cl is therefore not amenEble to improvement by multigrid. Thus, we 

need to find a way to reduce the high frequency mode eigenvalues. We have found 

that including a DSA solve helps with this issue. 

The matrix of Fourier analysis for 1-CI+DSA is as follows: 

1 + 
am am 

a113	 ={AD[!c_ RG]w'[AD_I]} amiR 
, (4.91) 

am 2 2 i.X. 

a 

where 

Wm 0 0 0 

o Wme' 0 0
W	 (4.92)

0 0 Wme' 0 

0o 0	 Wm2N2N 

matrix G is from diffusion equation, 

G11	 G12 G13 G14 

G G23 G24G=G21 (4.93)
G31	 G32 G33 G34 

C41	 C42 G43 C 
2Nx2N 

g11	 g12 g13 g14 0 1 1 0 

g21 g22 g g24 0 - e, 0 
= D , 4.94) 

g31	 g32 g33 g 0 1 1 0

0 9 9g41	 g42 g43 g44 04x4	 4x4 

g,	 0 ... 0 

Og 0 
. ' (4.95)= : : 

0 0 0
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Figure 4.6 Eigenvalues as a function of Xix for LLD 1-Cl 
(no averaging, c1 .0, Si6) 
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Figure 4.7 Eigenvalues as a function of Xix for LLD 1-Cl 
(averaging 8O, c=1.0, S16) 
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and H is the matrix for the setup of the current, 

I I
I 1

0 0 

H= 
0 0 

. (4.96)001I 
o o I '2Nx2N
 

The results of Fourier analysis for l-CI+DSA with LD and LLD schemes are shown 

in Figures 4.8 and 4.10. The spectral radius for the thick mesh spacing goes to 0.0, 

but the spectral radius for the thin mesh spacing is still near 1.0. However, since the 

eigenvalues at the high frequency modes are negative, the shape of eigenvalues can 

be improved by averaging for the multigrid method. The matrix of Fourier analysis 

for 1-CI+DSA with averaging is as follows: 

1.2 

I flfllmfp 

0.8 0.1 mfp 

0.6 

0.4 1.Omfp 
U' 
1) 

U' 
0 10.0 mfD 

a) 

.2' w -0.2 100.0 mfp 

-0.4 

-0.6
 

-0.8
 

-1
 

-1.2
 

0.0 0.5 1.0 1.5 2.0 2.5
 

Figure 4.8 Eigenvalues as a function of XAx for LD l-CI+DSA 
(no averaging, c1 .0, Si6) 
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Figure 4.9 Eigenvalues as a function of?x for LD 1-CI+DSA 
(averaging ö0.0, c1 .0, S16) 
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Figure 4.10 Eigenvalues as a function of?x for LLD 1-CI+DSA 
(no averaging, c1.0, Si6) 
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Figure 4.11 Eigenvalues as a function of X& for LLD 1 -CI+DSA 
(averaging 8= 0.4, c=l.0, Si6) 

a 1+81+ 
+ 2 +1+1 amiR / amW 0)
 

:i: :::
 

The results of Fourier analysis f9r LD 1-CI+DSA with averaging by 8=040 

are shown in Figure 4.9. The eigenvalues at the high frequency modes are always 

less than those at the low frequency mode for all mesh spacings. The maximn 

eigenvalue at the high frequency is about 0.6. This means that LD 1-CI+DSA with 

averagmg can be combmed to produce a rapidly convergent scheme 

The results of Fourier analysis for LLD l-CI+DSA with averaging by 8 

0.4 are shown in Figure 4.1 1. The eigenvalues at the high frequency mode are 

always less than those at the low frequency mode for any mesh spacings. The 
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maximum eigenvalue at the high frequencies is also about 0.6. This means tl*at 

LLD 1-CI+DSA with averaging can also be combined with the multigrid to produce 

a very rapidly convergent scheme. By optimizing the value of as a function of the 

mesh spacing, we can improve the shape of eigenvalues and maintain very low 

spectral radii. 

4.3.3 Numerical Results 

The model problem is a 500 cell homogeneous medium with vacuum 

boundary conditions and constant and purely scattering cross sections (c1.Q) 

divided into three regions with different constant sources. (see Figure 4.5) The 1­

CI+DSA spectral radii observed in our program for the model problem compare 

well with our analytic results as shown in Table 4.3. Compared to M4S DS, 

applied to SI, the p,.'s from l-CI+DSA are higher for thin mesh spacing, but 

lower for thicker cells. We performed model problem calculation to compare tle 

observed spectral radii with the analytic ones. We can obtain the better spectr1 

with multigrid in the program. 

We have shown that CI with DSA can be unconditionally stable and 

efficient in slab geometry. The scheme is also rapidly convergent for optically thick 

spatial meshes This procedure must be coupled with multigrid to obtain rapid 

convergence for thin mesh spacings. Using Manteuffel's algebraic matrix inversion 

method1 the matrix inversion in 1-Cl is not expensive. Furthermore, 1-Cl is much 

more amenable to parallelization than SI. Therefore, this 1-CI+DSA procedure is 

very effective especially for intermediate and thick mesh spacmgs Our belief is that 

the addition of DSA will also cause one-Cl to be stable and efficient in multi-

dimensions, where previous one-Cl schemes have been unstable It is important to 

note that this technique will be more expensive per iteration than standard SI+DSA, 

but overall may take less CPU time. We will apply this procedure to the x-y 

geometry transport equations in the following section. 
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Table 4.3 
Specttal Radii for LD and LLD l-CI+DSA 

Mesh 
Analytic Spectral Radii Observed Spectral Radii 

Spacing LD LLD LD LLD 

0.01 0.990 0.990 0.95 0.95 

0.1 0.903 0.903 0.82 0.83 

1.0 0.356 0.394 0.31 0.34 

10.0 0.099 0.016 0.08 0.01 

100.0 0.018 0.002 0.01 0.01 

4.4 Method-i in x-y Geometry (SI+i-CI+DSA)
 

4.4.1 Procedure
 

The method-i procedure (SI+1-CI+DSA) in x-y geometry has the sane 

three stages as in slab geometry: 

(a) a SI sweep for SN transport equations 

(b) a one-cell block inversion for SN transport equations 

(c) DSA to make the system unconditionally stable and quickly convergent 

The SN transport equations with iteration indices for the various BLD schemes are 

as follows: 

Pm (/+1/3) (/+1/3) (1+1/3) (1+1/3) (/+1/3)
( \L.
 
!Pm,i+1/2,j .'/'m,i,j+1/2 1Pm,i.j-112) 01,i,jWm,i,j
P'm,i_I/2,j)+
 

A
 

(4 98) 
1 (1)1+-Q11


2,r 2,r 



130 

0i,jPm (1+1 (1+1/3) 2 (l+1/3))+hlm x(1+1/3) x(l+1/3)
(Wm,i.i!i,j + 1/'mj112j 'I'm,i,j (Wm,i,j+1/2 Wm,i.j-1/2Ax A 

(4.99) 
111x(l+1/3) x(l) 1 x+ °11jY m,iJ = °s0J +,j i,j2,r 2,r 

yQ+l/3) 8i.j7m (1+1/3) (1+1/3)!L(wY(1/3). +m,i+1/2j m,i-1/2,j) Wm,E,j+1/2 +Im,i,j_1/2 23) 
(4.100) 

i,1Y(1+1/3)_la çb"° -J-Qf+ °tijY m,i,j ,i.j I,J2,r 2ff
 

9ijPm y(l+113)
(i/i,,,+ii + Wmi-.4/2j
y(i+l/3) ._.- Y(1+1I3))+Jhlm x(l+1/3) x(I+1/3) 2 x(l+1/3)

'41m,i,j (Wm,i,j+1/2 + Wm,i,j-1/2 Wm,z,J ) 

,,xy(l+1I3) 0xy(1) 1Qxy1
+ t,i,jY' m,i,j = sO,i,j i,j + 

(4.101) 
where 

,,,(1+1/3) (1+1/3) +Wx(l1'3)
'V m,i±1/2,j !/1m,i,j - mj,j ' Pm >0, (4.102) 

y(I+1/3) - ,,,y(l+l/3) + 111y(l.i-l/3) 
Y'm,i±1/2,j r m,i,j m,i,j ' Pm >0, (4.103) 

(1+1/3) (1+1/3) 
Ym,i,j±1/2 Wm,i,j m,i,j ' 7m O, (4.104) 

x(/+1/3) x(1+1/3) + xy(1+1/3) 
Wm,i,j±1/2 Wm,i,j Wm,i,j ' 7m 0. (4.105) 

The scalar flux unknowns, 2"3), are obtained after a one-Cl calculation by 

the following equation: 

sO,i,j A1][= WJ1 + AIJQIJ] , (4.106) 

where 

)T
= , (4.107) 

= Wm(A,'j + A'J + A'J + (4.108) 
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J
(1+1/3)
m,i,j 

1 -1 ( 1(/+1/3) 
.L. 

1(/+1/3)
m,i,j\ Im m,i-lj Im m,i,j-1 

+ A'j(B2mY:';) + CimY)')) 
+Aj(BimF+hj +C2mY)' 
+ + C2mY(j.) 

4109 

= (v11, x1 YI ,XYl.)T 
Pm > 0, ii,,, > 0, (4.110) 

= (w1 m,j' w2)T Mm m > 0, (4.111) 

m,i,j 

y4 
= 

= 

mi,j' 

WX4 

,j' 

y4 4)T 

Mm 

Mm 

> 0, 

<0, 

m 

m 

<0, 

<0, 

(4.112) 

(4.11) 

1 1 0 0
 

9 0 0
=--­B Im (4.114) 
, 0 0 1 1 

0 0 -9 -e
 

1 -1 0 0
 

Mm99° 0
 
m (4.115)

&, 0 0 1 -1
 

0 0 e -e
 

1 0
01
 
1 0 1 

lm (4.116)
-9 0 -9 0
4'
 

0 -9 0 -o
 

1 0 -1 0
 

C
0 1 0 -1 

2m (4.117)
9 0 -e 0 

0 9 0 -e
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P 1m 

0 7m 

& 

_J 
0 

I 

frç /yI 

, 4.118) 

where 

A , for Pm >0 and 7m >0 

A , forpm <0 and m >0 
A (4.119) 

A , for Pm >0 and m < 
A , forpm <0 and 1m <0 

Compared with SI, CI allows every cell to be calculated independently, eliminating 

the need for a sweep. 

The diffusion synthetic acceleration equation is derived using the "modified 

four step" technique of Adams and Martin [Ada 92], with one small modification. 

The current at the cell interface is divided into two parts, in which the incomiig 

current is from the previous step and the outgoing current is at the current iteration 

index. The following equations are from the 0th (Ewm) angular moments: 

)+ 'x1 g7_112 )+ xiYjOa,i,jfi'7' = 0.0, (4.120) 

(g,21 + -2g'1 )+ &1(g g112)1/2 
(4 121)

+ = 0.0 

Ay(g)2 gA?2,)e,,&,(g+112 +g,2 _2g7I)) 
(4 122) 

+ = 0.0 

and 
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+g52112 _2g71+1)) 
(4 123

fxy(I+l)_OO
I ..'j a,i,jJi,j 

The current equations can b derived from the l angular moments (EWmilnç afld 

WmJ.Lm) as follows: 

D1
+ gl3) = + fx(1+I)) fXQ+I)]
= 

4.124) 
_ ' (1+2I3) çx(I+2I3) fx(l-s.213) 

..
LJ ,+,j / A .
 

= {a(f' + flY(1+1)) _.J..fx/(!.44)]g')2,1 = g,'] + 
(4.125) 

r (fy(l+213) çxy(li-213)aj +
 
' i+Lj
A
 

Dt.ifY!+I)]
+ fY(1+1))
 
g3+112 = g?2 + g3) = [a(J 

yf 
, (4.126) 

..r tç(/+2/3) çy(1+2/3) D11 çy(l+213) 
LJ i.j+1 J l,J+l / + I Ij+1A
 

'-1yj+1
 

+ f.Y(l+l)) Di.JfY(l+l)]= [a(fx()g112 = 
yj
 

,
 (4.127) 
(fx(I+2/3) ç.xy(l+2/3) D111 cxy(I+2/3)_r
aj I+
I,j+1
 A
 

'-yj+I
 

(*) +(I+2/3) -(1+1)
g-112, g-112, + ge-i,2,, (4.128) 

y() y+(I+2/3) y-(I+l)g._112,1 g-112, + g1-112, (4.129) 

(*) +(/+2/3) -(1+1)
g1,-112 - g1,,_112 + g11._112 (4.130) 

x+(l+2/3) x-(!+1)
g1..112 g,,-112 + g1,-.112 (4.13 1) 

213 - fX(l+I)ij (4.132)
I.j ,
 

2D1 
(/+I) y(1+I) 

g1, (4.133) 
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p,y(l+l) JxYV+1)
g1, i.j 

2D,
.u,x(1+1) xy(1+1) 

g1, 

where 

ç(ls-1) (l+2/3)- A(1')JIj Y'i,j Y'i,j ' 

çx(I+1) ,çx(l+1) ,,çx(1+2/3)
J',j Y'i,j Y'I,j ' 

fY(l+I) - çy(l+l) ,,çy(l+2I3)
Ji,j Y'I,j V1,j ' 

çxy(1+1) - çy(I+2/3)
J i,j Y'i,j Y'i,j 

f(l+213) - j,(l+1/3)A('1)J i,j 't'i,j Y'i,j 

çx(1+2/3) ,çx(l+I) ,,çx(I+1/3) 
J i,j Y'i,j Y'I,j ' 

çy(l+213) Ay(11) ,y(l+1/3) 
.1 i,j Y'I,j Y'I,j ' 

çxy(1+2/3) - ,,çxy(l+l) xy(/+1/3)J,j !Vjj 

We rewrite eqs. (4.120)-(4.123) in matrix form as follows: 

+ D2Lfj] + D3LfI? + D4LfIt? + 
(1+2(3) (1+113)\ (1+2(3) (1+113)\--D (

2L i-1.j i-i,) I 3L i+1,j i+1,j I ' 
( (1+2/3) (/+1/3)\ D (4,(1+2/3) (1+1/3)-D4L \ i,j-1 i,j-1 I 5L '¼ i.j+1 i,j+1 

where 

f(l+l) - ' ç(l4-l) çx(l+i) cy(1I) çxy(l+1)T
i.j '¼J iJ ' .1 i.J 'J i,j 'J i,j / ' 

q(l+I) (,J(l+1) x(1+1) y(I+l) ,çxy(l+l) \T
j,j '¼Y'i,j 'Y'j,j 'Y'i,j '7i,j / ' 

2a 2aDILl1 =-+-+O
&i £Yf 

29 .a 2a 29 
,J
.D1 

,J +0.DlL22 +-+ a,:,j
iS,x1 Ay1 &2 

(4.134) 

(4.135) 

(4.136) 

(4.137) 

(4.138) 

(4.139) 

(4.140) 

(4.141) 

(4.142) 

(4.143) 

(4.144) 

(4.145) 

(4.146) 

(4.147) 

(4.148) 
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o
 

Ixyj
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+ +0
 

&. Ly2
 

29. .a 28. .D. 20. .D..
 
'j 1j j


+ +
 
aj,j'
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4.4.2 Fourier Analysis 

We have, performed a Fourier analysis of SI+1-CI+DSA with BLD and 

FLBLD transport discretizations for a purely scattering problem in x-y geometry. 

Since the 1-Cl equations include the incident angular fluxes, the scalar fluxes 

should be divided into four directional values in x-y geometry. The Fourier ansatz 

for the SI+1-CI+DSA schemes applied to BLD schemes in x-y geometry are: 

k(1) =a'A, (4.156) 

+k(1+h/3) 
m,i,j m,i,j ' 4157 

k(I+2I3) = (4.158) 

jk(l+1) = (4.159) 

where 

k(1) 1k(l) £k,x(1) k,y(1) k,y(1)'T 
i.j. ' ' (4.160)' Y'i,j /
 

k(I+1/3) - .- "k(1+1/3) k,x(1+1/3) k,y(I+II3) k,xy(l+II3)\T 
m,i,j Wm,i,j ' !P'm,i,j ' 1P'm,i,j ' 1Pm,i,j ' ' 

(4.161) 

(I+1) x(1+!) y(l+1) xy(1+I)\T
1(1+1) - (
 
i,j J J,j J I,J ' J i.j ' J i,j / ,
 (4.162) 

Ak _(4k 4k,x jk,y 4k,xy\T 
1.1 " i,j' i,j ' i.i ' i,j ' ' 

(4.163) 

ak - k k,x k,y k,xy 'T 
m,i,j \amij, am,,,j, am ij, am ii) (4.164) 

Bk - (Bk Blc,x B B\T 
' 

i,j ' i,j' i,j , i,j , i,j I , (4.165) 
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- ic" k.x ck) ck\T

i,j " i,j' i,j , i,j / , (4.166)

, i,j
 

and k=1, 2, 3, 4 denotes the four directions. 

The matrix of Fourier analysis for SI+1-CI is as follows: 

A1
 

A2 A2
 
a) 

i' 
(4.167)

A3 A3
 

A4 A4
 
,J


16x1 16x1
 

where the matrix C is from 1-Cl: 

C=(IKRy WmK1(Bm +C1JSm, (4.168) 

the matrix Sm is from source iteration: 

E11 E' E' 

°s,iJ E E1 E1 E 
m (4.169) 

::
 

16x16
 

Bime'' 0 0 0
 

0 B2me'' 0 0

Bm (4.170) 

0 0 Bime1' 0 

0 0 0
 Bme1
 
16x16
 

Cime'' 0 0 0
 

0 Cime''' 0 0
 
cm (4.171) 

0 0 C2me' 0 

0 0 0
 C2me"'
 
16x16
 

A 0 0 0 

0 A 0 0K= (4.172)m
 
0 0 A 0 

0 0 0 A1616 
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K= EWmKrn', (4.173)
 

I I I I.all!!

R , (4.174)

2ir I I I I 

16x16 

E =ABime' Cime'', (4.175) 

= A B2me'' _Cime:YJ, (4.176) 

= A Bime' C2me", (4.177) 

= A B2me1' C2me'. (4.178) 

The results of this Fourier analysis for LLD SI+1-CI in x-y geometry are shown in 

Figures 4.12-4.14. Since the shape of eigenvalues vs. frequency curves for LD 

SI+1-CI in x-y geometry are nearly identical to LLD, we omits these plots. As 

shown in the figures, the spectral radius is always 1.0 at Xi\xvArO mode. As the 

mesh spacing gets thicker in either dimension, the overall eigenvalues approaches 

1.0 for all modes. As in the slab geometry, the eigenvalues for the high frequency 

modes (7t/2X&t or ir/2vAyit) are negative. While the region defined as the 

high frequency in slab geometry is 7t/2XLx7t, this region in x-y geometry is 

or ic/2vEyit, which is three quarters of the modes. Therefore, it is 

more difficult to find methods which have the required behavior for multigrid in x-

y geometry. Since the eigenvalues at ir/2X& and viy=O are near 1.0 and 

positive, averaging can not reduce the eigenvalues at those modes. 

The matrix of Fourier analysis for S1+1-CI+DSA in x-y geometry is as follows: 

= [c + D(C S)] , (4.179) 

where the matrix C is from 1-Cl, S is from source iteration: 

http:4.12-4.14
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Figure 4.12 Eigenvalues.as functions of X& and viy for FLBLD SI+1-.CI 
in x-y geometry (no averaging, i.x=irO.O1 mfp, c1.O, S4) 
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Figure 4.13 Eigànvalues asfunctions of Ax and viy for FLBLD SI+1-CI 
in x-y geometry. (no averaging, Ar=4y1.O mfp, c1.O, S4) 

http:i.x=irO.O1
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Figure 4.14 Eigenvalues as functions of X.tx and vy for FLBLD SI+ 1-Cl 
in x-y geometry (no averaging, &=4y=100.0 mfp, c=1 .0, S4) 

S WmSrn', (4.180) 

and D is from diffusion equation: 

D1DR Di'DR D'DR D'DR 

D= DDR D'DR 
D'D D1DR 

D1DR 

D'DR 

D'DR 
D'D 

, (4.181) 

D'DR D'DR D'DR D1DR 16x16
 

DL ..DIL +De'' +D3Le'' +D4Le'" +De", (4.182) 

DR =De"' D3Le'' D4Le" (4.183) 

The results of the Fourier analysis of BLD SI+1-CI+DSA are shown in 

Tables 4.4 and 4.5 which are for the S4 and S8 transport equations, respectively. As 

shown in the tables, this procedure is unconditionally stable for all mesh spacings. 

In Tables 4.4 and 4.5, the spectral radii of this procedure (upper value) are 
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compared to the spectral radii of M4S DSA (lower value). As in slab geometry, our 

new scheme has a smaller spectral radius for the intermediate mesh spacings (1.0 

mfj,ix10.0mfi,and 1.Omfiiy10.0mfi'). 
The results of our Fourier analysis of FLBLD SI+l-CI+DSA are shown in 

Tables 4.6 and 4.7 which are for the S4 and S8 transport equations, respectively. As 

shown in the table, this procedure is unconditionally stable for all mesh spacings, 

but the spectral radii for thin and high aspect ratio problems approaches unity. 

Since the eigenvalues are negative, the spectral radii can be slightly improved by 

averaging. However, the spectral radii with averaging for the thin and high aspect 

ratio problems are not rapidly convergent As in the BLD scheme, there is a benefit 

for intermediate mesh spacings (1.0 mfp zx 10.0 mfp and 1.0 mfp Ay 10.0 

mfp). This procedure is not appropriate to the thin and high aspect ratio problems, 

but still works well for 4x='iy problems. 

Table 4.4
 
Level-symmetric quadrature Fourier analysis results for BLD M4S
 

SI+I-CI+DSA in x-y geometry (c=1.0, S4)
 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.4 1/0.25 

0.1 0.42/0.25 0.40/0.23 

1.0 0.43/0.49 0.40/0.49 0.31/0.49 

3.0 0.43/0.55 0.48/0.55 0.34/0.55 0.26/0.55 

10.0 0.43/0.28 0.45/0.28 0.34/0.49 0.33/0.55 0.19/0.28 

100.0 0.43/0.18 0.41/0.18 0.31/0.49 0.28/0.55 0.17/0.28 0.04/0.03 

SI+1-CI+DSA / M4S DSA 

http:0.04/0.03
http:0.17/0.28
http:0.28/0.55
http:0.31/0.49
http:0.41/0.18
http:0.43/0.18
http:0.19/0.28
http:0.33/0.55
http:0.34/0.49
http:0.45/0.28
http:0.43/0.28
http:0.26/0.55
http:0.34/0.55
http:0.48/0.55
http:0.43/0.55
http:0.31/0.49
http:0.40/0.49
http:0.43/0.49
http:0.40/0.23
http:0.42/0.25
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Table 4.5
 
Level-symmetric quadrature Fourier analysis results for BLD M4S
 

SI+l-CI+DSA in x-y geometry (c=l.0, S8)
 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.40/0.23 

0.1 0.38/0.22 0.38/0.22 

1.0 0.38/042 0.37/0.42 0.3 1/0.42 

3.0 0.38/0.50 0.45/0.50 0.35/0.50 0.25/0.5O 

10.0 0.38/0.28 0.38/0.28 0.32/0.42 0.32/0.50 0.19/0.28 

100.0 0.38/0.22 0.37/0.20 0.28/0.42 0.27/0.50 0.17/0.28 0.04/0.04 

SI+1-CI+DSA / M4S DSA 

Table 4.6
 
Level-symmetric quadrature Fourier analysis results for FLBLD M4S
 

SI+1-CI+DSA in x-y geometry (c1.0, S4)
 

cx 
0.01 0.1 1.0 3.0 10.0 100.0 

001 046 

0.1 0.72 0.43 

1.0 0.72 0.65 0.35 

3.0 0.72 0.67 0.37 0.28 

10.0 0.72 0.67 0.32 0.21 0.12 

100.0 0.72 0.67 0.35 0.17 0.07 0.01 

http:0.04/0.04
http:0.17/0.28
http:0.27/0.50
http:0.28/0.42
http:0.37/0.20
http:0.38/0.22
http:0.19/0.28
http:0.32/0.50
http:0.32/0.42
http:0.38/0.28
http:0.38/0.28
http:0.25/0.5O
http:0.35/0.50
http:0.45/0.50
http:0.38/0.50
http:0.37/0.42
http:0.38/0.22
http:0.38/0.22
http:0.40/0.23
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Table4i
 
Level-symmetric quadratuie Fourier analysis results for M4S FLBLD and SCB
 

SI+1-CI+DSA in x-y geometry (c=1.0, S8)
 

0.01 0.1 1.0 3.0 10.0 100.0 

001 049 

0.1 0.88 0.46 

1.0 0.90 0.77 0.37 

3.0 0.90 0.81 0.37 0.29 

10.0 0.90 0.82 0.33 0.21 0.12 

100.0 0.90 0.83 0.36 0.17 0.07 0.01 

4.4.3 Numerical Results 

We have implemented this procedure to corroborate the findings of our 

Fourier analysis. Problem # 5 is shown in Figure 4.15. This model problem includes 

a heterogeneous medium with isotropic scattering, in which the bottom-left region 

has a scattering ratio of unity and a source of 1.0, and remainder of the domain has 

a scattering ratio of 0.99 and a source of 0.1. The rectangle has vacuum boundaries 

on the left, right, bottom and top sides. There are 50 cells along the x-axis and 50 

cells along they-axis. All of the calculations were performed with the S4 quadrature 

set. We performed the model problem calculation only with FLBLD SI+1-CI+DSA. 

The results are shown in Table 4.8, in which the observed spectral radii correspond 

well with the analytical spectral radii from our Fourier analysis except some cases. 

The observed spectral radii for thin mesh spacing (Ay=O.Ol mfp) are much less 

than the analytic spectral radii. This results from the high neutron leakage for thin 
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mesh spacing in the model problem. Some of the observed spectral radii for thick 

mesh spacing are larger than the analytic onós. This comes from the insufficient 

convergence in the solution of the asymptotic continuous diffusion equation. 

We have shown that the new DSA procedure coupled with 1-Cl works well 

for the BLD scheme in x-y geometry for any mesh spacings. For the FLBLD SI+l-

CI+DSA scheme, it works well for the intermediate and thick mesh spacings, but 

the spectral radius goes to unity for the thin and high aspect ratio problems. Our 

following research is to remove SI step and includes only 1-CT and DSA. 

Vacuum B.C. 

Vacuum B.C. 

c0.99 
Q=O.1 

5OEy T acuum B.C.2OxJ 

c=l.O' 2Oy
Q=l.O 

Vacuum B.C. 

50& 

Figure 4.15 Geometry for Problem # 5 
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Table 4.8
 
Results of FLBLD SI+ 1 -CI+t)SA fo Problem #5 (S4, c=1 .0)
 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 0.29/0.46 

0.1 0.36/0.72 0.42/0.43 

1.0 0.33/0.72 0.61/0.65 0.25/0.35 

3.0 0.3 1/0.72 0.62/0.67 0.23/0.37 0.15/0.28 

'10.0 0.30/0.72 0.62/0.67 0.23/0.32 0.12/0.21 0.07/0.12 

100.0 0.30/0.72 0.62/0.67 0.45/0.35 0.27/0.17 0.05/0.07 0.05/0.01 

Observed spectral radius/Analytic spectral radius 

4.5 Method-2 in x-y Geometry (1-CI+DSA)
 

4.5.1 Procedure 

Now we consider the scheme in which we remove the first stage of SI, 

leaving just 1-Cl and DSA based on 1-Cl. In the standard x-y geometry one-C! 

method (four spatial unknowns per cell), for a given SN angular quadrature set, there 

are 16M, where M=N(W+2)/8, angular flux unknowns in each cell. These 

unknowns can be obtained directly from a 1 6MxJ6M matrix inversion. Manteuffel 

et al. {Manteuff94a] showed that the matrix inversion for the CI g.t-line relaxation 

matrix can be obtained in a computationally efficient manner. We believe that 

Manteuffel's algebraic manipulation can be applied to 1-C! in x-y geometry, and 

leave the investigation of this issue for the future work. The matrix for .t-line 

relaxation of the 1-Cl SN transport equation in x-y geometry is as follows: 

http:0.05/0.01
http:0.05/0.07
http:0.27/0.17
http:0.45/0.35
http:0.62/0.67
http:0.30/0.72
http:0.07/0.12
http:0.12/0.21
http:0.23/0.32
http:0.62/0.67
http:0.30/0.72
http:0.15/0.28
http:0.23/0.37
http:0.62/0.67
http:0.25/0.35
http:0.61/0.65
http:0.33/0.72
http:0.42/0.43
http:0.36/0.72
http:0.29/0.46
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(1+1/2) -1
AV$Jm JWm 

'F,i,j )Wm A,7Wm-
)l4Vm A - ;Wm 

fWm JWm A?Wm ]I6MxI6M 
(4.184) 

B'I',,1_1,J cn'I,,,i,j_1 

Cn'FI,i,j_1 0-ti jB'I'1 + 7=B'I',,1_1,J c'I',,ij+1 2 

m m,i+1,j m mj,j+1 Q1, 

where 

= ( i,J'"_' ,i,j'Wj,",Wj, ...W?fij,V1iJ',..V2J,)4M, (4.185) 

(a4+Ib,J+c a b 0
 

9JaJ+Ib+c 0 b
 = , (4.186)
0 aIaI+9JbJc 

0 6b, 9a 9JaI9jb,lc 

a'm a 0 0 

9a 9am
B1 m , (4.187)

0 a am 

0 0 9a -9a 

a, a 0 0 

9a,, 9am 0 0
B2 m , (4.188)

0 0 a am 

0 0 9a 9a 
0 0 

0 b'm 0 b
Cm_ , (4.189)9b1, 0 9b, 0 

0 ObL 0 Ob 
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0 0b 
0 b,, 0 

(4.190)m
 9b 0 9b, 0 

0 Ob 8b,0 

p1... 0 

m&
 (4.191)
 

1i 
1bk_ (4.192) 

7M
 

1...0 
c=o.fij 0.! (4.193) 

1 , for Pm >0 and 7m >0 

2 , forpm<0 and 1m>°
k (4.194) 

3 , forp>0 and lm<° 
4 , forp11<0 and 7m<° 

The low order diffusion equation is different from the diffusion equation 

used in method-i (SI+1-CI+DSA). Here the incident currents are obtained directly 

from the 1-Cl equations. The balance equations generated by taking 0th 

moments of eqs. (4.98H4.101) are the same as those developed for method-i: 

Ay (g72, )+ i.x. (g7112 g72,2 )+ = 0.0, (4.195) 

2g7,Y81t'y3 (gì2,1 + g72 )+ &. (g;;72 gV2)
' (.4 196 

+ &iAYfla,i,jfj' = 0.0 

'y (gj, g,,ç), )+ 0, zx, (g112 + g,'2 -2g1+1)) 
(4 197) 

+ &iYfla,i,ji = 0.0 
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(g.x(*) + g)2 -O1,Ly (g -2g7Y' )+ 2g7'')) 
(4 198fxY(l+I) 00+ & A' ' 

I
 JJ a,i,jJi,j 

The current equations can be derived from the l (wm11m and ZwmI.Lm) angular 

moments of eqs. (4.98)-<4.101): 

0.u+(1+I) p-(l+1I2) xl+1)) 2fxc1+1)]- i+I/2,f + g,+112, = [a(f,° + 

x(l+1) x(1+I) 1[a(f? i+i, ) + ., (4.199) 
&i+1 

( p-(1+1/2) fPX_(l+1I2)'+ WmPm fm,i+1,j m,i+1,j ) 
Urn>°
 

p,y(s)
 0.p,y+(I+1) (1+1/2) .!LfxY(l+1)]
i+I/2,j ti+1/2,j + i+1/2,j = [a(f' + fxY(l+l) ) 

tx1 

D1+1
[a(f+D 4-xy(I+1) + fXY(l+I) 

i 1 (4.200)
,+ ,+
 

fP.Y_(I+II2))+ W/Jgj m,i+1,j m,i+1,j 
p_>0 

+ gl/2) + jY(I) fY(I+l)]L.J
g112 = = ) 

fY(l+1)) D11 pv(l.I)j[a(j (4.201) 
yj+1 

+ 'V (f,?_(I+1/2) çi,y(l+i/2)W77 v m,iJ+1 J mj,j+1 

g)2 = g;'" + = [a(f' fxY(1+1) .ifxYu+1)] 

[a(f' fXV(l+l) fXY(l+l)] (4.202))
 

yj+1 
(çt,x-(l+1/2) ç,My-(I+l/2)+ Wmllm \J m.i,j+1 ' m,i,j+1 

We define the currents as we did in 1-CI+DSA in slab geometry as follows: 

g;%) +g;,5) W/i (fM+t1+1/2 fP;(1+i2)) (4.203) 
p >0 
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u,y+(1+1) u.y-(I+1) p,y+(l+II2) çp,y+(1+1/2)
g-112, g1112 g1112 Wm/.Jm m,j-1,j + Jm,i-1.j .1' 

pm>0
 

q+(l+1) i.-(l+1) (1+(z+1/2) fq,y+(l+1/2)
g1,-112 g-112 +g,,,_112 WmT/m\Jmj,j_i Jm,i,j-1 J 

hlm>0 

,,x+(I-j1) ,,x-(1+I) ç,xy+(I+jI2)

g1,_112 g112 + g1,-112 Wmllm m,i,J-1 Jm,i,j-I 1'
 

ilm>0
 

2D1
 
gP(i+l) fx(I+)
 

(4.207)
 

2D..
 
giicl+I) I.) fY(l+l)
 

(4.208)

Ly
 

2D1
 
gPY V+1) 

(4.209)
 

gP.X(l+I) fxY(l+l) 
(4.210)
 

/Iyj 

where
 

j..(l+I) (i+I) _(i+1I2), 
(4.211)
 

fx(I+I) =qfXcl+l) _x(1+1/2),
 
(4.212)
 

fYV+l) Y(I+l) y(I+lI2) 
(4.213)
 

fxY(I+I) .Y(I+I) i(I+I/2) 
(4.2 14)
 

f(l/2) ,O1/2) 
co2., (4.2 15)
 

x(1+II2) x(I+112) x(l) 
(4 216
I mj,j 'Pm,i.j cmj' .. 

fYci+I/2) YQl1l/2)_9y(9, 
(4.217)
 

ç(I+II2) xy(1+1/2) mxy(l)
I m,ij 9m,i,j 't'm,i,j' (4 218 

1P+(l+l/2) fPIV+l12) 
(4.2 19)
 +f''2, 

f/JX+(l+lI2) = f/4.Xl(I+l12) 1p;x3(I+I/2)+ (4.220)
 

fM.YI(l41/2) 
(4.221)
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fP3b2)+ (4.222) 

fu(.l+l/2) f/22(.J+l/2) + (4.223) 

fM;X2(l411'2) + (4.224) 

çp,y-(l+l/2) ç,y2(l+l/2) (4 225I m,i,j I m,i,j + I mj,j ' 

fP.XY_Q+l/2) f/4.XY2(I+l12) f,,'4(l+l'2),+ (4.226) 

,ei+(l+1I2) - çI(l+l/2) (4 227I m,i,j I m,i,j + I m,i,j ' 

çq,x+(1+112) çi,x1(I+1I2) çli,x2(1+1/2) (4 228I m.ij I m,i,j I m,i,j ' 

f27;Y+(l+I/2) flbYI(l+l/2) + fq,y2(l+l/2) (4.229) 

ç,i,xy+(I+112) - ç'iyl(/+l/2)
I m,i,j J mj.j + I m,j ' 

(4 230 

jq-(l+1/2) - ç'i2(i+l/2) (4 231I m,i,j I m,i,j + I m,ij ' 

pl,x2(1+l12) ç,i,x4(1+1/2) (4 232I m,i,j I m,i,j I m,i,j 

- f7bY2(i+112) + çy4(l+112) (4 233I m,i,j I m,i,j J m,i,j ' 

f7,,X)?<l+lI2) fll,X)F2(I+l/2) + (4 234Jm,i,j Jm,i,,j Jm,i,j 

Eqs. (4.195)-(4.198) are different from conventional DSA in that they include 

current terms from 1-Cl. When only the scalar fluxes were taken from 1-C!, the 

DSA scheme was not unconditionally stable. However, taking the current from the 

previous 1-Cl, the DSA scheme is much improved. This fact will be demonstrated 

in our Fourier analysis results. 

Although there is no problem in using the P1 approximation to update the 

angular flux in slab geometry, it is not easy to get the appropriate update equation in 

x-y geometry. There are several options to update the angular fluxes. The first is to 

use P1 approximation as follows: 

/1+1/2) 1(f(I+1) 
(4.235) 
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xQ+1/2) (fX(.44) + gX.4u(l+l) +37gj'), (4.23 6) 

I+I) ,+I/2) (fY(l+1) 
+ Pm8' +37g'), (4.23 7) 

,x(l+II2) 1 (fXY.(I+l) +3pg +3rg). (4.23 8) 

The second is to assume isotropic correction terms (the P0 approximation) as 

follows: 

(4.23 9) 

= /l+iI2) ij'), (4.240) 

)41+1) y(I+l/2) 1 çy(l+l) 
!P'mi,j !Pmi,j (4.241) 

,xX1+1/2) (4.242) 

The third is to use a P00 approximation [War 92]: 

/l.1) ,(l+1I2)_!_(f(1+I)+PmgP(l+1)+1mg1xi+1)) (4.243) 

1+1;2) L(p(1+I) Pm gX/4I+l) 7m gX7?(I41)) 
(4.244) 

I+1) ,/l+1/2) l(fYQ+1) 7rn 
(4.245) 

_ 

1xy,(l+1I2) +l(fXY(I+1) + gTY.7XI+I))+ _ 7m (4.246) 

where 

S = Wj1 = 1.0. (4.247) 
mn>0 
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We evaluate these alternatives through FOurier anaysis and utilize the most efficient 

technique. 

4.5.2 Fourier Analysis 

We have performed a Fourier analysis of these acceleration schemes for 

purely scattering problems in x-y geometry. Since the 1-Cl equations include the 

incident angular fluxes, it is important to perform our Fourier analysis for the 

angular fluxes, rather than the scalar fluxes. The Fourier ansatz for l-CI+DSA with 

BLD and FLBLD in x-y geometry is as follows: 

+= (4.248) 

k(!+2/3) =IBk.
 (4.249) 

= (4.250) 

where 

k(l) - j k(l) k(l) ' k,x(1) k,x(l)
 
m,i,j 'P'l,i.j ' .. ' Wc,' 11'1.i,j 'j'jj '
 

, (4.251)
'k,y(1) k,y(l) k,xy(1) k,iy(1)T
' ' WI,I,J '" 'V'M,i.j I
 

ç(1+I) (1+1)
( ?(1+1) x(l+1) ix(l+1)

' ' .Ji,j ' Ji,j ' '
 

, (4.252) 
çy(l+l) çy(I+1) çxy(1+1) fy(1+1)T
 
J i.j ' ' 11,1 ' J ii '- ' -'If I
 

a1 = , am,...,
 
k,y 

, (4.253)k,y T
alc13/
a'"' "M ,i,f' 1j,j M ,i,jI
 

c (4.254) 

and k=1, 2, 3, 4 denotes the four angular quadrants. 

The eigenvalue problem of 1-Cl we must solve is: 
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I	 I 
am,j,j	 am,j 

amij
C1'B1 , (4 255)

amjj m,i.j 
4.	 4amjj	 amijl6Mxl	 l6Mxl 

A7Wm JVm 

)Wm AJWm JWm JWmC (4.256)
A)Wm 7Wm 

fWm Am YW'm 16Mx16M 

B,,e'' +Ce'' 0 0 0 

0 B,e'' +C,e'' 0 0
B	 (4.257)

0 0 Be''	 +C,e"" 0 

0 0 0 B,e'' +Ce" 
16M16M 

where the matrices Wm A, B and C are defined in eqs. (4.1 86)-<4. 194). 

The results of Fourier analysis for FLBLD 1-Cl in x-y geometry are shown 

in Figures 4.16-4.18. Since the eigenvalue shape of the BLD scheme is almost 

identical to that of the FLBLD, we include only the results for FLBLD 1-Cl. As 

shown in the figures, the spectral radius is always 1.0 at X&=vAy=0 mode. As the 

mesh spacing becomes optically thick, the eigenvalues approach 1.0 for all modes. 

As in slab geometry, the eigenvalues at the high frequency modes (it/2S)&it or 

ir/2vyit) are negative. While the modes defined as high frequency in slab 

geometry are r/2xt, the high frequency modes in x-y geometry are 

it/2Xixit or it/2viyir which are three quarters of the Fourier frequency space. 

Therefore, it is more difficult for methods to be amenable to multigrid in x-y 

geometry. Since the eigenvalues at it/2eixit and v4y0 are near 1.0 and positive, 

averaging can not reduce the eigenvalues at those modes. Thus, we need to find a 

way to reduce the high frequency mode eigenvalues. We include a DSA solve to 

help with this issue. 

http:4.16-4.18
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Figure 4.16 Eigenvalues as function of A.& and vAy for FLBLD 1-Cl 
in x-y geometry (no averaging, 1x=4y=O.O1 mfp, c=1.O, S4) 

0.8
 

0.6
 

0.4
 

U)
 

U)
>

C
 
0)
 

w
 
-0.
 

-0.
 

0.0
 

Figure 4.17 Eigenvalues as function of Xix and vAy for FLBLD 1-Cl 
in x-y geometry (no averaging, &=Ly=1 .0 mfp, c=1 .0, S4) 

http:1x=4y=O.O1
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Figure 4.18 Eigenvalues as function of Xx and v1y for FLBLD 1 -CI 
in x-y geometry (no averaging, ixy=1 00.0 mfp, c=1.O, S4) 

The matrix of Fourier analysis for 1-CI+DSA with P1 approximation is as 

follows: 

=[c1-'B1 +-1.(I+E, E2)D1(C1'B1 -_i)] am11 , (4.258)
amij ir amjj
 
a4. a4
m,:,j m,z,jI6Mxl I6Mxl 

where 
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D'A1 D'A2 D1ATWP 0 0 0
 

D'A1 D'A2 D'A1 D'A2 0 W 0 0
 
D 

D'A1 D'A2 D1A1 D'A2 0 0 W 0 

D'A1 D'A2 D'A1. D'A2 0 0 0 W 

D1A1
 

(4.259)
 

D'B1 D'B1 D'B2 D'B2 W, 0 0 0
 

IT'B1 D'B1 D1B2 D1B2 0 0 0
 

DB1 LY'B Ii'B2 D'B2 0 0 W,7 0
 

D1B1 D'B1 JY'B2 D'B2 0 0 0 W
 

E 0 0 0
 

0 0 0
E
 
E1= (4.260)
 

o o E 0
 

o o
 OE
 
E, 0 0 0
 

0 E 0 0
 
(4.261)
 

o
 o E
 
o o 0
 E
 

1 0 0
 

o e o 0
A1=e'
 (4.262)
 
0 0 1 1
 

o
 o o o
 
1 1 0 0
 

0 0 0 0
A2=_Le'' (4.263)
 
o o 1
 1
 
o o 0 e
 

1 0. 1 0
 

0 1 0 1

B1=_.Le'J
 (4.264)
0 0 0 0
 

0
 0 0 0
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1
 0 1 0
 
0 1
 1
 

B2 =-e 
o 0 0 0
 
0.0 0-0
 

OILmOO
 
6D1 0 0 0 0 

m 
ix, 0 0' 0 m0000 

OO1m 0 

6D,.0 0 0 q2 '	 m
Em= 

0 0	 0 0
 

000 0
 

w1/.1I w2Eu2	 ... WM/.IM 

W11L11 22 WM/IMw	 :" 

Wj/11	 W2/.12 ... WM/JM 

W1T/1	 W772 ...	 WMT1M 

WM?1MW,i =	 Wi:11I W2:712 : 

w1ii1 w2112 ...	 WM71M 

1o...o
 

1= ::T
 
,
 

o0".0
 
00 ::1
 

,
 

OO9Mf
 

(4.265)
 

,	 (4.266)
 

(4.267)
 

,	 (4.268) 

,	 (4.269) 

(4.270)
 

4.271)
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p1 0... 0 

0 
Itm 

P2 :" , (4.272) 

0 0 ... PMM 

ii 0 ... 0 

tim=	 ? 7!2 :: . (4.273) 

0 °MMXM 
The eigensystem we must solve for the 1-CI+DSA method with the Po 

approximation is as follows: 

a1 a'jj 

=[c1-'B1 _!_D1(C1-1B1_I)] am,j (4.274)
amjj	 amjj 
a4..	 a4..m,z,j	 m,:,JI6Mxl	 l6Mxl 

1-CI+DSA with the P1 approximation yields: 

a',jj	 a1 
a1 =[c1-'B1_L(I+EE)1(c1-'B1_I)] amij , (4.275)
amjj m,E,j 

a4	 a4m,:,j	 m,:,jl6Mxl	 I6Mxl 

where 

EIJ' 0 0 0 

0 E00 0 0 
,	 (4.276) 

I	 0 0 E00 0 

0 0 0 -E 

E 0 0 0 

0 E,00 0 0 
(4.277)2	 

0 0 E00 0 

0 0 0 -E 
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0100 
6D.. 0 0 0 0

E' = , (4.278)6iOoo1 
O000 

0010 
6D.. 0 0 0

E = 
1 

. (4.279)0 0 0 0
0000 

Since the results for l-CI+DSA with P00 approximation is between P1 and Po cases, 

we do not include those. 

The Fourier analysis results for 1-CI+DSA with the Po approximation are 

shown in Tables 4.9 and 4.10. Table 4.9 is for the BLD 1-CI+DSA scheme and 

Table 4.10 is for the FLBLD l-CI±DSA scheme: Each of these tables was 

generated with S4 angular quadrature. As shown in the tables, the spectral radii for 

thin mesh spacings ( 0.1 mfp) are about 1.0, but the spectral radii for the 

intermediate and thick mesh spacings ( 1.0 mfp) are much smaller. We can obtain 

the less spectral radius for the thin mesh spacing using the multigrid. However, we 

have to solve the problem for thin mesh spacings that the eigenvalues at the low 

frequency modes are slightly larger than unity. 

The Fourier analysis results for the 1-CI+DSA with the Pi approximation 

are shown in Tables 4.11 and 4.12. Table 4.11 is for the BLD 1-CI+DSA scheme 

and Table 4.12 is for the FLBLD 1-CI+DSA scheme. These results are also for the 

S4 angular quadrature. As shown in the tables, the spectral radii for thin mesh 

spacings ( 0.1 mfp) are greater than unity, but the spectral radii for the 

intermediate and thick mesh spacings ( 1.0 mfp) are less than those of 1-CI+DSA 

with the Po approximation. Since the spectral radii for thin mesh spacings are 

greater than unity, the method diverges for these problems. 
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Table 4.9 
Level-symmetric quadrature Fourier analysis results for BLD l-CI+DSA 

with Po approximation iii x-y geometry (c=l .0,54) 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 1.04 

0.1 1.00 0.96 

1.0 0.99 0.94 0.70 

.
 3.0 0.99 0.94 0.65 0.44 

10.0 0.99 0.94 0.62 0.41 0.27 

100.0 0.99 0.93 0.61 0.39 0.22 0.10 

Table 4.10
 
Level-symmetric quadrature Fourier analysis results forFLBLD 1-CI+DSA
 

with Po approximation in x-y geometry (c=1 .0, S)
 

at& 
0.01 0.1 1.0 3.0 10.0 100.0 

0.01 1.02 

0.1 0.99 0.96 

1.0 0.99 0.94 0.66 

3.0 0.99 0.94 0.65 0.44 

10.0 0.99 0.94 0.63 0.41 0.27 

100.0 0.99 0.94 0.62 0.37 0.22 0.03 
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Table 4.11
 
Level-symmetric quadrature Fourier analysis results for BLD 1-CI+DSA
 

with P1 approximation thx-y geometry (c=1 0, S4) 

tYatx 
0.01 0.1 1.0 3.0 10.0 '100.0 

0.01 >1.00 

0.1 >1.00 >1.0 

1.0 >1.00 >1.0 0.75 

3.0 0.99 0.89 0.46 0.32 

10.0 0.99 0.89 0.38 0.24 0.16 

100.0 0.99 0.89 0.32 0.15 0.11 0.03 

Table 4.12
 
Level-symmetric quadrature Fourier analysis results for FLBLD 1-CI+DSA
 

with P1 approximation in x-y geometry (c=1 .0, S4)
 

0.01 0.1 1.0 3.0 10.0 100.0 

0.01 >1.00 

0.1 >1.00 >1.00 

1.0 0.99 0.90 0.56 

3.0 0.99 0.89 0.54 0.39 

10.0 0.99 0.89 0.52 0.36 0.24 

100.0 0.99 0.89 0.51 0.31 0.19 0.08 
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Our results show that P1 approximation in x-y geometry is not convergent 

while in slab geometry it does provide acceleration. If the mesh spacing is greater 

than 1.0 mfp, the 1 -CI±DSA procedure, regardless of the angular flux equation will 

be very effective at improving the convergence rate, and the procedure can be easily 

parallelized. 

This l-CI+DSA scheme can be used only for the intermediate and thick 

mesh spacing problems. There must be further development to reduce the spectral 

radius for thin mesh spacing taking into account the importance of parallelization. 

4.5.3 Numerical Results 

We implemented this procedure and have solved a model problem to verify the 

predictions of Fourier analysis. Problem # 5 is shown in Figure 4.15. This model 

problem includes a heterogeneous medium with isotropic scattering, in which the 

bottom-left region has a scattering ratio of unity and a source of 1.0, and the 

remainder of the domain has a scattering ratio of 0.99 and a source of 0.1. The 

rectangle has vacuum boundaries on the left, right, bottom and top sides. There are 

50 e11s along the x-axis and 50 cells along the y-axis. All of the calculations were 

performed with the S4 quadrature set. Since we implemented the multi-level method 

only for the FLBLD scheme, we included results only for FLBLD 1-CI+DSA. 

The results for the model problem calculation are shown in Table 5.13, in 

which the observed spectral radii correspond well with the analytical spectral radii. 

Some of the observed spectral radii are larger than the analytic spectral radii. It is 

assumed in Fourier analysis that the diffusion equations are solved exactly. 

However, since we used multi-level technique to solve the diffusion equation, we 

have approximate solution for the diffusion equation, This procedure is rapidly 

convergent for the intermediate and thick mesh spacings (l .0 mfp). 
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Table 4.13
 
Results of FLBLD l-CI+DSA fot Problem #5 (S4, c1 .0)
 

Analytic FLBLD 

(mfj,) (mfp) Spectral Radius Iterations Spectral Radius 

0.01 0.01 >1.00 >15 0.99 

0.01 0.1 >1.00 >15 0.95 

0.01 1.0 0.99 >15 0.96 

0.01 3.0 0.99 >15 0.96 

0.01 10.0 0.99 >15 0.96 

0.01 100.0 0.99 >15 0.96 

0.1 0.1 >1.00 >15 0.80 

0.1 1.0 0.90 >15 0.78 

0.1 3.0 0.89 >15 0.87 

0.1 10.0 0.89 >15 0.88 

0.1 100.0 0.89 >15 0.88 

1.0 1.0 0.56 14 0.49 

1.0 3.0 0.54 13 0.50 

1.0 10.0 0.52 12 0.53 

1.0 lOOM 0.51 11 0.54 

3.0 3.0 0.39 9 0.35 

3.0 10.0 0.36 8 0.26 

3.0 100.0 0.31 7 0.27 

10.0 10.0 O.24 6 0.13 

10.0 100.0 0.19 5 0.11 

100.0 100.0 0.03 3 0.01 
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4.6 Summary
 

In this chapter we developed a new acceleration procedure which involves 

diffusion acceleration equation derived from the 1-Cl transport equation. Since 1-C! 

is "parallel friendly", there is some advantage in parallelizing this form of SN 

transport calculation. Our research included two procedures: SI+l-CI+DSA and 1­

CI+DSA. 

The results showed that 1-Cl based DSA schemes preceded by SI are 

efficient and rapidly convergent for LD and LLD in slab and for BLD and FLBLD 

in x-y geometry. There continues to be problems, however, with the FLBLD M4S 

DSA scheme for high aspect ratio grids. We derived the low order diffusion 

equation from the 1-C! SN transport equations. In LLD SI+l-CI+DSA in slab 

geometry, an algebraic averaging procedure was required to reduce the spectral 

radius. This procedure was more efficient than standard SI+DSA (Modified 4-step) 

for intermediate mesh spacings, but is less efficient for thin mesh spacings. 

For one-Cl based DSA without SI in slab geometry, the results showed that 

this procedure is very efficient and effective for any cases. For thin mesh spacings, 

the multigrid method must be incorporated to reduce the spectral radius to a 

practical value. The overall efficiency was very good in the sense that the spectral 

radii for intermediate and thick mesh spacings are very low and a small spectral 

radius can be obtained by mutigrid for thin mesh spacings. However, the results in 

x-y geometry were worse compared to the slab geometry results. The spectral radii 

for intermediate and thick mesh spacings (l .0 mfp) were very low and rapidly 

convergent. Here we tried the Po, P00 and P1 approximations to obtain the angular 

flux correction from the scalar flux correction in the diffusion solution. The P1 

approximation works best for intermediate and thick mesh spacings, but become 

unstable for thin mesh spacing. Po approximation works best for thin mesh 

spacings, but are slightly unstable. 
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CHAPTER 5
 
COARSE MESH DIFFUSION SYNThETIC ACCELERATION
 

5.1 Introduction 

It has long been known that the success of a diffusion synthetic acceleration 

(DSA) scheme is very sensitive to the discretization of the transport and diffusion 

equations. "Inconsistent" discretizations or discretizations of the transport and 

diffusion equations which are not derived from one another have designed and 

proven effective, [Ada 92] but the degree of inconsistency which is effective is an 

open problem. Although inconsistencies in discretization have worked, all DSA 

schemes employed the same size in the high and low order equations. If it were 

possible to solve the diffusion equation on a mesh which has fewer zones than that 

used for the transport equation, the overall efficiency of the transport calculation 

should increase. 

Anghel [Ang 87] proposed coarse mesh diffusion acceleration for 

deterministic transport, but his research involved only diamond differencing in slab 

and x-y geometries. Furthermore, no analyses were performed to quantify the 

effectiveness of this method in x-y geometry. While the purpose of his research was 

to develop the coarse mesh acceleration scheme for the transport calculation, no 

work was done to compare its behavior to that of standard fine mesh DSA. 

In this chapter we demonstrate that the low order diffusion equation 

discretized on a coarse-mesh can be employed to accelerate the fine mesh transport 

equation. Our results in slab geometry show that coarse mesh DSA is 

unconditionally stable and as rapidly convergent as fine-mesh DSA. Our results in 

x-y geometry show that coarse mesh DSA is as effective as conventional DSA for 
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thin and intermediate mesh spacings, but not efficient for thick mesh spacings when 

the scattering ratio is unity. However, if the scattering ratio is at least somewhat less 

than 1.0 (c0.95), coarse mesh DSA converges very fast for all mesh spacings. We 

have used Adams and Martin's modified 4-step method (M4S) [Ada 92] to generate 

DSA equations for linear discontinuous finite element method (LD) transport in 

slab geometry and BLD and FLBLD transport in x-y geometry. To verify the 

effectiveness of our procedure, we have also performed a Fourier analysis. We have 

implemented to corroborate the findings of our Fourier analysis for LD DSA 

schemes in slab geometry and for FLBLD DSA schemes in x-y geometry. We use a 

band diagonal matrix solver for the coarse mesh LD diffusion equation in slab 

geometry and the multi-level technique introduced in Chapter 3 to solve the coarse 

mesh diffusion equation in x-y geometry. We find excellent agreement between our 

implementation and analysis results. 

5.2 Coarse Mesh DSA in Slab Geometry 

5.2.1 Method 

Our coarse mesh DSA method in slab geometry has three stages: 

a) a transport source iteration on the fine mesh, followed by a restriction 

operation for scalar fluxes 

b) a DSA step on a coarse mesh with interpolating prolongation 

c) a final prolongation to get the correction terms on the fine mesh. 

The notation used to describe the LD fine and coarse mesh unknowns is 

shown in Figure 5.1. We consider only a coarsening of a factor of two: i.e. two fine 

mesh cells become a single coarse mesh cell. There are several restriction methods 

such as injection,fuII weighting [Bri 88] and spatial moment conservation [Bar 89]. 

The restriction operation of injection is such that the coarse mesh vector simply 

takes its value directly from 'the corresponding fine grid point. The full weighting 
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restriction operation defines the values of the coarse grid vectors as a weighted 

average of values at neighboring fine grid points. The spatial moment conservation 

restriction method for LD requires the specification of two basis functions: 

b1(x)=1.O, (5.1)
 

2(x-:k)
b2 (x) (5.2) 

These two basis functions are used to calculate spatial moments of the 

scalar flux and the restriction operator (R24) is defined to conserve the spatial 

moments when going between the coarse and fine meshes: ­

k1 1 

Lf&k2 
/oiL ,(5.3) 

[2ix,x1+, +x frç&, -i-Lx1 
I
 

Lix1x1+1 + 2&1ix11 2x1Ax11 + bx
 
1 

Loi+1R 

.xi xi+1 

10 01 
XI..1/2 Xj+1,2 Xj3/2 

(Fine-Mesh Grid) 

F0 01 
Xk..I Xk3/2 

(Coarse-Mesh Grid) 

Figure 5.1 Fine and coarse mesh grids in LD scheme 
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where	 t/ and q$ are the left and right scalar fluxes at cell 1x1 and LXk are thei,
 

mesh spacings for fine and coarse meshes, respectively. The interpolating 

prolongation operator (P42) is, used to interpolate the coarse mesh information to 

the fine mesh as follows: 

1 0 

i+I /'k /k [ (5.4) 
oi+IL I+l/Xk EX/&k [ 

1oi+IR 

The form of the low order diffusion equation on the coarse mesh is exactly 

the same on the fine mesh. The coarse mesh spacing is obtained by summing mesh 

spacings of two adjacent cells, and the coarse mesh cross sections are obtained by 

volume averaging. 

g.(1+213) + B f(l+213)Dkf213 + Ak_Ilk_I k+l k+1 = CkR2X4(c'1'3 ?+i), (5.5) 

where 

fk=(f,f)T,	 (5.6) 

)T 
,= iR li+IL' i+1R	 (5.7) 

f(1+2/3) (1+2/3) (l+2/3) 
,	 (5.8) 

o,k&ka +	 a + 
2	 2 

3a 3a	 
59k aQ,k1xk 3Dk a,k&k 

2 &k 2 

Dk_l a+ 
- 2k-I 2&kIAk-Ifl ,	 (. )''k-I 3a 

a+ 
2&k+lB k+1 3fl fl ,	 (. ) 

- 3a +	 k+I 

2Ark+I 2k+1 
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Ck 
sO,k (5.12)

[ ] 
The final stage of the coarse mesh DSA procedure is the prolongation 

operation, which is composed of a sequence of "local" calculations of two adjacent 

cells using the incident current from the coarse-mesh diffusion calculation: 

f(1+2/3) = CF (1+1/3)D'' + A!P4X2f/2l + BF p
1,1+1 1,1+1 1+2 4x2 k+1 1,1+1 ' 1,1+1 

& '1,1+1) (5.13) 

where 

0a i'i a i'I D1,11 1a+ -a+2
2

I2&+i 
_3a__0uhi 3D11 3D11 I3a+-L°" -3a-2IX 2 &c1 2 2x1 ID' n1,1+1 

___L. a+aJhil a+a.1III I, 
2Lx 2 2 I 

_3a_±1_0i+111 3a+
3D 0'a,i+1i+1 

j
I1-4-13a-­

2ix1 21%x1 2 2 

(5.14) 

o o - D.1 a+ 
2Ax,1 2& 
3D. 3D.A'' = 0 0 '' 3a (5.15)i-I 2&_

00 0 0 

00 0 0 

0. 0 001 
0 0 001 

D12 D12 
Ba+2

=1a 0 0 I (5.16)
I 2i.x12 21x,2 

3D,2 3D12
3a 0 0 

2&I+2 2&,+2 j 
a30,1 °'sO,i&i 0 0 

1 0 0F (5.17)
2 0 0 a30,11&11 a30,11&11 

0 0 a30 1+1 I+i 0's0,1+1i+1 

and 
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Ixi+1 
JO 01-0 

X..1/2 Xj1,2 Xi+3/2 

(a) Method-i 

Lxxi &i ki/71 
Xi+112Xj..1/2 Xi+3/2 

(b) Method-2 

//24bIxi &i+1 k 

SI. 
xi+1/2Xjl/2 X+3/ 

(c) Method-3 

7. xi &i+1 k 
S JS S 
xi+112xi_1/2 X1+3/2 

(d) Method-4 

0 : From coarse-mesh iteration 

S : From current fme-mesh iteration 

Figure 5.2 Local prolongation operation methods in slab geometry 

1aWmPm (5.18)
2 _> 

f(I+I) (!+1) _(I+1/3) (5.19) 

In eq. (5.13), (*) denotes either (1+1) or (1+2/3) depending on the method. We have 

investigated several methods to get the best results: 
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Method-i :	 coarse mesh DSA by eq. (5.5) with a restriction operation by 

eq. (5.3) and prolongation simply by eq. (5.4) without step-3 

(Figure 5.2 (a)) 

Method-2 :	 coarse mesh DSA by eq. (5.5) with a restriction operation by 

eq. (5.3) and prolongation by eqs. (5.4) and (5.13) updating 

fourunknowns in the local solve (Figure 5.2 (b)) 

Method-3 :	 coarse mesh DSA by eq. (5.5) with a restriction operation by 

eq. (5.3) and prolongation by eqs. (5.4) and (5.13) updating 

the two inner interface unknowns in the local solve (Figure 

5.2 (c)) 

Method-4 :	 coarse mesh DSA by eq. (5.5) with a restriction operation by 

eq. (5.3) and prolongation by eqs. (5.4) and (5.13) updating 

four unknowns in the local solve with incident flux from the 

neighboring local solve. (Figure 5.2 (d)) 

We analyze these four methods to determine their convergence behavior using a 

Fourier analysis and confirm these results by implementing the techniques in a 

numerical transport code. 

5.2.2 Fourier Analysis 

To perform a Fourier analysis, we assume an infinite and homogeneous 

medium. We introduce the following ansatz into our transport equations: 

= oYA111,	 (5.20) 

=	 (5.21) 

1(1+2/3)
 =	 (5.22) 

I(l+I)
 (5.23) 

where 

1,1+1
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- ,(l) (1) ,(1) j'(1) \T(F 1.1+1 't'1L ' Y'R ' Y'i+lL' Y'j+1RI 

("(1+113) "(1+1/3) "(1+1/3) -.(1+1/3)T
f,(l+1/3)1.1+1 ' Pm,1R- ' Pm i+IL ' Pm,i+IR / 

4.(1+1) - ( ,?(1+1) (1+1) (1+1) '-(1+1)T 
£114.1 kJIL ' fIR ' fi+IL ' J1R / 

((1+2/3) .(1+2I3)T
I(l+2/3) ..JkL /k 'fkR 

lZX_112 12x,.112 i2.x,112 iAx,,,,2TA - ( A A A A£iI+I , 1+IL , i+lR 

ni+II2 +3I2 T a m,i,i+1 
- ame , aiRe , a,11e 

iAx,_1,2 x1+312 'TC' 
1+1 

- ( cthe , c,Je , c..1J,e , c14e 

and 

Bk = (Be"hI2, Be+h12)T. (5.31) 

The final matrix for method-i is as follows: 

= ll(S1,,4.1 - I)A1,11, (5.32) 

where matrices S,1+1 and 11 are from SI and coarse-mesh DSA, respectively, 

-1
s14.1 = 0m (K + K 114.1')D114.1, (533) 

pm>0 

n = P4X2Ak'CkR2X4, (5.34) 

Ak = Dk + Ak_lea Bk+le, (5.35) 

and Dk, Ak..1, Bk-I.!, and Ck, are defined in eqs. (5.9)-<5.12). 

The fmal matrix for the method-2 is as follows: 

o.' A114. = D,I+IEFIFII + c..+1 }[D114., - , (5.36) 

where 

F F - A F -iA4x F L.tbx1- (5.37) 

and D11, A11, B1 and. C are defined in eqs. (5.14H5.17). 

The fmal matrix for the method-3 is as follows: 

http:5.14H5.17
http:5.9)-<5.12
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=0) A.11 [PD1+11(F1F11 +c+1)+ 1)2flj[D+, I]A11+1, (5.38) 

where P1 and P2 are matrices to select the inner and outer two unknowns, 

respectively. 

The final matrix for the method.4 iS as follows: 

jjF _I[Ffla) A.1 + c.1][D1,+, , (5.39) 

where 

= + A1e'', (5.40) 

= B1e'. (5.41). 

The results of our Fourier analysis are shown in Figures 5.3-5.6 and Table 

5.1. Fourier analysis was performed for the M4S DSA LD Si6 transport equation in 

a purely scattering medium (c=1 .0). The resulting spectral radii are shown in Table 

5.1 and are compared to the theoretical spectral radii of standard fine mesh M4S 

DSA. All four methods are unconditionally stable, but the spectral radius of 

method-i goes to unity as the mesh spacing increases, If the mesh spacing is less 

than 1.0 mfp, the simple coarse mesh DSA can be used without any further 

prolongation. Compared to standard fine mesh M4S DSA, methods 2 and 3 are 

slightly worse but method-4 is almost the same over the entire range of mesh 

spacings. 

In standard fine mesh M4S DSA, since the eigenvalues (PH) at the high 

frequency modes (w'2Llx,t) are larger than those at the low frequency modes 

(PL) (OAAxw'2) for 1 .0 mfp. This means that multigrid can not be used to further 

improve the convergence rate. But for method-4 (Figure 5.6), the PH'S are always 

less than PL'S for all mesh spacings. This is the required feature for using the 

multigrid method ([Bar 89] and [Now 88]) and normally the effective spectral radii 

will be the spectral radii at the high frequency modes. 
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Table 5.1
 
Comparison of the theoretical arid observed spectral radii
 

(LD, c1.0, Si6)
 

M4S Method-I Method-2 Method-3 Method-4 

mf, Fourier Fourier Observed Fourier Observed Fourier Observed Fourier Observed 

0.01 0.216 0.218 0.216 0.223 0.221 0.220 0.219 0.222 0.221 

0.1 0.200 0.183 0.181 0.210 0.209 0.197 0.196 0.206 0.205 

1.0 0.385 0.484 0.481 0.513 0.513 0.479 0.477 0.399 0.393 

3.0 0.496 0.810 0.806 0.592 0.592 0.510 0.497 0.496 0.494 

10.0 0.287 0.970 0.968 0.322 0.322 0.308 0.306 0.287 0.287 

100.0 0.036 0.999 0.980 0.039 0.039 0.086 0.086 0.036 0.036 

5.2.3 Numerical Results 

We have implemented our four candidate methods jn a transport code to see 

the behavior of the spectral radii and to compare those with the theoretical spectral 

radii. The model problem solved includes vacuum boundaries, a random initial 

guess, a zero source and 1000 cells with various uniform mesh spacings. The model 

problem is same as that shown in Figure 4.5, except that the source is zero. We 

performed the model problem calculations using the S16 LD M4S DSA scheme. We 

employed the band diagonal matrix solver to solve the coarse mesh diffusion 

equation. The spectral radii observed in our program compare well with our 

analytic results as shown in Table 5.1. 

We have shown that coarse-mesh DSA in slab geometry can be 

unconditionally stable and as rapidly convergent as fme-mesh DSA. The basic 

concept is to perform the prolongation operation through the fine mesh local 
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calculation, which is cheap and easy to solve. In other words, the fine mesh domain 

can be grouped into coarse mesh domains, which enables the acceleration equations 

to be solved for fewer unknowns, speeding up the transport calculations. The shape 

of eigenvalue also permits the use of multigrid for further. In the next section, we 

investigate the use of these techniques in x-y geometry. 

5.3 Coarse-Mesh DSA in x-y Geometry 

5.3.1 Method 

As we did in slab geometry, we restrict our research to the coarsening 

problem from four fine cells to one coarse cell. Our coarse-mesh DSA methods in 

x-y geometry are identical to those described in the previous section: 

a) a transport source iteration on the fine-mesh, followed by a restriction 

operation for scalar fluxes 

b) a DSA step on the coarse-mesh with interpolating prolongation 

c) a final prolongation to get the correction terms for the fine mesh fluxes. 

The grid scheme for the BLD fine- and coarse-mesh is shown in Figure 5.7. 

Although Figure 5.7 shows the unknowns at the corners, we use the average and 

slope unknowns in the calculations. There are several available restriction methods 

to choose from: injection, full weighting and spatial moment conservation. As we 

did in slab geometry, we selected the spatial moment conservation method [Bar 

89]. This technique has been proven to be the best in our calculations. In BLD we 

selected four basis functions: 

b1(x,y)=1.O, (5.42) 

2(x:k)b2(x,y) (5.43) 

2(y-y,) 
/3 (x, y) , (5.44) 
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o Oo 0 Yj+3/2 o 0 Y1+1/2 

if+l vi+1j+I'Yj+1 

o 00 0 Vlçl 
Yj+1/2 zlyi
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Lyj vi+1j 

Ax zir1+jo 00 0 Yj-1/2 o 0 Y1+I/2 

X11/2 Xj--J/ X+3/2 Xj/2 Xk+1/2 

(Fine-Mesh Grid) (Coarse-Mesh Grid) 

Figure 5.7 Fine and coarse mesh grids in BLD scheme 

2(x-xk) 2(YY1) (545)
4y1 

Using these four basis functions to calculate spatial moments of our scalar 

fluxes, the restriction operator (R.4l6) can be calculated to conserve the spatial 

moments between the coarse and fine meshes. For simplicity, we include the 

restriction operator for a constant mesh spacing for each direction. The restriction 

operation is as follows: 

0k,! + 

-3 1 -3 1 3 3 11° ° ° ° ° ° ° q5k,l T 1 T 
A'Y 9
 

T 16 16 16 16 16 16 16 16 ii 16 16 16 16 16 16J,,_ i+1,j1
 

(5.46) 
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q'1	 (5.47) 

The interpolating prolongation operator (Pi64) interpolatew from the coarse-mesh 

information to the fine mesh in this way: 

1 ri 1/2 1/2 1/4 

0 1/2 0 1/4 
0 0 1/2 1/4i,j 

q,XY 0 0 0 1/4i,j 

1 1/2 1/2 1/4 
1,j	 0 1/2 0 1/4 

0 0 1/2 1/4 k,1 

i+1,j 0 0 0 1/4	 'PkJ 
I1y

1 1/2 1/2 1/4 'F'k,i 

0 1/2 0 1/4 AXY 
Y'k,l 

0 0 1/2 1/4i,j+1 

i,j+1 0 0 0 1/4 

1 1/2 1/2 1/4 

0 1/2 0 1/4 

0 0 1/2 1/4 
(5.48)

iI.j+1 0 0 0 1/4 

The low order diffusion equations on the coarse mesh are as follows: 

( (1+2/3) (1+2/3) ) (1+2/3)	 (1+2/3)
iy1 gk+l/2j ,	 

(1+2/3) )+ IxkE.yloO,/,fkJk-l/2,I k ( kJ+I/2 kJ-I/2 
(5.49)

(1+1/3) -c9) 

ekIAyl( (1+2/3) (1+2/3) - 2g'2"3 )+ o.x 
x(I+213) x(1+2/3)

gk+i,21 + gk-1,21	 kgkJ+1,2 gkf-1,2 / 
(5.50)

x(1+1/3) x(1) ' + E1xky,aa,k,fkJ = kY10sO,k,J (kJ kJ ) 

.'(l+2/3)' (1213) (1+2/3) 17(/2/3) 
k+I/2,1 (LiiYi (gy(1+2,3) k-1/2J )+ 8k k gkj112 +g,j_,2 gJJ 

,, 
(5.51)Iy(I+2/3) (?1+1/3) ,1))+ k1Y11a,k,l k,1 = kY1sO,kj 
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(l+2/3) -2 P.Y(1+2/3))+O x(1+2/3) x(l+2/3) _2g(1+213))9kJY1( Y(I+213)gk+I,2,l +g_j,J gkf k gk)+1/2kJ x ( 
Axy(J+I/3)+ /.XkLYIOak)fkI = Ay,o-30,11 (Y'kJ 

(5.52) 

where 

+ + lsxL.y1a,,,4.1 + 
(5.53) 

kY1 

l+1I3) andand 9 are from eq. (5.46). 

The current equations can be derived from the 1St (ZwmIlm and EwmiUm) angUlar 

moments as follows: 

gk+l,2j = gk+I/2,! + gk+l,2J 

(5.54)Dk+IIx 1'=[a(fk) +fkx,)_fkJ]_[a(fk+IJ fk+1,l ) fk+IJJ 
k+1 

cxi' ok+112Jok+I/2J _&'+

(5.55)Dk+l,,fXY=[a(fk +f)--kJ}-[a(fI) 
&k+1 

gkj+1,2 = + g4+112 

(5.56)DkJ+j=[a(fkl fk)-f1-[a(fkJ+l fkJ+l) fk+II' 

x x+ x­+gk,1+l,2 gkJ+l,2 gkl+I,2 

D D (5.57)_ k,I+1 
= [a(f + fk') 

yl 
fkJ1 [a(f1 fk+I) fk'+1} 

2D xP fkj' (5.58) 
LXk 

(5.59)fk1' 
Ay1 

fXY (5.60)kJ .kJ' 
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xy	 (5.61)gk,1 fk,l.
Ay1
 

The next step is to perform a prolongation operation for the scalar flux 

correction using eq. (5.48). The final stage is the prolongation operation with a 

local calculation of four adjacent cells using the incident current from the coarse-

mesh diffusion calculation: 

.inc1() ginc2(l+2/3) 
= CF (q(l+lI3) (1)\
D (1) + A1 + B'2	 (562)F'F F A 16x41C F £ 16x41C	 F F 1'
 

where 

1.1)T

(I) F = (4	 , (5.63) 

(I) (1) ,1çx(I) ,ç y(I) ,,ç xy(i)T
-

i,j. '..Y'i,j ' 71,j	 ' Y'i,j ' Y',j /
 

= (f1,, f1+, f+1, f.1.1)T,	 (5.65) 

fIcI = g(f11, f+1,_1, f1_1,+1) ,	 (5.66)i.J_1
 

f7C2 = f1+2,41, f1+1,+2) ,	 (5.67) 

f('+l) - ç(I+1)	 çx(l+I) çy(I+1) y(1+I)T
 (5 68
i.j J i,j , I i.j ' .1 j,f ' I i.j I '
 

IflCI inc 2
and D F' AF' B F and C F are all 16x16 matrices. In eq. (5.62), (*) denotes 

(1+ 1) for method-3 and (1+2/3) for method-2. 

The methods used in x-y geometry coarse mesh DSA are the same as those 

used in slab geometry. Because we use the BLD DSA equations in the form of the 

average and slope unknowns, method-3 becomes algebraically very difficult and is 

not considered a viable option. Therefore, we evaluate only three alternatives in x-y 

geometry: 

. Method-i :	 coarse mesh DSA by eqs. (5.49)(5.52) with a restriction 

operation by eq. (5.46) and prolongation simply by eq. (5.48) 

without step-3 (Figure 5.8 (a)) 

http:5.49)(5.52
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(b) Method-2 

Figure 5.8 Local prolongation operation methods in x-y geometry 
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Yj+3/2
 

Vij+1	 vi+1j+J
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Yj+1/2
 

.14)/j V	 vi+1j
 

4x	 iix+j
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Xj_J/2	 X+J/2 XI+3/2
 

(c) Method-3 

0	 : From coarse-mesh iteration 

: From current fine-mesh iteration 

Figure 5.8 (Continued) 

Method-2	 coarse mesh DSA by eqs. (5.49)(5.52) with a restriction 

operation by eq. (5.46) and prolongation by eqs. (5.48) and 

(5.62) updating four unknowns in the local solve (Figure 5.8 

(b)) 

Method-3	 : coarse mesh DSA by eqs. (5.49H5.52) with a restriction 

operation by eq. (5.46) and prolongation by eqs. (5.48) and 

(5.62) updating four unknowns in the local solve with the 

incident flux from the neighboring local solve. (Figure 5.8 (c)) 

http:5.49H5.52
http:5.49)(5.52
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5.3.2 Fourier Analysis 

We have performed a Fourier analysis of coarse-mesh M4S DSA with BLD 

and FLBLD for purely scattering problems in x-y geometry. Since coarse-mesh 

DSA includes four cells, our Fourier analysis must be performed for the unknowns 

in these four cells: The ansatz use4 in our Fourier analysis for coarse-mesh DSA 

with BLD in x-y geometry is as follOws: 

f3 = W'A,J, (5.69) 

;3)
ji = 0) 'am11, (5.70) 

(i+2/3)
 = co'b1, (5.71) 

j(I+1) =lc (5.72) 

where 

(') - t2(') 2x(1) ,y(1) 2xy(I)T ( 7i,J. \Y'i,J' Y'i,j ' Y'i,j ' a,f I , I..-'. 

(14/3) x(1+113) .v(1+I/3) x.y(/+1/3) T
 
m,i,j 1Pm,i,j ' Wm,i,j ' P'm,i,j ' 1P'm,i,j I
 

y (1+1/3)
 

j(1+1) - ( (1+1) x(1+1) y(l+1) xy(1+1)\T
 
i,j J 1,1 ' J i,j ' J i,j , .1 i,j I '
 

A11 = (A1, A1x, Af1, AI.)T, (5.76) 

am,1 = (am,1, a,1, a,1, a,)T, (5.77) 

B, = (B1,1, B,x1, B.1, B,.)T, (5.78)
 

c, = (c,1, c, c[1, c,)T. (5.79)
 

The matrix of Fourier analysis for coarse-mesh DSA method-i is as follows: 

A,1 A.1
 

= [s + P164D;1cR416(S , (5.80) 
A.11 A.11
 

A,111 A.111
 

where S is a 16x16 matrix which comes from SI: 
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S = WTh(S',,, +S, +S,, +s)---, (5.81)
2ir 

A Be2' C,e2'" 0 

B,, A 0 Ce2'' 
'
C 0 A Be2' 

582 

o c B A, 

B Ce2'" 0 

S2m = , (5.83) 

o C Be2' 

A B,e2' C, 0 

B A, 0 C 
s 5843.m ' . )
Ce2' 0 A Be2'
 

o Ce2"" B,, A
 

B C,
 0
 

B2e2'' A4m 0 C2
 
S4m (5.85)Ce2 A B 

0 Ce2" Be2'' A 

where A, B'm and C, are from eqs. (4.114)(4.1 19), and R4x16 and Pi6,4 are 

restriction and prolongation operators shown in eqs. (5.46) and (5.48), respectively, 

and D is 4x4 matrix from coarse-mesh diffusion equation: 

1 
(DIL +D2Le +D3Leik +D4Le" +D5Le'"), (5.86) 

i,k,I
 

where D1L, D2L, D3L, D4L and D5L are defined in eqs. (4.151 )-K4. 155) in which fine 

mesh index (i, j) must be replaced with coarse mesh index (k 1). 
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The matrix of Fourier analysis for coarse-mesh DSA method-2 is as 

follows: 

A. A1 

= [s+D1(GjP164D;1cR416 +cIXSI) (537) 
i,j+1 i,j+I
 

A111 A111 

where Df and Gf are 16x16 matrices from fine-mesh local diffusion equation: 

D1L D3L D 0 

1 D2L D1L 0 D5LD , (5.88)o,, DIL D3L0
 

0 D4L D2L DIL 16x16 

0 De2' D4Le2'" 0 
2iAix,

1 A A l'kM3Le 
-2r,o D 0 0 Dt,i,j 5L 2L 

o R5Le D3Le212 16x16 

The matrix of Fourier analysis for coarse-mesh DSA method-4 is as 

follows: 

A. 
= [s+D71(G1íPi64D;1cR416 +cISI) , (5.90) 

i,j+I i,j+1
 

A1111 

where D ' and G ' are 1 6x1 6 matrices from fme-mesh local diffusion equation with 

slightly different iteration indices due to the use of the most recently calculated 

data: 

DIL D3L +D2Le D5L +D4Le2'" 0
 

D2L DIL 0 + D4Le2'
 
(5.91) 

Ot,i,j
 D 0 D1L D3L + D2Le21' 

0 D4L D2L DIL Jl6Xl6 

1 

-I 
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0 0 0 0 

D3Le2' 
DSLe2 

0 

0 

0 

0 

0 

0 
(5.92) 

0 DSLe24j D3Le21 0 
16x16 

The results of our Fourier analysis are shown in Tables 5.2-5.5. Fourier 

analysis was peifonned for the BLD and FLBLD DSA schemes with S8 quadrature 

set and purely (c1.0) and highly (c0.95) scattering problems. We include the 

Fourier analysis results for three different methods described in the previous 

section. 

Table 5.2 shows the resulting spectral radii for the BLD scheme when the 

scattering ratio is unity. All three methods are unconditionally stable and 

convergent for thin and intermediate mesh spacings, but the spectral radius goes to 

unity as the mesh spacing and/or aspect ratio increases. The mesh spacing is less 

than 1.0 mfp, the simple coarse mesh DSA (method-i) can be used without any 

further prolongation, as in slab geometry. Methods 2 and 3 are very efficient for the 

thin and intermediate mesh spacings ( 3.0 mffi), but the spectral radius increases as 

the mesh spacing and aspect ratio increases. This means that our coarse mesh DSA 

in x-y geometry is not effective for optically thick and diffusive problems. Table 

5.3 shows the analytic spectral radii of coarse mesh DSA with BLD when the 

scattering ratio is 0.95. Method-i has the same trend as the purely scattering 

problem (c=i .0), but the results of methods 2 and 3 are completely different. The 

spectral radius goes to zero as the mesh spacing increases, but the results still 

degrade for the high aspect ratio problems. However, if the aspect ratio is less than 

100, method-3 will be very effective and rapidly convergent. 

Tables 5.4 and 5.5 show the analytic spectral radii of FLBLD coarse mesh 

DSA when the scattering ratio is unity and 0.95. The results are almost the same as 

those from BLD coarse mesh DSA. The high spectral radius for thick mesh 

spacings and purely scattering problems is likely due to the quality of the incident 

fluxes at the interface obtained from the interpplating prolongation. 
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Table 5.2
 
Level-symmetric quadrature Fourier analysis results for coarse mesh BLD M4S
 

DSA in x-y geometry (c=1 .0, S8) 

0.01 0.1 1.0 3.0 10.0 100.0 

0.22 

0.01 0.22 

0.22 

0.22 0.20 

0.1 0.22 0.22 

0.22 0.22 

0.47 0.47 0.47 

1.0 0.46 0.40 0.43 

0.36 0.35 0.44 

0.81 0.81 0.81 0.81 

3.0 0.80 0.75 0.55 0.49 

0.64 0.62 0.47 0.46 

0.97 0.97 0.97 0.97 0.97 

10.0 0.97 0.96 0.88 0.78 0.72 

0.93 0.93 0.84 0.73 0.64 

1.00 1.00 1.00 1.00 1.00 1.00 

100.0 1.00 1.00 1.00 1.00 1.00 0.96 

1.00 1.00 1.00 0.99 0.98 0.95 

Method-i 

Method-2 

Method-3 
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Table 5.3
 
Level-symmetric quadrature Fourier analysis results for coarse mesh BLD M4S
 

DSA in x-y geometry (c=0.95, S8) 

ctix tY 

0.01 0.1 1.0 3.0 10.0 100.0 

0.20 

0.01 0.21 

0.21 

0.20 0.19 

0.1 0.21 0.21 

0.21 0.20 

0.45 0.45 0.45 

1.0 0.43 0.37 0.39 

0.34 0.33 0.40 

0.76 0.76 0.76 0.76 

3.0 0.75 0.70 0.49 0.44 

0.58 0.55 0.42 0.38 

0.92 0.92 0.92 0.92 0.92 

10.0 0.92 0.90 0.73 0.62 0.56 

0.83 0.81 0.62 0.48 0.41 

0.95 0.95 0.95 0.95 0.95 0.95 

100.0 0.95 0.94 0.80 0.78 0.55 0.26 

0.89 0.87 0.69 0.49 0.36 0.10 

Method-i 

Method-2 

Method-3 
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Table 5.4
 
Level-symmetric quadrature Fourier analysis results for coarse mesh FLBLD/SCB
 

M4S DSA in x-y geometiy (c1 .0, S8) 

cx cYtLY 

0.01 0.1 1.0 3.0 10.0 100.0 

0.22 

0.01 0.23 

0.23 

0.22 0.23 

0.1 0.23 0.25 

0.24 0.25 

0.70 0.70 0.70 

1.0 0.69 0.62 0.49 

0.54 0.53 0.48 

0.96 0.96 0.96 0.96 

3.0 0.95 0.89 0.72 0.61 

0.82 0.81 0.63 0.53 

1.02 1.02 1.02 1.02 1.02 

10.0 1.01 0.99 0.95 0.89 0.87 

0.97 0.97 0.92 0.85 0.82 

1.00 1.00 1.00 1.00 1.02 1.00 

100.0 1.00 1.00 1.00 1.00 1.00 0.99 

1.00 1.00 1.00 1.00 0.99 0.98 

Method-i 

Method-2 

Method-3 
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Table 5.5
 
Level-symmetric.quadrature Fourier analysis results for coarse mesh FLBLD/SCB
 

M4S DSA in x-y geometry (c0.95, S8) 

ox cTtLY 

0.01 0.1 1.0 3.0 10.0 100.0 

0.21 

0.01 0.21 

0.21 

0.21 0.22 

0.1. 0.22 0.24 

0.22 0.23 

0.66 0.66 0.66 

1.0 0.65 0.58 0.45 

0.50 0.49 0.44 

.0.87 0.87 0.87 0.87 

3.0 0.86 0.83 0.61 0.50 

0.74 0.72 0.51 0.41 

0.94 0.94 0.94 0.94 0.94 

10.0 0.94 0.92 0.77 0.62 0.50 

0.87 0.85 0.66 0.47 0.32 

0.95 0.95 0.95 0.95 0.95 0.95 

100.0 0.95 0.94 0.80 0.64 0.45 0.14 

0.89 0.88 0.69 0.47 0.25 0.04 

Method-i 

Method-2 

Method-3 
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This information does not contain enough physics to work well with the local fine 

mesh diffusion calculation. Since the spectral radius decreases significantly with 

small amount of absorption for the thick mesh spacing, the high spectral radius 

problem can be solved by improving the incident flux information at the interface. 

This problem will be addressed in future work. 

53.3 Numerical Results 

In this section, we describe computational results that validate the claims of 

our Fourier analysis. We performed model problem calculations only for the 

FLBLD coarse mesh DSA methods, using the solution technique in Chapter 3 to 

solve the coarse mesh FLBLD diffusion equation. The model problems are identical 

to the model problems in Chapter 3, and as shown in Figures 3.8-3.10. We slightly 

modified the model problem for our purpose in the following manners. 

Problem # 1 (Figure 3.8) is a homogeneous region with isotropic scattering, 

a scattering ratio of unity and 0.95, and a constant isotropic distributed source. The 

rectangle has reflective boundaries on the bottom and left sides and vacuum 

boundaries on the right and top sides. There are 24 cells along the x-axis and 24 

cells along the y-axis. All of the calculations were performed with S8 quadrature 

set. 

Problem # 2 (Figure 3.9) shows the overall efficiency of our procedure as a 

function of scattering ratio. The geometry is identical to that of the first model 

problem. We fix the x- and y-mesh spacing at 1.0 mfp. The scattering ratio is varied 

from 1.0 to 0.1, and each calculation is performed once without acceleration and 

once with acceleration. 

Problem # 3 (Figure 3.10) demonstrates the effectiveness of the method for 

inhomogeneous source problems. It consists of a rectangular region that is 50 cm in 

length and width with an inner region 10 cm in length and width. The rectangle has 

reflective boundaries on the bottom and left sides and vacuum boundaries on the 

http:3.8-3.10
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top and right sides. Both the inner and outer regions have a total cross section of 1.0 

cm' and a scattering ratio of 0.95. The inner region has a source of 1.0 while the 

outer region has a source of 0.1. The number of spatial cells varies between 

calculations. All of the calculations in this model problem were performed with S8 

quadrature set. 

The results for Problem # 1 for c=1 are shown in Table 5.6. Since the multi­

level method introduced in Chapter 3 is used to solve the coarse mesh diffusion 

equation, the observed spectral radii can be slightly greater than the analytic 

spectral radii, due to the insufficient convergence in the asymptotic or FLBLD 

diffusion equations. For thin mesh spacing problems, the observed spectral radii are 

sometimes much less than the analytic spectral radii because of the large amount of 

leakage. However, the observed spectral radii correspond well with the analytical 

spectral radii. 

Table 5.7 shows the observed spectral radii for Problem # 1 with the 

scattering ratio of 0.95. As shown in the table, the coarse mesh DSA with method-3 

is rapidly convergent for any mesh spacing. Since the typical neutronic problems 

include highly scattering media but not purely scattering media, this procedure can 

be applied to most practical neutronic analyses and will accelerate the transport 

calculation with less computational time spent in the diffusion calculation. 

Table 5.8 shows the observed spectral radii from Problem #2 for the various 

scattering ratios. Since the mesh spacing is set to 1.0 mfp, all three methods are 

rapidly convergent for all scattering ratios. 

Table 5.9 shows how coarse mesh DSA works in mildly inhomogeneous 

source problems with the scattering ratio of 0.95. The results show that coarse mesh 

DSA is rapidly convergent for the inhomogeneous problem. We did not consider 

the inhomogeneous problem where fine mesh cells with different material 

properties are collapsed into a homogeneous coarse mesh cell. In that case the 

volume-flux averaged cross sections must be incorporated to obtain reasonable 

results. In this research we have used the volume averaged cross sections. 
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Table 5.6
 
Results for Problem # 1 (FLBLD, S8, c1.0)
 

Ay Method-i Method-2 Method-3 

(mu,) (mfp) Itera- Spectral Item- Spectral Itera- Spectral 
tions Radius tions Radius tions Radius 

0.01 0.01 6 0.09 6 0.10 6 0.10 

0.01 0.1 6 0.14 6 0.14 6 0.14 

0.01 1.0 7 0.30 6 0.26 6 0.17 

0.01 3.0 6 0.30 6 0.26 6 0.18 

0.01 10.0 6 0.23 6 0.19 6 0.14 

0.01 100.0 6 0.11 6 0.12 6 0.11 

0.1 0.1 8 0.25 8 0.28 8 0.27 

0.1 1.0 13 0.66 11 0.59 9 0.50 

0.1 3.0 >15 0.85 >15 0.80 15 0.67 

0.1 10.0 >15 0.90 >15 0.87 >15 0.78 

0.1 100.0 7 0.50 7 0.50 7 0.37 

1.0 1.0 14 0.67 8 0.44 8 0.44 

1.0 3.0 >15 0.90 >15 0.66 14 0.53 

1.0 10.0 >15 0.84 >15 0.85 >15 0.85 

1.0 100.0 >15 0.98 >15 0.99 >15 0.98 

3.0 3.0 >15 0.90 12 0.54 11 0.52 

3.0 10.0 Unconverged >15 0.91 >15 0.80 

3.0 100.0 >15 0.94 >15 0.98 >15 0.99 

10.0 10.0 Unconverged Unconverged Unconverged 

10.0 100.0 >15 0.97 >15 0.97 >15 0.96 

100.0 100.0 Unconverged Unconverged Unconverged 
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Table 5.7
 
Results for Problem # 1 (FLBLD, S8, c0.95)
 

Method-i Method-2 Method-3 

(mfp) (mfp) Itera- Spectral Itera- Spectral Itera- Spectral 
lions Radius lions Radius lions Radius 

0.01 0.01 5 0.09 6 0.09 6 0.09 

0.01 0.1 6 0.13 6 0.13 6 0.13 

0.01 1.0 6 0.25 6 0.26 6 0.17 

0.01 3.0 6 0.24 6 0.26 6 0.17 

0.01 10.0 6 0.23 6 0.19 6 0.13 

0.01 100.0 5 0.10 6 0.11 6 0.11 

0.1 0.1 7 0.23 8 0.26 8 0.25 

0.1 1.0 12 0.63 10 0.55 8 0.45 

0.1 3.0 >15 0.80 >15 0.74 12 0.59 

0.1 10.0 >15 0.86 >15 0.81 13 0.69 

0.1 100.0 6 0.51 6 0.46 6 0.45 

1.0 1.0 13 0.67 8 0.42 7 0.40 

1.0 3.0 >15 0.86 12 0.57 9 0.47 

1.0 10.0 >15 0.93 >15 0.72 12 0.61 

1.0 100.0 13 0.89 7 0.76 7 0.66 

3.0 3.0 >15 0.87 9 0.46 7 0.36 

3.0 10.0 >15 0.91 ii 0.57 8 0.42 

3.0 100.0 >15 0.87 6 0.59 6 0.44 

10.0 10.0 >15 0.93 7 0.40 6 0.23 

10.0 100.0 >15 0.93 5 0.38 4 0.19 

100.0 100.0 5 0.10 3 0.07 3 0.03 
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Table 5.8
 
Results for Problem #2 (FLBLD, S8)
 

Scattering Unaccelerated Method-i Method-2 Method-3 
Ratio 

1.0 1078 14 8 8 

0.9 67 12 7 7 

0.8 36 10 6 6 

0.7 24 8 5 5 

0.6 18 7 5 5 

0.5 14 6 4 4 

0.4 11 5 4 4 

0.3 9 5 4 4 

0.2 7 4 4 4 

0.1 5 4 3 3 
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Table 5.9
 
Results for Problem #3 (FLBLD, S8, c=0.95)
 

Method-i Method-2 Method-3 
Mesh Size Ax=y 

(m1,) Item- Spectral Item- Spectral Itera- Spectral 
tions Radius tions Radius tions Radius 

10 x 10 5.00 >20 0.86 9 0.43 7 0.30 

20 x 20 2.50 >20 0.80 9 0.43 7 0.37 

30 x 30 1.67 16 0.73 8 0.43 7 0.39 

40 x 40 1.25 14 0.71 8 0.44 7 0.41 

50 x 50 1.00 12 0.61 8 0.43 7 0.41 

60 x 60 0.83 10 0.56 7 0.40 7 0.41 

70 x 70 0.71 9 0.52 7 0.38 7 0.38 

80 x 80. 0.63 9 0.48 7 0.35 7 0.35 

90 x 90 0.56 9 0.45 7 0.32 7 0.28 

100 x 100 0.50 8 0.42 7 0.30 7 0.26 

120 x 120 0.42 8 0.38 7 0.27 7 0.27 

140 x 140 0.36 7 0.34 7 0.25 7 0.26 

160 x 160 0.31 7 0.31 7 0.24 7 0.25 

180 x 180 0.28 7 0.27 7 0.23 7 0.23 

200 x 200 0.25 7 0.26 7 0.23 7 0.23 
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5.4 Summary 

In this section we presented that the low order diffusion equation on a 

coarse mesh could be employed to accelerate the transport equation for advanced 

discretization schemes. Our procedure includes three steps: SI for SN transport 

calculation, the solution for the coarse mesh diffusion equation and the linearly 

interpolating and the fine mesh local prolongation. We applied this procedure to the 

LD M4S DSA schemes in slab geometry and the BLD and FLBLD DSA schemes in 

x-y geometry. We performed Fourier analysis to predict the analytic spectral radius 

and compared those with the observed spectral radius. We used the band-diagonal 

matrix solver and the multi-level technique to solve the coarse mesh diffusion 

equations in slab and x-y geometries, respectively. 

Our results in slab geometry showed that the coarse mesh DSA was 

unconditionally stable and as rapidly convergent as fine mesh DSA. This means 

that we can save the computing time in the diffusion calculation. 

The results in x-y geometry showed that coarse mesh DSA is as effective as 

conventional DSA for thin and intermediate mesh spacings, but not efficient for 

thick mesh spacings when the scattering ratio is unity. When the scattering ratio is 

less than 1.0 (c0.95), coarse mesh DSA converges as fast as fme mesh DSA for all 

mesh spacings. As the scattering ratio decreases for the thick mesh spacing, the 

spectral radius decreases drastically. We note that this procedure will be very 

effective for most practical neutronic reactor analysis problems, because most of 

this type of problems do not include purely scattering media. 
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CHAPTER 6
 
CONCLUSION AND FUTURE WORK
 

The objectives of this thesis are divided into three categories, the 

development of solution techniques for the low order diffusion equation in x-y 

geometry, the design and testing of DSA schemes based on one-cell block inversion 

and the investigation of coarse mesh DSA for advanced differencing schemes in 

slab and x-y geometry. 

We have developed an improved solution technique for the low order 

diffusion equations associated with the FLBLD, SCB and UCB M4S DSA schemes 

in x-y geometry, which is unconditionally stable and rapidly convergent. Previous 

researchers showed that the SN transport equations with BLD, linear-bilinear nodal 

and linear-bilinear characteristics schemes could be accelerated by exactly the same 

diffusion equation and solution technique. We showed that SN transport equations 

with FLBLD, SCB and UCB schemes could be accelerated by the same equation 

and technique. 

We developed new DSA procedures coupled with one-cell block inversion 

transport which can be easily parallelized. We showed that one-Cl based DSA 

schemes preceded by SI are very efficient and rapidly convergent in slab and x-y 

geometry. We also showed that 1-Cl based DSA without SI was not effective for 

thin mesh spacings, but is effective and rapidly convergent for the intermediate and 

thick mesh spacing. 

We demonstrated that the low order diffusion equation discretized on a 

coarse mesh (relative to the transport equation) could be employed to accelerate the 

high order transport equation. Our result showed that coarse mesh DSA is 

unconditionally stable and is a rapidly convergent as fine mesh DSA in slab 
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geometry. For x-y geometry our coarse mesh DSA is very effective for thin and 

intermediate mesh spacings for the problems with any scattering ratio, but is not 

effective for problem with a unit scattering ratio and high aspect ratios. However, if 

the scattering ratio is less than about 0.95, this procedure is very effective for all 

mesh spacing. 

In this chapter we summarize and discuss the results of our research and 

consider areas for future work. 

6.1 Improved Solution Techniques for the M4S DSA Equations 
in x-y Geometry 

We first discussed the solution technique for the low order diffusion 

equations of M4S DSA in slab geometry for advanced discretizations such as LD, 

LLD, SCB and UCB. The discretized low order diffusion equations of DSA in slab 

geometry can be solved easily by standard tn-diagonal matrix or band-diagonal 

matrix solvers. 

We then considered solution techniques for the diffusion equations of 

FLBLD, SCB and UCB M4S DSA in x-y geometry. Previous researchers developed 

a "multi-level" method to solve the discretized diffusion equations of M4S BLD 

DSA in x-y geometry. These equations have also been used to accelerate the SN 

transport equations with Linear-Bilinear Nodal and Characteristics methods. In this 

research we developed a similar multi-level method to solve the diffusion equation 

of FLBLD, SCB and UCB M4S DSA in x-y geometry. This multi-level method is 

slightly different from Morel's multi-level method: 1) it includes block (cell) 

Gauss-Seidel iteration for the M4S discontinuous diffusion equation, instead of line 

Jacobi iterations, 2) the continuous diffusion equation ( five-point stencil with one-

point removal term ) is derived from the asymptotic analysis, and no void cell 

calculation is necessary. The first step of this method is a transport sweep. The 

second is four different block Gauss-Seidel iterations for the FLBLD M4S DSA 
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diffusion equations for each direction. The residual is then calculated for the next 

calculation. The third step is the solution of the continuous diffusion equations by 

multigrid, with the residual as the source. There are three iterations for both the 

second and third steps. We implemented this multi-level procedure and performed 

four model problem calculations. The results showed that the FLBLD, SCB and 

UCB M4S DSA schemes with this multi-level technique are unconditionally stable 

and rapidly convergent. In this research we did not employ the multigrid method to 

solve the continuous diffusion equation. This is set aside as future work. 

To simplify the multi-level procedure for FLBLD, SCB and UCB M4S 

DSA, we suggested a new method which avoids iterating the second and third 

steps. The first step in this method is also a transport sweep. The second step is the 

solution of the asymptotic continuous diffusion equation by multigrid and the 

expansion of this continuous solution into the discontinuous solution. The final step 

is x- and y-line Gauss-Seidel iterations on the discontinuous diffusion equations. 

This new procedure does not include iterations on the diffusion calculation or the 

residual calculation. While the previous multi-level method could not be Fourier 

analyzed exactly to get the analytic spectral radius, this procedure was Fourier 

analyzed. This procedure requires a well-converged solution for the asymptotic 

continuous diffusion equation, but this is very cheap if using multigrid. The results 

of the Fourier analysis showed that this new procedure was as rapidly convergent as 

the conventional M4S DSA. 

6.2 Diffusion Synthetic Acceleration Based on 1-Cell Block 
Inversion 

Source iteration has been commonly used to calculate solutions to the SN 

transport equation, but SI has a number of drawbacks which are a large spectral 

radius for optically thick problems and difficulty in parallelization due to the serial 

nature of sweeping. The high spectral radius for optically thick problems has been 
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addressed through the use of DSA, where the acceleration diffusion equation had 

been derived from SI. However, SI with transport sweeping in combination with 

DSA is also not inherently parallel. We have tried to solve both problems using the 

"parallel friendly" cell block inversion method coupled with DSA. The commonly 

used CI methods are 1- and 2-Cl. We chose 1-Cl because of its simplicity and ease 

of coupling with DSA. Our research in this area falls into two categories: SI+l-

CI+DSA and l-CI+DSA. 

We showed that one-Cl based DSA schemes preceded by SI are efficient 

and rapidly convergent for LD and LLD in slab geometry and fo BLD and FLBLD 

in x-y geometry. There continues to be problems, however, with the FLBLD M4S 

DSA scheme for high aspect ratio grids. In this procedure the 1-Cl transport 

equation was reformulated and simplified to obtain the scalar fluxes directly using 

the incident angular fluxes. We then derived the low order diffusion equation from 

the 1-Cl SN transport equations. The low order diffusion includes the residual 

source in the form of currents. In LLD SI+l-CI+DSA in slab geometry, an algebraic 

averaging procedure was required to reduce the spectral radius and to make the 

scheme stable. This procedure is more efficient than the standard SI+DSA for 

intermediate mesh spacings, but less efficient for thin mesh spacings. Since this 

procedure still includes SI in the first step, there will be no benefit in 

parallelization. However, this was the first trial to couple CI with DSA and can give 

some possibility that this procedure can be used in anisotropic scattering problems. 

While M4S DSA does not work well for highly anisotopic scattering problem, 

SI+CI with the multigrid works well for the anisotropic scattering problems. 

For 1-Cl based DSA without SI in slab geometry, the results showed that 

this procedure is very efficient and effective for any cases. For thin mesh spacing, 

multigrid must be incorporated to reduce the spectral radius and make the method a 

practical tool. The overall efficiency was very good in the sense that the spectral 

radii for the intermediate and thick mesh spacings are very low and a low effective 

spectral radius can be obtained for thin mesh spacing problems using multigrid. The 
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j.-line matrix inversion will be cheap if an algebraic treatment (such as that from 

Manteuffel) is used. Furthermore, this procedure can be easily paralleliied. 

However, the results in x-y geometry were worse than those from our slab geometry 

analysis. The spectral radii for intermediate and thick mesh spacings (l .0 mfp) 

were very low. Here we tried the Po, P00 (double Po) and P1 approximations to 

obtain the angular flux correction from the scalar flux correction from the diffusion 

solution. The Pi approximation worked best for the intermediate and thick mesh 

spacings, but became unstable for thin mesh spacings. The Po approximation 

worked best for thin mesh spacings, but was also slightly unstable. Results showed 

the interesting trend that while the conventional SI iteration scheme has difficulty 

with optically thick problems, 1-Cl has difficulties with optically thin grids. We 

must develop more accurate angular flux approximations from the diffusion 

calculations to improve the efficiency of this method. However, the procedure as it 

currently exists is very effective for intermediate and thick mesh spacings with high 

scattering ratio materials, and can be easily parallelized. 

6.3 Coarse Mesh Diffusion Synthetic Acceleration 

In this section of the thesis we show that the low order diffusion equation on 

a coarse mesh (relative to the transport mesh) can be employed to accelerate the 

high order transport equation for advanced discretization schemes. Our procedure 

includes three steps. The first step is SI for the SN transport equation. The second 

step includes aresidual calculation with the restriction operation and the solution of 

the coarse mesh diffusion equations. We used the. spatial moment conservation 

method for the restriction operation. The final step is the prolongation operation 

which includes both a linearly interpolating prolongation and a final prolongation 

through the fme mesh local calculation. We applied this procedure to LD M4S DSA 

schemes in slab geometry and BLD and FLBLD DSA schemes in x-y geometry. We 

performed a Fourier analysis to predict the analytic spectral radius and compared 



those with the spectral radius observed in a number of model problem calculations. 

We used the band-diagonal matrix solver and the multi-level technique to solve the 

coarse mesh diffusion equations in slab and x-y geometries, respectively. 

Our results in slab geometry showed that coarse mesh DSA was 

unconditionally stable and as rapidly convergent as fine mesh DSA. This means 

that we can save computing time in the diffusion calculation. We also found that 

although the method-i is very easy and simple to use, this method is very effective 

for thin and intermediate mesh spacings. 

The results in x-y geometry showed that coarse mesh DSA is as effective as 

conventional DSA for thin and intermediate mesh spacings, but is not efficient for 

thick mesh spacings when the scattering ratio is unity. However, if the scattering 

ratio is less than 1.0 .(c0.95), coarse mesh DSA converges as fast as fine mesh 

DSA for all mesh spacings. As the scattering ratio decreases for thick mesh 

spacings, the spectral radius decreases drastically. We may solve high spectral 

radius problem for the thick mesh spacing on purely scattering problem by the 

slight manipulation. We note that this procedure will be very effective for most 

practical neutronic or reactor analysis problems, because most of these problems do 

not include purely scattering media. 

6.4 Future Work 

Our future work includes. 

1.	 Implementation of Dendy's black box muitigrid method. 

For our convenience we did not implement the. multigrid method to solve the 

continuous asymptotic diffusion. Although this will not have a large influence 

on the predicted spectral radii, the time spent solving the low order problem 

impacts the efficiency of the technique in practice. Implementation of a fast 

solver for the continuous equation is indispensable for the success of the newly 

suggested solution technique. (See the next paragraph) 
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2.	 Implementation of new solution technique. 

We suggested a new solution technique for the FLBLD, SCB and UCB 

diffusion equations and showed the results of a Fourier analysis. We need to 

implement this method and compare the observed spectral radii with those 

predicted by our Fourier analysis. 

3.	 Unstructured mesh schemes 

Since unstructured mesh DSA. schemes are not currently solved by 

unconditionally efficient techniques to solve the low order diffusion equation, a 

similar multi-level technique should. be developed which is accurate and easily 

solvable for these problems. 

4.	 Highly anisotropic scattering problem 

The M4S DSA scheme is efficient only for isotropic and mildly anisotropic 

scattering problems. According to Bamett's research, SI+CI with multigrid is 

very efficient for highly anisotropic scattering problems. We need to review the 

applicability of our SI+1-CI+DSA proccdute to highly anisotropic scattering 

problems. 

5. Improvement of angular flux expansion for l-CI+DSA procedure 

Improvement of the 1-CI+DSA scheme is needed for problems with thin mesh 

spacings. Other approximations to obtain the angular flux correction from the 

diffusion solution should be evaluated. Although this procedure is very 

applicable to the intermediate and thick mesh spacings, a more general 

procedure applicable to all problems must be developed. 

6. High spectral radius for optically thick diffusive problems in coarse mesh DSA 
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Since the spectral radius is decreasing drastically with a slight decrease in the 

scattering ratio from unity, it seems that a slight modification of our current 

technique may result in vast improvement in the convergence behavior for 

optically thick and diffusive problems. One possibility is to incorporate the 

smoothing procedure introduced in Baghel's paper. Another possibility is to use 

the P1 approximation to get the incident flux from the continuous diffusion 

equation at the interface in the coarse mesh grid. 

7.	 Generalization of coarse mesh DSA 

We analyzed our coarse mesh procedure only for problems where the coarse 

mesh cells contain homogeneous materials and used a simple volume averaging 

of the cross sections. We can extend our coarse mesh DSA to the more general 

problem in which the coarse mesh boundaries contain a heterogeneous 

materials. It seems that we must use the volume-flux averaged cross sections to 

solve this problem. We should also extend our procedure to increase the degree 

of coarsening. It seems that the number of fine mesh cells in each coarse mesh 

can be increased for problems where the fine mesh consists of thin mesh cells. 
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