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DSA (Diffusion Synthetic Acceleration) has been developed to accelerate
the Sy transport iteration. We have developed solution techniques for the diffusion
equations of FLBLD (Fully Lumped Bilinear Discontinuous), SCB (Simple Corner
Balance) and UCB (Upstream Corner Balance) modified 4-step DSA in x-y
geometry. Our first multi-level method includes a block Gauss-Seidel iteration for
the discontinuous diffusion equation, uses the continuous diffiision equation
derived from the asymptotic analysis, and avoids void cell calculation. We
implemented this multi-level procedure and performed model problem calculations.
The results showed that the FLBLD, SCB and UCB modified 4-step DSA schemes
with this multi-level technique are unconditionally stable and rapidly convergent.

We suggested a simplified multi-level technique for FLBLD, SCB and UCB
modified 4-step DSA. This new procedure does not include iterations on the
diffusion calculation or the residual calculation. Fourier analysis results showed
that this new procedure was as rapidly convergent as conventional modified 4-step
DSA.

We developed new DSA procedures coupled with 1-CI (Cell Block
Inversion) transport which can be easily parallelized. We showed that 1-CI based




DSA schemes preceded by SI (Source Iteration) are efficient and rapidly
convergent for LD (Linear Discontinuous) and LLD (Lumped Linear
Discontinuous) in slab geometry and for BLD (Bilinear Discontinuous) and
FLBLD in x-y geometry. '

For 1-CI based DSA without SI in slab geometry, the results showed that
this procedure is very efficient and effective for all cases. We also showed that 1-CI
based DSA in x-y geometry was not effective for thin mesh spacings, but is
effective and rapidly convergent for intermediate and thick mesh spacings.

We demonstrated that the diffusion equation discretized on a coarse mesh
could be employed to accelerate the transport equation. Our results showed that
coarse mesh DSA is unconditionally stable and is as rapidly convergent as fine
mesh DSA in slab geometry. For x-y geometry our coarse mesh DSA is very
effective for thin and intermediate mesh spacings independent of the scattering
ratio, but is not effective for purely scattering problems and high aspect ratio

zoning. However, if the scattering ratio is less than about 0.95, this procedure is

very effective for all mesh spacing.
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COARSE MESH AND ONE-CELL BLOCK INVERSION BASED
DIFFUSION SYNTHETIC ACCELERATION

CHAPTER 1
INTRODUCTION

' The Boltzmann transport equation was first formulated for the study of the
kinetic theory of gases a century ago. This transport equation has been applied to
analyze the motion and interaction of radiation with an underlying medium. The
widespread application of the linear transport equation includes radiation transfer of
stellar atmospheres, radiation imaging and oncology, and neutron behavior in
fission reactors. [Lew 84]

It had been triéd to get the analytical solution for the linear transport
equation. Although several elegant methods were developed, they were restricted to
semi-infinite media and highly idealizéd problems. Therefore, these analytical
methods are not relevant to ﬁ_mst problems encountered in engineering analysis.
Concurrently, numerical methods have been developed to solve the linear transport
equation for mulﬁ-region and multi-dimensional transport problems. This coincided
with fhe development of the increasing cdmputational power of digital computers.

There are two major distinct approaches to solve computational particle
transport problems: Monte Carlo methods and deterministic methods. The Monte
Carlo method is a numerical technique that uses random numbers to sample from
probability distributions describing an empirical situation. In the deterministic
method, all the parameters are to be discretized. In general the parameters include
space, angle, energy and time. While Monte Carlo methods are very efficient when
a small amount of accurate information is needed,‘ deterministic methods are

efficient when global information is needed. Monte Carlo simulations are able to




treat very complicated geometries, but can be very expensive in calculating large
systems with high accuracy. Deterministic simulations can be very cheap and fast,
but are not often able to model complicated geometries explicitly. [Lar 99]

A recent trend- is the development of “hybrid” computational transport
methods that make joint use of Monte Carlo and deterministic methods in ways that
are not possible by using one technique alone. [Lar 99]

In this research we focus on deterministic methods and the development of

the speedup techniques for transport calculations.

1.1 Speedup of Iterative Numerical Methods for the Sy Equations

The transport equation can be solved numerically using several iterative
methods, two of which are source iteration and cell block inversion. The iterative
convergence can become exceedingly slow in “diffusive” problems i.e., problems in
which the scattering ratio goés to 1.0. To illustrate, Source Iteration (SI), the
iteration scheme employed by most deterministic methods, is based on calculating
components of the n™ collided flux; each iteration accounts for one collision. If a
problem is one in which many particles undergo large numbers of collisions, then a
comparably large number of iterations are necessary to achieve convergence.

Acceleration methods, such as Chebyschev, Rebalance and synthetic
acceleration, have been develbped to deal with this difficulty. Chebyschev and fine-
and coarse-mesh Rebalance have not been successful. The newer scheme, Diffusion
Synthetic Acceleration (DSA), is highly efficient for problems in which it has been
successfully implefnented. But there are still niany research areas that must be
addressed for DSA to be considered a’universally viable acceleration technique.
DSA includes the solution of the diffusion equation as a means of preconditioning
to the transport equation, in which the diffusion solution accelerates the diffusion

characteristics in the transport equation.




A transport synthetic &dcceleration (TSA) method has also recently been
developed. TSA is less efficient than DSA on problems for which DSA can be
implemented, but is effective on arbitrary grid problems where DSA has not yet
efficiently been implemented, and is much more efficient than other available
-methods (such as rebalance). [Ram 97]

In recent years, computer performance has been greatly. enhanced due to
innovations in computer .architecture and improvements in hardware design.
Specifically, vector and parallel architecture computers are now ‘widely available,
and microchips have become more compact, thus-allowing faster signal processing.
These advancements have created a revolution in scientific programming by
allowing larger and more complex physical systems to be modeled. Simultaneously,
a need has arisen for improvements in current computer algorithms to take full
advantage of the new capability. -

Another powerful acceleration tool is the multi-grid method. Multi-grid is a
very efficient technique for improving the performance of iterative methods which
do a good job of attenuating high frequency components of the error. However,

-since multi-grid is hxghly dependent on the iteration scheme, its range of
applicability is limited.

1.1.1 Diffusion Synthetic Acceleratlon
Kopp. [K0p 63] developed DSA for the ﬁrst time. His method was used

initially to solve one-speed problems in slab geometry. He used the continuous
forms of both the diffusidn and tfansbort equations, and his results were quite good,
although they were necessarily limited to simple problems.

Crawford and Chambre [Cra 64] extended Kopp’s method to anisotropic
scattering problems.

Crawford and Friedman [Cra 65] unplemented tlus method for multi-region

two-dimensional problems and used Monte Carlo to evaluate integrals over




transport Green’s functions and numerical integration to evaluate integrals over
diffusion Green’s functions.

Gelbard and Hageman [Gel 69] were the first to incorporate the synthetic
method to accelerate two-dimensional Sy transport calculations. They attempted to
accelerate the x-y geometry discrete . ordinates diamond-differenced transport
equation; a diffusion equation and an S, discrete ordinates equation were both tried
as low-order operators to accelerate the “high-order” equation. From the analysis of
an infinite medium problem using the continuous equations, they found that the
spectral radius (convergence rate) of the method using diffusion is less than 0.23¢
and that of the other method using S; is less than ¢/(2-c) where ‘¢’ is the scattering
ratio. They presented numerical results for some x-y geometry problems that were
in good agreement with their predictions.

Reed [Ree 71] performed a more detailed analysis of the diffusion synthetic
method in slab geometry with Diamond Differencing (DD), and derived a necessary

. condition for stability which could be fulfilled by modifying the diffusion

coefficient. (He did not derive a sufficient condition for stability.) Even with a

-redefined diffusion coefficient, the diffusion-synthetic method was found to be

inferior to a new fine-mesh rebalance algorithm Reed presented; DSA had yet to
“arrive” as a practical computational tool [Ada 86].

The instability .problem of DSA methods was finally solved by Alcouffe
([Alc 76] and [Alc 77]). He recognized that the key to stability lies in the scheme
used to spatially difference the equations. The diffusion equation should be
“consistent” with the transport equation in discretization. Beginning with the
diamond-differenced discrete ordinates transport equation, he derived three
different forms of the differenced diffusion equations which were “consistent”, in
some sense, with the differenced transport equation. Two forms were always
nonlinear; the third was nonlinear in-general but linear for the constant-mesh and
constant-cross section model problerp;‘ henqc the third form could be analyzed.
Alcouffe’s analysis was not detailed, but was sufficient to demonstrate




unconditional stability (p<1.0) for all mesh sizes given the infinite-medium model
problem. Both one- and two-dimensional production codes were released utilizing
Alcouffe’s DSA with Diamond Differencing (DD). Since his method is nonlinear,
negative fluxes are not permitted. However, negative fluxes arise often when DD is
used; hence fixups are mandatory in a DSA code with DD. The main problem with
fixups is that they effectively alter the transport differencing scheme, making it no
longer “consistent” with the diffusion differencing. The result is instability if fixups
are used too often [McC 82]. Another problem in Alcouffe’s DSA with DD was its

reliance on the relatively inaccurate DD scheme; -also, it has to date been

- implemented only on orthogonal meshes.

Morel [Mor 82] extended Alcouffe’s method to highly anisotropic scattering
problems and derived a different DSA method employing a different diffusion
coefficient.

Larsen ([Lar 82] and [McC 82]) generalized Alcouffe’s idea and developed
linear DSA: a “four-step procedure” that is unconditionally stable and effective
(p<1/3) for several slab geometry differencing schemes. He derived the differenced
acceleration equations directly from the differenced transport equation. The method

- of transport differencing was virtually unrestricted. That is, not only were the

equations linear, but DSA was no longer limited to diamond differencing. He

" - introduced DSA methods for Weighte Diamond (WD), Linear Characteristic (LC),

Linear Discontinuous (LD) and Linear Moment (LM) discretizations. Here, Larsen
applied the P; approximation to derive the "low-order” diffusion acceleration
equations. Larsen was able to analyze the stability of these methods by performing
a Fourier analysis. This analysis is a vital tool in designing iterative acceleration
techniques for numerical transport. Larsen’s procedure for deriving stable DSA
equations has been very successful in one-dimensional geometries. In multi-
dimensional geometries, however, only the less accurate DD scheme has been

efficiently solved using DSA (and implemented in production transport codes).




Larsen [Lar 84] postulated that in multi-dimensional geometries or with
more advanced differencing schemes (such as discontinuous finite element
~methods), it may not be possible to reduce the acceleration equations, which arise
from the 4-step method, to a tractable system of diffusion equations.

Khalil [Kha 85] presented a synthetic method for accelerating nodal
transport equations which is not consistent between transport and diffusion
discretizations. He derived the discretized equations from the continuous transport
and diffusion and tried to retain as much consistency as possible. Test results
indicated no stability problems and convergence comparable to that of the 4-step
procedure and DD DSA. The requirement of strict consistency was no longer
necessary.

Azmy and Larsen [Azm 87] have shown by Fourier analysis that if one
- could solve the P, acceleration equations in place of the single diffusion equation,
then one would have a stable and effective acceleration method.

Anghel [Ang 87] developed coarse-mesh diffusion acceleration technique
for DD discretization in slab and x-y geometry. He introduced the general idea for
the coarse mesh diffusion acceleration including the smoothing, restriction and
prolongation operation. However, since the Fourier analysis was performed only for
slab geometry with the scattering ratio of 0.95, it is hard to see the overall
efficiency of this procedure.

There have been a number of breakthroughs in the construction of DSA
methods for advanced transport differencings in multi-dimensional geometries.

AboAlfaraj and Larsen [Abo 91] developed a DSA method for the LD
scheme in-x-y geometry, which was rapidly convergent for all problems except
those that are optically thick.

Adams and Martin ([Ada 91a] and [Ada 92a]) have introduced a “modified
4-step procedure” which is almost identical to the standard “4-step procedure”.
They were able to derive unconditionally stable DSA methods to accelerate

discontinuous finite element methods in slab, spherical, x-y and r-z geometries.




This method was much simpler to use than the “4-step method”, but is only
applicable to finite element methods. Another problem was that an efficient
solution technique was not given for these low order equations in x-y geometry.

Conceptually the discretization of the low order equation was “inconsistent” with

- that of the high order transport equation.

Wareing, Larsen and Adams ([War 91] and [War 92]) have used the method
of asymptotic analysis to deris'le a cOnsistently discretized diffusion equation for
various LD schemes in slab geometry and a Fully Lumped Bilinear Discontinuous
(FLBLD) scheme in x-y geometry. They derived a continuous finite element
discretization for the diffusion equatioﬁ and used it as the low order equation with
final updating through local FLBLD equations. Although the low order diffusion
equation in x-y geometry can be solved easily, the spectral radius for the overall
acceleration technique approaches 1.0 fo’r problems with high aspect ratio zoning.

Morel, Dendy and Wareing [Mor 93] have developed a multi-level solution
method for the low-order diffusion equation of the “mediﬁed 4-step procedure”
with xy-geometry bilinear discontinuous discretization. They showed that the
bilinear continuous equations could be used to accelerate the iterative solution of
the BLD diffusion equations and these BLC equations can be solved efficiently by
" multi-grid methods. Wareing, Walters, and Morel [War 94] found that they could
use the same acceleration equations to accelerate the bilinear nodal transport
discretization. Adams and Wareing [Ada 98] later used exactly the same equations
to accelerate the bilinear characteristic scheme. '

Wareing [War 93] has introduced new DSA methods for the slab and x-y
geometry transport equation with corner balance (CB) differencing. |

Palmer and Adams ([Pal 91] and [Pal 93]) applied DSA methods to

curvilinear geometry with Simple Corner Balance (SCB) Fully Lumped (FL),
Upstream Corner Balance (UCB) and FLBLD schemes '




Recently DSA methods have been abfilied to the second order forms (even-
and odd-parity and self-adjoint angular flux equations) of the Sy transport equations
([Mil 911, [Mor 95] and [Ges 99]).

1.1.2 Multlgnd Method ard Cell Block Inversion

Alcouffe et al. [Alc 81] first used the multi-grid method to solve the
diffusion equation.

Nowak Larsen and Martin [Now 87] applied the multi-grid method to
accelerate Sy transport Source Iterations (SI) with WD differencing. The shape of
the eigenvalues for Sy transport equation with SI with WD discretization is that the
eigenvalue at A*Ax =0.0 is unity and decreases as frequency increases up to .
However, as the mesh spacing increases, the spectral radius at higher frequencies
approaches 1.0. Therefore, as the fine mesh becomes coarser, the relative advantage
of the multi-grid method decreases. Later they [Now 88] used the multi-grid
method to accelerate the low-order pseudo-S; equation in x-y geometry transport Sy
calculations. The concept of .o.‘ne-‘c_ell block ih_version wae employed to obtain the
proper eigenvalhe vs. frequency dependency for incorporating the multi-grid
method. Although the shape of the eigeny_alues could be improved by using one-cell
block inversion, the ‘maximum. eigenvalue .of the high freqﬁency mode goes to 1.0
for thick mesh spacings. ' | \l

Barnett, Morel and Harns ([Bar 87] and [Bar 89]) employed two-cell block
inversion with SI to 1mprove the elgenvalue Vs. frequency dependence to allow the
use of the multi-grid method in slab geometry. They could get the maximum
eigenvalue at the high frequency mode to be less than 0.6 for all mesh spacings
with isotropic and anisotropic scattering problems.

Morel and Manteuffel [Mor 91] developed an angular multi-grid method for
Sy equations and showed that this method was more effective than DSA for highly

- forward-peaked scattering problem.




Oliveira [Oli 93] parallelized the multigrid method with SI and two-cell
block inversion of Sy equations in slab geometry.

Manteuffel et al. ((Man 94], [Man 95] and [Man 96]) used only two-cell
block inversion with the multi-grid method for Sy equations in slab geometry. They
parallelized it and analyzed it for two specific cases: pure scattering and absorption.

All the multi-grid methods with two-cell block inversion were successful in
slab geometry, but there is no successful implementation of this in multi-dimension.
Two-cell block inversion in x-y geometry will not be effective because of the lack
of x-y coupling between the two spatial directions which does not reduce the
diagonal error modes effectively [Now 88b].

1.2 Overview of Thesis

The perfect acceleration technique will have all the following properties
[Ada 86]:

(1) Unconditional stability and rapid convergence (i.c., spectral radius
significantly less than unity for all mesh sizes)

(2) Generality with respect to geometry

(3) Generality with respect to discretization scheme

(4) Generality with respect to mesh shape

(5) Easily solved low-order equation

(6) Accelerated solution equal to unaccelerated solution

No DSA‘ methods satisfy all the abdve requirements yet. The ultimate goal is to
develop a method that satisfies the above requirements.

DSA hé.s technical difficulties assbciated with its stability requirement, in
which a discretization scheme for the ;‘low-order” .problem must be consistent with
the discretization scheme chosen for the transport problem. This “consistency”

requirement has created rhany difficulties — for example, effective and robust DSA
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schemes have only been developed for special discretization schemes in
multidimensional geometries, and here only for rectangular meshes [Lar 99].

In DSA, a diffusion equation is used to precondition the standard Source
Iteration (SI) technique. SI on the first-order form of the transport equation typically
involves “sweeping” the .grid along directions of particle travel. Currently,
sweeping is an inherently serial operation and may be difficult to do efficiently on a
parallel machine.

Although DSA has been very successful in accelerating SI, DSA schemes
for some advanced discretizations have not yet been developed for
multidimensional geometries. DSA schemes are too complicated and restrictive to
be analyzed and implemented for some advanced discretizations and on
unstructured meshes.

In DSA, a diffusion equation is used to precondition the standard Source
Iteration (SI) technique. SI on the first-order form of the transport equation typically
involves “sweeping” the grid along directions of particle travel. One- and two-Cell
block Inversion (CI) methods can be used as an alternative to SI. CI allows for the
independent (and perhaps parallel) solution of scalar flux unknowns in each one- or
two-cell block. Although one- and two-CI are “parallel friendly”, they are currently
limited in their applicability. The iterative performance of one-CI degrades as the
cells become optically thick: the spectral radius approaches unity. One-CI is not
unconditionally stable for | some multi-dimensional discretizations, such as the
linear discontinuous (LD) ﬁhite element method. Two-Cl is effective in one spatial
dimension, with parallelization and multigrid, but nqtv for x-y geometry because of
thé x-y coupling probleni. The goal of our work is to construct a one cell block
inversion technique that will be unconditibnally stable and convergent for
multidimensional finite element discretization techniques. A .

- It has long been known that the success of a diffusion synthetié acceleration
(DSA) scheme is very sgﬂsitive to the consistency between the discretization of the

transport and diffusion acceleration equations. Acceleration schemes involving
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“inconsistent” discretizations have been successful, but no prescription is available
that determines apriori an. allowable degree of -inconsistency. It is notable,
however, that all current DSA schemes invoive diffusion equations discretized on
the spatial mesh used to solve the transpétt equations. Often the solution of a large
number of low-order equations is an expensive part of the transport simulation. We
therefore desire td find stable and rapidly convergent acceleration schemes that are
discretized on a mesh that is coarse relative to the transport mesh.

Another goal is to develop a technique in which the low order diffusion
-acceleration equations can-be solved on a mesh coarser than that used for the
transport equation. Coarse mesh DSA should be unconditionally stable and be as
rapidly convergent as a DSA method discretized on the transport mesh. We are
using Adams and Martin’s modified 4-step acceleration method (M4S) applied to
the linear and bilinear discontinuous (LD) finite element transport equations in slab
and x-y geometries.

The remainder of this thesis will ixiclude the following chapteré and

contents:

e In Chapter 2, we introduce the Boltzmann linear transport equation in the
general geometry. We then iﬁtroduce the angular and spatial discretizations
including Disconﬁnuous Finite Element methods and Corner Balance methods.
We also introduce the iteration methods commonly used to solve the transport
equatidn numerically, such as source iteration and cell block inversion. We also
consider the various speedup techﬂiques to- get é result quickly for the transport
iterations. Among the mény speedup techniques, we focus on Diffusion
Synthetic Acceleration émd multigrid method. We introduce the concept of
these speedup techniqﬁes. We also introduce the concept of a Fourier analysis to
analyzé the édﬁvergence features and Asymptotic analysis to derive the low
order equation and analyze how the transport equation has the characteristics of

low order equation in the asymptotic limit.
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In Chapter 3, we introduce the solution téchniques for the low order diffusion
equation with LD and SCB discretizaﬁon in slab geometry. We develop the
solution technique for the low order equations with FLBLD, SCB and UCB
discretizations in x-y geometry. The similar solution technique developed by
Morel et al. was for BLD, linear-bilinear nodal and linear-bilinear
characteristics methods. This technique includes the extra “void cell”
calculations, 9-point continuous equation and corner-form  bi-linear
 discontinuous equations. Our méthod includes ésymptotic continuous equation
of 5-point stencil with 1-point removal term without the “void cell” calculation
and can be applied to FLBLD, SCB and UCB without any modification. The
results of the Fourier analysis are given and compared with the observed
spectral radii in the four model problem calculations. And another suggestion

and the results of Fourier analysis are given to simplify the multi-level method.

In Chapter 4, we consider a new DSA procedure in slab and x-y geometry
which is a combination of 1-CI and DSA derived from 1-CI. This procedure

consists of two different procedures. The method-1 is as follows:

- A source iteration for Sy transport equation
- 1-cell block inversion for Sy transport equation
- Solution for the low order diffusion equation derived from the 1-cell
block inversion.
In this procedure the equations of 1-cell block inversion can be reformulated in

a simple form to get the scalar flux directly. The method-2 is as follows:

- 1-cell block inversion for Sy transport equation
- Solution for the low order diffusion equation derived from the 1-cell

block inversion.

This procedure is to be combined with multigrid method to get better

convergence performance.
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e In Chapter 5, we develop the coarse-mesh diffusion synthetic acceleration
method in slab and x-y geometry. This new procedure involves the solution of
the high order transport equation on a fine-mesh and the solution of the low
order diffusion equation on a coarse-mesh. We show that the coarse-mesh DSA
is as effective as the conventional DSA and that computing time can be saved in

‘the diffusion calculation.

o In Chapter 6, we discuss our new DSA methods, summarize our findings and

draw some conclusions about the efficiency and effectiveness of our new

methods. We also include some ideas to improve our methods for future work.
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CHAPTER 2
BOLTZMANN LINEAR TRANSPORT EQUATION

2.1 Introduction

In this chapter, we review all of the concépts that are fundamental to this
research. We introduce the continuous and discretized Boltzmann linear transport
equations and the numerical iteration methods to be used in this thesis. We begin
with the continuous transport cquatibn with some definitions in general geometry.
We consider only the mono-energetic within group transport equation throughout
this thesis, and therefore we "d::opped the energy-dependent subscript in the
following derivations. We also consider only Cartesian geometry problems,
especially slab and x-y geometry, throughout this thesis. Wé‘ intfoduce the transport
equation with the boundary conditions in slab and X-y geometries. We then
introduce the angﬁlar discretization called Sy or “discrefe ordinates”.

We describe Fourier analysis; for a procedure which helps to predict the rate

“of convergence of an iteration scheme. Fourier analysis is a powerful tool and can
be used to predict the spectral radius of iteration schemes of the continuous and
discretized tranéport equations. Since Fourier analysis was first introduced in
computational nuclear engineering by Larsen [Lar 82], it has been widely used to
predict the spectral radius for newly-developed speedup iteration and discretization
schemes. There are limitations to the applicability of the Fourier analysis procedure.
Since a traditional Fourier analysis assumes an infinite and homogeneous medium
model problem, it can not predict exactly the convergence rate of heterogeneous
iterations or finite systems. Fourier analysis also cannot be directly applied to

nonlinear iterations but to linear iterations.
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Wil

We also discuss acceleration techniqies for the linear transport calculation
including synthetic acceleration and multi-gﬁd. ‘Since transport source iteration is
very slowly convergent or hot convergent for the optically thick problem, much
effort has gone into overcoming the drawbacks of source iteration (SI). Synthetic
acceleration has been very successful at accelerating the source iteration. Synthetic
acceleration methods include diffusion synthetic, transport synthetic and boundary -
projection. Here we consider diffusion synthetic acceleration and include
description of the basic concept, the derivation procedure and the characteristics of
its convergence. ‘

We include the asymptotic analysis method in which the asymptotic limit of
the transport equation is identical to the diffusion equation. The asymptotically
derived continuous diffusioh equa'tibﬁ can be used to accelerate the discontinuous
diffusion equation in X-y geometry. [Mor 93]

This chapter also includes descriptions of advanced spatial discretization
methods such as the Linear Discontinuous Finite Element Methods (LD), the
Simple Corner Balance (SCB) and the Upstream Corner Balance (UCB) Methods
in slab geometry, and several Bi-Linear Di“scontinuous (BLD) Methods, the SCB
and the UCB Mefhods m X-y gcometry.‘ We ‘.introduce several representative
numerical solution techniques such as Source Iteration (SI) and Cell Block

Inversions (CI).

2.2 Linear Transport Equations

2.2.1 Transport Equations in General and Cartesian Geometry

The neutron transport equation is the balance equation between the neutron
gain and loss in some domain V with boundary S.[Lew 84] The gain mechanisms

include:

(1) Any neutron sources in V (e.g., fission)
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Figure 2.1 An arbitrary volume V with surface area S.

(2) Neutrons streaming into V through the surface S.
(3) Neutrons of different E’°, Q’ suffering a scattering collision in V that
changes E’, Q’ into the E’, Q’ of interest.

Loss mechanisms include:

(4) Neutrons streaming out through the surface S.

(5) Neutrons in V suffering a collision. (It is obvious that an absorption
interaction removes a neutron from V; and since by definition a scattering
collision changes E, Q’ and since we are only keeping track of neutrons in
V with this speciﬁé energy and direction, a scattering collision also amounts

to a loss of neutrons.)
The neutron transport equation can be written as follows:

¥ &Yy +o,G EWE B
v a > (2'1)

= I aQy f dE'c (E'- E,Q'—> QwF,E',Q' ) +qF,E,Q1)

where

v(7,E, Qn = angular flux at 7 with energy E, angle £2

o, (7, E) = macroscopic total cross section at » with energy E
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o,(E'> E, '— Q) = macroscopic scattering cross section.

Now that we have an equation to represent the physics of neutron transport in a
medium, we focus our attention on how td solve it. Unfortunately, analytic
solutions to this general equation do not exist except in very special one-
dimensional cases, so we must discretize all the variables in eq. (2.1) and thus
obtain a series of equationskwhich hoﬁéfully can be solved by numerical methods.
For the general three-dimensional problems there are seven variables which must be
represented: three spatial, two angular, energy and time.

This work concentrates on the time-independent problem and the energy
dependence is usuallyb handled via multi-group technidues. So we can rewrite eq.

(2.1) in a simpler form as follows:

Q-Vy, +0,F)w,(7.Q)

L. ) ) . 2.2)
= ‘[ftin',g Q- Oy, F.Q)+q,F7.Q), g=1.G

The group-to-group coupling inherent in this equation is typically handled by an
“outer” iteration. The difficult part of the transport calculation is the “within-group”

* problem, which has the form:
8-V +0,F WD = (40, > Oy F.0) +4Lq(r*) . @3)
” T

For simplicity of the problem, we are considering only isotropic scattering and

sources. We have simply:

0 VY G0 +0,PWE.D) = Z24F) + a7, 2.4)
7T 4z
where ¢(7)is a scalar flux, which is defined by
#() = [dwG.Q). @9

Another important quantity is the current, which we define as
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Fig2.2 Cartesian geometry coordinate system
- JF)= [dcx‘: v(F,Q). ‘ (2.6)

Boundary conditions for eq. (2.4) can be periodic, reflecting, partially reflecting
(albedo), or simply a specification of the incident angular flux.

The incident boundary condition is expressed as:
v(F Q) =y, FQ), reS andi-Q<0, @

where 7 is the outward normal unit vector at boundary point 7 .

The reflecting boundary condition is expressed as:
v(F Q) =wFQ), redD and 7#-Q<0, (2.8)

where Q' is the angle that would reflect onto Q).
In this thesis we consider only the Cartesian geometry shown in Figure 2.2.

We can rewrite eq. (2.4) as follows:
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ﬂgc-w(f,fmn;%w(f,ﬁ)+é—g—w(f,fz)+a,(F)w(F,fz)

, 29)
=22 47) + - q(7)
4z 4r
where
p=Qé, n=Q¢, £=Q-¢, . (2.10)

The slab geometry transport equation and boundary conditions are given as follows:

L)+ 0, (W) =)+ 2a(3), 0<x<a @.11)
where
vO.u)=f(u), 0<usl, @.12)

W(a’,u)=g(ﬂ)’ -1<u<0. (2.13)

The x-y geometry transport equation and boundary conditions are given as

é é :
ﬂgw(x,y,ﬂ,n)+775w(x,y,ﬂ',n)+c,,(x,y)w(x,y,ﬂ,n)

. , 2.19)

=22 4(x,3)+==q(x,), 0<x<a, 0<y<b
2z 2
where _ _ ‘

v©Oy,pm)= Oy mm), #>0, 0<y<b, @)
W(a,y,ﬂ,ﬂ)=f(a,y,ﬂ:77), u<0, 0<y<b, (216)
w(x,0,u,m)=f(x0,u,7m), n>0, 0<x<a, (2.17)
w(x,b,u,n)=f(x,b,u,m), 1n>0, 0<x<a. (2.18)

2.2.2 Angular Discretized Sy Transport Equation

In this section we discretize the angular variables of the integro-differential
form of the within-group equation given in eq. (2.4). The discrete ordinate method
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has become the dominant means for obtaining numerical solutions to the integro-
differential from of the transport equation.
. In slab geometry, the Sy transbort equation is as follows:

pn Ly ()0, (1) = L

1 _
— 2@+, m=L., N,  (219)

where the number of discrete directions in the chosen quadrature set is N, and the

scalar flux is defined in terms of the quadrature sum:

$x)=D W, (x). (2.20)

m=1

The quadrature weights, w, are normalized in the following manner:

> W, =20. (2.21)

The direction cosine, 4y, can be positive or negative, and thus the directions of

neutron travel (“sweeps”) are divided into the following quadrants:

1. um >0, left to nght,
2. um<0,  righttoleft;

The angular flux along each discrete direction is computed by “sweeping” through
the spatial grid, propagating incoming bbundary information and interior sources to
the outgoing boundary. | o | '

In x-y~ geometry, the Sy transport equation is as follows:

b GV ) 1 S () 0, (290 (59)

| , (2.22)
U' "
= 2—‘¢(x,y) +—q(x,y), m=L..,N

V4 2%

where the number of discrete directions in the chosen quadrature set is N, and the

scalar flux is defined in terms of the quadrature sum:



¢(‘x’y) = Zwmv)m'(x’y) *

m=1

The quadrature weights, w,,, are normalized in the following manner:

" Table 2.1
Sy quadrature sets for slab geometry

Level n Hom Wm
S 1 1 0.5773502692 1.0000000000
Sy 1 0.8611363116 0.3478548451
2 0.3399810436 0.6521451549
Ss 1 0.9602898565 0.1012285363
2 0.7966664774 0.2223810344
3 0.5255324099 0.3137066459
4 0.1834346425 0.3626837834
Si2 1 0.1252334085 0.2491470458
2 0.3678314989 0.2334925363
3 0.5873179542 0.2031674267
4 0.7699026741 0.1600783286
5 0.9041172563 0.1069393260
6 0.9815606342 0.0471753364
Sis 1 0.9894009350 0.0271524594
2 0.9445750231 0.0622535239
3 0.8656312024 0.0951585117
4 0.7554044084 0.1246289713
5 0.6178762444 0.1495959888
6 0.4580167777 0.1691565194
7 0.2816035508 0.1826034150
8 0.0950125098 0.1894506105
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Table 2.2
Level symmetric Sy quadrature sets for x-y geometry
Level | n L W **Discrete Orfiinate
, Configuration

S, |1 0.3500212 0.0833333 1

2 0.8688903 - 11
Ss 1 0.2666355 0.0440316 1

2 0.6815076 0.0393018 2 2

3 0.9261808 D 121
Ss 1 0.2182179 0.0302469 1

2 0.5773503 0.0226852 2 2

3 0.7867958 0.0231482 232

4 10.9511897 1221
S |1 0.1672126 0.0176907 1

2 0.4595476 0.0139703 22

3 0.6280191 0.0093344 3 43

4 0.7600210 0.0125705 3553

5 0.8722706 0.0064628 24542

6 0.9716377 123321
Sis 1 0.1389568 0.0122468 1

2 0.3922893 0.0103324 22

3 - 0.5370966 0.0053082 .3 53

4 0.6504264 0.0064052 466 4

5 0.7467506 0.0090122 4787 4

6 0.8319966 0.0036147 368863

7 0.9092855 0.0086240 2567652

8 0.9805009 0.0021295 12344321

* Nm= m

** Discrete ordinate configuration for one octant showing ordinates of equal weight
e.g., for Sg, the ordinates (1, 7)), (11, 75) and (13, 71 ), each have a weight
wy; the ordinates (1, 7), (12, M) and (b, 72), each have a weight w;.
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The direction cosines, 4, and 7, can be positive or negative, and thus the
directions of neutron travel (“sweeps”) are divided into the following quadrants:

1. 4 >0 and n, >0, iéﬂ to right; bottom to top -

2. fim <0 and 7, >0, right to left; bottom to top

3. un>0 énd Nm <0, ieﬂ to right; top to bottom

4. <0 and 7, <0, ri?ght to left; top to bottom
As a result, each iteration consists of four groﬁps of sweeps corresponding to the
four quadrants. For general applicatioins, it is best to treat each of the four quadrants
equally with a level symmetric quadrature set. That is, the same N/2 (N is the
quadrature order) values of the diréc;tion cosines are used in each quadrants. The
direction cosines (u, and 7,,) and angular weights (w,,,) for slab and x-y vgeometries

* are shown in Tables 2.1and 2.2, respg;:tively.

2.3 Iteration Method

At this point,‘ we have discrjetizedkthe cohtinuous form of the transport
equation in the energy, angular and spaﬁal variables. Although we héve discretized
equations, we must now déveiOp a solution strategy, ‘both of which involve
iterations. In numerical methods, the solution can be obtaihed'thrbugh the iteration
by reducing the error between the ﬁ'ue'value and the assumed vé.lue. There are
several iteration ap’prbaches: Source Iteration (SI) and Cell Block Inversion (CI) are
the most common. In this section We introduce the concepts behind these two

methods. -

2.3.1 Source Iteration

Source Iteration is the simplest and most widely used iteration algorithm for
the transport-equation. It is' assumed that the scattering source is known at the

beginning each iteration. In other words, the scattering source is from the previous
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iteration level and updated after the ‘current iteration. The calculation proceeds in
the direction of neutron travel, sﬁxﬁng from a known boundary condition and
ending at the other boundary. This procedure is called transport sweeping. Using

eq. (2.22) with an iteration index, we can write the SI for the transport equation as

follows:
a (1+1) a (+1) (1+1) - () 1
Y+ s +—q, 2.25
Hn g¥m Fn g Vn  + OV >t (2.25)
where
¢(1+l) Z (I+1) , . (226)

m=l
and (/) and (/+1) are previous and current iteration indices, respectively. Note that
the transport sweep is a Gauss-Seide!l iteration in that the new edge flux mformatxon
is immediately used in the calculations for the cells directly.

The disadvantage of using SI; is its slow convergence for problems which
are dominated by scattering; i.e. the scattering ratio (c¥ og/&,) is close to unity. The
reason for this may be explained by the following physical interpretation: if the
iteration process is started with an initial guess of zero for the inscatter source, then
the 7‘th scalar flux iterate, qf’), is the scalar flux due to neutrons which have
experienced ‘I’ collisions after emission from the source. If the scattering ratio is
close to unity, the iteration will not converge until the neutrons have suffered many

collisions: This explains why SI converges slowly for these types of problems.

2.3.2 Cell Block Inversion (CT)

The most widely used Cell Block Inversion methods are one-CI and 2-CI.
One-CI involves the selection of a ;single spatial cell as a “block” and two-CI
groups a pair of cells as a “block” in Slab geometry as shown in Figure 2.3. The cell
block inversion method has been used in conjunction with multigrid method

because analyses have shown that it perfectly damps spectral radius at the high
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frequency components of the solution. In the cell block inversion method, the
incoming fluxes to a block are taken to be those at the previous iteration level. As
an example, a two-cell block inversion involves solving for all the fluxes internal to
cells i and i+ simultaneously, given only the incoming fluxes. Note that the two-
cell block inversion equations in LD contain 2V variables in each cell for a total of
4N equations. There are two options in using Cell Block Inversion. The first one is
to use Source Iteration followed by Cell Block Inversion. The second one is to use
CI independently. While the equations in the former case can be rewritten in a
simple form, the equations in the latter case may be complicated.

Although we did not introduce the spatial discretization yet, we include the
1-CI for the LD Sy transport equations:

Hy * * + O'S,,- + 1
'ATi(Wr(n,)iH/Z - '/’;(n,)i-l/z )+ o-t,i'//r(nl,il) = __2—¢i(1 D+ Eqi > (2.27)

9:‘ m * * + x(I+ o-s' x(l+ 1 x
Axi('/’;(nzn/z +Wr(r.,)i-1/z '2'/’;(;.’,:1))"'0' t,i'//mg D =_2-L¢i e +-£qi ) (2.28)

i

| | Jl >
r i+1 i i+1 | x

(One-Cell Block Inversion)

>
i i+1 X

(Two-Cell Block Inversion)

Figure 2.3 Domain discretization with one-cell and two-cell block inversion
(Slab geometry, LD)
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where
Wiz =V ¥Wns s Hn >0, (229)
Wy =W s ¥Wmins  Hn >0, (2.30)
Wi =Vt —Vmiis M <0, (23D
W =wis —wad?, u, <0 232)

2.4 Fourier and Asymptotic Analysis

2.4.1 Fourier Analysis

Frequently in mathematical physics we encounter pairs of functions related

by an expression of the following form: | .
g(@) = [f(OK(a,ndt, | (233)
f)= [ g@K(a.nda. @39

The function g(a) is called the integral transform of f{z) by the ‘kernel’ K(¢q;#). This
operation can be understood as mapping a function of f{¥) in #-space into another

function in a-space. [Arf 85] Fourier transforms use Fourier kernel as follows:

gla) = T;; [ rae=ar, (2.35)
)= I/%’; [ gl@eda. (236)

Here we consider the transform of a function in spatial space into a function in
frequency space. In this case, frequené)" has the units of inverse length rather than
the more familiar inverse time. Since we are going to apply the Fourier transform to
the iterative Boltzman transport equation, our spatial space is the real domain,

symbolized by 7. The frequency space is the complex domain parameterized by a

real A. For example, the Fourier transform of the angular flux represents a
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mapping of the angular flux in the spatial domain, y (7, f)) , to the frequency space,

A(Z,f)). The Fourier transforms (ansatz) in 3-dimensional Cartesian geometry are

as follows:
AL,Q)= £d3r|//(r Q)3 (2.37)
\/(Zﬂ)3 _ . '
7)== [ 24T, Qe (2.38)
'// > - \/(2—;3? s . . .

Since we are attempting to solve the neutron transport equation, we apply this to the
transport eqﬁation in 3-D Cartesian geometry. The continuous trarispoﬁ equation in

3-D Céutesian geometry with source iteration is as follows:
QY OE D+, G EQ =12 [ DO D+e@).  (239)
Vo T Ar v ’

We subtract eq. (2.39) from the converged transport equation as follows:

Qv (F,Q)+o, (F‘)v?"’*"(f’,fz)=%- [ dQy®F.Q), (2.40)
. L T ur :
where
GO FE Q) =y Q- F.Q0), (2.41)
v OF Q) =vFQ-v"F.Q). (2.42)

We substitute eq. (2.38) into eq. (2.40) and we obtain the followihg equation:
[:d%[a, (Q-iZ+1) 4™V (7, fz)'-—% [ ara®, fz')]e"‘"@f) =0. (2.43)
AT Sx . o

io, (1 F)

The linear independence of the Fourier modes e implies

AT Q= ¢ AT, —0<d<m, 2.44
(4.8 47 Qi +1)-[ (4.8 (249)

where c=0, / 0, is the scattering ratio.
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Integrating eq. (2.44) over €3, we obtain the following equation:

I dOA“Y(1,0Y=w() I dYAY(A,Q), (2.45)
where
- c daQ
) 4z '[*(Q-/l)2+1 (249)

AV (1,Q)and w(1) are the eigenfunctions and eigenvalues, respéctively, of the
iteration scheme. Since we considered the error equations for the iteration, the
meaning. of eigenvlues is the possible convergence ratios in the frequency space.
The absolute value of the maximum eigenvalue is called the spectral radius, p, and
defined as: | | | |

o= max |a>(,1)| o (2.47)

~w<d<

Since traditional Fourier analysis assumes an infinite and homogeneous medium, it
cah not predict exactly the convergence rate of the heterogeneous or finite

problems. Fourier analysis also cannot be directly applied to nonlinear iterations.

242 Asvmptotic Analysis ([Lar 87] and [War 93])

Here we discuss the asymptotlc dlffllSlOI‘l limit for the transport equation in
slab geometry Asymptotic analys1s has been used to derive the diffusion equation
from the transport equation in a “dxfﬁxswe limit” and to explain the relationship
between the diffusion and transport equations. We consider the monoenergetic Sy
transport and diffusion equations:

A CIRS

wm(2)+a(2)wm(2)— Z_wmwm(2)+ 3(2), (2.48)
4 1 4 +5,4()=7(), 0sz<a, (2.49)
&z 35 (2) &z '

where
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5,(2)=5.(2)-5.(2). (2.50)

Eq. (2.49) is good approximation for eq. (2.48) with the following three

assumptions:

(1) the physical medium is many mean free paths thick (i.e., is “optically
thick™);

(2) the collision process is scattering-dominated (i.e., absorption cross sections
are small); B

(3) the angular flux, cross sections, and source are continuous and vary spatially

by, at most, a small amount over the distance of a mean free path.
The goal here is to derive diffusion eq. (2.49) using an asymptotic expansion from
the transport equation. To begin, we consider &,(z),5.(2),4(2),¥,(z) and
;17 (2)in egs. (2.48) and (2.49) to all be continuous, smoothly varying ﬁlncﬁoné of z,
and we define a “scale length” p for these quantities to be a typical distance over

which they vary by, at most, an O(1) amount. We define a dimensionless distance
variable in terms of z and the scale length p by

x=Z, (2.51)
p .

o, (x)= —‘-’;(—zl , (2.52)
()

o, (x)= -&::(-—zl , (2.53)
(G,)

Ya(x)= M , (2.54)
(7%

$(x) = % | (2.55)

q(x)= Zq"_(Q, (2.56)




30

where the quantities, (f), are typical values of 7(2). Then o, o, v,, ¢, ¢ and

their derivatives vary by, at most, an O(1) amount over O(1) distance in x. Using
egs. (2.51)~(2.56), we can rewrite eqgs. (2.48) and (2.49) as follows:

e Sy )+ P30, () = £, (")2 mwm(x)+2’z<q>)q(x) @.57)

d 1
dx3p(0')0'( ) dx

9 bx)+ p( Mo, () -0, W)

, (2.58)
p@)q(x) 0<x<_
(Y P
As a next step, we define ¢ as follows:
. 1 _ typical mean free path . (2.59)

p(o, ) scale length

Substitute eq. (2.59) into egs. (2.57) and (2.58) and we obtain the following

equation:

‘”mn—()zmmm+“”«n (2.60)

s Zwn )+ o

17,1

_d_& 4,0, 0®-0() .\ pa) a
dx 30_1 (X) dx¢(x)+ < ¢( ) <¢) Q(X) 0<x< - , (261)

Here we formulate three assumptions in such a way that eq. (2.61) can be
asymptotically derived from eq. (2.60). First, the assumption that y;, varies by a
small amount over the distance of a mean free path and an O(1) amount over a scale
length implies

e<<l, (2.62)

and the assumption that the system is optically thick is met by requiring the system

to be comparable to (or larger than) a scale length:
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a

>1. - (2:63)

The assumption that the collision process is scatteﬁng dominated is met by defining

o, (x)=0,(x)-'0,(x). (2.64)

We set
p<q> 0N 2 65
@B 269

which implies that the source and absorption terms have the same magnitude and
the infinite-medium solution, ¢ =¢q/0,, is O(1).
Inserting eqgs. (2.64) and (2.65) into egs. (2.60) and (2.61), we obtain the following

equation:

2y, @+ 7y, ()= 2["5‘) e (x)]z v+ 22, @69

| —%ﬁ}x—ﬂ X)+0, (DP0x) = 4(x), 0sxs, 2.67)

where eq. (2.67) is independent of the scaling parameters.

To derive eq. (2.67) from eq. (2.66), we use asymptotic expansionas follows:
V@) =y Q@) +ayPx)+ P @) + Y P (x)+- (2.68)

Substitute eq. (2.68) into eq. (2.66) and equate the coefficients of ¢, ¢ and ¢!, then

we obtain the following equations:

AN a(x){w‘”(x)»‘;w w‘°’(x)]=0, es

©
g a(x){w“)(x)——z Wg>(x)]=_£§.dzx : (2.70)
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g 0(x)[w"’(x)-—zwmw"’(x)]

m=1

: @.71)
e d] s e @09]_ 0,000 , a0)
2 & o.(x) & 2 2
Egs. (2.69) and (2.70) implies
| VO@=14), @)
yOw =190t BT @73)

20,(x) dx

M
Taking Zw,,, [eq.(2.71)] and substituting egs. (2.72) and (2.73), we obtain the final

m=l]

diffusion equation:

d © ©

—_— x)+o, (x x x 2.74
dx3,()dx¢() (097 (x) = g(x). (2.74)

This asymptotic analysis will be used to derive the continuous diffusion equation

which will be used to accelerate the discontinuous diffusion soution in multi-level

method in x-y geometry.

2.5 Speedup Techniques

2.5.1 Inefficiency of Source Iteration

Here we discuss the inefficiency of source iteration for hlghly scattering
problems, which was ongmally presented by Larsen [Lar 82]. The continuous

transport equatlon in slab geometry is as follows:

o-s (x)
2

2+ 0, ) = T2 4(3) + 40, @.75)
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$(x) = _[IW(X,ﬂ)dﬂ- (2.76)

Eq. (2.75) is balances on the particle loss (left hand side) and gain (right hand side).
The first termh on the left hand side represents neutron leakage, and the second term
is the loss due to interactions. The first term on the right hand side is the scattering
source and the second is the internal source. We now solve eq. (2.75) using a source
iteration, and introduce the iteration index:

ﬂgc-'//(“m)(x,ﬂ)+0',(x)'//('+”2)(x,/1)=g%x)'¢(')(x)+q(x), @.77)

#40 (x) = LW(M/z) 1) . (2.78)

Source iteration begins with an assumed scattering source and updates the angular
flux and scalar flux. If we begin a particle emission on the right hand side, the
particle will undergo leakage and a finite number of collisions in the left hand side.
In this case, SI'is guaranteed to converge because the particle will be leaked or
absorbed sometime. However, the rate of convergence is directly linked to the
number of collisions in a neutron lifetime. If the number of collisions is Small, the
SI.scheme will converge rapidly. If the medium is optically thick and highly
scattering (no or little absorption), the particle will undergo a large number of
scattering events between emission and leakage or absorption. Therefore, a large
number of iterations is required for source iteration to obtain the converged answer
for optically thick problems.

We can quantify the convergence rate theoretically using Fourier analysis
assuming a homogeneous infinite medium. We rewrite egs. (2.77) and (2.78) in

terms of the error in the solution as follows:

o . -: A+ o, 2
.UEW(' Dx,u)+opt ””(x,,u)=—£—¢")(x), (2.79)

§ )= [ 5 sy, (280
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80 (x) = ¢(x) -4 (x), (2.81)
D G, ) =y e, 1) - 0 () (2.82)

We choose the following “ansatz” (or separation of variables expansion):

PO (x) = (A) A(A)e ™, (2.83)
9D () = 0(2) b(A, e (2.84)

where
i=4-1, —w<A<w. (2.85)

Here A(1)e"™* and w(1) are the eigenfunctions and eigenvalues of the iteration
scheme. Substituting eqgs. (2.83) and (2.84) into egs. (2.79) and (2.80), we obtain

the following equations:

1
b(x,y)=§[1+,.@]Am), (2:86)
- du du _
c =L
a’(l)=-2_[11+/12,uz ¢ 1+/12,uz—/1tan1'1’ (2.87)

The spectral radius (p) is defined as the magnitude of the largest iteration

eigenvalue:

p= mfx|a)(/1)| =w0)=c. (2.88)

The maximum eigen{/alue will be ¢ at A=0, and if the medium is purely scattering,
c=1.0, the spectral radius will be 1.0 at A=0. For a finite problem the A=0 mode
cannot be present and consequently SI is convergent and stable for ¢< 1. The

eigenvalues for SI as a function of A are shown in Figure 2.4. We note that the most

slowly converging eigenvlaues occur when A is near zero.
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eigenvalues,®())

00 .10 20 30 40 50 60 70 80 9.0 100

Figure 2.4 Eigenvalues as a function of A for the analytic SI and DSA
in slab geometry (c=1.0)

2.5.2 Four-Step Diffusion Synthetic Acceleration [Ada 92]

We introduce two DSA methods, which are the standard four-step and the
modified four-sfep methods. The former was developed by Larsen [Lar 82] and the
latter was developed by Adams and Martin [Ada 92). We apply diffusion synthetic

| accéleration (DSA) to an analytic transport probiem with one energy group and

with isotropic scattering. We begin with the equé.tions for source iteration:
Q-Vy "I EQ+o D=2 ) e (289)
n

¢él+l) (’-;) - ¢(§l+1/2) (;:) = I do W(l+l/2) (?’ ﬁ) . (290)
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This iteration scheme converges very slowly for problems in which particles are
likely to undergo a large number of scattering collisions before they are removed

from the system via leakage or absorption. Because many problems of practical

interest have this property, we are very interested in iteration schemes that converge

faster than source iteration. DSA is one such scheme. DSA iteration also involves a
transport sweep, but uses a diffusion solution to obtain the new scalar flux.

We shall derive DSA here using a four-step procedure that was first
presented by Larsen [Lar 82]. In step 1, we take 0 and 1% angular moments of
equation (2.89), obtaining

T+ ' = = + = o, = =
V-0 F)+ 0, (F)py 1'2’(r)=E¢é"(r)+qo(r) ; 291)
Lo iaym L 20 T0s 22y o n =
§V¢é' 1’2’(r)+§V'¢z“ P +o, M) =47), 2.92)
where
§0(F) =" current'= [dQQy 2 (F,D), (2.93)
p{41/D (F) ="second — moment tensor”
A A A 2.94
= dez%(snmgm -DyA(F,Q) @29
0 ()= [duF.Q0), (295)
§(7) = [d00q(F, Q). (2.96)

In step 1, we have made no approximation; we have simply obtained some
equations that are satisfied at the end of each transport sweep.

In step 2, we define “acceleration equations™ that will determine our end-of-
iteration scalar flux and current. In this step, we rewrite eqgs. (2.91) and (2.92) with

all of the iteration indices changed to (I+1) except the second moment tensor:

V-4 F) + 0, (P (F) = 4%;-¢é'*‘>(F) +4,(7), 2.97)
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1 )= L 2 T+ T =y =
FVAPO+IV-E D 1o R =) 298)

We emphasize two things about these “acceleration equations”. First, they are a
coupled set of equations that completely determine the end-of-iteration scalar flux
and current. It has long been recognized that forcing balance at the end of each
iteration can accellerate transport iterations. This observation helps us understand
why DSA succeeds.

Step 3 is simple algebra_; we subtract egs. (2.91) and (2.92) from egs. (2.97)

and (2v.98) and rearrange:

V-7V F)+ 0,V F) = 0, [6 D F) - 48O F), 2.99)
%Vfo"*‘)(i')+a, AP F) =0, (2.100)

where
FEOF) =g F) -4 ), @101)
FPE) =) -4 F), (2.102)
0, () =0,(F)-0,(F). (2.103)

Step 4 is more algebra: We eliminate the current vectorf, from this system

to produce a diffusion equation for the scalar flux correction fj:

Ve SO+ 0, OO =0 I -4 (2104
o,() |

The complete DSA iteration scheme is therefore given by
Q- VYt IG O+ 0, E R ED =240 )+ 4@, (2.105)
4

KOO =40 = [ A PED) (2.106)
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and

V. 5 1 £ FYr g (;:)fo(M) 7) =0, [0V (7) - 48 ()], (2.107)
g, (r) '

I F) = 48D F)- gD ). (2.108)

It is easy to show that this DSA scheme converges very rapidly. Here we
discuss the convergence speed through Fourier analysis for the analytic transport
equation in slab geometry. In slab geometry, Sy transport with SI and the low order

diffusion equations in errors are as follows:

8 aie o (1s g -
A IO A GRSl A OF (2.109)

§0@ = [ ¢ ey, 2110)

and
1 d 2 s 20+1) poy _ 2UH12) foy _ A

é‘(lu) (x) - ¢?(l+l/2)(x) _j}(m)(x) ) (2-1 12)

So as to do Fourier analysis, we set the following ansatz:

8O (x)= w'(z)a(z)ef“"*, (2.113)
U (x, 4) = @' (bR, w)e' ™™, (2.114)
¢ (x) = &' (A)c(A)e ™, (2.115)
£ (x) = @' ()d(A)e"* . (2.116)

Substituting eqs. (2.113)~(2.116) into egs. (2.109)~(2.112), we obtain the

eigenvalues as a function of A:

_ 2 =34 3 [ﬁ )tan"l } .
w(ﬂ)‘c[zus(l—c)}flffyz W= (3 s 2117)

For c=1, the Spectfal radius (o) is given by
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2

1-3u ’
e[ R0 .118)

p< mfx
The eigenvalues as a function of A are shown in Figure 2.4. The DSA method for

the anaiytic transport equation in slab geometry is unconditionally stable and

rapidly convergent for all 0<c<l1.

2.5.3 Modified Four-Step Diffusion Synthetic Acceleration [Ada 92]

We use the modified four-step method in this thesis because this method is
simple and well developed for the discontinuous finite element methods and the
spectral radius approaches zero as the mesh spacing increases or decreases.

In the early development of DSA, DSA iteration schemes were unstable
after the discretizations of egs. (2.109) and (2.111). Alcouffe [Alc 76] overcame
this problem when he realized that the discretizations of the transport and diffusion
equation must be consistent with each other. Larsen generalized and developed this
standard 4-step method for obtaining a consistent discretization of the diffusion
equation for any given transport discretization. His DSA scheme is rapidly
convergent for all transport discretizations in slab geometry. The prevailing wisdom
among researchers at that time was that complete consistency was probably the only
way to guarantee stable and effective DSA methods. In general, the standard linear
DSA discretization of eq. (2.111) is algebraically complicated and potentially
difficult to solve. In particular, it may not be possible to eliminate the current
vectors from the discretized version of egs. (2.99) and (2.100) in general
multidimensional problems.

The consistency of discretization has precluded the wide use of DSA. Khalil
[Kha éS] has devised an inconsistent DSA procedure for nodal methods which
employs diffusion equations which are simple to derive. Adams and Martin [Ada
92] developed the modified 4-step method for deriving DSA equations which does

not require consistency of discretization. The modified 4-step method is very
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simple and easy to derive diffusion equation, and is unconditionally stable.
However, the modified 4-step method has been applied only to discontinuous finite
element discretization methods. In this thesis we are using the modified 4-step
method to derive the diffusion acceleration equation. |

There are two methods to derive the modified 4-step diffusion equations.
Both are shown in Figure 2.5. The first begins with the analytic diffusion equation
and mimics the derivation of discontinuous finite element method transport from
the analytic transport equation. This method corresponds to the lower-left path in
Figure 2.5. The other technique begins with the discretized transport equation and
corresponds to upper-right path in Figure 2.5. This second method is compared with
the standard 4-step method in Table 2.3. Adams and Martin showed that the two
derivations produce identical diffusion discretizations. Here we consider the
“mixed” method in Cartesian geometry, which also results in identical discretized
diffusion equations. This mixed method is reformulated the modified 4-step method
by the combination of two paths as shown in Figure 2.5, which is easier and simpler

to derive the diffusion equation. At first we rewrite eq. (2.89) with weight, v,,(7),

and basis, b,,(F) , functions in a discretized DFE equation as follows [Ada 92]:

Va2 2 Wba®), @.119)
k=l =] o
=T dubu ). (2120

B L VLA VA G T L L W LA M ()
[incoming 8Z; 1,, [outgoing 3Z, 1,

+ J‘d:‘r(—l//mflm 'Vvki +vkio-twm)= J-dsrvh(:_s él)(;’)_'_q(;:))’ (2.121)
Lz, zZ, V.4

1<i<J,, 1Sk<K

where Z; is subdomain of D, 1<k<K and 1<i<J;.
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Table 2.3
Comparison of standard four-step procedure with modified four-step
procedure [Ada 92]
Description
Step
Standard 4-Step Modified 4-Step
1 Take 0™ and 1* angular moments of Same |
discretized transport equation.
2 Change iteration indices to (I+1) except | Same, except do not change
on second and higher moment terms. indices on certain 0" and 1*
moment terms
3 Subtract acceleration equations from Same
unaccelerated equations to reduce
algebraic complexity
4 Eliminate 1® moments from resulting Same, always possible

system, leaving a discretized diffusion
equation for the scalar fluxes. May not be
possible given high-order discretization
schemes in multi-dimensions.

Analytic Transport ' Spatial Spatially Discretized
or Discrete Ordinates | Discretization . Transport_ or
Discrete Ordinates

Expand Angular Flux; Expand Angular Flux;
Take Moments Take Moments
Mixed l
Analytic Diffusion | Spatial Spatially Discretized
Discretization Diffusion

Figure 2.5 Two paths leading from analytic transport to discrete diffusion [Ada 92]
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Step 1 is the integration of the discretized transport eq. (2.121) over angle

[i.e., operate with Z,wp,], which gives

Idzruh(r)[ JED) Gy g o )]+ Ids ( (+1/2) VUk,+Uk,°'x¢(l+”2))

outgomg mcommg
= ,(2.122)
= [dro (o °F+e()) 1sis<J,, 1sk<K
. Zk . ‘
where
T utgong e ) = ; Tl Q, ly ™ E, (2.123)
TR EY = Y Wl QWA E, (2.124)
AQ,, <0
A= Tws Q). (2.125)
We can expand the angular fluxes as follows:
v, =4i(¢0 +3Q, -4 +hot). (2.126)
T
We use P; approximation which implies
T ) =gV )+ 1, - gV FED), (2.127)
’E'lg'/nl:zg( ) a¢ l+1/2)(;:k+)_%ﬁk .51(l+1/2)(F+), (2-128)
where
1 oA 1
— Q== 2.129
47[ ﬁk§>owm nk m 6 ( )
1 _ a1
a=— 3 w, n,‘-lezZ. (2.130)

.Ir 'Q,, >°

In the diffusion equation, the current, 51 (7), 1s defined by Fick’s law:

D (7) = =DV D7) . (2.131)
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Step 2 is to define accelération equation by changing the iteration indices to
(I+1)in egs. (2.121)~ (2.131).

Step 3 is to subtract egs. (2.121)~(2:131) from the acceleration equations.

Step 4 is to rearrange the equatidns as follows:

A0, (F)g et e ) - ~ Zita Wl d’ 7D .0, 0,0, f80)
going 8

az,

L, (132)
- jd’ru,,,a (¢g’*“2>(r) ¢<'>(r)), 1<i<J,, 1<k<K
where
Boging (7 )= %‘“"( )+3E - AUED, (2.133)
Lhming ) =ofS V(R ) =47, - FEO(F), 2.134)
- 0V (F) = —DVFID Y, (2.135)
and
g(l+1)(’-,;‘i)=J(l+l)(’-:kt)_J(l+l/2)(’-,;‘i)’ (2.136)
and f"*"and £V are defined on egs. (2.101) and (2.102).
The boundary conditions for egs. (2.132)~(2.135) are as follows:
() ==y 13 . FUD -y .
WD mey_ e ofg V(T )3 fU(F) tvacuum g
gotagomg( k ) gmcammg( ) - { 0 | :reﬂecting ( )

where 7, is on problem boundary.

2.5.4 Multigrid Method ([Bri 87] and [Bar 87])

Multigrid methods were originally applied to simple boundary value
problems which arise in physical applications. Multigrid can be applied to an
iteration method in which the magnitudes of the higher frequency errors are reduced
more than the magnitudes of the lower frequency errors. The purpose of the
multigrid method is to deal with the low frequency error. In multigrid method, the




low frequency components can be eliminated by the sequence of calculations on
successively coarser domain. Figure 2.6 shows how the low frequency error can be
converted into the high frequency error. This figure shows two different
discretizations of the same domain; the upper grid is composed of four cells and
the lower is composed of two. The solid line in the upper grid indicates the highest
possible frequency on that grid, varying from positive one to negative one over a
single cell. The dashed line represents a lower frequency since it only varies from
positive one to zero over the cell. Notice, however, that on the coarser grid below,
this lower frequency becomes the highest frequency.

To understand the algorithm, we begin with the following diffusion
equation with Gauss-Seidel iteration;

Lo =S¢ +0, (2.138)

where subscript k denotes the number of grid .

gee*™

[Coarse grid]

Figure 2.6 High-frequency functions on fine and coarse grids
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A typical multigrid algorithm is as follows:
(1) Iterate eq. (2.138) with the initial guess ¢{” in the finest grid 1, and obtain

(I+1) .
l T e

La"" =Sg" + 0, (2.139)

(2) Calculate the residual as follows:
r, =0 -(Lg"" -Sg"), (2.140)
(3) Perform restriction operation on the residual
Ir, C (2.141)

where I£ is the restriction operator from grid ‘%” to grid ‘g’.

(4) Repeat procedures '(1)~(3) on successive coarser grids with the residual

instead of Q as follows:
Lo =S¢® +1tr,,, k=2,..,K-1, (2.142)
r =r, ~(Lg{" -S4, (2.143)

I'r,, (2.144)
where ‘K’ is the coarsest grid.

(5) Solve the equation and obtain the exact solution the coarsest grid as follows:
| Lo, =S¢, +15 e, . (2.145)
Perform a prolongation operation for the exact solution as follows:

Py oy, (2.146)
where P: is the prolongation operator from grid ‘g’ to grid ‘.

(6) Since we obtain the exact solution on the coarsest grid, we perform the

calculations for the finer grids. Here we set the initial guess equal to the sum

of the previous scalar flux ¢{*" and the prolongated scalar flux as follows;
B0 =g +PESID. (2.147)

Iterate the following equation with this initial guess and the residual used in

€q. (2.142), and perform a prolongation operation:
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Lo!* =8¢ +1¢r,,, k=K-1,-1, (2.148)
P lgt (2.149)
(7) Procedures (1)~(6) is a multigrid cycle, which will be repeated until the

error satisfies the convergence criteria.

The above procedure is called a “V-Cycle;’ scheme. There are several cycling
schemes according to the schedule of grids as shown in Figure 2.7.

We discuss here the efficiency of the multigrid method. First, the multigrid
method might appear to require a considerable amount of work because of its
recursive nature, but there is not an extraordinary amount of programming. We
need only the subroutines for the residual calculation and the analytic solution in
the coarsest grid. One multigrid pass corresponds to two fine grid sweeps as

follows:
1+1/2+1/4+1/8+....=2

Thus, a single multigrid pass requires about twice the work of a single fine grid
sweep. If the multigrid pass has an effective spectral radius less than J; , where p

is the spectral radius of the unaccelerated iteration matrix, then the multigrid

method will be an improvement over the unaccelerated algorithm.

2.6 Spatial Discretization

All the independent variables in the linear transport equation have been
discretized except space. Spatial discretization is the most difficult and complicated
part in the numerical solution for the neutron transport equation. There are lots of
methods for spatial discretization. In this research we include several representative
advanced discretization methods, which are the Linear Discontinuous Finite
Element Method (LD), Lumped Linear Discontinuous Finite Element Method
(LLD), o
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Finest grid

Coarsest grid
[V-cycle]

Finest grid

[W-cycle]

~ Coarsest grid

[FMV-cycle]

Figure 2.7 Schedule of grids
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the Bilinear Discontinuous Finite Element Method (BLD), Fully Lumped BLD
(FLBLD), Simple Corner Balance Method (SCB) and Upstream Corner Balance
Method (UCB). We derive these discretizations in slab and x-y geometies.

2.6.1 General

The first step is to divide the domain of the problem into a finite number of
cells. Each cell is specified by the coordinates (x; ;) and has cross sections o;;; and
o,y (Which are assumed to be piecewise constant throughout the domain). The
spatial boundaries for cell V;; are half-integers and depicted in Figure 2.8. To derive
difference relations for cell V;; we integrate eq. (2.22) over X;.;2< x < x;+;2and y,.
12<Y <Yj+1/2-

To simplify our notation, we define

[ax= [dx 5 dy=["a. (2.150)

=112

Integrating our transport equation over a cell gives:
Hy, J;dy['/’m (X125 Y) =V ('xi-uz M)+, Idx['//m (%Y j1172) =V (% ¥012)]

o : ,(2.151)
+0,,, [ [, (x, ) = =24 [ [aypx, ) + o= [dbe [dyg(x, )

Now we define cell edge (line average) and cell interior (area average) quantities as

follows:
1
Wm,i+l/2,j - EZ lwm (xi+1/2 H }’), (2.152)
: 1 .¢.

Vi joarz =5 = |8 (5 Y j12), (2.153)

1
Ymii = Ax by, I dx jdwm (x, ), (2.154)

1

- [ [deix. ), 2.155)




Vi+112

& Vij

where

Yi-172

© Xi1/2 ‘ - © X2

Figure 2.8 Spatial coordinates for cell V;;

9y = [dx [ b, .

Ax Ay,
Ax; =X, 5 — X2 5
AY;=Yian =Y,
x= (X2 + X022,

Y=t Y002,
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(2.156)

(2.157)
(2.158)
(2.159)
(2.160)

If these definitions are substituted into eq. (2.151), we obtain the spatial balance

equation as follows:

En (Wm,;+l/2] Vm .-1/2,)"’

('//mlj+l/2 Wmlj—l/2)+o-l'l_]'//ml_]
J

Ay,

O 1
== i,j+_7zqi,j

27

(2.161)
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This spatial balance equation is the basis for the discretization methods. According
to the discretization method, the additional equations will be derived in the
following sections.

For slab geometry, equation (2.161) can be written as follows:

:um ‘ o-" i,J 1
-A;(wm,.-m Vi) FO W s = —2’—’¢, +54- (2.162)

2.6.2 Linear Discontinuous Finite Element Method (D) in Slab Geometry

The linear representations for the cell-average flux and cell-edge fluxes on
the two faces of the cell are given by the following equations.

2 x
V(XY =Y+ (=X W (2.163)

L

There are three unknowns in this representation: the cell-average flux (), cell
interior slope (%), and one exiting cell-edge flux (y;+;2). Therefore, two more

equations are needed and can be generated with the following integrations including

two different weight functions:
jdxb,, (0)[eq. (2.19)], (2.164)
where
b(x)=1.0, (2.165)
b,(x) =Xi7(x—x,-.), (2.166)

The following two equations are resulting equations:

s O, 1

E(Wm,iﬂlz “Vi112) T O Wi = 2} #, +Eqi > (2.167)
eilum x o-s,i x 1 R
Ar Vmpsri2 ¥ Vmim12. =W )+ O W, = 5 ¢ t39 (2.168)

4
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The closure equation is as follows:
Wm,itl/Z =V i'/’;,n | :um:O ’ (2-169)
The boundary conditions are given as foliows:

Vni2 =Jns #n>0, (2.170)
Vmparz = Jus  Hn <0. (2.171)

In eq. (2.168), 63 is for the conventional LD scheme and 6=1 for the mass-
lumped LD scheme. Experience with these schemes indicates that conventional LD
is more accurate for optically thin cells, while mass-lumped LD is more accurate for

optically thick cells.

2.6.3 Bilinear Discontinuous Finite Element Method (BLD) in x-y Geometry

The linear representations for the cell-average flux and cell-edge fluxes on

the four faces of the cell are given by the following equations.

2 x 2
Wa(x,¥)= Vi +E—(x_xi)y/m,i,j +E(y =Y, )W:x,i,j
i J
5, 5 - , 2.172)
At (J,C‘ 4x,) &, (- Y, Wonss
2 y
Wn(Xia25¥) = Vmi12,) "" ‘E‘(J’ ~YiWoivz)s (2.173)
J
2 x
W (X, J’j-l/z) =Vmij2t "A'x"'(x —X; )'/’m,i,j-llz > (2.174)
_ ) y )
W (X125 ¥) = Vmnsa,j t Z;‘(.V —Y; )'/’m,i+1/2,j > (2.175)
. ]
. 2 .
W (x, yj+l/2) =Wmijsz T E(x =X; )'/’m,i,j+1/2 . (2.176)

i

There are eight unknowns in these representations: the cell-average flux (y;), two

cell interior slopes (¥, ¥i; and ¥?;)), two exiting cell-edge fluxes (¥+1, and
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wi,j+1/2) and two exiting cell-edge slopes (wx§+1/z‘; and ’;;+1.2). Therefore, four more

equations are needed and can be generated by integrating the transport equation

multiplied by four different weight functions:

[ fayb e p)leq. 2221,

where
b(x,y)=1.0,
by(x,3) = (x - %)
(XY Ax. i)>
by(x,9) == (-3,)
;«l :y Ayl y yj H
. 2 2
b(x,))=—(x-x)—(p—-y,).
v4(x}’) Ax,.(x ,)ij(}’ ¥;)
The resulting equations are

:um - ﬂm ’
z‘x—('/’m,ﬁi/z,j - '/’m,i—llz,j) + Xy—(‘v]m,i,jH/Z ~Vmij-112 )+ OCijV¥m,ij

J

H

Gu‘»/’ 1
Tty Lo
2 W g i
6, u 7
JHm Yijlm o« x
('/’m,i+1/2,j T Wiz~ 2'//m,i,j) + ==, a2~ '/’m,z,j-llz)
Ax A
i yj
. H
O 1
x - SbJ gx x
+0¥mij = 2z + 27 T
6 .u 6.1
i,j*m y y ij'm
Wi, Vi)t ==V i o112 TV, 12 =2V, j)
Ax, Ay,
H
.. 1
y  _Zsij 4y y
+0 i Vmij = 59

2r M 2x

(2.177)

(2.178)

(2.179)

(2.180)

(2.181)

(2.182)

(2.183)

(2.184)



6, im O . , ,
'ij ('//:;,M/z,j + '//:;,i—IIZ,j -2y j)+ AJy ('//m,i,j+1/2 FWmijoti2 = 2W i j)
i ' J
o-s,l, 1
+o-tl_/'//;{’i,j = 27[! ,x}v E’qﬁ
. The four closure equations are as follows:
. A, +1 A -1 Mo
s (55 s (25 s s el
(A +1 (A, -1 n
yo o2 o+ N ) . =1In_
'//"UJ L 2 '//M.I.J+1/2 L 2 '//m,l,j—l/2 y'//m,l,j x Inml
(AX +1 (AX -1 H,
'//I:}:i.j = 5 )'//:;,iﬂllj "'\ ) ?:;-1/2,j _A'x'(/;,i,j’ A, =m,
(A, +1 A -1 n
'//:’J:"J = \y—z_JV/mJ,an + [}'—2_ '//m,i,j—l/2 —A'y'//m,i,j’ A'x = -I;;'!T .
Here, 6,/=3 are for the BLD scheme, 6,~=1 for the FLBLD scheme.
J J
The boundary conditions are as follows:
Vmiz, = fm,l/2,j’ Hyn >0,
'//:,1/2,; = fmy,uz,j: - M, >0,
Vmisrz,j = Imisrajs U, <0,
'//:,I+l/2,j = r:,l+l/2,j’ M, <0,
'//m,i,l/2 = fm,i,l/2’ nm > 0 H
Wmiriz = Fminrzs Mm >0,
Ymigsirz = Smigaras M <0,
Wsisaz = Jmigeiias m <0.
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.(2.185)

(2.186)

(2.187)

(2.188)

(2.189)

(2.190)
(2.191)
(2.192)
(2.193)
(2.194)
(2.195)

(2.196)

(2.197)
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2.6.4 _Simple Corner Balance Method (SCB) in Slab Geometry

SCB is a finite volume method in which there are three unknowns in slab
geometry: the left cell-average flux (wiz), right cell-average (yiz), and one exiting
cell-edge fluxe (¥;+;). Therefore, three equations are needed and can be generated

with the following left- and right-cell integrations:

[’ dx[eg. (2.19)], and [‘*"’dx[eq. (2.19)]. (2.198)

The resulting equations are

'i'lxli('//m,xz +Wpir = W12 ¥ Oy Wmi = 0';}1 Py + %ql , (2.199)
'Z'xm—i(zv’mwz Wi ~Ymia) ¥ W min = %”?m +%q,-R , (2.200)
The closure equation is as follows:

Vssir =Vmizs Hn >0, - (2201)
w;,.--m =V | /;m <0. (2.202)

The boundary conditions are given as follows: __.
Vo =Fr >0, (2.203)
W ta2 = s M, <0. (2.204)

2.6.5 Simple Corner lﬂance Method (SCB) in x-y Geometry

There are eight unknowns in x-y geometry: the left-bottom cell flux (wijB),
right-bottom cell (yir;z), ), left-top cell (wi,7), right-top cell (wir;r), and four
exiting cell-edge fluxes (Wi+1/2/8, Wir12i1> WiLj+1/2, and wirj+12)- The cell indices
and unknowns for SCB are shown in Figure 2.9. Therefore, eight equations are

needed and can be generated with the following integrations:
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[ dleg.22), [ fj’_mdy[eq. (222)]

i-lIZA 'j-12 . (2205)
[ ™" dhleq. (222)], and [ ax [ dleg. (2:22)]
i-1/2 'y i J
The resulting equations are |

fxy_‘('/’m,u,, B Ymir s =W )t Al.;..-('//m,il.,jB YWyt = Wi jo1r2)

! / , (2.206)
. O,
+0, 4.8V miLjg = ‘2_":&45:1, BT E;qiz., B
m (. M

%(2'/’».,“1/2,13 _ VmirjB ~ Vm,ir,jB ) +X;(WMJR,jB t Vo~ 2'/’m,iR,j-1/z)

! ‘ J ,(2.207)

O's/r,j8 1
+0 i BY mir.j8 = 2ﬂ—¢m,,-3 "'"2;%2,13

'//iLJ+1/2_‘/' | Vir j+ zz/

YVir12
e o Vi+1/2
- +1/2,j
ViLjr Vir;T 12gT
® @ o
WiLJ'B VirjB '//H-I/Z‘]B

Vj-112

Xi-1/2 Xi+1/2

Figure 2.9 Cell indices and unknowns for um >0 and 7, >0 in x-y geometry
‘ SCB and UCB schemes
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%(W""‘L’ T YWmirjr— 2 2yt )+ %‘(2'/’ milj+1/2 " Vmir,j8 ~¥mi, jT)
! J ,(2.208)
Osir 1

VO Y = _2”_¢il.,jT + by Qu,r
£ Vit V) + (2 “Vomiss ~Vmiar)
A Vmis12,,1 ~Vmir v ~Vmir,jr Ay, Vmir j+112 ~V¥mir,jB ~ V¥ mir, T
! J ,(2.209)

O ir,T 1

+ 0, g, 7Y mir T "—27[ ¢iR,jT + '2ﬂ—qiR,jT

The closure equation is as follows:

Ymisir2.8) = Vmirjpay>  Hm >0, (2.210)

V12,80 = Ymizpay:  Hm <05 (2.211)
Vmiwoir2 = Ymiarr> Mo >0 s (2.212)
Va2 =Ymimps T <0 - (2.213)

The boundary conditions are given as follows:

Y2 p@ = Jmuzjpmys  Hm >0, (2.214)
Vmis12,8) = Imas1i2, 8>  Hm <0, (2.215)
Vmiiz = Imawaze e >0, (2.216)
Ymiwasiz = Imiyisizs T < 0. (2217)

2.6.6 Upstream Corner Balance Method (UCB) in Slab Geometry
UCB method was devised to achieve the following [Ada 97]:

» A discretization that.allows transport sweeps to proceed comer by

corner, instead of having all _coupled in an-N-sided polygon;

= Better performance than SCB on cells of ‘low and intermediate
thickness;
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- = A leading-order solution in thick diffusive problems that is identical to
the SCB solution, at least on rectangular grids.

The Sy transport equations with UCB method in slab geometry are as follows:

Zﬂm + ) + + l l

- Wi —Vma)+ O Wi =20 50k, (2218)
20, o aar2) 12 asrzy _ 1 . 2219
—_——Ax ('/’m,iﬂ/z."/’m,i )"'O'x,i'/’m,m -'2‘°'so,i¢ik +§'QiR’ (2219

[

where

WI2) (0 11{{o,0+ o0+
W'(nljl/Z) =W’(;,ul‘/2)+__[(_¢ Q) _( ¢ Q} }
iR iL |°

22 o, o, (2.220)
+BE WP W) My >0
. . 11|{o6+0 op+0
'//,(,,IJUZ) = '//;(:‘,';/2) +—= ¢ -
22 o, )y o Jals (2.221)
+ BE ) WER D — WD) M <0
pry=22, (2.222)
T
3+4r+4a,7’
a(t)=————, a,=0455, 2.223
= orrar % (2.223)
o-t,iL_(R)Axi |
~ —_— 2.224
miL(R) 2|'u_m| ( )
2.6.7 Upstream Corner Balance Method in x-y Geometry
The UCB Sy transport equations in x-y geometry are as follows:

24, . a2 (+1/2) 20, . aar2) ' (1+1/2) (#+1/2)

""—('/’m,i,js VY mi-1/2,8 )+ ""‘—('/’m,u;,‘j “YmiL,j-1/2 )+ O jV¥VmiL B

Ax, Ay, .
i d ,  (2.225)

1 1
- )
=3z O0,,PL8+ o Ou s
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2u 2n
(+1/2) (+1/2) (+172) _,, (1+1/2) (1+1/2)
_Axm ('//m;+l/2,j8 "'/’m;,js )+_Aym—(.//m;R,j "'/’m:x,j-llz)"'o' t,i,j.//m;R,jB
g ! , (2.226)
Lo g0 +1lo
=g CsoniPiris TS i
2u 2n
(+1/2) (1+1/2) (+1/2) (1+1/2) (+1/2)
_A—x_m-(.//m,i,ﬂ' _'//m;—IIZ,jT)+A_;(Wm;‘L,j+l/2 —'//m,:L,j )+o-t,i,j'//m;L,j7'
g . ! . , (2.227)
= )
= Eo’so,i,j¢il., iT +§Qiz., iT
2u 3y . 27 .
(+1/2) (1+1/2) (+1/2) (+1/2 1+1/2)
_Axm ('//m;+1/2,_17' _2'/’”,;,,1 )+ Aym ('//m;R,j+l(2 .—,.//m,iR,l')) +o t,i,_j'//r(n;R,jT
d . ! . , (2.228)
o a)
2” 50,4, j ViR, jT 2” iR, jT
where
: . ! : !
'/’(I+l/2() _'/’(M/z) + 11 (as0¢()+Q] _(Gso¢() +QJ
mi,jB(T) = ¥ miL,jB(T) - o - —
A 227 o BB o, wsmn |»  (2.229)
1+1/2) 1+1/2)
+ ﬂ(T:r,iL,jB(T) )('//r(ntl. JBT) '/,r(n;—lR, JB(T) Hy >0
! !
WO +l_1_ (O'so(ﬁ()-l-,Q) : _(a’°¢()+QJ
mi B(T) = ¥ miR, jB(T) - E—
| 22rx o, LBT) o, BB | (2.230)
(+1/2) (+1/2)
+p (T;,m, JB(T) )(.//m;R, JB(T) ./,m;+lL, JB(T) 4, <0
al ! ‘ n :
'/’(Méizz)) - W(ltll.élzt)), +l_1_ (0-30¢( ) +Q) _(0}0¢() +Q]
miL(R),j m,iL(R),jB
22x I o, LGRT o, wrys |» (2:231)
: (+1/2) (1+1/2)
+ﬂ(T:,iL(R),jB)(Wm:‘L(R),JB - m;L(R),jT) Mm >0
I ! I
12 _./,(I+1/2)) +ll (Gso¢()+QJ : _(Q’;o¢()+QJ
miL(R),j = YmiL(R).)T - — ,
227 o, L(R)JB o, wyr |0 (2232)
y (+1/2) (1+172)
+ BT )('/’m,zz(k),fr - '//m;L(R)JB) Mn <0
© 3+4r+4a,7r?
B(r)=—"—""T— (2.233)

2427 +47?
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x Ornmy.p A% ' ’
O 2 10,4 e B 2234

miL(R),JB(T) 2|'um , ( )
o Gumsn® (2.235)
wAL(RIBT) Tl , :

2.7 Summary

In this chapter we reviewed the concept of Boltzmann linear transport
equation in general and Cartesian geometries. We have introduced the time-
independent within group transport equation which will be used in the remainder of
this thesis. We have discussed the angular and spatial discretizations. We have
introduced the advanced discretization schemes including Linear and Bilinear
Discontinuous Finite Element methods and Simple and Upstream Comer Balance
methods in slab and x-y geometry. All these discretizations will be used in the
remainder of this thesis. ;

We also have introduced the iteration methods commonly used to solve the
transport equation numeriéally, such as source iteration and cell block inversion.
Source iteration is composed of two processes. The first one is that the scattering
source is known at the beginning of each iteration. In other words, the scattering
source is from the previous iteration level and updated after the current iteration.
The second one is the transport sweeping that the calculation proceeds in the
direction of neutron travel, starting from a known boundary condition and ending at
the other boundary. In cell block inversion the incoming fluxes to a block are taken
to be those at the previous iteration level, while the scattering source is taken from
the previous iteration level in SI.

We introduced Fourier analysis, a procedure which helps to predict the rate
of convergence of an iteration scheme. Fourier analysis will be used in this thesis to
predict the spectral radius of iteration schemes for the newly developed acceleration

schemes. We also included the asymptotic analysis used in deriving the asymptotic
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continuous diffusion equaﬁon. The asymptotically derived continuous diffusion
equation can be used to accelerate the discontinuous diffusion equation in x-y
geometry. . |

We considered diffusion synthetic acceleration and included description of
the basic concept, the derivation ' procedure and the characteristics of its
convergence. We are going to use the modified 4-step method because of its

advantages. We also introduce the multigrid method to be used in accelerating the

solution for the asymptotic diffusion equation.
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CHAPTER 3
MULTI-LEVEL TECHNIQUES FOR THE SOLUTION OF
DISCONTINUOUS DIFFUSION ACCELERATION
EQUATIONS IN X-Y GEOMETRY |

3.1 Introduction

 The low order diffusion equations in slab geometry for advanced spatial
discretizations such as the LD (Linear Discontinuous) method, LC (Linear
Characteristics) method and nodal methods can be solved easily by a tri-diagonal or
band-diagonal matrix solution technique. However, the solution of the discretized
DSA equations for advanced transport discretizations in x-y geometry is still an
outstanding research problem. Morel, Dendy and Wareing [Mor 93] developed the
multi-level method to solve the diffusion equation of the modified 4-step method
applied to BLD transport in x-y geometry. It was proven that this method with the
same equations could be used to accelerate the S}v transport equations with Linear-
Bilinear Nodal method [War 94] and Linear-Bilinear Characteristics method [Ada
98]. The reason this works is that these three diséretization schemes all limit to the
same diffusion solution in the asymptotic diffusion limit [Ada 2Ka]. The multi-
level method consists of the following steps:

a) Source iteration for the standard BLD Sy transport equation in corner
forms;

b) Line-Jacobi for M4S BLD diffusion equation; calculate for the void cells
just outside the boundaries for the BLC (Bi-Linear Continuous) diffusion
equations

c¢) Residual calculation and restriction operation
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d) Solve the BLC diffusion equation using black box multi-grid method {Den
82]; BLC diffusion equation is derived by summing 4 equations around a

vertex, and has a nine-point stencil with a one-point removal term.

In this research we develop a similar 'pr0cedure for FLBLD, SCB and UCB,
but our new procedure avoids the use of void cells. While Morel et al. derived the
BLC diffusion equatiori from summing the 4 unknowns around a vertex, we used
the continuous diffusion equation derived directly from the asymptotic analysis for
the FLBLD transport equation. The asymptotically derived FLBLC diffusion
equation has a symmetric five-point stencil with a one-point removal term. The
SCB transport equation in x-y geometry is completely equivalent to FLBLD. Gulick
and Palmer ([Gul 2Ka] and [Gul 2Kb]) showed that the UCB transport calculation
can be accelerated by an SCB- derived diffusion equation. Therefore, ‘we can
accelerate the calculation for Sy transport equation with FLBLD, SCB and UCB by

the same acceleration procedure. We develop the multi-level procedure as follows:

a) Source iteration for the Sy transport equations with FLBLD, SCB and UCB
schemes ' ;
b) Block (cell) Gausg-Scidel' iterations for modified 4-step FLBLD diffusion
" equation for each direction
c) Residual ca1c11_lation and restriction operation on ';he residual
d) Solution of the asymptotically derived FLBLC diffusion equation; FLBLC
diffusion eqﬁation has a syx_rihe_tric five-point stencil with a one-point

~ removal term and can be solved by standard multi-grid methods.

~ We perform a Fourier analysis of this acceleration procedure and compare these
results to the behavior observed when the metho&_ was implemented. The results
show that this procedure is very effecti;/é and‘rapidly convergent.

We also suggest the simplified multi-level technique which avoids the
iterations for the diffusion calculation and enables to predict the spectral radius

exactly.
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3.2 Solution Technique in Slab Geometry

3.2.1 Linear Discontinuous Finite Element Methods (ILD)

The Sy transport equations with LD discretiiation schemes are as follows:

Ky + +] + 1 1
Xxj(w;’,li,’% Dy Lo, O = 7% 0 +=0, G.1)
W (i g iy gy oyt Lo e Lo g 0
Ax, ’ ’ T 2 2
WS =y, 0, (33)
- where
'(l 1/2) i (+1/2)
¢i b = wm'/,m: oy : (34)
m=1 ’
N v .
dw,=20. (3.5)
m=] .

Here 6=3 is for the conventional LD scheme and #=1 for mass-lumped LD scheme.
The conventional LD scheme is more accurate for optically thin cells, while the
mass-lumped LD scheme is more accurate for optically thick cells.

The LD diffusion equation in slab geometry was derived to be
unconditionally stable for the first time through the application of the standard 4-
. step method [Lar 82]. Adams.and Martin developed the modified 4-step method
(M4S) which has a simpler and easier to derive diffusion equation. Since we use the
MA4S method throughout this thesis, we consider only M4S here. The low order
diffusion equations derived through M4S are as follows:

1+1) 1+1) | 1+1 AL a2 Dy ‘
4 §+;/)2 -& f-;/)z +o-a,iAxif;'( = aso,iAxi (¢i( w2 "'¢i( )) ’ (3.6)

x(1+1)
(1+1 I+1 f 1+1) __ 1+1/2 4
9gi+;/)2 —egf—;/)Z +49 Di tAx +o-a,iAxif;x( * = o-so,iAxi (¢ix( Hn _¢ix( )) ’ (3'7)

i

where




_— + - .
82 = 8ins2 T 8inn2

x Di Jl‘ ‘ D i+ 1+ . 4 (38)
~[a(f,, +fo,.)—-—A—;f7°-1—[a<fo.-+, -foi‘-+1)+ﬁ], 0<i<I
(1+1) Z W(1+1/2) (1+1) ’ 3.9)

m=l

‘gi+1/2’ is the current at the interface Xi+1/2,-and ‘+* and ‘= denotes the positive and
negative directional partial currents , résbectively. The boundary conditions for egs.
(3.6) and (3.7) are that the incident current corrections (g;," or gr.;2) at the
boundary are zero for vacuum or incident boundaries and the net current corrections

(g1/2 or g1+12) are zero for reflecting boundaries:

c—[a(fy - fo’§)+£Ale—-‘“—] ;vacuum boundary
: v 1

8u2 =82t 82 =1 ' ) (3.10)
1o "¢ ;reflecting boundary

[e(for + for) -*P‘A’-x-fy-] —0 ; vacuum boundary
1
81112 = 81wz + 8rarz =3 . (3.11)

0 ;reflecting boundary

.

The LD diffusion equations in slab geometry have a band-diagonal matrix form
with a band width of 7 .which can be solved easily by standard band-diagonal
matrix inversion routines. Adams and Martin' derived the M4S diffusion equations
in two tri-diagonal matrix forms easy to solve. In slab geometry, the low order
diffusion equation in DSA with LD schemes can be solved easily and in a

computationally efficient manner.
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3.2.2 Simple Corner Balance Method (SCB)

The slab geometry Sy transport equations with SCB spatial discretization are

as follows:
2 m + + + 1
” =W —Yniin)+o ,,Wﬂi’z’—z w0 o4l Qs> (.12)
24, a2 . 1
e Y-V o W =20 4200, B
where
W’("I:I/Z) (W(l+1/2) ST;/Z)) . (314)
Vs =V > Hn >0, | (3.15)
veih=van?s p.<0. - (3.16)

The low order diffusion eciilation.‘s‘ derived bjr the M4S method are as follows:

2g" - gl + 0L bx 1 = 0,0, 00, BT - 4D), 3-17)
2gl ~ 8N+ 0, bx f{T = 00,05, 85D - 42), (3.18)

where

. _‘ + -
8iv2 = 8inr2 T 8inn2

= _Di(fiR 1+l(f;+lR— :+11,)
=l - =5 ) - 2L )

. " (3.19
O<i<l] ( )

The boundary conditions for egs. (3.17) and (3.18) are that the incident current
corrections (g12" OF gr+1/2) at the boundary are zero for vacuum and incident
boundaries and the net currents (g;,» or g1+,/2) are zero for reflecting boundaries:

D1 (fi,R - fu, )]
2Ax,

r

- [afl,R =

: vacuum boundary

812 =82t 82 =1 ' -, (320)
0 : reflecting boundary
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D -
lof;, +%] : vacuum boundary
812 =8+ 8ran = ro. .(3.21)
: 0 - :reflecting boundary

The low order diffusion equations resulting from M4S applied to the slab geometry
SCB transport equation also haye a band diagonal matrix structure, which can be
easily and cheaply solved by standard band diagonal matrix solvers.

3.2.3 Upstream Corner Balance Method (UCB)

The Sy transport equations with UCB method in slab geometry are shown in
Section 2.6.6. Gulick and Palmer ([Gul 2Ka] and [Gul 2Kb]) showed that slab
géométry UCB transport Source Jterations can be accelerated by the M4S eqliations
" derived from the SCB transport equations. Therefore, egs. (3.17)~(3.21) are

effective low order acceleration equations for UCB Sy transport _calculatio'n.

3.2.4 Fourier Analysis and Numerical Res@

The SI of the Sy transport equation and the acceleration diffusion equation

can be written in matrix forms as follows:

i Fal D+ 8, P 25,80, B ¥y
D,i0 + D,f4Y + D EUD =S (@D - D) (3.23)
where ’ |
b =) (3.24)
= W Vamn) ‘ (3.25)
£ = @ U — @D | | (3.26)

The matrices of DSA schemes with' LD, LLD, SCB and UCB in slab

geometry are 2x2 matrix as follows:
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0"'A=0'[S+DS-DA, (3.27)
where
S= 3 w,|(St, +SL,e ) +(S; +85,6) s, (3.28)
>0
D=(D1+D2e"“"' +D,e)S (3.29)

‘I’isan iteration‘ind\eX‘ @ is an eigenvalue, ‘A’ is an eigenfunction vector of length
2, and ‘P’ for the identity matrix.

The results of Fourier ana1y51s for DSA with LD, LLD, SCB and UCB
schemes in slab geometry are shown in Figures 3.1~3.4. Fourier analysis was
performed for a purely scattering infinite medium and S;s for the Gaussian
quadrature set. In Figure 3.1, the spectral radii for LD, LLD, SCB and UCB
schemes are depicted as a fuhction of mesh spacing. As shown in the figures the
eigenvalues of LLD and SCB are completely equivalent. Although their
discretization schemés a're‘derived_ By différenf me,fhdds, ‘the structures are identical.
The highest spectral radius is 0.50 at 3.0 mfp for LD, 0.46 at 1.0 mfp for LLD and
SCB and 0.29 at 1.0 mfp for UCB. As the mesh spacing increases, the spectral
radius goes to zero for all discretization schemes.

Figures 3.2~3.4 show the eigenvalues as é fuﬁction of A4x for various mesh
spacingé from 0.01 mfp to 100.0 mfp. As shoWn in the figures, the eigenvalues at
the high frequency mode (#/2<Adx<n) are ‘les‘s than those at the low frequency
mode (0<Adx<w'2) for the_thin mesh si)a‘cings (50.1 mpp). But the eigenvalues for
high frequency modes are greater than those for low frequency modes for thick
mesh spacings (>1.0 mfp). This fact makes further convergence acceleration with
standard multigrid fechnique impossible. ’Since the solution techniques for the
various DSA schemes in slab geometry are easy and simple, we do not include the
comparison beﬁween the theoretical spectral radii from Fourier analysis and the
observed ones from the sample problem. We only consider 2-dimensional solution

technique for the diffusion equation in the advanced discretization schemes.
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0.6

0.5 -

0.4

LLD, SCB

0.3 -

Spectral Radius

024

0.1 -

0 T - T T T T
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

Mesh Spacing (mfp)

Figure 3.1 Fourier analysis for LD, LLD, SCB and UCB M4S DSA
in slab geometry (¢=1.0, Si¢)

0.6
0.5 -
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0.3 A1

Eigenvalues

0.1 1

0.1 mfp

100.0 mfp

0 ' 1 Ll
0.00 0.50 1.00 - 1.50

AAX
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Figure 3.2 Fourier analysis for LD M4S DSA in slab geometry (¢=1.0, S;6)
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o o o
w H (3,
4 1

-3

Eigenvalues

o
N
iR

0.1 -

100.0 mfp
0 - T T T T T

0.00 0.50 100 150 2.00 2.50 3.00
AAX

Figure 3.3 Fourier analysis for LLD and SCB M4S DSA in slab geometry

(c=1°0= Sl6)
04
0.3 1
723
[
=2
2 0.2 - b -
Q
=
L
" ’
100.0 mjp____
0 ‘* T T T
0.00 0.50 1.00 1.60 2.00 2.50 3.00

AAX

Figure 3.4 Fourier analysis for UCB M4S DSA in slab geometry (c=1.0, S;5)
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3.3 Multi-Level Technique in x-y Geometry

The low order diffusion equations in multi-dimensional geometry are in the
form of highly sparse matrices, which, if they are symmetric, can be solved using
techniques such as the CG (Conjugate. Gradients) method and, if they are
asymmetric, GMRES (Generalized Minimum Residual) Method. However, those
are computationally expensive and not efficient sometimes. Morel, Dendy and
Wareing [Mor 93] developed a multi-level technique: for the solution of these
equations, which in a general sense is a type of multigrid method. The low order
diffusion equations with standard BLD on fhe fine grid can be accelerated by the
BLC (Bi-Linear Continuous) equations which exist on a coarse grid. They derived
the BLC equation by summing the four unknowns éiound a vertex. The continuous
equation also can be accelerated by the spatial multigrid method. Wareing [War 94]
and Adams [Ada 97] showed that this same multi-level acceleration procedure can
be used to accelerate linéar-bilivnear,nodal and linear-bilinear characteristiés Sn
transport calculations as well. The reason for this is that these three discretization
schemes have the same solutions in the diffusion limit. Here, we develop a similar

multi-level procedure to accelerate FLBLD, SCB and UCB schemes.

- 3.3.1 Asymptotic Continuous Diffusion Equations for FLBLD

The FLBLD Sy transport equations derived in Chapter 2 are as follows:

(1+1/2) 141/2) (+1/2) (1+1/2) (+1/2)

Ium ( Mm :
_Ax,. ('//m,i+1/2, i~ Vmian, j) + —Ay, (W;h,i, 4112 =W mi j-112 )+ Ciij¥mij

L o R (3.30)
— O]
= E o'so,i,j¢i,j + '2";Qi,j
H (1+1/12) (1+1/2) @+1/2)y , 1 (1+1/2) 141/2)
— ('//m,i+1/2, J YV, — 2'/’».,.', j )+ (W;,i, 27 W;fi;-l/Z )
Ax, Ay,
: : , (3.31)
u+sl/2y __ L~ " x()
+ o-t,i,j'//r:,i,j = E;Gso,i,[¢ifj + '2';[' lx_]
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(+172)

H (1+1/2) ¢+1/2y \ , M L (14172) (+172)
—A: (W;:,Hllz,j - V’::,i-uz,j) + —"Am Wy jsir2 TVmsjcira = 2y, )
i : Y
. : , (3.32)
y+2) _ o y
+0Vmij = 5;‘7:0;,145:'{1 + Py
H (1+1/2) Y(1+1/2) y+12)\ » Mmoo x(141/2) 2(1+1/2) . x(1+1/2)
Wiz tVmicrn — Wi - )+ Zm—(Wm,i,jHIZ FWoijaaiz = 2W mi g )
1 1 T
xy(l+1/2) _ ' xy(l) xy
+O0uWmij T go‘so,i,j¢i,j + Py
where
As172) o (4102) 4, x(4172) ' '

Vmis2,; =¥ ;(»71 Wi s Hm :0 ) (3.34)

YAI2) _ o yi+l/2 (1+1/2)
Vmis112,) = V¥m,j + W;:{'i,; s Hp :0 ’ (3.35)

(s172)  _ . (41/2) (141/2)
Vi jtirz = Wl(n,i,j’ t W;:,i,; s Nn :0 > . (3.36)

141/2)  _ x(i+112) xp(I+1/2
W;Ei;tl/)Z - W;,z:l ) t Wm,i(,; )’ Nm :0 . (3°37)

Morel et al. [Mor 93] derived the continuous equation by summing four BLD
diffusion equations around each vertex and assuming continuity of the ﬂux Since
the BLD diffusibn equations in corner notation were not sufficient to generate the
continuous equation at the boundaries, “void cell” equations are developed to
provide the extra information. Here we derive the continuous equation directly from
the asymptotic analysis. The asymptotic analysis was performed by Wareing ([Ware
92] and [War 91]) for the first time. We change the iteration indices, (I+1/2) and
(D), of egs. (3.30)~(3.33) into (/+1]), and subtract egs. (3.30) ~(3.33) from these new
equations to obtain equations for iterative corrections to the angular fluxes. We

introduce the following relationships:

(+1) _  (I41) U+1/2)
/' m,i,j ,_.Wm,i,j _"/’m;,j ’ (338)
(l+1) _ 1+1 1+1/2 .

Sl =y — i, (3.39)

fra - Wy((+l) —y ’.:(,';1/ 2N (3.40)

mji,j mi,j
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f,:},'(,m) _ W’:y'(.:+1) W,,?'.(,I,H/z) , (341)
f(1+1) ¢(1+1) (l+1f 2) , (3.42)
f'xj(1+1) ':’:J(1+1) _ ¢.-f,(-1+” 2, (3.43)
£ y(isl) _ ¢y(1+l) ¢y(1+l/ 2) (3.44)
1 I+1 I
':y(1+) _ xj( +) _ '43(( #17) (3.45)
14172 1+1/2 1
74 =7 - g0, 649
f'.;(1+1/2) :j('M/Z) _ ¢.-f,(-1) . (3.47)
y(1+l/2) = .V(1+1/ 2) _ }'(1) .
fxy(1+l/2) ¢xy(1+1/2) ¢xy(1 y . (3.49)

Next, as described in Section 2.4.2, we scale our correction equations in a way that

is consistent with optically thick and diffusive problems:

H 141 141 n 141 141 o, 1+1
m(f(,.++1)/zj fnsntl)/z,)"' m(f(:,)u/z f»ffj)-uz)"' “f,.ff,’

, (3.50)
O.ij 141 141/2
=[# a,lj] f(+)+£2 sOtjf;(+ )
6; ,u 141 141 (R n 141
I+1
== sy + 1 i+—l)/2/ fm‘f,’)+ n (f o = Fah )
, (3.51)
o'r.i,j xely _ 1 9uij x(i+1) 1 x(1+1/2)
+—;_ myi.J) —[—8_ 80-0,;]] ” f +8E7_;0-50J,jf;,j
H 141 141 U 141 141 141
- (fyf:l./)Zj - :}—:/)21)4- "j - (f( :11-]/2 f( :.j)-l/2 —2fns,l+j))
, (3.52)
Grij pyasty _ i 1 e 1 (+1/2)
mi,j [ - ai_;]zn_ i,j +827Z' 50,i,j i:‘;'
lj:um 1177»:

1+1 1+]1 1+]
(f oz ¥ Sl =250 )
(3.53)

I+1 I+1 I+1
(fy$+*1./)2/ fy,f~:/)2/ fr:,f;. ))+

“J xy(l+1) __ [O' J'__
mi,j

I+1 141/2
al_[] fv(+)+2 .to,ljf;;y(+ )




where

14112)  _ p(+1/2) x(l+l/2) ) >
frrf,itl/Z),_j fmlj +f <0:

Y+1/2) _ py+ir2) xy(l+l/2) >
fmntl/2] fm,lj +fmu :um<0’

(I+1/2) (+1/ 2) 4 £IUHD) >
fmtj:l:lIZ fm,:j fml,j H 77m<0:

x(1+1/2) _ prx(i+1/ 2) xy(i+1/2) i >
fm,l,j:tl/Z fm:j fm,:j ’ 77». <0'

The asymptotic analysis [War 92] yields the following information for £<<1:

11
1+1 ! 1 {
fr:;j) (ﬁil?Z JH2 +f(17)2 LJ+1/2 +j;-(+17)2 J-112 +f-l/2,j—l/2)+0(8)’

27 4

f(m) ( i£117)2,1+1/2 +f(117)2 72 +j;-(+117)2 112 +f£117)2 ;—1/2):
1 oD = (f;glj)z =t iy 112 +-/;-(|-117)2,j—1/2 A ;-1/2):
b ) (f;illj)z sntt A 4112 - f5h J-1/2 f -1/2 j—l/Z)
by 20D (ﬁ£117)2 =T iy 412 f;+1/z st ) 1-1/2)

) _ U+

f;,mz (f;n/z J+2 f—l/Z j+l/2)

fx(1+1) ( f(1+) U+ )
2 = 12,4112 — Jim1s2, 44112 )5

£ =l(f(l+) F 1 )
i+1/2,f 2 ifl/Z,j+l/2 i+1/2,j-1/12 ] >

sy ( (t+) (+) )
j;+l/2] -f;+l/2,j+l/2 j;+l/2 ,J=1/2

141 (I+1) nU+1) 20+1) (I+1)
ij(giﬁfz,), gll-l-l/2j)+Ax (g: J+1/2 -g! J-1/2 )+Ax Ayo,; j~f;
(14172
= Ax, ij s0 ljj; )

H
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(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)
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(1+1) p(l+1) (1+1) . x,7(1+1) x,n(l+1)
Ay, (gﬁ»llz,j +gi’i1/+z,j _2gil,‘j " )"’ Axi(gi,j+1/2 =& j-1/2 )

3.68)
(+1) _ (1+1/2) ? (
+Axiijo-a,i,jf;:i " _Axiijo-sO,i,jf;':i " :
u(l+1) a+) ) (I+1) _n(l+1) n(+1)
Ay (24D — g2ed )+ A (gD, + gD, ~ 2760
, (3.69)
+Ax A o y(I+1) __AxA o fy(l+l/2)
i y.l ai.jJij - i yj Jo,i,j ij
L (1+1) Y. u(l+1) y.u(l+1) (1+1) xn(1+1) xn(1+1)
ij(giillz,j +gi-ll;2,j '2gif )+Axi( fﬂl;z +8&ij-12 _2gi,j ) (3.70)
(+1) _ (1+1/2) ? :
+Axiijo-a,i,j xjy " —Axiijo-sO,i,j ’:;y "
(1+1) 1+ D}, I+ (1+1)
+1 N7 (ESVE T 1] +1 +1
‘ ij(gil,‘j +gi),,j” )__Ax (fi+1/2,j+1/2‘fi-l/z,j+1/z)’ (3.71)
.
D’
(1+1) AU+ ) ij [ p(1+1) (i+1)
ij(gil,‘j " _gi{j )“ (fi+1/2,j-1/2 - i—l/2,‘j-l/2)’ (3-72)
Axi
. D*
n{l+1) A+ Y LI [ £U+D) i+
Axi(gi,j+ +g.U7 : )‘_ (f;+172,j+1/2 - i+172,j-1/2)’ (3.73)
Ay,
. D \
n(l+1) U+ _ i,j [ p(1+1 1+1)
o (g = gy )= = LU i = S ) (3.74)
J

Using egs. (3.58)~(3.74), we can get the following continuous diffusion equations
for the FLBLD scheme:

"y y ] "y y
) Di+l,j Di+l,j+l ( @+ _ £ue ) 2 Di.j +Di-j+1 ( (+1) _ fU+) )
- Ax + Ax fi+3/2,j+1/2 ir1/2,js1/2 )1 _Ax .—Ax f.’+1/2,j+1/2 f;-—1/2,j+1/2
i+l i+l i i
[ X X 7] [ P4 X .
) Di.f+1 +Di+1,j+1 ( Usly £+ ) + Di;j +Di+1,j ( G+l) U+ )
Ay Ax fi+1/z,j+3/z i+1/2,j+1/2 —Ay —_—Ay f.-+1/2,j+1/2 fi+1/2,j-1/2
LY jn jol ‘ &Y J .

(I+1) _ +1/2)
+4(AXAYO ) 112 g2 Fisria joirz = AAXAYO 4 )i a2

(3.75)

where

4(AxAyo, )i+l/2,j+l/2 = Axiijo'
+ Ax,.ij+10'

aij T Ax,, Ay G aisl,j

A , ’(3.76)

a,i,j+l 1+1ij+l o-a,i+1,j+1



http:3.58)-(3.74

- 75

HAxAYO o ) inrajorr =AxAy; 0, (f,+ 1+ .)} +f;jy

_ Yy _ o
+4x,,,Ay jo'so,i+1,j(f;+1,j i TSy — fiy)

, i , 3.77)
+AXAY 00, (Fja + S i i "'f;,?;l)"'
Ax, AV 1000, (S —fin, j#l -f;fl,jﬂ +f;3,j+l)
Dl ==Xl (3.78)
| 3at,i,j
D}, = —, ' . (3.79)
T 3at,i,j . ' ~

The above bilinear continuous diffusion equations have a ﬁve-point stencil with an
one-point removal term. | ‘

The Fourier analysis of the Gauss-Seidel iteration applied to the bilinear
continuous diffusion equation in a purely scattering medium is shown in Figure 3.5.

The eigenvalues of the Gauss-Seidel iteration are given by:

56" +8,e™"

o= _ _ : 3.80)
(6, +8,)2-e" —™)+025+0,,,] . G.
where
&=t (3.81)
E '
1
(3.82)

e 30,,,49]

Since the eigenvalues for high frequency error modes are always less than 0.5 as
shown in the figure, the multigrid method can be used to solve the asymptotic
continuous equation. In problems with absorption (c#1), the maximum eigenvalue

(spectral radius) at the zero frequency méde (Ax=Ay =0) will be bounded less than

1.0.
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eigenvalues

Figure 3.5 Fourier Analysis for Asymptotic Continuous Equation (c=1.0, Ax=Ay)

Since asymptotic boundary condition caﬁ not be used, Marshak boundary

conditions are used instead [War 93]. These boundary conditions have the form:

Left edge
y y
_9 Dj, + Dy}, ( £ g )
. T V3 402 1/2,741/2
Ax, Ax,
X X
+2 D Li [ £(1+1) (I+1) ) ) Dl,j+l () (I+1) )
"_A —\V1/2,j+172 "fl/z,j-l/z - A 1/2,j+3/2 "fl/z,j+1/z ‘
J yj+l
) ' (+1)
+ [51, (ij + ij+1) + Axlijo'a,l,j + Axlij+1°'a,1,j+1 l/2+,j+l/2 > (3.83)

141/2 141/2 - y(l+1/2 14172
=Axlijo-so,l,j(f;fj+ )"ffj“ )+fl:‘;.(+ )—flj’(* )

(+112)  px(i+1/2) y(141/2) BU+1/2)
+ A AY 10011 AN e 5 )




s _| 1 vacuum boundary
LRED ™1 0 reflecting boundary

Right edge
5 Dy, L DI Pijn ( (I+1) _ fUs) )
Ax, Ax 1472,j4/2 ~J 112,412

X

( f(1+1) (+1) )_2D1,j+1 (1+1) f1+1 )
14172,j4172 = J14172,j-112 _A 14112,j+312 — J 14172, 54112

J+l

(1+1)
+[5 (ij +Ay )+ Ax,Ay 0, i +Ax A 11 at ju 1f1+1+/2j+1/2 '
141/2 x(14172 141/2 1+1/2
=Ax,ij0'son(f(+ ) f(+ )+fy(+ )+f1x‘;'(+ ))

I 1/2 1+1/2 y(I+1/2 1+1/2
"'AxAy;+lo-s0,11+l(.f(+ )+fX(+ ) f1,(+; )+.f11(+ ))

1,j+1 1,j+1
Bottom edge
X X
o] it D;, Du-ll ( (1+1) (+1) )
- i+1/2,3/2 f.+1/21/2
AJ’1 Ay,
y ¥
+2D (f(m) (1+1) ) 2D:+11 ( fl f(1+1) )
Ax, Yz = iz Ax 312,112 = Jiss2,012
i i+l
(1+1)
+[58(Axi +A%,,)+ A A0, )+ BX AVIO sy Viious -

1+1/2 1+1/2 1+1/2 1+1/2
—AXAyl SOll(f;(+ )+f;',);(+ )--f;{(+ )__f;?’(*' ))

(4172)  px(1+1/2) (1+1/2) (1+1/2)
+Ax,,, 4, O50,i41,1 ( - fi+1,1 f.fl Ot f.ﬂ 1 )

i+l.1

Top edge
X
2 Du DmJ ( (I+1) (1+1) )
. f,+1/2,.1+1/2 i+1/2,J-1/2
AJ’J by, '
y ¥y
+2 Di,.l ( f(1+1) f (1+1) ) D;,, ( f(1+1) f(1+1) )

— \Vin2sa2 —1/2,J+1/2 437204172 ~ Jis1/2,041/2
Ax, Ax,.+1

(1+1)
+[5 (Ax, +Ax, ) )+ Ax,Ay 0, + A%, AV 0,0, i+1/2,J41/2
14172 141/2 1+1/2 141/2
=Ax Ay, o sO:J(f(+ )‘"fx(+ )+f.y(+ )+f;'xy(+ ))

@412 _ 3(4112) | £y(412) (1+1/2)
+Ax,,AY ;0 40 (fm,J fm,J f;+l,.l =127

77

(3.84)

(3.85)

(3.86)
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- The corner boundary conditions can be derived in the same manner.

Left-bottom corner

T \VViarz2a2 ~ Ju2172 112,312 — J1/2,1/2

Ax, -4y
+[5,49, + 8,05, + Ax, Ay, 180, . (3.87)
= AxlAylo- OII(f;(IIH/Z) _fixl(IH/Z) _fiJ;(I+1/2) +f;11y(1+]/2))

Dlj,’l( (1+1) #+1) )_2 _D_lxl_ ( (1+1) (+1) )
A

Right-bottom corner
y x
2D1,1 ( () _ pU+1) )_2D1,1 ( (1)  _ £U+D) )
—\Vis212 ~ Ji1-u2112 V232 ~Js212
Ax, Ay,
141
+ [5RAJ’1 +0,Ax, +Ax,Ay,0,;, 1(+;/;,1/2 . (3.88)
p 1+1/2) 141/2 141/2 1+1/2
=Ax1AJ’1°'so,1,1(f1(,1+ )+f1J,‘1( W _.flj,’l( 2 _fIJ,‘iV( " ))

Left-top corner

D’ D?
) u( U+ (D) )+2 u( W+ _ Qs )
3/2,J+1/2 1/2,7+1/2 1/2,J+1/2 1/2,J-1/2

Ax, Ay,
+ [5LAJ’J +0,4Ax, +AxAy,0,,, 1(/12+,.11)+1/2 . (3-89

1+1/2 1+1/2 1+1/2 1+1/2
=Ax1AJ’J°'so,1,.1(fifJ+ )_f:/“ )+f1f1(+ )_fig(+ M)

Right-top corner -

Y x
2 Dy, ( (+1) (+1) )+ 2D1,.1 ( (+1) (+1) )
1+1/2,J41/2 —f1-1/2,1+1/2 V12042 ~J1a112,04112
Ax A
1 Y
‘ \ : (I+1) '
+[5RAJ’J +0,Ax, +Ax,Ay,0,,, 1+;/2,.1+1/2 . (3.90)

_ (+1/2) (1+1/2) (1+1/2) (1+1/2)
=Ax,Ay;0,,;, (f1,.1 + 1i1+ + 1’,’.1+ +f1,.1 )

The above asymptotic continuous diffusion equations will be used for the
acceleration of the iterative solution of the FLBLD diffusion equations. This
continuous diffusion equation can be solved by the multigrid method. We discuss
the implementation of multigrid for these equations, but do not present numerical

results for this here. This is left as future work.
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3.3.2 BLD Diffusion Equations from Modified 4-Step Method

By taking 0" (Ewp') and 1% (CWnTm and Zwp,-) angular moments, we can
derive the low order equation through the modified 4-step method. The following

equations are from the 0% (Swiy) angular moments of the BLD transport equations:

ij (g.(ﬁgj - gl(—l;/l%j )"' Ax, (gi(,lfll)/z - gi(,lf—ll)/z )"’ Axiijo-a,i,jf;s'H) (3.91)
= Ax, Ay 1O 50,4, (¢i(,l;“2) —¢i(,_li)) ’ -
ei,jij (g:(i;})zj + g,(ff/l)z, - 2g_i’,‘;l+l) )+ Ax, (gzle:;l/)z - gf,ﬁ'l:il/)z ) 3.92)
+Ax,Ay jo-a,i,jf;'fi(hl) =AxAy 0, ; (¢ifj('l+”2) - ¢if_§'l)) ’ e
Ay; (gﬁlle)j - gn?’-(llfzi,)j )+ eiJAxi (gi(,lﬁl)/z + gi(,l;—ll)lz - 2gi",1('l+l))
" , (3.93)

I+1)° Ap 141/2) I
+Ax Ay 0, [ = Ax Ay oy, (@70 <970

»J LJ LY

(1+1) y(+1) .yl (1 (1+1) (1+1)
gi,jij( i’:-lfz,j +gi—l/+2,j _2gi,jy +))+0i,iji(g::j-:i/)2 +gix,j-4i/2 _2gi’{}x * )

+Ax,Ay 9 a,, jf;'xy(M) = Ax,Ay 10 50,4,/ (¢'x}"(l+“2) - ¢ix¥(l))

N ij \J

. (3.94)

The current equations can be derived from the 1* (Zwynm and Zwppm-) angular

moments as follows:

— + =
8insn,j = 8inrzj T &ian,j

.. Dy . Dy (395
=[e(/,, +ﬂ.j)_'HﬁJ]-[a(ﬁ+lJ = [ ) t——

)

i+l
giil/Z,j = g:-:/Z,j +g.-’+'uz,,-
D, . D,,; R (3.96)
=[a(f+ f3)-—=f31-le(fi, - [ ) +—L 13,
J iJ Ax,. J 1.j J Axiﬂ J
. 8ijn = g::j+l/2 +8i s
D, . ‘ D, .., , 3.97)
=[a(f; + ifj)—_u- ay]"[a(f; a1 i?‘n)""—u—t‘ ii’+l
J Ay, J N sl "
gzj+1/2 = gf,;n/z +gif;+l/2
D, . D, . - (3.98)
_ x _ T _ x i,j+1 4
_[a(f;,j +f;:y) Ay; 1?'] [a(fi,m iy+1)+ A}’M fffn




with the cell-average currents given by:

2D, .
R LI £x
& A T
g’ =__2.1_)i 'y
i ij ij?
gl _2D s
iJ Ax i ?

i

gt = _EBLL 2
5LJ [N
Ay,
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(3.99)

(3.100)

(3.101)

(3.102)

The boundary conditions are that the incident partial current is zero for vacuum or

incident boundaries, and the net current is zero for reflecting boundaries:

- + -
812, = 8uz,j t &z

D |
_10-[a(f; —,f,f})+z:;"-ﬁf‘j] ; vacuum boundary >
1

0 ; reflecting boundary
gly/z,j = gly/+2,j +g;;.2,j
0 y xy Dl.j xy . b d
= =la(f}; ".fl,j)+-A—x—_ﬂ,j] ; vacuum boundary >
1
0 ; reflecting boundary

+ -
812, = 8rsv2,; Y 8rai2,)

D, .

_ [a(f,,,+f,’f,)—E"’—f,’f,]-0 ; vacuum boundary >
7

0 ; reflecting boundary

D, .

y — ot y-
8ivs2,; = 8r41/2,; Y 814112,
1,j .
— [a(f/),'j +f;3)—Ax ,’3]—0 ; vacuum boundary >
7

0 ; reflecting boundary

(3.103)

(3.104)

(3.105)

(3.106)




) . )
812 =812t 82

X x+ x~
812 =812t 8ian

_Jo-la(s,

. D
_J0-[a( ,j—j’,j‘,’)+A—}';‘f,j‘l7 ; vacuum boundary >
1

D,
17 ,-,}1')+A—;- 1] ; vacuum boundary -
1
0 ; reflecting boundary

0 ; reflecting boundary

—-—ot -
8isni2 =8y Y &isui2

D» .
_Jla(f, +f,-f;)—K'-”Lf,-f,]—0 ; vacuum boundary >
- Y,
0 ; reflecting boundary

x — X+ x-
8igni2 = 8igniz t 8isnn

b
_ [a(ﬁf;"'ﬁﬂ)—-&'—”iﬁj"]—o ; vacuum boundary >
- Y,

0 ; reflecting boundary

3.3.3 Simple Corner Balance Method

The x-y geometry SCB Sy transport equations are as follows:

24,
Ax, (v

24y,
A (¥

i

24,
Ax (v

(+1/2) (1+1/2)

=

(+112)  _ (4172)
mi+1/2,j8 ~ Vm,i B

(+1/2) (+1/2)

21,
miyB — Wmi-1/2,j8 )+ ‘E(Wm,u., 5 Vi ian

1 «
)
o C o0 Pis +Ou s

21, (+1/2) (+1/2)

)+ Ay, (Vmir.; "/’m,(R,j-l/z

1 /
=0y, j¢i$2?j8 + QiR, jB

U+1/2) _ . (1+1/2)
m,i,jT Wm,i—l/Z,jT

2z

2n_ .
(1+1/2) (1+1/2)
)+ _Aym Ymis,j112 =~ VmiL,j
i

1
— )
=5 O, j¢iL, it QiL,jT

U+1/2)

) + Crij '//rn.iL,jB

)+o

)+o

(+1/2)
1i.jY mR, B

(1+41/2)
ti Y miL,jT

?

?

?
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(3.107)

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)


http:Wm,i+1/2.JB

24,
Ax (v

i

where

+1/2)

—_ ) + _2_7.7_2. — ) +0
mi+1/2,57 ~ Wm,i T Ay Wmsr o2 —Vmir,) 1i,j ¥ m,iR JT
i

(+1/2) (I+1/2) (+1/2) (141/2)

. 1 «
- )
= O jPiryr + Ot

@12y _ L, @) (1+1/2)
Ymijsir) = E(Wm,il., Br T '/’m,iR,jB(r)) >

1
(+/2)  _ (I+1/2) +1/2)
Ymis(r),; = '2‘('/’m,iL(R),jB +Ymayr)>

(+1/2) L UH12) ’
Womin1128r) = Vmi-r sy Hm >0,

(1+1/2) . (s1/2) .
Ymini2,pr) = Vmir,jgcry>  Hm = 0 >

(1+1/2) R
Vmi-112,j8(r) = Ymi.ipr)>  Hm <0,

(1+1/2) (I1+1/2)

Yminrz,sm =VmiaLsry>  Hm < 0,

(1+1/2) L 4172)
YmiR(D),j-12 = ¥mR()jir> T >0

Xz

Yin
iLjT(4) iRjT (3)
iLjB(1) iRjB (2)
Yir
Xir12

Figure 3.6 Cell indices in SCB scheme
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(3.114)

(3.115)

(3.116)

(.117)
(3.118) |
(3.119)
(3.120)

(3.121)
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(+1/2 _ L U41/2)
WM;R(L)),j+1/2 =Vmr@yr>  Mm>0, (3.122)
1+1/2) o U1/2)
W;;R(L),j—ln =W p>  Mm <0, (3.123)
(+1/2) L (41/2) :
- Wik 2 = Yy mss Mm <0, (3.124)

By taking o™ (Ewm-) and 1% CWn7y and Iwp,u,) angular moments, we
can derive the low order equation through the modified 4-step method. The

. following equations are from the 0™ (Zwm') angular moments:

{+1) (I+1) (+1) (1+1)

Zij(gi(,l;;)"gi-llz,js)"'_ZAxi(giL,j _giL,j—llz)+Axiij°'a,i,j iL,jB

I+1/2 [
= Axiijo-so,i,j (¢l§.:18 = ig,)jB)

(I+1) +1) (1) _(+1) (+1)
248y I (gur/z,js - gi,;s )+ 2Ax, (giRjj ~&ir,j-1/2 )+ Ax,Ay jo-a,i,jf;R,;B

. (3.125)

) , (3.126)
= Ax, Ay 10 50,i,j (¢$ 1'11;2) - ig?jB)

20, (&l7 -l Jo 20 el 8l e My, SR
= Ax, Ay 10 504, (¢1(LISIT/2) =4 i(If.)ﬂ')

28y, (g%, v — 84D )+ 20, (g4h , - 840 )+ Ax Ay 6, £ 550 (3.128)

_ (1+1/2) Q)
= Ax,ijo-so.,,j (¢IR.:]T - iR,jT )

The current equations can be derived from the 1% CWn7im: and Zwmiy:) angular
moments as follows:

+ -
8i112,8(r) = iz, jary T &icv2, ()

D,

= [‘#;-m, JB(T) ~ TSL(fHR, jB(VT) —f;-u., JB(T) )] H (3-129)
i-1

D, .
-5 +?§(fik,j3(r) = Ju syl

) . )
8wy, j-112 = 8iwr)j-172 T 8ir(r),j-1/2

D,
= [af iL(R),j-1T — —Jl(f iL(R),jAIT — f iL(R),j-1B )] > (3 1 30)
2Ay,

Jj=1

D,
~[F w3+ E_Ayf(f wryr — Sy, ))
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&8sy = "‘A—;_'(fik,jzs(r) = fu.p@)» (3.131)
D, . ‘ ,
giryj = _'A;j-(fiL(R),jT - fiL(R),jB ). (3.132)
J

The boundary conditions are that the incident partial current is zero for vacuum or
incident boundaries, and the net current is zero for reflecting boundaries:

. R + -
8112, 8ty = 8u2 sy T 8112, 8(7)

( ¥
O~ oo + 5, Vinase = fwo)) ; vacunum boundty (3.133)

0 ; reflecting boundary

.

+ -
812,58ty = 812, 8ty t 814112,8(T)

,

y
[ .5y = _Z-Zx—j,— (Fwjory = Frawmery 10 ; vacuum boundary 3.134)

= <

0 - ;reflecting boundary

L

— + -
gury2 = 8wz T &Ly

D, |
0~ [ isnsm +§Z;;(fib(k),ﬂ ~fum,s))  ;vacuumboundary (3.135)

0 ; reflecting boundary

+ ’ - .
8irys+1i2 = 8urys+iz T 8wy

iJ
[ vy — Z_Ay_; (f wr ~ Sums)]—0 ; vacuum boundary . (3-136)

0 . ; reflecting boundary

L

Before we proceed, we should point out that in x-y geometry, the SCB diffusion

equations are completely equivalent to the FLBLD diffusion equations. In Section
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3.3.2, we used the average- and slope-unknowns to describe the FLBLD schemes,

but through a change of basis functions, we could write the equations in terms of
corner unknowns. While the four unknowns in FLBLD are comer values, the four
unknowns in SCB are the average values for the flux in each quarter cell. However,

the equations of the FLBLD scheme are identical to those of the SCB scheme.

3.3.4 Upstream Corner Balance Method

The x-y geometry UCB Sy transport equations are shown in Section 2.6.7.
Gulick and Palmer ([Gul 2Ka] and [Gul 2Kb]) have shown that UCB transport
iterations can be accelerated by the SCB-derived M4S diffusion equations.
Therefore, egs. (3.125)~(3.128) can be used as the low order acceleration equations

for the UCB Sy transport calculation.

3.3.5 Fourier Analysis for x-y Geometry

The matrices of Fourier analysis for M4S DSA schemes with BLD, FLBLD,
SCB and UCB in x-y geometry are as follows:

oA =0'[S+cD(S-DA, (3.137)

where

s:i[ Sosi+ Yo.sth+ Ya,85+ Zwms;;J, (3.138)
27| 4, 507,50 Ha <0730 F 507 <0 <077 <0
and A is for eigenfunction vector of factor 4, S, Sim, Som, S3m and Ssn, are 4x4
matrices from the source iteration of Sy transpdrt equation, D is 4x4 matrix from
the diffusion equation, I is 4x4 identity matrix, and ‘c’ is the scattering ratio.

The results of Fourier analysis for BLD, FLBLD, SCB and UCB are shown
in Tables E3.1~3.5. Fourier analysis was performed assuming the infinite

homogeneoﬂs medium for the purely scattering problem (c=1.0). We include the
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results of Fourier analysis for S;s with standard BLD and S, and S;4 with standard
FLBLD, SCB and UCB. We note that, as expected, the results of Fourier analysis
for FLBLD and SCB are exactly the same. The largest spectral radius is 0.50 at 3.0
- mfp for standard BLD DSA. In FLBLD and SCB DSA schemes, the highest spectral
radii are 0.43 and 0.46 at 1.0 mfp for S, and Sjs, respectively. For UCB DSA, the
largest spectral radii are 0.40 and 0.38 at 3.0 mfp for S, and Sjg, respectively. As the

mesh spacing increases, the spectral radius goes to zero for the three discretization

schemes analyzed.

: Table 3.1
Level-symmetric quadrature Fourier analysis results for BLD M4S DSA
in x-y geometry (¢=1.0, Ss¢)

cAX : oAy
0.01 0.1 1.0 3.0 10.0 100.0
0.01 0.21
0.1 0.21 0.21
1.0 0.39 0.39 0.39 ‘
3.0 0.50 0.50 0.50 - 0.50 }
10.0 0.29 0.29 0.39 0.50 0.29
100.0 021 | 021 0.39 0.50 0.29 0.04




Table 3.2

Level-symmetric quadrature Fourier analysis results for FLBLD and SCB

M4S DSA in x-y geometry (c=1.0, S)

cAX - ody
0.01 0.1 1.0 3.0 100 | 1000
0.01 0.25
0.1 0.25 0.26
1.0 0.44 0.43 0.43
3.0 0.33 0.33 0.43 0.33
100 | -0.15 0.20 0.43 0.33 0.14
1000 | 014 | 020 | 043 0.33 0.13 0.01
Table 3.3

Level-symmetric quadrature Fourier analysis results for FLBLD and SCB

M4S DSA in x-y geometry (c=1.0, S;6)

. OWAX oAy
0.01 0.1 1.0 3.0 100 | 1000

0,01 0.23

0.1 024 | 024

1.0 - 046 0.46 0.46

30 034 | 034 | o046 | 034

100 | 023 | 024 | o046 | 034 | 014
1000 | 023 | 024 | 046 | 034 | 014 | o002
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: : Table 3.4
Level-symmetric quadrature Fourier analysis results for UCB M4S DSA
. in x-y geometry (c=1.0, Sy)

oAX GAy
0.01 0.1 1.0 3.0 10.0 100.0
0.01 0.25
01 | 025 0.25
1.0 0.34 036 | 039
3.0 032 036 | 039 0.40
10.0 0.20 026 | 033 0.30 0.23
1000 | 0.15 019 | 033 0.23 013 | 0.03
Table 3.5

 Level-symmetric quadrature Fourier analysis results for UCB M4S DSA
’ "~ inXx-y geometry (¢=1.0, S})

| ox . oAy
001 | o1 | 10 3.0 100 | 1000
001 | 022
0.1 023 | 023
1.0 032 | 032 | 036
30 | 033 | 035 | 037 | o038
100 | 026 | 028 | 032 | 030 | o022
1000 | 022 | 023 | o030 | 023 | 013 | o003
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3.3.6 Multi-level Technique Description

The multi-level technique for solvirig the low order diffusion equation is
diagrammed in Figure 3.7. The procedure begins with source iteration for the Sy
transport equation where L and S are transport operators. From a source iteration,
the residual is calculated and will be used in the FLBLD diffusion calculation. Here
we used four Gauss-Seidel iterétions from each corner, while Morel et al. used x-
and y-line Jacobi iterations.

Since line Jacobi includes band-diagonal matrix with a band width of 16, it
is more expensive to solve than Gauss-Seidel. To accelerate the FLBLD diffusion
calculation, the asymptotic diffusion equation is used. From the FLBLD diffusion
calculation, another residual is calculated and the restriction bperation is performed
on the residual. This restricted residual is used as the source in the asymptotic
diffusion calculation. The asymptotic diffusion equation can be solved easily by the
multigrid method as shown in Secti,on 2.5'.4, but we have not yet performed this
implementation, will not discuss results here. The number of iterations on the
FLBLD-asymptotic DSA solve is set to 3. Our final updated flux is obtained by
applying the DSA correction, as illustrated in the figure.

3.3.7 Numerical Results

We provide the computational results to show that our procedure is efficient
and rapidly convergent for FLBLD, SCB and UCB. We have performed four model
problem calculations.

The first three model prdblems are from Morel, Dendy and Wareing’s paper
[Mor 93] as shown in Figures 3.7~3.9.

Problem # 1(Figure 3.8) demonstrates the effectiveness of our technique in
terms of error reduction per iteration. This problem includes a homogeneous region

with isotropic scattering, a scattering ratio of unity, and a constant isotropic

distributed source. The rectangular domain has reflective boundaries on the bottom
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Guess ‘Scattering Source : ¢

v

~ UCB Sy Transport Calculation (sweeping) «—
. Lw(l;’-ln) =S¢(l) +Q

l

Residual Calculation for FLBLD Diffusion
. RFl =Q"(LW +172) -S ¢(1+l/2))
v

FLBLD Diffusion Calculation (Gauss Seidel)
Lpf®12 .§pf® =Ry,

v

Residual Calculation for Asymptotic Diffusion
'Rz = Rep=(Lpf ©12) -$pt**12)

v

Restriction Operation on Residual
Rez =Irsc Rp

v

Asymptotic Diffusion Calculation
Lcg™V -Scg ™V =R
Spatial Multi-Grid Method/Gauss-Seidel Iteration

Prolongation Operation & Update i
“Not converged - £o+= f(kﬂ/z)"'lc—)F g D, gD |

l Converged

. Final Scalar Flux Update
¢(l+l) =¢(l+l/2) +f(l+l))

l Converged

Not converged

END

Figure 3.7 Flow diagram for the multi-level technique
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and left sides and vacuum boundaries on thc right and top sides. There are 25 cells
along the x-axis and 25 cells aiong the y-axis. All of the calculations were
performed with the Sy quadrature set.

Problem # 2 (Figure 3.9) is designed to show the overall efficiency of our
procedure as a function of scattering ratio. The geometry is identical to that of the
first model problem. We fix the x- and y-mesh spacing at 1.0 mfp. The scattering
ratio is varied from 1.0 to 0.1, and each calculation is performed once without
acceleration and once with acceleration.

Problem # 3 (Figure 3.10) demonstrates the effectiveness of our technique
for inhomogeneous problems. It consists of a rectangular region that is 50 cm in
length and width with an inner region 10 cm in length and width. The rectangle has
reflective boundaries on the bbtfom and left sides and vacuum boundaries on top
and right sides. Both the inner and outer regions have a total cross section of 1.0
cm™ and a uniform iSOtropic‘di"strib.utéd source. The inner region has a scattering
ratio of 1.0 while the outer region has a scattering ratio of 0.95. The number of
spatial cells varies between calculations. All of the calculations in this model
problem were performed with the S, quadrature set.

Problem # 4 (Figure 3.11) involves a heterogeneous medium with isotropic
scattering, and a heterogeneously distributed source. The scattering ratio is 1.0 and
the source is 1.0 in the inner region, while the scattering ratio is 0.95 and the source
is 0.1 in the outer region. The rectangle has vacuum boundaries on the left, right,
bottom and top sides. There are 30 cells along the x-axis and 30 cells along the y-
axis. All of the calculations were performed with the S, quadrature set. Since we
have not yet implemented the multigrid method to solve the asymptotic diffusion
equation, this iteration converges very slowly or does not converge for opposing

reflecting boundaries. This - test pfoblem demonstrates this poor convergence

behavior, and how it drastically improves for problems with vacuum boundaries.




4 Vacuum
|
(
|
Reflectin; ¢=1.0 \% }
25Ay g Q=1.0 acuum
# Reflecting
25Ax
| >
" Figure 3.8 Geometry for Problem # 1
A Vacuum
—0.1~ i
254y | Reflecting CQ=01 _10 1.0 Vacuum |
v Reflecting
l* 25Ax

Figure 3.9 Geo‘métry for Problem # 2
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Vacuum
*
Reflecting
c=0.95
50 Q=0.1 Vacuum
10 .
—Pp
c=1.0 10
R Q=1.0  Reflecting
‘ I* ' 50 l
* Figure 3.10 Geometry for Problem # 3
Vacuum
A
Vacuum
¢=0.95
Q=0.1
30Ay 10Ax Vacuum
c=1.0 ‘ 10 Ay
Q=1.0
v L ' Vacuum
30Ax
| , —>

Figure 3.11 Geometry for Problem # 4
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The scalar flux in every calculation was subject to a point-wise relative
convergence criterion of 10~ The spectral radius for each calculation was
estimated according to the following expression:
[o0-o]

(I~ i-2
o @)

p= , (3.139)
ﬂ

where

®? = vector of scalar fluxes obtained from 'th iteration

| HXH =standard Euclidian normof x .

The spectral radii for probl'em‘ISets 1, 2, 3 and 4 are shown in Tables
3.6~3.9. Table 3.6 contains the results for Problem # 1, in which the new DSA
schemes are rapidly convergent for all mesh ‘spacings. According to the results of
our Fourier analeis, as the mesh spacing gets thicker, the spectral radius is reduced
down to 0.0. However, the spectral radii and number of iterations for the thick mesh
spacing are greater than those for the thin mesh spacing. The reason for this is due
to the unconverged solution for the asymptotic continuous diffusion equation. Since
we do_ not implement the multigrid step to solve the asymptotic continuous
equation, the effective spectral radius for the Gauss-Seidel iteration for the
asymptotic diffusion equation is near 1.0 for thick mesh spacings. There is almost
no leakage for the cases with thick mesh spacings; this causes difficulty for the
asymptotic diffusion solution technique. To better illustrate this effect, we have
included the Problem # 4, which has all vacuum boundaries.

Table 3.7 contains the results for the Problem # 2 to see the overall
effectiveness of the new DSA procedure. Number of iterations for DSA schemes
without acceleration and with acceleration were compared. Table 3.7 shows that
our DSA scheme is very efficient for problems with scattering ratios near unity. The
computing time in the tranSport calculation is related to the Sy quadratﬂre order.
Therefore, as the quadrature order is incre'ased, the Sy transport calculation becomes

much more computationally costly and the CPU time spent solving the DSA
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scheme becomes a smaller fraction of the total simulation time. The scattering ratio
at which DSA becomes inefficient will rapidly approach zero as the quadrature
order is increased. '

The results for Problem # 3-are shown in Table 3.8. The number of
iterations and spectral radii for our DSA schemes are given for the inhomogeneous
problem. The results of the .third‘ model problem are very similar with those of
Problem # 1. There is also the effect that the asymptotic diffusion eqliation is not
converged well enough for the thick mesh spacing. ,

Table 3.9 shows the results for Problem # 4 to see the effect of boundary
conditions on the convergence of the asymptotic diffusion iteration. We used all
vacuum Boundary conditions to make the asymptotic diffusion calculation converge
well. Since leakage was increased, the overall spectral radii and the number of
iterations were reduced. The'.spect{ral radn and the number of iterations for the thick
mesh spacing are decreased signiﬁcantly. Therefbre, the overall trend of spectral

radii corresponds well to the results of Fourier analysis. -

3.4 Simplified Multi-level Method

The mqlti-level technique to solve the diffusion equétion for BLD, linear-bilinear
and linear-bilinear characteristics M4S DSA in x-y geometry is very complicated.
We used the similar multi-level technique to solve the diffusion equation with no
void cell calculation and the block Gauss-Seidel iteration instead of line Jacobi.
Although DSA with this technique is unconditionally stable and rapidly convergent,
the procedure is too complicated and we can not p;edict the analytic spectral radius.
The observed spectral radius will vary with the number of asymptotic diffusion V-
cycles performed and the maximum number of vouter iterations for the

discontinuous and continuous diffusion calculation. We suggest a new simplified

multi-level technique without outer iteration. We do not need the residual

calculation and cari predict the analytic spectral radius for this calculation.




Table 3.6

Numerical results for Problem # 1 (S, ¢=1.0)

FLBLD/SCB

Ax Ay UCB
(mfp) (mfp) Iterations Spectral Iterations Spectral
Radius Radius
0.01 0.01 6 0.10 6 0.11
0.01 0.1 6 0.16 6 0.12
- 0.01 1.0 5 0.08 7 0.22
0.01 . 3.0 5 0.07 6 0.09
0.01 10.0 5 0.07 5 0.07
0.01 100.0 5 0.07 5 0.07
0.1 0.1 8 0.26 8 0.27
0.1 1.0 8 0.36 9 0.21
0.1 3.0 8 0.20 8 0.16
0.1 10.0 7 0.18 7 0.19
0.1 100.0 7 0.21 7 0.19
1.0 1.0 8 0.34 7 0.32
1.0 3.0 8 0.32 8 0.32
1.0 10.0 8 0.27 8 0.25
1.0 100.0 8 0.27 8 0.25
3.0 3.0 8 0.38 8 0.38
3.0 10.0 8 0.30 9 0.33
3.0 100.0 6 0.12 6 0.13
10.0 10.0 9 0.40 9 0.39
10.0 100.0 8 0.28 8 0.28
100.0 100.0 9 0.35 9 0.35
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Table 3.7

Numerical results for Problem # 2 (S, ¢=0.1~1.0)
Scattering FLBLD/SCB UCB
- Ratio Unaccelerated | Accelerated | Unaccelerated | Accelerated
1.0 1123 8 1123 7
0.9 67 7 67 7
0.8 %6 6 36 7
0.7 24 5 24 6
0.6 18 ' 5 18 5
0.5 14 4 14 5
0.4 11 4 11 5
0.3 . 9 4 9 4
0.2 7 4 7 4
0.1 5 3 5 3




Table3.8
Numerical results for Problem # 3 (S, ¢=1.0)
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FLBLD/SCB

Mesh Size | Ax and Ay UCB
(mfp) Iterations Spectral Iterations Spectral
' Radius ‘ Radius

5x5 10.0 9 0.28 8 0.25
10x 10 5.00 7 0.17 8 0.21
15 x 15 3.33 7 0.21 8 0.18
20 x 20 2.50 7 0.20 8 0.16
25 x 25 2.00 7 0.17 8 0.17
30 x 30 1.67 7 0.17 8 0.19
35 x 35 1.43 7 0.17 8 0.21
40x40 | 125 7 0.16 8 0.22
45 x 45 1.11 7 0.16 8 0.24
50 x 50 1.00 7 0.16 8 0.27
60 x 60 0.83 7 0.17 8 0.29
70 x 70 0.71 7 0.15 8 0.27
80 x 80 0.63 7 0.18 8 0.25
90x90 |. 0.56 7 0.20 8 0.19
100 x 100 0.50 7 0.22 7 0.24
120 x 120 0.42 8 0.24 7 0.22
140 x 140 0.36 8 0.25 8 0.25
160 x 160 031 8 0.25 8 0.19
180 x 180 028 9 0.27 9 0.27
200 x 200 0.25 10 0.34 10 0.34




Table 3.9

Numerical results for Problem #4 (4 c=1.0)

Ax Ay FLBLD/SCB

(mfp) . (mfp) ~ Tterations Spectral Radius
0.01 001 6 - 0.07
0,01 0.1 6 0.11
0.01 1.0 5 0.04
0.01 3.0 5 0.03
0.01 100 5 0.03
0.01 100.0 5 - 0.03
0.1 ool 7 0.20
0.1 1.0 7 0.27
0.1 3.0 6 0.16
0.1 10.0 6 0.16
0.1 1000 6 0.16
1.0 1.0 8 0.36
1.0 3.0 8 0.36
1.0 10.0 8 0.36
10 100.0 8 0.33
3.0 3.0 6 0.25
3.0 10.0 6 0.23
3.0 100.0 8 027
10.0 100 5 0.1
10.0 1000 5 0.13

100.0 ©100.0 4 0.03.
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The procedure is as follows:

1) SI with transport sweeping for each direction
2) Solution of the asymptotic continuous diffusion equation using
 multigrid with certain convergence criteria
3) One x-‘and y-line Gauss-Seidel for the M4S FLBLD diffusion equation
This new procedure does not include the iterations of the asymptotic
continuous and FLBLD diffusion equations. Since multigrid for the asymptotic
diffusion equation is computationally very cheap and this new procedure does not
need to calculate the résidual, this procedure is simpler and more efficient. We have
 performed a Fourier analysis for the BLD, FLBLD and UCB M4S DSA equations
solved by this technique. Table 3.10 shows that this technique does not work well
for BLD M4S DSA scheme. -

; : Table 3.10
Fourier analysis results for BLD M4S DSA with simplified multi-level
technique in x-y geometry (c¢=1.0, Sy)

O'tAx GtAy
0.01 0.1 1.0 3.0 10.0 100.0
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Table 3.11 .
Fourier analysis results for FLBLD/SCB M4S DSA with simplified multi-level
technique in x-y geometry (¢=1.0, S)

GAX iy
0.01 0.1 1.0 3.0 10.0 100.0
001 | 025 |
0.1 0.25 0.26
1.0 0.43 0.43 0.43
30 | 033 0.33 0.43 0.33
100 0.18 0.20 0.43 0.33. 0.14
100.0 0.14 0.20 0.43 0.33 0.13 0.03
Table 3.12

Fourier analysis results for UCB M4S DSA with simplified multi-level
technique in x-y geometry (c=1.0, Sy

cAX | oy
001 0.1 10 | 30 100 | 1000
001 | o025 |
0.1 025 | 025 |
1.0 0.44 043 | 039
3.0 0.37 037 | 039 | o040
10.0 0.20 0.26 0.34 0.30 0.23
1000 | 0.5 019 | 033 023 | 0.3 0.03




However, Tables 3.11 and 3.12 show that this technique works quite well
for FLBLD, SCB and UCB M4S DSA schemes. The analytic spectral radii with this
technique for FLBLD, SCB and UCB are almost the same as those obtained with

our previous technique, which assumes an exact solution for the FLBLD diffusion

equation. Compared to the multi-level technique applied to BLD DSA, this
technique is much simpler. This technique avoids the void cell calculation, the

outer iteration and the residual calculation.

3.5 Summary

In this chapter we discussed the solution technique for the low order
diffusion equations of M4S DSA in slab geometry for advanced transport
discretizations such as LD, LLD, SCB and UCB. The low order diffusion equation
of DSA in slab geometry can be solved easily by band-diagonal matrix solvers.

We developed a multi-level technique to solve the diffusion equation of
FLBLD, SCB and UCB M4S DSA in x-y geometry. This multi-level method is
slightly different from Morel’s multi-level method in the following ways:

1) It uses the block (cell) Gauss-Seidel iteration for the M4S discontinuous
diffusion equation

2) The continuous diffusion equation (five-point stencil with one-point
removal tem'l) is derived directly from the asymptotic analysis

3) Void cell calculations are not used.

We implemented this multi-level procedure and performed four model
problem calculations. The results showed that FLBLD, SCB and UCB M4S DSA
schemes with this multi-level technique are unconditionally stable and rapidly
convergent.

We suggested a simplified technique which avoids outer iterations and a
residual calculation. In this technique, the transport sweep is followed by a

converged solution of the asymptotic continuous diffusion equations. x- and y-line
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Gauss-Seidel iterations are then used on the FLBLD equations to transform this
continuous correction into an effective discontinuous correction. The asymptotic
continuous diffusion equation is solved : using multigrid and to expand the
continuous solution into the discontinuous solution. While the previous multi-level
method could not be Fourier analyzed exactly to get the analytic spectral radius, this
procedufe has been Fourier analyzed. The results of the Fourier analysis show that
this new procedure is rapidly convergent. This procedure requires a well-converged
solution for the asymptotic continuous diffusion equation, but this is very cheap if
using multigrid.
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CHAPTER 4
DIFFUSION SYNTHETIC ACCELERATION BASED
ON 1-CELL BLOCK INVERSION

4.1 Introdﬁctiqn

Many techniques are being used to provide efficient numerical solutions to
the transport equation, including Diffusion Synthetic Acceleration (DSA), multigrid
([Now 88] and [Bar 89]) and parallel processing [Man 94]. In DSA, a diffusion
equation is used to pfecon'ditidn the standard Source Iteration (SD technique. SI on
the first-order form of the transport‘equaiﬁon typically involves “sweeping” the grid

-along directions of particle travel. One- and. two-Cell block Inversion (CI) methods
can be used as an alternative to SI. CI allows for the independent (and perhaps
parallel) solution of scalar flux unknowns in cach cell block. Although one- and

- two-Cl are “parallel friendly”, they are currently limited in their applicability. The
iterative performance of 1-CI in slab geometry degrades as the cells become
optically thick: the spectral radius approaches unity. One-CI is not unconditionally
stable for some multi-dimensional discretizations, such as the linear discontinuous

(LD) finite element method [Now 88]. Two-Cl is effective in one spatial
dimension, with parallelization and multigrid, but not for x-y geometry because of

the x-y coupling problem [Bar 87]. The goal of our WOfk' is to construct a one cell
block inversion technique, that will be unconditionally stable and convergent for
multidimensional finite element discretizétidﬁ techniques. We do this by
considering a DSA technique which can be used in conjunction with CI. In this

thesis, we include two different DSA procedures for slab and x-y geometries. The

first procedure is composed of SI and 1-CI Sy transport equations and diffusion
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equation derived from 1-Cl. The second one is simply 1-CI Sy transport equation
followed by a diffusion solve. We'derive‘d the low order diffusion equation from 1-
CI to obtain a rapidly convergent DSA procedure. We perform a Fourier analysis of
our iterative techniques and compare our amalysis results with the results of

numerical test problems.

4.2 Method-1 in Slab Geometry (SI+1-CI+DSA)

4.2.1 Procedure

Our new method has three stages:
a) a SI sweep for Sy transport equations
b) a one-cell block inversion iteration for Sy transport equations

c) a DSA solve to make the system unconditionally stable and quickly convergent

In the standard slab geometry one-CI method (two spatial unknowns per cell), for a
given Sy angular quadrature set there are 2N angular flux unknowns in each cell
which can be obtained directly from a 2Nx2N matrix inversion [Bar 89]. By
including a SI sweep‘as our first step, we can solve for scalar fluxes in the cell
without this matrix inversion.

The SI technique applied to the slab geometry transport equation with LD
and LLD spatial discretization (in corner notation) with Sy angular discretization

and isotropic scattering has the following form:
Hm (W’("l«:m W’("l«:ﬁ;) + 9 t.z (W(l+1/3) (1+1/3))
| , “4.1)
5 O+ +2(0u +On)
o.u, [ @+1/3) o (4173) @3 (1+1/3) O, (1+1/3) (+1/3)
W2t VWmicii2 —~ Wit Wi )+—= ('/’ Vi )
! , @42

sOl (¢(l) ¢(l))+%(QiR —QiL)



where
4173y _ . (1+1/3)
'//m,i+l/2 —Wm,iR H :um > 0 ’
173y _ (+1/3)
Wmict)2 =Vmi > MHn<0,
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4.3)

4.4

and y, , and y, , are the left and right edge angular fluxes at cell i. The scalar

flux unknowns, ¢{**®, are obtained after a one-CI calculation, as shown in eq.

4.5):

®51+2/3) = [I _ AC ]—1 Z wm (A ;_IB;\I’ +(1+1/3) + A;'-IB;,\I]

m,i-1
Hy>0

+ lini
~ where

EEICAT R
‘P:,itl = (W;,i:u"/’-:,i:m)r >

A=Y w, (A +A,

U >0
At = 20, o,Ax, 20,
" ailum —_ 1 1
_‘atz,iAxi 2_0-1,1' o _2.0;1,1' '
,:1,,, + 1 o 1
A = o, Ax, 20, - 20,
" - 1 ailum + 1
I 20, oLhx, 20,
0 Hm
B+ = O-I,iAxi,

~(1+1/3)

m i+l

)

, (4.5)

4.6)
@.7

(4.8)

4.9)

(4.10)

@.11)




Ium 0

B- - o-l,iAxi
eiliu’m” 0

o't‘.Ax.

and

=)

107

(4.12)

(4.13)

4.14)

The superscript “+* and ‘~’ refer to the angﬁlar fluxes in the positive and negative

directions, respectively. Compared with SI, CI allows every cell to be calculated

independently, elhninaﬁng the need for a sweep.

The diffusion synthetic acceleration equation is derived using the “modified
four step” technique of Adams and Martin [Ada 92] with one small modification:
the current at the cell interface is divided into two parts, one from the previous step

and the other at the current iter_ation index. These equations are presented below:

*) ™ I+1) I+1)
82 gz-—l/2+ (f( +ﬂ 00 |

6 (gx+l/2 gx(:l)IZ -2g,) + (f(m) -fu =00 ,

* 1 1+1 I+1 142/3 1+2/3 1+2/3
g.(+x)/2 o™ - (f“’ SN o (i M*L )]

Axi+l

| D
hd 142/3 - 14273 142/3 (5 ] (53}
g0, = i.l’;”——zg”- ) f‘* N}~ [qf‘*"+ (f‘*" -y,

i~1

D + 4]
g =—zji(f.~§é Y=,

where

f(1+2/3) - ¢(1+1) - ¢(l+l/3)
- ’

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

(4.20)
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£ gt _ gtary 4.21)

We rewrite egs. (4.15)~(4.18) in matrix form as follows:

1+1) 1142) /+1) ¢(1;2/z) ¢(1) ¢(1;2/z) ¢(12L
i+] I+ (= i~
1+1) +D 1+1) +D3L 1+1) . D ¢(1+1/z) ¢ D ¢(1+1/z) ¢ (4 22)
iR +1R i+IR i-1R

where -

a+ a’iz ! a+ a12 i
P -fa _B_D_o;,,Ax 0 +9_D +0'a,,.Ax,. ) S (423)
Ax, 2 y Ax’ 2
Di+1 Di+]
T 24x,
i+l i+l
D = 6Dy 6D | (4.24)
—fa+——= -
2Axi+1 2Ax,'+]
| Di—] —-a " D,‘_]
| 25x, T2Ax,._1
%=l gp, oD, (4.25)
ba
U, T 2,

4.2.2 Fourier Analysis

We have performed a Fourier analysis of this technique for the purely
scattering problem. Since the 1-CI equatiens include the incident angular fluxes, the
scalar fluxes should be divided into two directional values. The ansatz used in the _
Fourier analysis for LD and LLD SI+1-CI+DSA equations in slab geometry is as

follows:
®0 = p'A,, (4.26)

PO gl @.27)



q‘,'(nz/s): a_’an
fi(1+1) - a)lc‘“
where o
q‘,g) - (ﬁ({)’. ‘;ea) ) ¢-<l)

q’} S;-;l/él) ( ~ +(l+l/3) ~ +(1+1/3)

’WMIR ’Wm

=(1+1/3) 5 -(1+1/3))

’WMIR

£ (1+1 1+1 I+ly  Fe@+l) F=(l+1)N\T

f.("') (f+(+) f""(+) fiL(+)’fiR(+)) ,
A = (A‘*' iAxi_y2 A+ 'b‘uuz A' 'b‘l-l/z’Ai}e"hiu/z»)T’
iAx;

a,,=(a,,e
B, = (B"e"x"”’ B+eulxm,z Bje Mx_,,z’ B,}eihi"”)r
¢, = (cpe™m, ok e'tmmn, cpe™vr cr eyt
The matrix of Fourier analysis for SI+1-Cl is as follows:
wA,=CA,,

where the matrix C is from 1-CI,
C=(1-8,Cx)" ) »,S1B.S,, .

By>0

" and the matrix S, is from source iteration:

) Sm = (Slln_ - Bm)—]CR *

where

Slm = Am 0 H |
0 A— 4x4

+  ~iAlx;
Bm = l:B”’e . - 0MAX, :I s
0 B € 4x4

: D D
Cr = ,
? ':D D]4x4

-1/2 'b‘uuz A%, 1/2 - A2 \T
. > am,iRe > am,iLe > am,iRe ) >
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(4.28)
(4.29)

(4.30)
(4.31)
(4.32)
(4.33)

(4.34)

(4.35)
(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)
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Si= D w,SiCxq, (4.43)

1,50

and I is 4x4 identity matrix. v

The results of our Fourier analysis are shown in Figure 4.1. We include only
the results of LLD CI+1-ClI, since the eigenvalue shape of LD SI+1-CI is nearly the
same. The spectral radius is always 1.0 at the AAx=0 mode. As the mesh spacing
becomes thicker, the eigenvalues approach 1.0 for all modes. However, since the
eigenvalues for high frequency modes (n/2<AAx<nm) are negative, the effective
convergence rate may be improved by averaging. Multigrid can then be applied to
get rapid convergence as shown in 2-CI [Bar 91]. We use a simple averaging of the
scalar fluxes before and after 1-CI: '

¢i(1+2/3) ___l‘i‘é ¢.'(M/3) +1_—£ ¢’_(1+2/3) _ (4.44)
2 2
The matrix of Fourier analysis is from eq. (4.37):

i

oA, =(_1:.“2£1+1_‘2‘1(:JA,.. (4.45)

The results for LLD SI+1-CI with avefaging are shown in Figure 4.2, in which we
used 8=0 for simplicity. However, the eigenvalues for thick mesh spacings
approach 1.0 for all modes with any value of §. The shape of the eigenvalues is
almost identical to that of SI. However, the eigenvalues for high frequency modes
are slightly less than those of SI. The mtiltigrid method for SI+1-CI _is not effective
for the thick mesh spacings, and SI+1-CI procedure needs another step to reduce the
thick mesh spacing eigenvalues at the high frequency modes. Theref(;re, we include
the DSA step as a final stage to obtain less eigenvalues. The final matrix for
method-1 (SI+1-CI+DSA) is as follows:

oA, =o|C+D'R(C-D|A,, (4.46)

where the matrix DR is from diffusion equations,
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iAAx, —iAAx
D= D,, +D,, e +D;, ™™ 0
1 iAAx, -iAAy,
0 D;; +D, e +D; e

:l , (447)

(4.48)

_ iAAxy —isx, Ay ~idax, |
1[ D, e _D, e D, e -D, e }
2 4x4

R=-
= by, iy, Y pidr ~ilAx,
D,e D;e D,e D,e

The results of our Fourier analysis for LD and LLD SI+1-CHDSA are
shown in Figures 4.3 and 4.4 and Tables 4.1 and 4.2. Figure 4.3 shows that LD
SI+1-CI+DSA scheme in slab geometry is unconditionally stable and the maximum
spectral radius (0sm01) happens at 0.0 mfp. Fourier analysis was performéd for Sy
and Sjs equations as shown in Table 4.1. As the mesh spacing‘ gets thicker, the
spectral radius goes to zero. Compared to M4S DSA, the spectral radii for thin
mesh spacings (<°0.1 mfp) are higher than those of M4S DSA.

100.0 mfp
10.0 mfp

Eigenvalues
: (=)
o

0.01 mip :
-1.0 | =
"1.5 T T T ‘ T T T
0 05 10 15 = 20 25 3.0
AAX

Figure 4.1 Eigenvalues as a function of AAx for LLD SI+1-CI
S (no averaging, c=1.0, Si5) S




Eigenvalues

Eigenvalues

100.0 mfp

0 — T 1 T T T 1
0.0 0.5 1.0 1.5 2.0 25 3.0

AAX

Figure 4.2 Eigenvalues as a function of AAx for LLD SI+1-CI
(averaging with §=0.0, c=1.0, S}¢)
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0.5
044 -
0.3 4\ | 10mip -
0.2 Y 30 mfp
0.1 N 10.0 mfp \‘
. \
04— _1000mfp |
-0.1 - ~ 0.1mfp L'/t>\
20.2 : ' — '
\
-0.3
) 0.01 mfp
-0.4 )
'0.5 T T T T T T
0.0 0.5 1.0 - 1.5 2.0 2.5 3.0
AAX

Figure 4.3 Eigenvalues as a function of A4x for LD SI+1-CI+DSA
(no averaging, c=1.0, S;¢)
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100.0 mfp

Eigenvalues

Dbl n n I I i i i J

0.0 0.5 1.0 1.5 2.0 2.5 3.0
AAX

Figure 4.4 Eigenvalues as a function of A4x for LLD SI+1-CI+DSA
(no averaging, c=1.0, S;s)

However, the spectral radii for intermediate and thick mesh spacing (> 1.0 mfp) are
less than those of M4S DSA. We can make a simple estimate the efficiency of this
procedure. Let us assume that the diffusion solve is comparable to one Sy transport
calculation. (In slab geometry, this is true for low order discrete ordinates, but not
for high order discrete ordinates because it is cheap to solve the diffusion equation
in slab geometry). With this assumption, one M4S DSA iteration corresponds to
two SI sweeps and SI+1-CI+DSA corresponds to three. Three iferaﬁons of M4S
DSA are comparable to two of SI+1-CIH+DSA. Therefore, we can perform a

calculation as follows:

mfp M4S DSA SI+1-CI+DSA
1.0 0.484°=0.113 0.308 =0.095
3.0 0.520° =0.141 0.261% =0.068
10.0 0.286° =0.023 0.143% =0.020
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There is a benefit on convergence ratio at (1.0 mfp< Ax < 10.0 mfp). In multi-
dimensional geometries, it is sometimes very expensive to solve the diffusion
equation for some acceleration schemes. Since one diffusion solve may be
comparable to many transport iterations, most of the computing time is spent in the
diffusion calculation. Since the extra 1-CI calculation is not a big portion of the
calculation, it is important to reduce the overall spectral radius. "

Figure 4.4 shows the eigenvalues as a function of AAx for LLD SI+1-
CI+DSA where the spectral radius is less than 0.364 for 4x>1.0, but greater than
1.0 for Ax<0.1. The maximum eigenvalues for Ax<0.] are negative, though (see
Figure 4.4). This allows us to stabilize the technique using a simple averaging of

intermediate resillts:

¢.'(i+l) - 1‘;5 ¢i(l+1/3) + 1_25 (¢(1+2/3) + /iﬂ*l)) '_ (4.49)

Table 4.1
Spectral radii for LD SI+1-CH+DSA and LD M4S DSA (c=1.0)

Mo Analytic Spectral Radii Observed
S af:sin Spectral Radii
PaCINe | M4sDsA Method-1
Se | Sis Sq Si6 - S¢- Si6

0.01 0.180 0.216 0.425 0.407 0.417° 0.389

0.1 0.165 | 0200 | 0.409 0.414 0.385 0.396

1.0 0.484 0.385 0.308 0.266 0.305 0.255
3.0 0.520 0.496 0.261 0.249 0.230 0.221

100 | 0286 | 0287 | 0.43 | 0144 | 0122 | 0126

100.0 0.035 | 0.036 0.018 |} 0.018. 0.017 0.017
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Table 4.2
Spectral radii for LLD SI+CI+DSA and LLD M4S DSA

Mesh Analytic Spectral Radii . Observed Spectral Radii
Spacing Not Averaged | Mod. 4-step Not Averaged
Averaged | (8=0.0) DSA | Averaged (6=0.0)
0.01 1.192 0.587 0.220 1.160 0.569
0.1 1.017 " 0.539 0.245 1.016 0.534
1.0 0.364 - 0.462 0.334 -
10.0 0062 | - 0.135 0.039 -
100.0 0007 | - 0.149 | 0.005 -

The matrix of Fourier analysis for SI+1-CI+DSA with averaging is as follows:

@A =

i

ﬂc l—fn“m(c I) : (4.50)
2 2 '

The results are shown in Table 4, 2 m wh1ch the analytlc spectral radii (pa,,al) for

Ax<0.1 were reduced to <0.6 by averagmg w1th 0=0. We may be able to further

improve the results by finding optimal value of 8. It is expected that a variable 3,
which is a function of mesh spacing, will yield in the best results.

4.2.3 Numerical Results

The model problem is a 1000 cell homogeneous medium with vacuum

boundary condmons and constant and purely scattermg cross sections (c=1.0)

divided into three reglons with dlfferent constant sources. (see Flgure 4. 5)
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o~=1.0 = =1.0
Vacuum c;l 0 ‘c’; 1% (')0 g;l 0 Vacuum
Q=0.01 Q=1.0 Q=0.01
250xAx 500x: |
X ple SOOxAx _ple 250xAx N

Figure 4.5 Model problem Geometry

We have used a random initial guess of the scalar flux. The spectral radii observed
in our program for the model problem compare well with our analytic results as
shown in Tables 4.1 and 4.2. Compared to modified 4-step DSA applied to SI, the
Panal. from SI+CI+DSA are higher for thin mesh spacing, but are lower for thicker
cells for LD and LLD schemes. ’

We have shown that SI coupled with CI and DSA can be unconditionally
stable and efficient in slab geometry. The scheme is also very rapidly convergent
for optically thick spatial meshes. This is a significant improvement over previous
one-Cl implementations, whose specﬁal radii approach unity for these meshes. Our
belief is that the addition of DSA will also cause one-ClI to be stable and efficient in
multi-dimensions, where previous one-CI schemes have been unstable. It is
important to note that this technique will be more expensive per iteration than
standard SI+DSA, but overall may take less CPU time.

In the next section, we include an algorithm without SI, which includes only
CI and DSA and describe this technique applied to multi-dimensional transport
problems.

It is also possible that SI+1-CI+DSA with or without multigrid may work

well for the anisotropic problems, since SI+2-CI with multigrid method in slab

geometry has shown to work well for these problems [Bar 89].
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4.3 Method-2 in Slab Geometry (1-CI+DSA)

4.3.1 Procedure

Here we remove the first stage of SI, and so our new method includes just 1-
CI and DSA based on 1-CL. In the standard slab geometry one-CI method (two
spatial unknowns per cell), for a given Sy angular quadrature set there are 2N
angular flux unknowns in each cell which can be obtained directly from a 2Nx2N
matrix inversion. Manteuffel et al. ((Man 94], [Man 95] and [Man 96]) showed that
the algebraic manipulations required to perform the matrix inversion in the 2-cell
block inversion method in slab geometry is not computationally expensive.
Therefore, 1-CI matrix inversion in slab geometry is easier and simpler than 2-CI.
Since the primary goal of this research is to achieve an unconditionally stable
scheme, we leave the development of an efficient algebraic matrix inversion
method for future work.

While SI is typically performed b); x-line relaxation, 1-CI must be
performed by p-line relaxation. The matrix for by p-line relaxation of the 1-CI

transport equation is as follows:

where

I-W, B, +I-W, -W, -W,
~6B -I+W, I-W, W, -W, )
-W, -W, B+I-W, I -W,
W, -W, -1+W, 6B +I-W,
- _ - _ SR (4.51)
b Q. +B Y.,
PR | Qa—6BE,
o2 | Qu+BYY,
_w—(”‘;;]/Z)JZle .Q‘—’JR +0"B" T;'(Q"IL-Zle
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1 -0 0
|0 00 4.52)
“to ... 10| ° .
0 0 1w
22
[ 0 0 0]
0 » - 0
2 S
B, =—= Pt , (4.53)
Axio-t,l . ﬂ'?"-l 0
_O 0o - 0 ,u%,iﬁx_
2
(W, w, Wy, Wy
W W Wy, Wy
%:% O i (4.54)
W W o W, Wy
wWow, W, Wal,
| 2 -2_3,(._

The low order diffusion equation is different from the diffusion equation
used in method-1 (SI+1-CI+DSA). When we used the diffusion equation described
in the previous section, the 1-CI+DSA scheme was unstable. In this new method,
the incident currents are calculated directly from the 1-CI. The current equatibns are

- generated by taking the 0™ angular moment (Zw () of egs. (4. 1)~(4 4). The

equations are the same as those derived in method-1, and are:

A

82 =8t a’z (figl) +/37)¥00 (4.55)
o,

O iz +8ip —28) 42 > % =fah)=00 | (4.56)

where

gi+1/ 2 =8 1+117 21) + g ;(11721/2) Z lum (w;g(:;l) _V/rrt,1+”2) ) + Zwm:um ('/’;;,(11:112 _V/m,ﬁlL ) (45 7)
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8 =8 ) +8 = Z WD 0 )+ Z kWit Vo ), (4.58)

g = +(1+1) +g -(1+1) Z ﬂm( Hi+) l+1/2)) + Zwm ﬂm(W;.,(,m) ;('(n/z))_ (4_59)

While method-1 eliminates the current corrections in favor of differences of scalar
flux corrections, here method-2 replaces the currents with functions of local scalar
flux corrections half-range sums of the ahgular flux corrections. We can rewrite

egs. (4.57)~(4.59) as follows:

W) | o (2) _
82 = 8inn +g.+1/2

=[ d’gﬂ) (f(m) f’+1))] [@gﬂ,}) +A’;+1 ' Jf;;) ) +ll-21) 4.60)

i+l

+ zwmﬂm (W;:,(:-:IIII.Z) _Wm,ﬁll.)
oy <0

+WH12) | (41) _
gan = g.—1/2 +8an =

D,

=[af5R - 2; ..'f}? A0 A Ny (f"”) -fi™), (4.61)

i-]

s HI+1/2)
+ Zwmﬂm Wm,)—]R _'/,m,,-]R)
>0

D s
=GR -1, (4.62)
where
oy =B . L @463)

Therefore, the final low order diffusion equations are as follows:

141 141 141 141
g.(»:/)z g.(-:/)z + (/“) +f(+)) :
(4.64)

= Zwmﬂm(w;‘fi‘é’) qu)+(w,*.f,’3‘£’) 0
o, A%,
Ogl +8lh ~2g" )+ &AL
(4.65)

Hi+/2)

= gAw:::*ﬁ ) -@D 0]
Fo
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D,

1+ (53 ll 1 141 1]
—L(f¥ f?f’)l ,,,;z’+ D ,,,;;8 O, (4.66)

(4 _ [ +D) _
8= Cﬂk 2%x,

+ + 1):— 4 + + + +
gin =[arfy 2Ax1 ,_'u? f" -l "+ (f" VofIM] (4.67)

(1+1) (/(M) f(m)) (4.68) -

We rewrite egs. (4.64) and (4.65) in matrix form as follws:

l+1) 1+1) ) I+1) 1+1/2) _, (141/2)
i+l m,i+lL myi+lL
1+1) +D 1+1) +D3L 1+1) ZWM”MDR H/2) _, (+41/2) |2 (4°69)
i

i+IR 1R Hn>0 mi+iL mj+iL
where
D = b1 4.70
' R — 0‘ 0 9] ’ . ( . )

and Dyy, Dyr. and Dy, are defined in egs. (4.23)~(4.25).
As shown in eq. (4.69); they are different from the conventional DSA in the

point that this new DSA includes the current terms from the 1-CI. When just the

scalar fluxes are taken from the l-CIj the DSA scheme is not unconditionall&'étable.
However, taking ‘the current fro the previous 1-CI, the DSA scheme is
unconditionally stable. This fact wlll be shown in Fourier analysis. Fmally, the
angular fluxes are updated by the followmg equations:

4] | +] 1 +! 3lum +] +]
ity =Vmiis + 5 i =5 1oV =), @)

Here we used P, approximation to get the angular flux from the diffusion

calculations.
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4.3.2 Fourier Analysis

While the Fourier analysis for method-1 was performed for the scalar
fluxes, the Fourier analysié for method-2 must be performed for the angular fluxes.
The ansatz of LD and LLD 1-CI+DSA in slab geometry is as follows:

YD < plar (4.72)

‘i‘,+(1+1/2) = am ® (4.73)

YD - plaz (4.74)

PG Z gl (4.75)
£ = o'c,, (4.76) |

where

B < G, L Y, AT
S (Y S N7t N80 SIS U (4.78)

‘i‘, -(1+1/2) = -(1+1/2)’ v ;¢ (1+1/2) ’W;,(/I;ll/zi) ’WA;I(/I;III{Z) )T ’ (4.79)
T-(l+1/2) = (‘// -(l+l/2)’ '/;2-511;»1/2)’ .. ’WA;,(/I;lllf!g’wN(/l;l”/:)’)T , (4.80)
f(1+1) (f(m)’ ”(zm)’ ,EM) "Hglu)’ (1+1) f(1+1))r (4.81)
a,, = (a;:iLeih’-llz ) a‘;,iLeml-m 300t a;;l/2-1,;’Lemm'.”2 ) a;l/Z,iLeihl-”z )7 ’.(4-82)
A,z = (a;,ikem””z ) a;,iRemxm“ ’ a;//z-l,ikem“m ) a;://2,,'Rem"”2 )7, (4.83)

a,; =(a e

iAx; 12 - iAx, - D piAxLyy - iAx;.1y \T
,dy € seie s @y o1 i € »AN 2. € ), (4.84)

ihlﬂlZ M'xHIIZ

- - - - Xy - iAx T :
a, r = (a;ze > 43R € o5y me Ay me M), (4.85)

m i

iAx;- ‘hh iAx;_ 'Z.x,,
c, = (cge™n, cae™mn, ¢ ™ oo gPHmnyT (4.86)

The matrix of Fourier analysis for 1-CI without averaging is as follows:
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a,, a,,
ik | = AZD R |, (4.87)
a'm,iL a'm,iL
a, x| a,
where
[ 1-w, B,+I-W, -W, -w, |
-6B,-1+W, -W '/ -W
Am — 6! 4 I+ m I m m m , (4.88)
-W, -W,  B+I-W, I-W,
W, W, ~I+W, 6B, +I-W, |
[0 B 0 0
| ~0Be" ™ 0 0 459
“lo 0 B 0 ’ '
0 0 6B 0 |
L 2Nx2N

and matrices I, Wy, and B; are defined in egs. (4.52)~(4.54). The Fourier analysis
results for LLD 1-CI without averaging are shown in Figure 4.6. Since the shape of

the eigenvalue vs. frequency curves for LD and LLD are virtually identical. We
only include the LLD curves. The spectral radius is always 1.0 for all mesh

spacings. But since the eigenvalues at the high frequency modes (#/2<14x<x) are

negative, they can be reduced by averaging. If the eigenvalues at the high frequency

mode are less than the eigenvalues at the low frequency mode (0sAAx<w2),

multigrid method can be used to improve convergence. For the averging case, the

matrix for 1-Cl is as follows:

where ‘I’ is an identity matrix and § ranges from 0 to 1.

 + 7
a'm,iL
o™ ar:t,iR =w’(1+5l+1_5 A;ID)
a, 2 2
|2,z |

R (4.90)
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The Fourier analysis results for 60 are shown in Figure 4.5. Unfortunately, as the
mesh spacing increases, the eigenvalues approaches 1.0 for all modes. This
averaged 1-CI is therefore not amenable to imi:rovement by multigrid. Thus, we
need to find a way to reduce the high frequency mode eigenvalues. We have found

“that including a DSA solve helps with this issue.

The matrix of Fourier analysis for 1-CI+DSA is as follows:

+ +

am.iL am.iL
ol 2R | = A'D+ lG_3'u'" ﬂHG W'[A;‘D—I] in ,  (49])
a, 2 2 Ax, _ miL ‘
a;l.iR a;'iR
where
W, ‘ 0 0 0
0 W e-iMx, 0 0
wl= [ ] s . 4.92
0 0 W e 0 @2
0 0 W, 2NE2N

Gll G12 G13 G14
G2

N
@
]

G= ¢ | - (4.93)
G31 Gsz Gss G34 ’ T
G, G, G,; G, NN
gu &2 813 8u 0 1 1 0
0 -6, 6, 0 :
&n 82 8x &xu -D ;G ’ 4.94)
8y 8xn 81 8u 0 1 1 0
8n 8 8 8uly, 0 -6 6, 0],,
g O 0
0 , 0
g & , (4.95)
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Figure 4.6 Eigenvalues as a function of AAx for LLD 1-CI
(no averaging, ¢=1.0, Sj¢)
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Figure 4.7 Eigenvalues as a function of AAx for LLD 1-CI
(averaging =0, c=1.0, 516)
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and H is the matrix for the setup of the current,

-1 10 0
110 0

H-= (4.96)
0 0 I -I
0 0 I -I

2Nx2N

The results of Fourier analysis for 1-CI+DSA with LD and LLD schemes are shown
in Figures 4.8 and 4.10. The spectral radius for the thick mesh spacing goes to 0.0,
but the spectral radius for the thin mesh spacing is still near 1.0. However, since the
eigenvalues at the high frequency modes are negative, the shape of eigenvalues can
be improved by averaging for the multigrid method. The matrix of Fourier analySis
for 1-CI+DSA with averaging is as follows:

1.2
14 001 mfp

0.8 ~ 0.1 mfp
0.6 -

0.4 - 1.0 mfp
0.2 -

100 mfp
100.0 mfp

Eigenvalues
O
N o

04 1
-0.6 -
0.8 1
1
12 : : : : r :

0.0 0.5 1.0 1.5 2.0 25 3.0
AAX |

Figure 4.8 Eigenvalues as a function of AAx for LD 1-CI+DSA
(no averaging, ¢=1.0, Sj¢)
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Flgure 4.9 Eigenvalues as a function of AAx for LD 1 CI+DSA
(averaging 0.0, c=1.0, S;4)
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A.Ax

Figure 4.10 Eigenvalues as a function of AAx for LLD 1-CI+DSA
(no averaging, c=1.0, S;¢)
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041 10.0mfp
0.2 100.0 mfp

 Eigenvalues

241 W
0.6 - | |
"‘1 » ‘ T : ‘| - T - T T .

0.0 0.5 1.0 15 . . 2.0 2.5 3.0
AAX

Figure 4.11 Eigenvalues as a function of AAx for LLD 1-CI+DSA
(averaging &= -0.4, c=1.0, Sj5)

+ 1+6 +

el | B il
o™ ar_n.iR -0 o - a':"iR . (497)
s, Lﬁ[A;m[LG_Lm__&ﬁcjwf(A;p_x)] el

a;”.R 2 2 2 Axi - a;l.iR |

The results of Fourier analysis for LD 1-CI+DSA with averaging by 6=0‘0
are shown in Figure 4.9. The eigenvalues at the high frequency modes are alwajs
less than those at the low frequency mode for all mesh spacings. The maximum
eigenvalue at the high frequency is about 0.6. This means that LD 1-CI+DSA w1th
averaging can be combined to produce a rapidly convergent scheme. |

The results of Fourier analysis for LLD 1-CI+DSA with averaging by 5=
+ —0.4 are shown in Figure 4.11. The eigenvalues at the high frequency mode are

always less than those at the low frequency mode for any mesh spacings. The
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maximum eigenvalue at the high frequencies is also about 0.6. This means that
LLD 1-CI+DSA with averaging can also be combined with the multigrid to proddce
a very rapidly convergent scheme. By optimiiing the value of 8 as a function of the
mesh spacing, we can improve the shape of eigenvalues and maintain very léw

spectral radii.

4.3.3 Numerical Results

The model problem is a 500 cell homogeneous medium with vacuum
boundary conditions and constant and purely scattering cross sections (c=1.b)
divided into three regions with different constant sources. (see Figure 4.5) The 1-
CI+DSA spectral radii observed in our program for the model problem comp#e
well With our analytic results as shown in Table 4.3. Compared to M4S DS§A
applied to SI, the pPuma‘s from 1-CI+DSA are higher for thin mesh spacing, but
lower for thicker cells. We performed model problem calculation to compare tlf)e
observed spectral radii with the analytic ones. We can obtain the better spectr:%al
with multigrid in the program.

~ We have shown that CI with DSA can be unconditionally stable and
efficient in slab geometry. The scheme is also rapidly convergent for optically thlck

spatial meshes. This procedure must be coupled with multigrid to obtain rapid ;

convergence for thin mesh spacings. Using Manteuffel’s algebraic matrix inversion
method, the matrix inversion in 1-CI is not expensive. Furthermore, 1-CI is much
more amenable to parallelization than SI. Therefore, this 1-CI+DSA procedure is
very effective especially for intermediate and thick mesh spacings. Our belief is thfat
the Vaddition of DSA will also cause one-CI to be stable and efficient in mult%—
dimensions, where previous one-CI schemes have been unstable. It is important to
note that this techniqué will be more expensive per iteration than standard SI+DSA,
but overall may take less CPU time. We will apply this procedure to the x-y

geometry transport equations in the following section.
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Table 4.3
Spectral Radii for LD and LLD 1-CI+DSA

Mesh Analytic Spectral Radii | Observed Spectral Radii
Spacing LD LLD LD LLD
0.01 0.990 0.990 0.95 0.95
0.1 0.903 0903 | 082 0.83
1.0 0.356 0.394 0.31 - 034
10.0 0.099 0.016 0.08 0.01
100.0 0.018 0.002 0’.01 0.01

4.4 Method-1 in x-y Geometry (SI+1-CI+DSA)
4.4.1 Procedure

The method-1 procedure (SI+1-CI+DSA) in x-y geometry has thé same
three stages as in slab geometry:

(a) a SI sweep for Sy transport equations

(b) a one-cell block inversion for Sy transport equations .

(c) DSA to make the system unconditionally stable and quickly convergent.

The Sy transport equations with iteration indices for the various BLD schemes are

as follows:

H (t+173) (+1/3) n (1+1/3) (1+173) (1+173)
_m('/,m,i+1/2] Wm 1—1/21)+—M(Wm,i,j+1/2 Wmlj—1/2)+o-tlj'//mlj :
, (4.98)

1
O 4
sOU¢ iJ
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6,1
ZijFm o (14113) (1+1/3) (+3)y , 1 (+1/3) x(1+1/3)
('/’;(nluzj V/mr—llz,j m.:.j )+ = ('/’; G2 '/’mu—l/z)
& (4.99)
1 ’ '
(I+1/3) _ x()
+o,, V. ¢+ — Q
i, j¥ mi,j 2 5011 ﬂ' i,j
H (+1/3) (1+1/3) 91177m (1+1/3) (I+1/3) (1+1/3)
_m('//};‘:,i:llz_] '/’;:,-1/2,)'*' A Wi o112 Ymijoii2 = 2Wmi; )
! , (4.100)
(+1/3) _ 1
+o-t,l j'//rixj ) 2_— 5011¢y( ) .+ _,
Qjﬂm y(I+1/3) YUs13) 5 y(+113) anm x(1+1/3) x(1+1/3) Auun
Ax. (W'"M/ZJ 'H//"H-I/ZJ '/’m )+—— ('/’m:,j+1/2 Ymijrtiz = W miy )
’ b
(l+1/3) _ )
t:j'//;ylj 2” 5011¢1xy + i?;
(4.101)
where
U3) (4173 1+1/3
Vet =V WD, 1,0, (4.102)
1+1/3 141/3 1+1/3
Wity =Wy D W2 0, (4.103)
1+1/3 (+1/3 1+1/3
Waiganz =¥y 29250, 9,70, (4.104)
141/3 1+1/3 1+1/3
Vmigsiiz =Vmiy > Yo, 1,0, (4.105)

The scalar flux unknowns, ¢”+2/ % are obtained after a one-CI calculation by

the following equation:

-1
@ff}z’”=[1-_"s°’f’fAi,,J [ > w, Jf,’t‘j”+A,,Q,,], (4.106)

27[ Hpy>0,7,,>0
where
@, =(0,,9.92,6"), (4.107)
A,= Yw (AL + A2 A AL, (4.108)

Hn>0,7,>0
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(1+1/3) _ 1-1 1(1+1/3) 1(1+1/3)
JWH 2 A1 (B +C,, i)

m,i,j m,i,j m,i-1,j mi,j-1
AT ec )
AL s vim)
+ AL B, 2D + €, R

x1

T:n,i,j = (ern,i,j’ Vimijo» W:}i,j’ W:l):il,j)r’ “Up>0,7,>0, (4110

Trzn,i,j = (W;,i,j’ W;i‘,j’ Wn}:,zi,j’ '//n?:iz,j)r: “,<0,n,>0, (4l111) |

x3

Tfn,i,j = (W::,i,j’ Vimijo» '//;i',j: W:ij)rﬁ HBw>0,7, <0, (4112)

x4 T

Tfn,i,j = ('//:.,i,j: Vomijo W:‘,‘i,j’ W;{i“,j) » "M, <0,m,<0, (4-113)

1 1 0 0 :
-9 -6 0 0 %
B, =f=|"" : @.114)
A0 0 1 1
0 0 -9 -6
1 -1 0 0
—_ 0 : C
B,, == o -6 0 ) 4.115)
A, |0 0 1 -1 j
0 0 6 -9
1 0 1 0 |
c,=mf0 1 0 14 (4.116)
Ay, |-6 0 -8 0 |
0 -6 0 -8 |

4.117)
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1 Ml Le L 0
i lg’j 0 i @’j
G b 0 T
A:‘" = by, Ax’ ij ij
_om, 0 ], Ol P
ij Ax i, j Ax,
0 _6n, _54"_ 0Iﬂml+9lf7ml+%
i y, A, &y,
, (4.118)

(Af,, , foru, >0 and 7, >0

A2, forpu, <0 and 7, >0
Ab=y " . 4.119)
A, , fory, >0 and 7, <0

A, , foru <0 and 7, <0

Compared with SI, CI allows every cell to be calculated independently, eliminating
the need for a sweep.

The diffusion synthetic acceleration equation is derived using the “modified
four step™ technique of Adams and Martin [Ada 92], with one small modification.
The current at the cell interface is divided into two parts, in which the incOmiqg
current is from the previous step and the outgoing current is at the current iteration

index. The following equations are from the 0™ (Ewy,) angular moments:

ij (g.g/z, gl—1/2])+Ax (gz J+12 g; 1-1/2 )"'Ax Ay]o-aljf;(l+l) =0.0, (4.120)

ei,jij (gl+1/2_] +g:—1/21 _2g. (M))"'Ax (g.xjaf)l/z g."f'_uz)

, 4.121
+Ax,Ay, 6, 2 =00 )

ij (g.y»f(l/)zj g.{(l/)z,)"' 6, .Ax.(gi e +gi(‘}_1/2 2gfl(l+1))
+Mx Ay o, [ =

, (4.122)




0,

(*)
) ij(gi}-:-llz,j + 82,

)

(l+1) _
+Mx,Ay,0,, [ =0.0

Ly(1+1) * *) (1+1)
_2gi,,‘jy * )+0i,iji(gf,3'-zl/2 +g:j-l/2 _zgi’f}x * )
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(4.123)

The current equations can be derived from the 1¥ angular moments (EwyNm and

Zwnlm') as follows:

4

()] _—
8i2j =82+t 8

®
i+1/2,j =

™
8ijan

x(*)
8i 12

+(I+1)

+(I+1)

y
8, T8

— (D)
=8&ijqi2

— A x+(l+])
=& j4/2

+&

+&

y=(1+2/3)
i+1/2,j -

—(1+2/3)
1,j+1/2

1+2/3
::(172,1 )= [e(

D. .
(+1) x(+)y _ Zij
IS+ A5 -5

f;::i(lﬂ)]

_[a(f(l+2/3)';f;x(l+2/3)) + Di+l,j x(1+2/3)
Ji i+

_[a(fy(l+2/3) -
i

+1,f

141
=[a (£ +

+1,j

1+1
= [a(./;,(j+ )+

. 3
~la(f53"” -

1,j Ax

xy(l+1)

x(+2/3) )+

i+l j Ax

D
A

saony_Dig
1] Ax,-

i+l

D,

1.J
1

i+

i+l,j

1+1
700)

fxy(l+2/3

i+l j

1+1 i, j 1+1
P = 1)
J

D ’
y(l+2/3))+ i,j+1 f;y(l+2/3)]

i,j+1
ij+l
x~(1+2/3) __ [a(fx(l+l) +fxy(l+l))_ D
iz = ij Jij A
, D .
. x(1+2/3) x/(1+2/3) ij+l
- [a(-/;,j+l - f;',j+l ) + X—-—
’ J+l
(* L +(142/3) —(+1)
gi-%/z,j =&ian,; t 8>
) _ o yee2/3 ~(+1)
gi{ll)z,j —gi{:/z,j )+gi{l/2,j >
y (1203 -+l
gi(,}-llz = g:j—:/Z )+ gi,j'-:/)z ’
. 142/3 —(I+1
giﬁ'-)l/z = g:;£172 )+g:fj£l72)’
g[l(l+l) S ZDI'J fx(l+l)
inj oo
Ax;
n(l+1) _ .‘____ZD"J fy(lﬂ)v
gi,j A iLj 2
Y

LJ+l

ij fx,y(l+l)]
i,
y, "

fxy(l+2/ 3)
i,j+1

2 .

]

)]’

]

(4.124)

(4.125)
(4.126)
@.127)

(4.128)
(4.129)

(4.130)

(4.131)

(4.132)

(4.133)
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gt YD) _ D, fx,v(l+1) i (4.134)
gl = D, fx,v(l+1) i (4.135)
where
157 =8 -4, (4136
fx(l+1) x(141) _ ¢f(l+2/3) (4.137) ‘
i i W '
f yoa) _ ¢y(l+l) ¢y(’+2/ 3) (4.138)
fxy(l+l) - ¢xy(l+1) ¢xy(l+2/ N (4.139)
FUD = gl _ gnrs) (4.140)
x(1+2/3) _ 4 x(1+1) x(I+1/3) |
£ = g0 — gHD | (4.141)
£ y+213) _ ¢y(l+l) ¢y(l+1/ 3, (4.142)
[0 _ g2 _ goard), | (4.143)

We rewrite egs. (4.120)~(4.123) in matrix form as follows:

1+1 (+1) ({+1) (141) (I+1)
D f( D +D2Lfl—1j +D3Lfl+lj +D4Lfl J=1 +D5Lfl ,J+l

=-D, (@5} -@{?)-D, (@477 -0l , (4.144)
~D, (@7 - 01%)-D,, @17 - 0(11?)
where
fi(’?-l) __(f;(l+l) f;x(l+l) fy(l+1) fxy(l+l)) , (4145)
(1+1) = ¢(l+l) ¢’x(l+l) ¢ y(I+1) ¢xy(l+1)) , (4.146)
20 2a
D,,,=—+—+0,,, - (4.147)

Ax, Ay, @b

2,0 2 26,D
‘DlL,z,z Ay. ij 2 2 +O'a,i,j: (4.148)

J i

Ax,

[




2a 20,,a 20D,
. 2,

D,,, ==+ W L
12,3,3 Ax,- ij ijz aji,j
20, 20..a 20 ..D,. 20 .D. .
Dyjo=—t—t—t—gp 2l 4o
T Ay Ay Ay, ’
Dy, 0 0 0
D 0 D, ,, 0 0
i ) 0 Dy,; 0 [
0 0 0 Dy .4
A S = VIR 0
Ax,  Ax, Ax,Ax,
6.2 6,2 6,0, .
_| A Ax Axax,
0 0 e _a Da, |
Ax, Ax, Ax, Ax,
0 0 8,2 6,2 6,D.,
- Ax, Ax,  Ax; Ax, |
—_ a a Di+l,j 0 0 ]
Axl Axi AxiAxl+l
_ 01 J 01',/ _ ei,jDi-l-l,j O O
- Ax: Axi Ax:Ale
0 ‘ 0 - a 2] _ Di+1,j ’
Axi Axi AxiAxi+l
0 0 _ 6, 6 ,a _ 6.,D...,
L Axi Axi AxiAxm _
e o _a, D o |
Ay, by, Aynady,
0 & 0 _c D, ,,
- Ay, | by, Ay.,Ay,
6,2 , 8y&_6,D 0
Ay, Ay, Ay,,Ay;
6, ,a 0 6,,a 6D,
i Ay Ay, Ay, 4oy, |

?
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(4.149)

(4.150)

(4.151)

(4.152)

' (4.153)

(4.154)
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_a 0 o Di,j+l 0

Ay, AYJ Ay b

a a i, j+1
D, - 0 Ay, 0 Ay; ¥ Ay Ay, (4.155)

_ ei,ja 0 gi,ja - ei,jDi,j+l 0

Ay, by, 4dyby,,

_ﬁ,ﬁ 0 6,2 _ 6,,D; ju

! &, &y, AyMy |

4.4.2 Fourier Analysis

We have performed a Fourier analysis of SI+1-CI+DSA with BLD and
FLBLD transport discretizations for a purely scattering problem in x-y geometry.
Since the 1-CI equations include the incident angular fluxes, the scalar fluxes
should be divided into four directional values in x-y geometry. The Fourier ansatz

for the SI+1-CI+DSA schemes applied to BLD schemes in x-y geometry are:

o/ =w'Al,, (4.156)
I R L 4.157)
ii:,ﬁ‘,.’*”” =o'Bf,, (4.158)
5 = o'e!, (4.159)
where
LD = (GHO, rO Gho  Fhm DT (4.160)
¥ ;(;T;/a) - ('//A:E:fj””a W:::’(jm/a)’ '/;’:,’;v’(jln/a), A’::.::vvj(l+1/3))T ’ (4.161)
f-i(,?l) - (j":_.(;n), j}i::j(M)’ j}i:vj(M)’ ﬁ3(1+1))r , (4.162)
AL, = (4, 47, A:}), 4577, (4.163)
By = (@i anl e ol a2 (4.164)

B;, = (B!, B!, B!, BT, (4.165)

Ljr g o Ty




k k,x ky ckxy)T

ko _
¢, =(cijse;,eys

and k=1, 2, 3, 4 denotes the four directions.

The matrix of Fourier analysis for SI+1-CI is as follows:

1 [ A1
AiJ A",j
2 2
@ A =C A
A’ N
iJ
4 4
_A"J Jiex -A"J J16x

where the matrix C is from 1-CI:
C=1-KB)"' Y wXK, (B

Hu>0.77,,>0

-+C.8.,

the matrix Sy, is from source iteration:

El—l El-l El-l El—l
"o (B OEY ET EN|
4-1 4-1 4-1 4-1
E"’ E’" E”' E"‘ 16x16
B, e % 0 0 0
B o 9 Bzmg“A"' 0 0
" 0 0 B,e™ 9
0 0 0 B, e
C,e " 0 0 0
c - 0 ¢, R 0 0
" 0 0 C,, e 0o
0 -0 0 C,, ™
AL 0 o0 o0
K |0 AL 0 0
10 0 AL o] °
0 0 0 A

m _l16x16

16x16

16x16
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(4.166)

(4.167)

(4.168)

(4.169)

(4.170)

4.171)

4.172)
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K= YwK, (4.173)
He 20,77, >0
1111
o, I 1T 11
R= Ssts) 5 4.174
27 |1 1 11 @179
I I I I 16x16
EL = Al B, ¢e™ —C,e™, (4.175)
"B} =Al-B,,e™ -C,e™, (4.176)
E} =A% -B, e —C, ", (4.177)
E;‘n = A:: —BZMeMAxI —C2meiVAyJ : (4178)

The results of this Fourier analysis for LLD SI+1-CI in x-y geometry are shown in
Figures 4.12~4.14. Since the shape of eigenvalues vs. frequency curves for LD
SI+1-CI in x-y geometry are nearly identical to LLD, we omits these plots. As
shown in the figures, the spectral radius is always 1.0 at AAx=vAy=0 mode. As the
mesh spacing gets thicker in either dimension, the overall eigenvalues approaches
1.0 for all modes. As in the slab geometry, the eigenvalues for the high ffeqﬁehcy
modes (n/2SAAX<7 or m/2<vAy<r) are negative. While the region defined as the
high frequency in slab geométry is 7/2<AAx<m, this region in x-y geometry is
7/2<AAX<m or m/2<vAy<n, which is three quarters of the modes. Therefore, it is
more difficult to find methods which have the required behavior for multigrid in x-
y geometry. Since the éigenvalues at m/2<AAx<n and vAy=0 are near 1.0 and
positive, éveraging can not reduce the eigenvalues at those modes.

The matrix of Fourier analysis for SI+1-CI+DSA in x-y geometry is as follows:

ALl [AlL]

@ A =[C+1D(CQS)- A"Z-f (4.179)
Aij 4 J A?,j ’
AL AL

where the matrix C is from 1-CL,S is from source iteration:



http:4.12-4.14

Eigenvalues

Figﬁre 4.>12 Eigenvalﬁes.as functions of AAx and vAy for FLBLD SI+1-CI
in x-y geometry (no averaging, Ax=Ay=0.01 mjfp, c=1.0, S,)

1-1‘

'0.84.
0.6~
[
g 0.4 -
3 .
: .
S 0.2
w
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-0.2 el -0
0.4

n/2
vAy

0.0

v i m2
AAX

" Figure 4.13 Eigenvalues as functions of AAx and vAy for FLBLD SI+1-CI
| in x-y geometry-(no averaging, Ax=4y=1.0 mfp, ¢=1.0, S,) . .
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Figure 4.14 Eigenvalues as functions of AAx and vAy for FLBLD SI+1-CI
in X-y geometry (no averaging, Ax=4y=100.0 mfp, ¢=1.0, S,)

S= Yw,S7, (4.180)
>0

HEin>0,1,,

and D is from diffusion equation: ‘
DD, D;D; DD, D;D,
D= D;'D, D;'D, D;'D, DD,

= L : 4.181
DDy DDy DDy DD, (150

DD, DDy DDy DD,
D, =D, +D, ™™ +D, ™ +D, ™™ +D ™, (4.182)
D =-Dye™™i —D, ™ _D e D, " . (4.183)

The results of the Fourier analysis of BLD SI+1-CI+DSA are shown in
Tables 4.4 and 4.5 which are for the S) an& Sg’ transport equations, respectively. As
shown in the tables, this procedure is unconditionally stable for all mesh spacings.
In Tablés 44 and 4.5, the spectral radii of this procedure (upper value) are
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compared to the spectral radii of M4S DSA (IoWer value). As in slab geometry, our
new scheme has a smaller spectral radius for the intermediate mesh spacings (1.0
mfp < Ax < 10.0 mfp and 1.0 mfp < Ay < 10.0 mfp).

The results of our Fourier analysis of FLBLD SI+1-CI+DSA are shown in
Tables 4.6 and 4.7 which are for the S, and Sj transport equations, respecti.vely. As
shown in the table, this procedure is unconditionally stable for all mesh spacings,
but the spectral radii for thin and high aspect ratio problems approaches unity.
Since the eigenvalues are negative, the spectral radii can be slightly improved by
averaging. However, the spectral radii with averaging for the thin and high aspect
ratio problems are not rapidly convergent. As in the BLD scheme, there is a benefit
for intermediate mesh spacings (1.0 mj? < Ax S 10.0 mfp and 1.0 mfp < Ay < 10.0
mfp). This procedure is not appropriate to the thin and high aspect ratio problems,
but still works weil for Ax=Ay pr'oblems; '

Table 4.4
Level-symmetric quadrature Fourier analysis results for BLD M4S
“SI+1-CI+DSA in x-y geometry (¢=1.0, Sy) ‘

oiAX oAy
0.01 0.1 1.0 3.0 100 | 1000

0.01 | 0.41/0.25 |

0.1 | 042025 |0.40/0.23

10 | 0.43/0.49 | 0.40/0.49 | 0.31/0.49

3.0 | 0.43/0.55 | 0.48/0.55 | 0.34/0.55 | 0.26/0.55

100 | 0.43/0.28 | 0.45/0.28 | 0.34/0.49 | 0.33/0.55 | 0.19/0.28

100.0 | 0.43/0.18 | 0.41/0.18 | 0.31/0.49 | 0.28/0.55 | 0.17/0.28 | 0.04/0.03

SI+1-CI+DSA / M4S DSA
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Table 4.5
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Level-symmetric quadrature Fourier analysis results for BLD M4S
SI+1-CI+DSA in x-y geometry (¢=1.0, Sg)

ctAx Gy

0.01 0.1 1.0 3.0 10.0 100.0
0.01 | 0.40/0.23
0.1 |0.38/0.22 | 0.38/0.22
1.0 | 0.38/042 | 0.37/0.42 | 0.31/0.42
3.0 | 0.38/0.50 | 0.45/0.50 | 0.35/0.50 | 0.25/0.50
10.0 | 0.38/0.28 | 0.38/0.28 | 0.32/0.42 | 0.32/0.50 | 0.19/0.28
100.0 | 0.38/0.22 | 0.37/0.20 | 0.28/0.42 | 0.27/0.50 | 0.17/0.28 | 0.04/0.04

SI+1-CI+DSA / M4S DSA
Table 4.6

a Level-syminétric quadrature Fourier analysis results for FLBLD M4S
SI+1-CI+DSA in x-y geometry (c=1.0, S,)

oWAX " oAy
0.01 01 | 10 30 | 10,0 100.0
0.01 0.46 |
0.1 072 | 043
1.0 0.72 0.65 0.35
30 | 072 | 067 037 |- 028
10.0 0.72 067 | 032 0.21 0.12
1000 | 072 | 067 0.35 0.17 0.07 0.01
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, Table 4.7
Level-symmetric quadrature Fourier analysis results for M4S FLBLD and SCB
SI+1-CI+DSA in x-y geometry (¢=1.0, Sg)

o.Ax | oAy

| 0.01 0.1 1.0 3.0 10.0 100.0
0,01 0.49 e

o1 | o.ss' 0.46

1.0 0.90 0.77 0.37

3.0 0.90 0.81 0.37 0.29

10.0 0.90 0.82 0.33 0.21 0.12

100.0 0.90 0.83 0.36 0.17 0.07 0.01

4.4.3 Numerical Results

We have implemented this procedure to corroborate the findings of our
Fourier analysis. Problem #5 is shown in Figure 4.1 5; This model problem includes
a heterogeneous medium with isotropic scattering, in which the bottom-left region
has a scattering ratio of unity and a source of 1.0, and remainder of the domain has
a scattering ratio of 0.99 aﬁd a source of 0.1. The rectangle has vacuum boundaries
on the left, right, bottom and top sides. There are 50 cells along the x-axis and 50
cells along the y-axis. All of the calculations. were performed with the Sy quadrature
set. We performed the model problem calculation only with FLBLD SI+1-CI+DSA.
The results are shown in Table 4.8, in which the observed spectral radii correspond

well with the analytical spectral radii from our Fourier analysis except some cases.

The observed spectral radii for thin mesh spacing (AAy~=0.01 mfp) are much less
than the analytic spectral radii. This results from the high neutron leakage for thin
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mesh spacing in the model problem. Some of the observed spectral radii for thick
mesh spacing are larger than the analytic'onés. This comes from the insufficient
convergence in the solution of the asymptotic continuous diffusion equation.

We have shown that the new DSA procedure coupled with 1-CI works well
for the BLD scheme in x-y geometry for any mesh spacings. For the FLBLD SI+1-
CI+DSA scheme, it works well for the intermediate and thick mesh spacings, but
the spectral radius goes to unity for the thin and high aspect ratio problems. Our

following research is to remove SI step and includes only 1-CI and DSA.

Vacuum B.C.
7y -
Vacuum B.C. |
¢=0.99
=0.1
SOAy 20Ax Vacuum B.C.
——Pp
c=1.0" 20Ay
Q=1.0
v : - . Vacuum B.C.
_ _ 50Ax
[—— >

Figure 4.15 Geometry for Problem # 5
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Table 4.8
Results of FLBLD SI+1-CI+DSA for Problem # 5 (Sy, ¢=1.0)
o AX cidy
0.01 0.1 1.0 3.0 100 | 1000
0.01 | 0.29/0.46
0.1 |036/0.72 | 0.42/0.43
10 |0.33/0.72 | 0.61/0.65 | 0.25/0.35
30 | 031/0.72 | 0.62/0.67 | 0.23/037 | 0.15/0.28
100 | 0.30/0.72 | 0.62/0.67 | 0.23/0.32 | 0.12/021 | 0.07/0.12
100.0 | 0.30/0.72 | 0.62/0.67 | 0.45/035 | 0.27/0.17 | 0.05/0.07 | 0.05/0.01

Observed spectral radius/Analytic spectral radius

4.5 Method-2 in x-y Geometry (1-CI+DSA)

4.5.1 Procedure

Now we consider the scheme in which we remove the first stage of SI,

leaving just 1-CI and DSA based on 1-CL In the standard x-y geometry one-CI
method (four spatial unknowns per cell), for a given Sy angular quadrature set, there
are 16M, where M=N(N+2)/8, angular flux unknowns in each cell. These
unknowns can be obtained directly from a /6MxI6M matrix inversion. Manteuffel

et al. [Manteuff94a] showed that the matrix inversion for the CI p-line relaxation

matrix can be obtained in a computationally efficient manner. We believe that

Manteuffel’s algebraic manipulation can bé-r applied to 1-ClI in x-y geometry, and

leave the investigation of this issue for the future work. The matrix for p-line

relaxation of the 1-CI Sy transport equation in x-y geometry is as follows:


http:0.05/0.01
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- q(+1/2) ; -1
‘P:n,i,j :n_}wm _}wn;g —}wm - m
‘Przn,i,_z = _}wm Arzn —Nm —'}wm - m
‘an,i,J _}wm —}wm Afn —}wm —Mm
4
_‘Pm,i,j_J -, -, A Afn -W, 16Mx16M (4.184)
(B, [ce,.] [e,] o
2 2
Bm‘Pm,i—l,j CmTMJ,jH Qi,j 27
B;zn?:u,m,jj _Crznw:l,i,j‘H_J ?JJJ
where
Tf,,,i,j = (Wllfi,j > --:W]lt‘l,i,j ’Wllf,,:, > - -:W:;,ri,j ’Wl,t;Z’ :'//:1’:‘;,}:'//:;3’ e :'//:1’2’} ’)4M > (4185)
ok |+]pt|+e  at b 0
A -6t 9,aﬁl+lb;|+c 0 b* 4.186)
S - ) 0 la;|+0lb;|+c at &
0 ~6b* —6a* a|a';|+e|b:;|+cJ
a, a, 0 0
-fa' -@a' 0 0
B, = " " ) , 4.187
0 0 a, a, (187)
0 0 —-fa, -0a
e, a0 0
" fa', -fa. 0 0
B = " " , 4.188
| 0 0 a, -—al (4.138)
0 0 6Hal -6a
b! 0 b,, 0
0 b! 0 b’
C! = mo ", 4.189
_0b. 0  -6b. 0 (4.189)
0 -6b), 0 -0b),
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ci=| ~  Om ", (4.190)

Hy 0
PR N .
a, =—[: ‘. |, (4.191)
. " A%,
0 Hu
v, 0 /%
1 - 0
ce=o,,|¢ . i, (4.193)
0 -1

1, foru, >0 and n, >0

2 , foru, <0 and 7, >0
k=4 . (4.194)
3 , foruy,>0and n,<0 -

L4 , foru, <0 and n, <0

The low order diffusion equation is different from the diffusion equation
used in method-1 (SI+1-CI+DSA). Here the incident currents are obtained directly
from the 1-CI équations. The balance equations generated by taking 0™ angular
momenfs of egs. (4.98)~(4.101) are the same as those developed for method-1:

moe _,O
k 1. . .
b,=—|: . | ) (4.192)

Ay (20, - 820, )+ Ax (g7, - 70 )+ AxAy o, £00 = 0.0, (4.195)

* £ (l 1 '$ L
9i,jij (giﬁ(l/)Z,j +gi‘:§/)2,j _zgi’,‘j * ?)+Axi (gZﬂ(l/)z "ng-(l/)z)

: (4.196)
+AxAy 0, [ =00

A (o0md® — omr® Ve d Av (o1 ) 141
ij( i’-:lyIZ,)j _gi,il};(z,)j)-'-ei,iji (ng+1/2 +ng-1/2 "2835‘ * ))
’ 1+1

+ Ax,.ijaa,,.,jf-,,y} M =0.0

, (4.197)
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() V(%) y(I+1) J%(* x(* 141
ei,jij (gll:»lJ;(Zj +g£l);2,_1 2g1 porr )+9 Ax (g:,/-i»(ll)Z l’ljx—(l/)Z —2g",’:‘(+))

6J
ety 3, 170 — . (4.198)

dl_[l

The current equations can be derived from the 1* (EwyNy and Swpp:) angular
moments of egs. (4.98)~(4.101): .

™ - ( 1) = 1/2)__ (! 1) (I+1) l/ 141
gll-:l/Z,j gﬁ;/zt/ gl'l-:»l/Zt_/ [a(f; y .fx ¥ ) X(+)]

l

—[e(fS) - f,.*<’+‘>)+D‘*"f 0], (4.199)

+1,/ +1,j Ax i+l,j
i+]

' u-(1+1/2) . x=(1+1/2)
+ Zwm:um (./m,i-i»l,j - m,i+l,j )
Ha>0

, _ (1+1 ,11/2)_ I+1 I+1 141
g1+l);(2,)/ gl+l);; _[+ ) + gl+lJ;2(j+ [a(f;y( D + f;xy( ¥ )) ,I fxy( * )]

_[a( f;y(lfl) f;xy(l+l)) +D i+l,j fg(l-i»l)] (4.200)

+1,/ i+l,j Ax
i+l

m,y=-(1+1/2) H,xy—(1+1/2)
+ Zwm:um (fm,i+l,j fm,;ﬂ,j " )

141 ~(1+1/2 141 1+1 ,j 141
gZ§+)1/z gz;£172)+g:’,£172 )—[a(f;(+)+fy(+)) 2 fy(+)]

_[a(f;(l+l) f;y(l+l)) b Dl J+H y.(l+l)] , (4.201)

W+l L J+l ij+1
A Jj+l

—(1+1/2) ~(1+1/2
+ Zwmnm (fr;’,i,jil - {,»ff ))
"’Iu>o '
7.%(*) (+1) -(4172) _ (Us1) | £oy(i+1) ,1 (41
g;}illz gzjﬁ/z +g,;:1/2+ [a(f;x ¥ fxy - fxy +)]

_[a(f;x(l-i»l) Fony y i D, ju 2407, (4.202)

WJ+H i,j+l J+
Ay,
nx-(141/2) _ n,xy—(l+l/2))
+ Zwm”m (./m,i,j+l mj,j+1

>0

We define the currents as we did in 1-CI+DSA in slab geometry as follows:

70 R %)) ) Co (+1/2) XH(I+172)
8ia2,; = g1-1/2/ +8002, — Zwmﬂm(»/r:;:-l,j + ;::ii;:5'+l ), (4.203)
Ha>0




#,y(® = #,y+(1+1) my~(1+41) J+H(I4172) Xy+(141/2)
gl—l/2,; g:—l/Z,j + g:—llZ/ - Zwm:um (f:,i—l,j +fﬂl-l,j )
He>0

) +(+1) | o n=(40) 7+(1+1/2) My+(1+1/2)
8ijar2 = 8ijar2 * 8 — Zwmﬂm mij-1  — Jmij-1 ):
. N >0
7.%(*) n,X+(l+l) r; x=(I+1) _ 7, x+(1+1/2) n. ;y-o-(l+112)
g: J-12 = =& J=1/2 11-112 Z (fm,i,j-l fm RN )
Nw>0
H+Y) _ .j x(l+l)
i ﬁ
n(l+l) .j (I+l)
gl,j fy
141y _ .j (1+1)
g,’fj”( fay
(l+l) l,j (1+1
g,’ff fay +)
where

f(1+1) (1+1) ¢(1+1/2)

fx(l+l) — AX(4D) _ ¢x(l+112)
i Y ij >

fy(l+l) ¢ y(l+l) ¢y(l+l /2)

fxy(l+l) ¢xy(l+l) xy(l+l /2)

H

14172 14172 n’
f(+ )_¢’(n:’j) 0]

m,i,j myi,j?*

fx(l+112) — ¢x(l+112) _¢x(l)

m,i,j m,,j mj,j >
~y(l+1/2) = (1+112) yi)
mji,j ¢m ij ¢m W f 2
xy(I+1/2) _ xy(l+112) xy(l)

mi,j mi,j mi,j 2

fﬂ+(l+112) fyl(l+112) fy3(l+112)

mt,J myi,J mgi,J ’

fy,x+(l+ll2) _fy,xl(l+112) +f/1 x3(l+112)

mi,j myJi,j mjij.
H,y+(1+1/2) = y,yl(l+112) +fy,y3(l+112)
m,i.j mjj my,j ?
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(4.204)
(4.205)

(4.206)
(4.207)
(4.208)
(4.209)

(4.210)

4.211)
4.212)
(4.213)
(4.214)
4.215)
(4.216)
4.217)
(4.218)
4.219)

(4.220)

(4.221)
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fmﬂ,ijﬁ(lmz) fmu’.x:’yl(l+l/2) + fmuJ.x:’yS(lH/Z) (4.222)
s 51+1/2) FrA) | pusanry (4.223)
fm,t‘,.;-(lmz) f" F2(141/2). + fmy’34(l+l/2) (4.224)
’::’z-(lmz) = [/ ’y2(l+1/2) + fu’y4(l+1/2) (4.225)
m;::rjy—(m/'z) fmu’,:;yZ(M/Z) + fmu,l.:;y4(l+1/2) (4.226)
Fraam o pra | f,,:’f(,“”z) (4.227)
f”,’,',;(p,l/z) f’;;’x;(lH/Z) f,;”,sz(“”z) , (4.228)
Frsn fn T2 |, pro2lrs) (4.229)
f::xj,+(1+1/2) _ f;;],zx_};](lH/Z) + fn.xy2(1+1/2) (4.230)
f:l(jm/z) f:f(,lmz) + f’;z:(le/Z) (4.231)
f’:’,,x;(1+1/2) f:;sz(lu/z) + f:;x;(l+l/2) (4.232)
:’};—(14-1/2) _ f:’);Z(lfI/Z) f’;zly;(M/Z) (4.233)
’;,;xj:-(l+l/2) _ fn;xy2(1+1/2) + frz.’xy4(l+1/2) (4.234)

Eqgs. (4.195)~(4.198) are different from conventional DSA in that they include
current terms from 1-CI. When only the scalar ﬂuXes were taken from 1-CI, the
DSA scheme was not unconditionally stable. However, tddng the current from the
previous 1-CI, the DSA scheme is much improved. This fact will be demonstrated
in our Fourier analysis results.

- Although there is no problém in using the P, approximation to update the
angular flux in slab geometry, it is not easy to get the appropriate update equation in
X-y geometry. There are several options to update the angular fluxes. The first is to

use P approximation as follows:

mt =Wy +oo (f,-‘j*" +3u,81" +3m,875 "), (4.235)




151

1 + + +
D = ) — 5 (0D 13, gD 1.3 @B (4.236)
,,,,,Zl) ,,,,,I;l/Z) y(I+l) +3 ﬂm gir}}a(lﬂ) + 377", g;):l.f7(1+l) ) , ( 4237)
v/z’ (j+1) m,gﬂm (fxy () 4 3 [ gﬁ D) 37, g 17(1+l)) (4.238)

The second is to assume isotropic correction terms (the Py approximation) as

follows:
- ,f,:‘} ,f:‘,’” .,,’-*‘), (4.239)
D =y + f D, (4.240)
m Vi) +51ﬂ—f.~3~"*‘), (4.241)
D = i) +—21;z- [, (4.242)

The third is to use a Py approximatip_n [War 92]:

1 H, 7,

1) _  0472) 1) Hm o uee) m _n(i+1)

Y =y o 4 ,..Ig"’ Dy _tm_ ] — 2 gDy, (4.243)
1+1) _ '//(1»,1/2) x(I+l) Ky, s+ T _xnis)
m)i,j myi.j +q lgx' 4 lgu )’ (4'244)
W,((u) =y w1 1 (fygz+1) s Hy gy i) | T _ m qu(m)) (4.245)
SR S 7H A - [N

'//V7(1~+l) _V/ty(l+l/2) it 1 xy(1+1) s P Hy gxy,u(1+l) + M g,_‘y_,r,(m)) (4.246)

f'k,J | mi.j .vzn, | 5|ml WJ 5]’7».[ WJ

where

8= Wty = W1, ~10. (4.247)
Hn>0 >0
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We evaluate these alternatives through Fourier anaysis and utilize the most efficient

technique.

4.5.2 Fourier Analysis

We have performed a Fourier analysis of these acceleration schemes for
purely scattering problems in x-y geometry. Since the 1-CI equations include the
incident angular fluxes, it is important to perform our Fourier analysis for the
angular fluxes, rather than the scalar fluxes. The Founer ansatz for 1-CI+DSA with
BLD and FLBLD in X-y geometry is as follows:

k(
Tm(l)j =0 am[_]’ (4.248)
o k(1+2/3 o'B*
®:(? = 0'Bf (4.249)
sk(+l) _ I k
f.;  =o'c;,, (4.250)
where
k(l) = (13 ¥ i Ak(l) kx(l) ~kox(l) o
le_[ ('//]l_["""WMlj’Wllj LA Mxl(_]’ (4251)
~Ak.y(l ’ k.y( ~k.xy(l Ak ay()NT ’ )
'llll)j]()"""//M};(j)’ Wllf]y()" ’W ())
s(I+1) _ ¢ £U+1) (1+1) x(1+1) 7 x(1+1)
50 = (00,0, FUD, FrEm, L, fxe, 4252)
141y 141 141 1+1)\T )
lyj(+)’m’ .v(+) fxy(+) fxy(+))
k k k »
Amij = (al,i,j’“° s Qr g Brjjsees8uf s 4253
k,y k,y k,xy k,xy \T°’ ( ) )
Biijoees s Ouujs Arijseees Apirs)
koo k k k, k, k, k, k, kxy\T
Ciy = (C e € ys € auees €17 Ciflseens €170 LT senes c;”), (4254)

and k=1, 2, 3, 4 denotes the four angular quadrants.

The eigenvalue'problem_ of 1-CI we must solve is:
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1 1
am,i,j am,xj
2 2
I T o -1 b (4.255)
: am,i,j : a»Hj
4 4
a"”! 16Mx1 a"‘ ) d16mxt
Alﬂ —Mm —Mm _Nm ‘ - m
C] = m Am' Mm ; Nm m , (4256)
_—7wm —Mm Am —Mm - m

- W, - W, W, A;—})W,,', 16Mx16M

[Ble™ 4 Cle™ 0 0 0

' 2 ~idAx, 1 =iy,
B =0 Bae G 00 , (4.257)
0 0 Ble™4Cle™ o

0 0 0 Ble™,Cle™™™

J16Mx16M

where the matrices W,,, A¥ ,Bf,, and C* are defined in eqs. (4.186)~(4.194).

The results of Fourier analysis for FLBLD 1-CI in X-y geometry are shown
in Figures 4.16~4.18. Since the eigenvalue shape of the BLD scheme is almost
identical to that of the FLBVLD,‘We include only the results for FLBLD 1-CI. As
shown in the figures, the spectral radius is always 1.0 at AAx=vAy=0 mode. As the
mesh spacing becomes optically thick, the_eigehvalues approach 1.0 for all modes.
As in slab geomctry; the eigenvalues at the high frequency modes (n/2<AAX<n or
n/2<vAy<m) are negative. While the modes defined as high frequency in slab
geometry are 1t/2<?\.AXS1t the - high frequency modes in x-y geometry are
/2SAAX<m or n/2<vAy<n which are three quarters of the Fourier frequency space.
Therefore, it is more difficult for methods to be amenable to multigrid in x-y
geometry. Since the eigenvalues at 7/2<AAx<r and vAy=0 are near 1.0 and positive,
averaging can not reduce the eigenvalues at those modes. Thus, we need to find a

way to reduce the high frequency mode eigenvalues. We include a DSA solve to

help with this issue.
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Figure 4.16 Eigenvalues as function of AAx and vAy for FLBLD 1-CI
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The matrix of Fourier analysis for 1-CI+DSA with P; approximation is as

follows:
B | | al,
® :;:j =[C,"B,’+-21;(I+El+E2)D,(C,"B,—I)] a%j . (4258)
.a;’i’j 16M>1 Bss 16Mx1

where
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DA, D'A, DA, DA, W, 0 0 0
D = DA, D7A, D'A, DA, 1 0 W, 0 0
'"ID'A, DA, DA, DA, [0 0O W, 0
DA, D'A, D'A,. DA, 0O 0 0 W,
. (4.259)
D'B, D'B, D'B, D'B,[W, 0 0 0
,/P"B, D'B, DB, D7B,| 0 W, 0 0
D'B, D'B, DB, DB, 0 0 W, 0
DB, D'B, DB, D'B,[ 0 0 0 W,
E, 0 0 0]
0 -E. 0 0
E, = " 1s 4.260
10 o E o - (4:200)
|0 0 0 -E
[E2 0 0 o0 |
0O EZE 0 0
E, = = , 4.261
10 0 -E2 o0 (1.261)
(0 0 0 -E]
1 1 0 0
=0 -0 0 0
A = 1 g , (4.262)
Ax, 0 0 1 1
0 0 -0 -0
1 -1 0 0]
u |0 -0 0 0
| A, Y , (4.263)
‘ Ax, 0 0 1 -1
‘ 0 0 0 -0]
1 0 1 0]
wmy| 0 1 0 1
| B, =L g , (4.264)
| Ay; -0 0 -0 0
0 -6 0 -0
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(4.265)

(4.266)

(4.267)

(4.268)

(4.269)

 (4.270)

4.271)




#o0 0

0 u 0
Bn=(. . )

0 0 ﬂMJMxM

m 0 ... 0]
A

0 0 oo Tyl
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(4.272)

(4.273)

The eigensystem we must solve for the 1CI+DSA method with the Pg

approximation is as follows:

Faln,i,j— o . S ra:n 4 j—
rzni j -1 1 -1 { arznnj
w i,j g[c, B,+§;D,(C, B,-1) i
4 ] 4
L7 méJ Jiemxa [2m,i.s Jismx
1-CI+DSA with the P, approximation yields:
ra:nnj— Fa:nlj—
a, I I a,
0% | =|C, "B+ -(I+EX +EX)D,(C,B, -1) miJ
am kN 2 am £
4 4
| 3mios Jisarmt | By
where

E, 0 0 0 |

E® = 0 -E, 0 0 |
0 o E, 0

|0 0 0 -El,]

E2, 0 0 0 |
goo| 0 E O 0

2 2 ’
0 o0 -E,, 0

0 0 0 -E2,

J16Mx1

- (4.274)

, (4.275)

(4.276)

(4.277)
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iJ

s (4.278)

o
o
)
oo o m
)

g2 6Dy

Ay;

(4.279)

S 0 O
[— I — I

B — I — I R )

Since the results for 1-CI+DSA with Pog approximation is between P; and Py cases,
we do not include those.

The Fourier analysis results for i-CI+DS,AI with the Py approximation are
shown in Tables 4.9 and 4.10. Table 4.9 is for the BLD 1-CI+D‘SA schéme and
Table 4.10 is for the FtBLD 1-CI+DSA scheme: Each of these tables was
generated with Sy angular quadrature. As shown ‘in the tables, the spectral radii for
thin mesh spacings (< 0.1 mfp) are about 1.0, but the spectral radii for the
intermediate and thick mesh spacings (= 1.0 mfp) are much smaller. We can obtain
the less spectral radius for the thin mesh spacing using the multigrid. waever, we
have to solve the problem for thm mesh spaciﬁgs that the éigenvalues at the low
frequency modes are slightly larger than unity.

The Fourier analysis results for the 1-CI+DSA with the P, approximation
are shown in Tables 4.11 and 4.12. Table 4.11 is for the BLD 1-CI+DSA scheme
and Table 4.12 is for the FLBLD 1-CI+DSA scheme. These results are also for the
Sy angular quadrature. As shown in the tables, the spectral radii for thin mesh
spacings (S 0.1 mfp) are greater than unity, but the spectral radii for the
intermediate and thick mesh spacings (= 1.0 'mjb) are less than those of 1-CI+DSA
with the Py approximation. Since the spéctral radii for thin mesh spacings are

greater than unity, the method diverges for these problems.




Table 4.9 :
Level-symmetric quadrature Fourier analysis results for BLD 1-CI+DSA
with Py approximation in x-y geometry (c=1.0, Sy)

crAX , ‘ oAy
0.01 0.1 1.0 3.0 10.0 100.0

0.01 1.04

0.1 1.00 0.96

1.0 0.99 0.94 0.70

3.0 0.99 094 |.. 0.65 0.44

10.0 0.99 0.94 0.62 0.41 0.27
1100.0 0.99 0.93 0.61 0.39 0.22 0.10

Table 4.10

Level-symmetric quadrature Fourier analysis results for FLBLD 1-CI+DSA
with Py approximation in x-y geometry (c=1.0, S4)

CAX s
0.01 0.1 1.0 3.0 10.0 100.0

0.01 1.02

0.1 0.99 0.96

1.0 0.99 0.94 0.66

3.0 0.99 0.94 0.65 0.44

10.0 0.99 0.94 0.63 0.41 027
100.0 0.99 0.94 0.62 0.37 022 0.03
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Level-symmetric quadrature Fourier qnglysis results for BLD 1-CI+DSA
with P; approximation ifX-y geometry (c=1.0, Sy)

oAX , ?‘Ay
0.01 0.1 1.0 3.0 100 | '100.0

0.01 >1.00

01 | >1.00 >1.0

1.0 >1.00 | >1.0 0.75

3.0 0.99 0.89 0.46 0.32

10.0 0.99 0.89 0.38 0.24 0.16
1100.0 0.99 0.89 0.32 0.15 0.11 | 0.03

Table 4.12

Level-symmetric quadrature Fourier analysis results for FLBLD 1-CH+DSA
with P; approximation in x-y geometry (c=1.0, Sy)

oiAX - Oy
0.01 0.1 1.0 3.0 10.0 100.0
0.01 >1.00
0.1 >1.00 | >1.00
1.0 0.99 0.90 0.56
3.0 0.99 089 . | 054 | 039
10.0 10.99 0.89 0.52 0.36 0.24
100.0 0.99 0.89 0.51 0.31 0.19 0.08
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Our results show that P, approximaﬁon in X-y geometry is not convergent
while in slab geometry it does provide acceleration_. If the mesh spacing is greater
than 1.0 mfp, the 1-CI+DSA procedure, regardless of the angular flux equation will
be very effective at imﬁroving the convergence rate, and the procedure can be easily
parallelized.

This 1-CI+DSA scheme can be used only for the intermediafe and thick
mesh spacing problems. There must be further development to reduce the spectral
radius for thin mesh spacing taking into account the importance of parallelization.

4.5.3 Numerical Results

We impleménted this procedure and have solved a model problem to verify the
predictions of Fourier analysis. Problem # 5 is shown in Figure 4.15. This model
problem includes a heterogeneouS medium with isotropic scattering, in which the
bottom-left region has a scattering ratio of unity and a source of 1.0, and the
remainder of the domain has a scattering ratio of 0.99 and a source of 0.1. The
rectangle has vacuum boundaries on the left, right, bottom and top sides. There are
50 cells along the x-axis and 50 cells along the y-axis. All of the calculations were
performed with the Sy qﬁad:atu;e set. Since we implemented the multi-level method
only for the FLBLD scheme, we included results only for FLBLD 1-CI+DSA.

The results for the model problem calculation are shown in Table 5.13, in
which the observed spectral radii correspond well with the analytical spectral radii.
Some of the observed spectral radii are larger than the 'an‘alytic spectral radii. It is
assumed in Fourier analysis that the diffusion equations are solved exactly.
However, since we used multi-level technique to solve the diffusion equation, we
have approximate solution for the diffusion equation, This procedure is rapidly

convergent for the intermediate and thick mesh spacings (1.0 mfp).



Results of FLBLD 1-CI+DSA fot Problem # 5 (S, ¢=1.0)

Table 4.13
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Ax Ay Analytic FLBLD
(mfp) (mfp) Spectral Radius |  Iterations Spectral Radius
0.01 0.01 >1.00 >15 0.99
0.01 0.1 >1.00 >15 0.95
0.01 1.0 0.99 >15 0.9
0.01 3.0 0.99 >15 096
0.01 10.0 1 0.99 >15 - 0.96
0.01 1000 0.99 >15 0.96
01 0.1 >1.00 >15 0.80
0.1 1.0 0.90 >15 0.78
0.1 3.0 0.89 15 0.87
01 10.0 0.89 >15 0.88
0.1 100.0 0.89 >15 0.88
1.0 1.0 0.56 14 0.49
1.0 3.0 0.54 13 0.50 -
1.0 1100 0.52 12 0.53
1.0 | 1000 0.51 11 0.54
3.0 3.0 039 - 9 0.35
3.0 10.0 0.36 i 0.26
3.0 100.0 0.31 7 0.27
10.0 10.0 0.24 6 0.13
10.0 100.0 0.19 5 0.11
100.0 1000 | 0.03 3 0.01
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4.6 Summary

In this chapter we developed a new acceleration procedure which involves
diffusion acceleration equatioh derived from the 1-CI transport equation. Since 1-CI
is “parallel friendly”, there is some advantage in parallelizing this form of Sy
transport calculation. Oﬁr research included two procedures: SI+1-CI+DSA and 1-
CI+DSA.

The results showed that 1-CI based DSA schemes preceded by SI are
efficient and rapidly convergent for LD and LLD in slab and for BLD and FLBLD

in x-y geometry. There continues to be problems however with the FLBLD M4S
DSA scheme for hlgh aspect ratio grids. We derived the low order diffusion
equation from the 1-CI Sy transport equations. In LLD SI+1-CI+DSA in slab
geometry, an algebraic averaging procedure was required to reduce the spectral
radius. This procedure was more efficient than srandard SI+DSA (Modified 4-step)
for intermediate mesh spacmgs but is less efﬁcrent for thin mesh spacings.

For one-Cl based DSA without SI in slab geometry, the results showed that
this procedure is very efﬁcrent and effectlve for any cases. For thm mesh spacings,
the multigrid method must be mcorporated to reduce the spectral radlus to a
practical value. The overall efficiency was very good in the sense that the spectral
radii for intermediate and thick mesh spacings are yery' low and a small spectral
radius can be obtained by mutigrid for thin mesh spacings. However, the results in
X-y geometry were worse compared to the slab geometry results. The spectral radii
for intermediate and thick mesh spacings (21.0 mfp) were very low and rapidly
convergent. Here we tried the Py, Pgo and P; approximations to obtain the angular
flux correction from the scalar flux conecﬁon in the diffus_ion solution. The P;

approximation works best for intermediate and thick mesh spacings, but become

unstable for thin mesh spaoing. . Po l appbximétion works best for thin mesh

spacings, but are slightly unstable.
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CHAPTER 5
COARSE MESH DIFFUSION SYNTHETIC ACCELERATION

5.1 Introduction

It has long been known that the success of a diffusion synthetic acceleration
(DSA) scheme is very sensitive to the discretization of the transport and diffusion
equations. “Inconsistent” discretizations or discretizations of the transport and
diffusion equations which are not derived from one another have designed and
proven effective, [Ada 92] but the degree of inconsistency which is effective is an
open problem. Although inconsistencies in discretization have worked, all DSA
schemes employed the same size in the high and low order equations. If it were
possible to solve the diffusion equation on a mesh which has fewer zones than that
used for the transport equation, the overall efficiency of the transport calculation
should increase.

Anghel [Ang 87] | proposed coarse mesh diffusion acceleration for
deterministic transport, but his research involved only diamond differencing in slab
and x-y geometries. Furthermore, no analyses were performed to quantify the
effectiveness of this method in x-y geometry. While the ‘pufpose of his research was

‘to develop the coarse mesh acceleration scheme for the transport calculation, no
work was done to compare its behavior to that of standard fine mesh DSA.

In this chapter we demonstrate that the low order diffusion equation
discretized on a coarse-mesh can be employed to accelerate the fine mesh transport
equation. Our results in slab geometry show that coarse mesh DSA is
unconditionally stable and as rapidly convergent as fine-mesh DSA. Our results in

xX-y geometry show that coarse mesh DSA is as effective as conventional DSA for
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thin and intermediate mesh spacings, but not efficient for thick mesh spacings when .

the scattering ratio is unity. However, if the scattering ratio is at least somewhat less
than 1.0 (¢<0.95), coarse mesh DSA converges very fast for all mesh spacings. We
have used Adams and Martin’s modified 4-step method (M4S) [Ada 92] to generate
DSA equations for linear discontinuoué finite element method (LD) transport in
slab geometry and BLD and FLBLD transport in x-y geometry. To verify the
effectiveness of our procedure, we have also performed a Fourier analysis. We have
implemented to corroborate the findings of our Fourier analysis for LD DSA
schemes in slab geometry and for FLBLD DSA schelhes in x-y geometry. We use a
band diagonal matrix solver for the coarse mesh LD diffusion equation in slab
geometry and the multi-level technique introduced in Chapter 3 to solve the coarse
mesh diffusion equation in x-y geometry. We find excellent agreement between our

implementation and analysis results.

5.2 Coarse Mesh DSA in Slab Geometry

5.2.1 Method
Our coarse mesh DSA method in slab geometry has three stages:

a) a transport source iteration on the fine mesh, followed by a restriction
operation for scalar fluxes
b) aDSA step on a coarse mesh with interpolating prolongation

¢) afinal prolongation to get the correction terms on the fine mesh.

The notation used to describe the LD fine and coarse mesh unknowns is
shown in Figure 5.1. We consider only a coarsening of a factor of two: i.e. two fine
mesh cells become a single coarse mesh cell. There are several restriction methods
such as injection, full weighting [Bri 88] and spatial moment conservation [Bar 89].
The restriction operation of injection is such that the coarse mesh vector simply

takes its value directly from the corresponding fine grid point. The full weighting
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restriction operation defines the values of the coarse grid vectors as a weighted
average of values at neighboring fine grid points. The spatial moment conservation

restriction method for LD requires the specification of two basis functions:
b(x)=1.0, 5.1)

_2(x-x,)

k.

b, (x) (5.2)

These two basis functions are used to calculate spatial moments of the
scalar flux and the restriction operator (Raxs) is defined to conserve the spatial

moments when going between the coarse and fine meshes:

'%}:_1_.

b ] A%,
_ ¢oiL ’(5.3)
2AxiAxi+l + Ax‘z 2AxiA7.‘i+1 . - AxiAxi+1 + Axi2+l - AxiAxi+1' ‘ ¢m’R,
| AxiAxm - AxiAxH-l + Axlz ZAXiAxm ZAXiAxm + Axi2+l ¢oi+lL
¢oi+lR

Ax; AXiv

[ I g 7N\ |
FO HHO—O0+—>
Xi-12 Xi+192 Xi+312 .
(Fine-Mesh Grid)
| /™ Axk 7\ |
I~ - ~ x>
Xk-1/2 Xk+3/2

(Coarse-Mesh Grid)

Figure 5.1 Fine and coarse mesh grids in LD scheme
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where ¢, and ¢, are the left and right scalar fluxes at cell i, Ax;and Ax; are the

mesh spacings for fine and coarse meshes, respectively. The interpolating
prolongation operator (Psy) is used to interpolate the coarse mesh information to

the fine mesh as follows:

¢o. : - 1 S0 |
Poi _ Axm/ Ax, Ax,/ Ax, [¢M] 4)
Gorair | | D% /A%, Ax,[Ax, || §p

¢oi+1R 0 1

The form of the low order diffusion equation on the coarse mesh is exactly
the same on the fine mesh. The coarse mesh spacing is obtained by summing mesh
spacings of two adjacent cells, and the coarse mesh cross sections are obtained by

volume averaging.

4

1+2/3 1+42/3 1+2/3 141/3 !
D5 1+ A, 57D + B, £37P = C, R, (@)Y - @), (55)

where
= (fus fkR")T ) (5.6)
q)i,i+1 = (¢1L » ¢iR ’ ¢i+1L’ ¢i+lR)T ’ : (57)
f(1+2/3) - ¢(1+z/3) _ ¢(1+z/3) , (5.8)
g+ T A% o+ ek Ax,
D, = 2 2 (5.9)
* -3 _3Dy _Gayt% _3a_3Dk O, A%, |’
Ax, 2 Ax, 2
_ Dy, a+ 2Dk—l
A= 20% A% (5.10)
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(5.12)

The final stage of the coarse mesh DSA procedure is the prolongation

operation, which is composed of a sequénce of “local” calculations of two adjacent

cells using the incident current from the coarse-mesh diffusion calculation:

F 1+1) F * F . 1+2/3) __ F 1+1/3 ]
Di,i+lfi(,i:1 + Ai—1P4x2fI$-)l + Bi+2P4x2fl§+4l. ) = Ci,i+1 QS::—I ) - o f:)q-l) H (513)
where
o 2ai® s 20 RN Dt
2 ' 2 2Axi+l 2Axi+l
D F o _ Ax; 2 Ax; 2 2Axl. +1 2Axi +1
i+l — D, D; O .. 5. o .. Ax.
i i aj+17"i+1 a.i+17%+1
2Axi —a+2Axii a+ 2 a+ 2
Z::fxi 3a-§£xi- 3 11:1'4-1 Cra.i+:le""i+l 3z "‘2&1 +aa,i+:lexi+l
| i i i+l i+l
(5.14)
0 0 __Di_-l_ - ﬂ-l_
2Ax,'-1 2Axi—l
3D, 3D,
AF, =|0 0 =L - | (5.15)
2Axi-l 2Axi—1
090 0 0
00 0 0o
[ 0 0 0 0]
0 8 00
D, )
B::.z"' - i+2 i+2 O O , (516)
2Axi+2 2Axi+2
_3a 3Di+2 3Di+2 O O
L 2Axi+2 2Axi+2 .
O,0,8%;, 0,4, 0 0
1| —0.8%, 0,4, 0 0
CZ“ - 50,i =i 50,i i i (517)
2 O O asO,i+1Axi+l 030,i+1Axi+1
O O — o-so,id-l Axi+1 o-sO,i+1Axi+l

and
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(a) Method-1
Ax; ‘ AX;+
X
Xi-12 Xi+12 Xi+32
(b) Method-2
Ax; B AXit)
| X
Xi.12 Xi+112 . Xi#3n
(c) Method-3
A M A
“ Xian Xi+12 Xi+3p
(d) Method-4
O : From coarse-mesh iteration
@ : From current fine-mesh iteration
Figure 5.2 Local prolongation operation methods in slab geometry
1 1
a=— > w ~—, , 5.18
2 2, mhn =7 (5.18)
f(l+l) = ¢.(l+l) __¢‘(l+l/3) . (5.19)

In eq. (5.13), (*) denotes either (/+1) or (I+2/3) depending on the method. We have

investigated several methods to get the best results:



e Method-1 :
e Method-2 :
e Method-3 :
e Method4 :
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coarse mesh DSA by eq. (5.5) with a restriction operation by
eq. (5.3) and prolongation simply by eq. (5.4) without step-3
Figwe 52 (@) |
coarse mesh DSA by éq. (5.5) with a restriction operation by
eq. (5:3) and prolongation by egs. (5.4) and (5.13) updating
four unknowns in the local solve (Figure 5.2 (b))

coarse mesh DSA by eq. (5.5) with a restriction operation by
eq (5.3) and prolongation by egs. (5.4) and (5.13) updating
the two inner interface unknowns in the local solve (Figure
5.2(c)

coarse mesh DSA by eq. (5.5) with a restriction operation by
eq. (5.3) and prolongation by egs. (5.4) and (5.13) updating
four unknowns in the local solve with incident flux from the
neighboring local solve. (Figure 5.2 (d))

We analyze these four methods to determine their convergence behavior usihg a

Fourier analysis and confirm these results by implementing the techniques in a

numerical transport code.

5.2.2 Fourier Analysis -

To. perform a Fourier analysis, we assume an infinite and homogeneous

medium. We introduce the following ansatz into our transport equations:

&0, =0'A, ., (5.20)
PN —wla s (5.21)
£+ = o'B,, (5.22)
Ui =o'e,,, (5.23)




B _ A AU 202U T
(Di.i+l —(¢1L :¢iR > Pi+lL> Vi+lR H

5 (+1/3) _ (a(141/3)  A(1+1/3) A(+1/3) A (1+1/3)NT
Y =@ni s Omr s Pmietl > Pminir ) s

A

D = A0, F40, 40, T
fl§1+2/3) -~ (ik(an/s)-’ j}kgn/s))r ,
Ai,i+1 = (AiL’ew‘:-uz , AiReizxM/z , Ai+iLei1xn+|/e,’ A”meihm“ )7' .
8, = (@ ™, a, ge™ i a, e a et )T
Ci,i+l = (ciLeM"‘i-lll , ciReM"m/z , ci+1Leihm“ , ci+lReM"i+3/z )T ,

and

B, = (BkLeil"k-uz , BkReM"nl/z )T .
The final matrix for method-1 is as follows:

DA

i+l

= H(Si,i+l - I)A i+l s
where matrices S, ;+; and IT are from SI and coarse-mesh DSA, respectively,

- -1 - -1
Si,i+l = Z wm (K m i i+l + K m i+l )Di,i+l >

Ho>0
-1
I=P,,A, C,R,,,,
A, =D, +A, e +B, ",

and Dk, Ak-l, Bk+1, and Ck, are defined in €qgs. (5.9)~(5. 12).
The final matrix for the method-2 is as follows:

oA, =D [Fra+ci,]p,.-1]a,.,
where |
FF = -Ale™™% _BI e,
and D},,,, A ,, B}, and C/ are defined in egs. (5.14)~(5.17).

The final matrix for the method-3 is as follows:
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(5.24)
(5.25)
(5.26)

(5.27)

- (5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)
(5.35)

(5.36)

(5.37)
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w i+l I_P Dl Jd+l (FFH + CIFI+1 P HJ 1 i+l ]Ai,i+1 » (538)

where P, and P, are matrices to select the inner and outer two unknowns,

respectively.
The final matrix for the method-4 is as follows:

w ii+1 = ann-] [FFH + Cfn-l] u+1 - I]Ai,i+1 4 (539)

where
D, =Dl +Al e, (5.40)
FF=-Bf ™, (5.41)

The results of our Fourier analysis are shown in Figures 5.3~5.6 and Table
5.1. Fourier analysis was performed for the M4S DSA LD S transport equation in
a purely scattering medium (c=1.0). The resulting spectral radii are shown in Table
5.1 and are compared to the theoretical spectral radii of standard fine mesh M4S
DSA. All four methods are unconditionally stable, but the spectral radius of
method-1 goes to unity as the mesh spacing increases. If the mesh spacing is less
than 1.0 mfp, the simple coarse mesh DSA can be used without any further
prolongation. Compared to standard fine mesh M4S DSA, methods 2 and 3 are
slightly worse but method-4 is almost the same over the entire range of mesh
spacings.

In standard fine mesh M4S DSA, since the eigenvalues (oy) at the high
frequency modes (7/2<AAx<7) are larger than those at the low frequency modes
(or) (0sA4x<7/2) for 21.0 mfp. This means that multigrid can not be used to further
improve the convergence rate. But for method-4 (Figure 5.6), the poy's are always
less than p;‘s for all mesh spacings. This is the required feature for using the
multigrid method ([Bar 89] and [Now 88]) and normally the effective 'spectral radii
will be the spectral radii at the high frequency modes.
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Figure 5.4 Absolute eigenvalues as a function of 14x for method-2
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Figure 5.5 Absolute eigenvalues as a function of AAx for method-3

0.0 0.5 1.0 15 2.0 25

Figure 5.6 Absolute eigenvalues as a function of AAx for method-4
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Table 5.1
Comparison of the theoretical and observed spectral radii
(LD, c=1.0, Si5)

M4S Method-1 " Method-2 Method-3 - Method-4

mfp Fourier | Fourier | Observed| Fourier { Observed| Fourier | Observed| Fourier Observed

001 | 0216 | 0.218 | 0.216 | 0.223 | 0.221 | 0.220 | 0.219 | 0.222 | 0.221

0.1 | 0200 { 0.183 { 0.181 | 0.210 { 0.209 | 0.197 | 0.196 | 0.206 | 0.205

1.0 | 0385 | 0.484 | 0.481 | 0.513 | 0.513 | 0.479 | 0.477 | 0.399 | 0.393

3.0 | 049 | 0.810 | 0.806 | 0.592 [ 0.592 | 0.510 | 0.497 | 0.496 | 0.494

100 | 0287 | 0970 | 0968 | 0.322 | 0.322 | 0308 | 0.306 | 0.287 | 0.287

100.0 | 0.036 | 0.999 | 0.980 | 0.039 | 0.039 | 0.086 | 0.086 | 0.036 | 0.036

5.2.3 Numerical Results

We have implemented our four candidate methods in a transport code to see
the behavior of the spectral radii and to compare those with the theoretical spectral
radii. The model.problem solved includes vacuum boundaries, a random initial
guess, a zero source and 1000 cells with various uniform mesh spacings. The model
problem is same as that shown in Figure 4.5, except that the source is zero. We
performed the model problem calculations using the S;6 LD M4S DSA scheme. We
employed the band diagonal matrix solver to solve the coarse mesh diffusion
equation. The spectral radii observed in our program compare well with our
analytic results as shown in Table 5.1.

We have shown that coarse-mesh DSA in slab geometry can be
unconditionally stable and as rapidly convergent as fine-mesh DSA. The basic

concept is to perform the. prolongation operation through the fine mesh local




177

calculation, which is cheap and easy to solve. In other words, the fine mesh domain
can be grouped into coarse mesh domains, which enables the acceleration equations
to be solved for fewer unknowns, speeding up the transport calculations. The shape
of eigenvalue also permits the use of multigrid for further. In the next section, we

investigate the use of these techniques in x-y geometry.

5.3 Coarse-Mesh DSA in x-y Geometry

5.3.1 Method

As we did in slab geometry, we restrict our research to the coarsening
problem from four fine cells to one coarse cell. Our coarse-mesh DSA methods in

X-y geometry are identical to those described in the previous section:

a) a transport source iteration on the fine-mesh, followed by a restriction
operation for scalar fluxes
b) aDSA step on the coarse-mesh with interpolating prolongation

c) a final prolongation to get the correction terms for the fine mesh fluxes.

The grid scheme for the BLD fine- and coarse-mesh is shown in Figure 5.7.
Although Figure 5.7 shows the unknowns at the corners, we use the average and
slope unknowns in the calculations. There are several available restriction methods
to choose from: injection, ﬁzll weighting and ‘spat“ial mbment conservation. As we
did in slab geometry, we selected the spatial moment conservation method [Bar
89]‘. This technique has been proven to be the best in our calculations. In BLD we

selected four basis functions:

b(x,y)=10, (5.42)
by(x,y) = % , (5.43)
bs(x,y)=2(yA—;y'), G4
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0 Ofo O|Yi+32 |O O|Vi+ir2
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(Fine-Mesh Grid) (Coarse-Mesh Grid)

Figure 5.7 Fine and coarse mesh grids in BLD scheme

by(x,y) = 2(’;"") 2(yA ;y D, (5.45)

Using these four basis functions to calculate spatial moments of our scalar
fluxes, the restriction operator (Raxi¢) can be calculated to conserve the spatial
moments between the coarse and fine meshes. For simplicity, we include the
restriction operator for a constant mesh spaciﬂg for each direction. The restriction

operation is as follows:

o
1 1 1 1

Grs 7 0 0 0o 7 0 0o 0o 7 0o o o 3 o o of @,

AR ER 301 ] 31 '

P, T & © 0o % g 0 0 F g 0 0 % g 0 0 (Di+1,j

y |7 1 =3 1 3 1 3 1 ’
P, @ 0 3 0 F 0o gz 0o g 0o 3 o 3 0o 3z of®
¢"7 S I 2 L L 2 3 1L H 3 31 9 3 3 L D
(Pes | L6 76 T 16 16 16 16 16 16 16 16 16 16 16 16 16J_ i+, j+1

(5.46)
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(I)i.j = (¢i,j’ ¢:j’ i‘:lj’ ¢3 . _ (5.47)

The interpolating prolongation operator (P1¢xs) interpolatew from the coarse-mesh
information to the fine mesh in this way:

-1/2 -1/2 1/4]

¢, | 1
o> | 1o 12 0 ~-1/4
ol lo o w2 -ua
>llo o o0 14
by | |1 V2 12 -1/4
6,1 [0 v2 0 -1/4
7 I (R R Vo R V2 I I A
2,100 0 0 val| |g
bu | |1 -1/2 12 -14| |g
gral {0 2 0o va| g7
Zal lo 0o 12 -—ual
o110 0o 0o 14
S| |1 V2 U2 14
bm| |0 12 0 14
el o 6
| Ti+lj+l | L J16x4
The low order diffusion equations on the coarse mesh are as follows:
Ay (82D - 822 )+ w, (8812 - 8820 J+ A Ay, £ (5.49)
=Ax Ay 004, (¢1§f1+”3) - :f'}) ’ .
0,0y, (L2 + g2 — 214142 )+ i, (g2 - g2 (5.50)
+Ax, Ay, o a,lc,lf;:l(l+2/3) = A Ay,0,, (¢:§l+“3) = ¢:§l)) ’ .
Ay, (g24s2? — gre2D)+ 6, Ax, (g2 + g2 ~2g70) 550)

(1+2/3) _ (14113 1
+ AxkAylo-a,k,lf;c{,l = AxkAylo'so,u (¢1{1 H ¢1{$ ))
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(1+2/3) (1+213) (1+2/3) (1+2/3) (1+2/3) nx(l+2/3)
6k,lAyl (g:+172,1 +g1{-172,1 -2g;i e )"’ ek,lek (g:1+1/2 +gl:,1-1/2 28 )
142/3 141/3 ! ?
+AxkAylo'a,k,lfxy( 203 = AxkAylo'sO,k,l(¢xY( 73 ¢13( ))
(5.52)
where

Ax, AyJO' +AX,+1Ay, i+, j +Ax AyJ-HO.I J+ + Axt+1AyJ+lal+1 »J+l
Ax, Ay,

Oy = . (5.53)

and ¢;""> and ¢{) are from eq. (5.46).

The current equations can be derived from the 1% (w7, and Zwpi,-) angular

moments as follows:

— ot -
82y = 8isrr2g T 8knray

e Dis . Dt on (5.59)
=[a(fi, +fi1) “Zi'l‘fk,zl—[a(fm,l = fens) +‘A‘;—liﬁz+u]
k k+1
Erar2) = Einviay + &iniay
s (5.55)
= [a(fk},lz +f1:1y) “ fJ:Jy] [a(.f;m,l fk+1,1)+ A:t = fk+1,1]
k+1
€2 = Ehpmia + g;,zmz
N (5.56)
=[a(f, +f;r}:l)— fk,l] [a(fk,m S+ A;'l 1 fk,m]
I+1
g:,l+l/2 = g:;+1/2 + g:;ﬂ/z
i N (5.57)
=[a(fk,1 +fk?)‘ ﬁ::y] [a(Jk,l-H fk,1+1)+ A;l 1 fk,m]
1+1
2D
gty ==— e (5:58)
k
2D
gl =~ Ay"’ fi (5.59)
I

gLy =- "’ 153, (5.60)
k
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2D
gl =——2L 7. (5.61)
Ay,

The next step is to perform a prolongation operation for the scalar flux
correction using eq. (5.48). The final stage is the prolongation operation with a
local calculation of four adjacent cells using the incident current from the coarse-

mesh diffusion calculation:

DFf;-“-l) + Ai;clPl6x4féhcl(‘) + Bi;CZPI6x4féth(l+2/3) = CF(Q g+l/3) _ Qg)) , (5-62)

where
= (@, @i Pt P ) (5.63)
<I>f-,’,’; = (1), 85,82, 57, (5.64)
fr=(f s 0o o B yn) (5.65)
£ = g€y Fyos Bt gt Gt ) » (5.66)
2 = g(f,., TS TWRYS FEARTS RIS N (5.67)
100 = (£G4, £, £, f200)7, (5.68)

and D, A%', B¥? and C are all 16x16 matrices. In eq. (5.62), (*) denotes
(I+1) for method-3 and (/+2/3) for method-2.

The methods used in x-y geometry coarse mesh DSA are the same as those
used in slab geometry. Because we use the BLD DSA equations in the form of the
average and slope unknowns, method-3 becomes algebraically very difficult and is
not considered a viable option. Therefore, we evaluate only three alternatives in x-y

geometry:

e Method-1 : coarse mesh DSA by egs. (5.49)<(5.52) with a restriction
operation by eq. (5.46) and prolongation simply by eq. (5.48)
without step-3 (Figure 5.8 (a))
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Figure 5.8 Local prolongation operation methods in x-y geometry
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210 l Q Yj+3/2
o]0 o0 ®|0 J
—_— ij+1 ViJ+1 | Vi+1J+1 —
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............... > ij Vij Vi+1J <
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O :From coarse-mesh iteration

@ : From current fine-mesh iteration

Figure 5.8 (Continued)

e Method-2 : coarse mesh DSA by egs. (5.49)~(5.52) with a restriction
operation by eq. (5.46) and prolongation by eqs. (5.48) and
(5.62) updating four unknowns in the local solve (Figure 5.8 ‘
®)
e Method-3 : coarse mesh DSA by eqgs. (5.49)~(5.52) with a restriction
operation by eq. (5.46) and prolongation by egs. (5.48) and
(5.62) updating four unknowns in the local solve with the
incident flux from the neighboring local solve. (Figure 5.8 (c))
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5.3.2 Fourier Analysis
We have performed a Fourier analysis of coarse-mesh M4S DSA with BLD

and FLBLD for purely scattering problems in x-y geometry. Since coarse-mesh
DSA includes four cells, our Fourier analysis must be performed for the unknowns
in these four cells. The ansatz used in our Fourier analysis for coarse-mesh DSA

with BLD in x-y geometry is as follows:

PO=0'A,, (5.69)
Sl w'am,.-,,- , (5.70)
s(1+2/3) _ .1 '
£ 3= @ b,,, 5.7
fU+) _ 1
f,.‘J =eoc,,, (5.72)
where
¢ = (¢,<',’, $:", 420, =T, (5.73)
Tgi;lj” ('/;’("I:IJ/3)’ W“;('l-l:’l/3)’ W:(,l;”3), W’:y,(l;”3)) , (5.74)
(1+1) (f(1+1) fx(l+l) fy(l+l) fxy(l+l) (5.75)
= (A,J’ 1]’ ,J’ ) b (5'76)
8pi; = (Ais Ao Ao Ami ) s (5.77)
=(B,,,B};, B’,, B®)", (5.78)
c —(Cij’clj’ ,j’clj) (5'79)
The matrix of Fourier analysis for coarse-mesh DSA method-1 is as follows:
_ A, - _ A, -
A ‘ {A. .
o T [2[8+P DR, (S-D)] TH |, (5.80)
A: W+l _ ) Ai,j+l
A1+l j+l _Ai+l,j+l

where S is a /6xI6 matrix which comes from SI:
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S= Y w(Si. +57, +85 +80. )" (5.81)
Hn>0,77,,>0 .
B Al ~B! ¢~ -C e—Ziij 0 .y
s |~ Bn Al 0 —Cl ™™ 5.8
Lm — _Cl 0 Al —Bl e-ZiAx,- > ( . )
0 -C, -B, AL
[ AL -BL ™ o ]
s, =B A 0 -G e
2,m —-C:" 0 A’zn _B’z" H .
0 ~-C!,  —-BXe? A2
i Afn —B:,,e’m"' __C’z" 0 7
~ -B, A} 0 -C2
SS,m = _C2e2iij 0 A3 '-'Bl e‘ZiAxl ’ (5.84)
| 0 -CL™ -B, A} |
A, -B, -cz 0]
- B2 A? 0 -C?
S4,m = —CzeZiij 0 A4 —B2 H (5-85)
0 _C2e2iij _BZeZiAx, A4

where A%, B! and C! are from eqgs. (4.114)~(4.119), and Ruxi and Pjey are
restriction and prolongation operators shown in egs. (5.46) and (5.48), respectively,

and D is 4x4 matrix from coarse-mesh diffusion equation:

D, L (D +Dye™ + Dy ™ + D™ + D ™),  (5.86)

ikJ

where Dy, D1, D31, Dy and D5y, are defined in egs. (4.151)~(4.155) in which fine

mesh index (7, /) must be replaced with coarse mesh index (k, /).
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The matrix of Fourier analysis for coarse-mesh DSA method-2 is as

follows:

A,

Ai+l, J
Ai, J+1

A

| “ i+l j+

=[s+D7(G P, D 'R +cI (S -T)

- Ai,j -
Ai+l,j
A

i,j+1

A

| “ i+l j+l

b

(5.87)

where D5 and Gy are 16x16 matrices from fine-mesh local diffusion equation:

DlL D3L DSL 0
Df= 1 DZL DlL 0 DSL ,
C.ij D, 0 D, Dy
0 D4L DZL Du. 16x16
[ 0 Dye p, e 0 |
G -1 DsLesz*' 0 0 D, e "™
T o, | Dyt 0. 0 D, e 24
|0 D, ™™ D, ¥ 0 |

16x16

(5.88)

(5.89)

The matrix of Fourier analysis for coarse-mesh DSA method-4 is as

follows:

A
A
Ai, J+1
_Ai+l, j+lJ

ij

i+l,j

=[s+D7'(G/ P, DR +cI)S-T))

Ai,J'
Ai+l,j
Ai,j+l

A

| ST+l j+

b

(5.90)

where Dt and G %t are 16x]6 matrices from fine-mesh local diffusion equation with

slightly different iteration indices due to the use of the most recently calculated

data:
(D, D, +D,e?™ D_+D, e 0
p o L [Px D, 0 D, +D, e
! G| Dy 0 D, D, +D, e
| 0 D, D, Dy

J16x16

,(5.91)
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0 0 0 0
D, ¥ % 0 0 0
G, = 1 3LeZivA,v, (5.92)
0| Dse 0. 0 0
0 Dge™™ Dye®™ 0]

The results of our Fourier analysis are shown in Tables 5.2~5.5. Fourier
analysis was performed for the BLD and FLBLD DSA schemes with Ss quadrature
set and purely (c=1.0) and highly é(c==0.95) scattering problems. We include the
Fourier analysis results for three different methods described in the previous
séctioﬁ. ,

Table 5.2 shows the resulting spectral radii for the BLD scheme when the
scattering ratio ‘is unity. All three methods are unconditionally stable and
convefgent for thin and intermediate mesh spacings, but the spectral radius goes to
unity as the mesh spacing and/or aspect ratio increases. The mesh spacing is less
than 1.0 mfp, the simple coarse mesh DSA (method-1) can be used without any
further proiongation, as in slab geometry. Methods 2 and 3 are very efficient for the
thin and intermediate mesh spacings (< 3.0 mfp), but the spectral radius increases as
the mesh spacing and aspect ratio increases. This means that our coarse mesh DSA
in x-y geometry is not effective for optically thick and diffusive problems. Table
5.3 shows the analytic spectral radii of coarse mesh DSA with BLD when the
scattering ratio is 0.95. Method-1 has the same trend as the purely scattering
problem (c=1.0), but the results of methods 2 and 3 are completely different. The
spectral radius goes to zero as the mesh spacing increases, but the results still
degrade for the high aspect ratio problems. However, if the aspect ratio is less than
100, method-3 will be very effective and rapidly convergent.

Tables 5.4 and 5.5 show the analytic spectral radii of FLBLD coarse mesh
DSA when the scattering ratio is unity and 0.95. The results are almost the same as

‘those from BLD coarse mesh DSA. The high spectral radius for thick mesh
Spaciﬁgs and purely scattering problems is likely due to the quality of the incident
fluxes at the interface obtained from the interpolating prolongation.
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Table 5.2
Level-symmetric quadrature Fourier analysis results for coarse mesh BLD M4S
DSA in x~y geometry (c=1.0, Sg)

o1AX - o4y
0.01 0.1 1.0 3.0 10.0 100.0
0.22
001 | 022
| 0.22
0.22 10.20
0.1 0.22 0.22
0.22 0.22
0.47 0.47 0.47
1.0 0.46 0.40 0.43
0.36 035 | 044
, 0.81 0.81 - 0.81 - 0.81
3.0 0.80 0.75 0.55 0.49
064 | 062 0.47 0.46
097 | 097 - 0.97 0.97 0.97
10.0 0.97 - 0.96 0.88 0.78 0.72
0.93 0.93 0.84 0.73 0.64
1.00 | 1.00 1.00 1.00 1.00 1.00
100.0 1.00 - 1.00 | 1.00 1.00 1.00 0.96
1.00 - 1.00 1.00 0.99 0.98 0.95
Method-1
Method-2

Method-3
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Table 5.3
Level-symmetric quadrature Fourier analysis results for coarse mesh BLD M4S
DSA in x-y geometry (¢=0.95, Sp)

oAX Ay
0.01 0.1 1.0 3.0 10.0 100.0
0.20
0.01 0.21
0.21
0.20 0.19
0.1 0.21 0.21
0.21 0.20
0.45 0.45 0.45
1.0 0.43 037 | 039
0.34 0.33 0.40
0.76 | - 0.76 0.76 0.76
3.0 075 | 070 0.49 0.44
0.58 0.55 0.42 0.38
0.92 0.92 0.92 0.92 0.92
10.0 0.92 0.90 0.73 0.62 0.56
083 | 081 | 062 0.48 0.41 -
095 | 095 0.95 0.95 0.95 0.95
1000 | 095 0.94 0.80 0.78 0.55 0.26
© 0.89 0.87 0.69 0.49 0.36 0.10
Method-1
Method-2
Method-3
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Table 5.4
Level-symmetric quadrature Fourier analysis results for coarse mesh FLBLD/SCB
M4S DSA in x-y geometry (c=1.0, Sg)

GAX %A\ 4
0.01 0.1 1.0 3.0 10.0 100.0
0.22
001 | 023
023
0.22 0.23
0.1 0.23 0.25
0.24 0.25
0.70 070 |. 0.70
1.0 0.69 0.62 0.49
0.54 0.53 0.48
0.96 0.96 0.96 0.96
3.0 0.95 0.89 0.72 0.61
0.82 081 | 0.63 0.53
1.02 1.02 1.02 1.02 1.02
10.0 1.01 0.99 0.95 0.89 0.87
0.97 0.97 0.92 0.85 0.82
1.00 1.00 1.00 1.00 1.02 1.00
1000 | 1.00 1.00 1.00 1.00 1.00 0.99
1.00 1.00 - |. 1.00 1.00 0.99 0.98
Method-1
Method-2
Method-3
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Table 5.5
Level-symmetric quadrature Fourier analysis results for coarse mesh FLBLD/SCB
M4S DSA in x-y geometry (c¢=0.95, Ss)

G AX cdy
0.01 0.1 1.0 3.0 10.0 100.0
} 0.21
0.01 0.21
0.21
021 022
0.1 0.22 0.24
0.22 0.23 |
0.66 066 | 066
1.0 0.65 0.58. 0.45
0.50 049 | 044
0.87 0.87 0.87 0.87
3.0 0.86 0.83 0.61 0.50
0.74 0.72 0.51 0.41
0.94 0.94 0.94 0.94 0.94
10.0 0.94 0.92 0.77 0.62 0.50
0.87 0.85 0.66 0.47 0.32
0.95 0.95 0.95 0.95 0.95 0.95
100.0 0.95 0.94 080 | 0.64 0.45 0.14
0.89 088 | 0.69 0.47 0.25 0.04
Method-1
Method-2
Method-3
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This information does not contain enough physics to work well with the local fine
mesh diffusion calculation. Since the spectral radius decreases significantly with
small amount of absorption for the thick mesh spacing, the high spectral radius
problem can be solved by improving the incident flux information at the interface.

This problem will be addressed in future work.

5.3.3 Numerical Results

In this section, We describe computational results that validate the claims of
our Fourier analysis. We performed model problem calculations only for the
FLBLD coarse mesh DSA methods, using the solution technique in Chapter 3 to
solve the coarse mesh FLBLD diffusion equafion. The model problems are identical
to the model problems in Chapter 3, and as shown in Figures 3.8-3.10. We slightly
modified the model problem for our purpose in the following manners.

Problem # 1 (Figure 3.8) is gﬂ homogeneous region with isotropic scattering,
a scattering ratio of unity and 0.95, and a constant isotropic distributed source. The
fectangle has reflective boundaﬁee on vthe bottom and left sides and vacuum
boundaries on the right and top sides. There are 24 cells along the x-axis and 24
cells along the y-axis. All of the calculations were performed with Sg quadrature
set. |

Problem # 2 (Figure 3.9) shows the overall efficiency of o& procedure as a
function of scattering ratio. 'I'he geometry is identical to that of the first model
problem. We fix the x- and y—mesh spacing at 1.0 mfp. The scattering ratio is varied
from 1.0 to 0.1, and each calculation is performed once without acceleration and
once with acceleration.

Problem # 3 (Figure 3.10) demonstrates the effectiveness of the method for
~ inhomogeneous source problems. It consisfs of a rectangular region that is 50 cm in
length and width with an inner region 10 cm in length and width. The rectangle has

reflective boundaries on the bottom and left sides and vacuum boundaries on the
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top and right sides. Both the inner and outer regions have a total cross section of 1.0
cm’! and a scattering ratio of 0.95. The inner region has a source of 1.0 while the
outer region has a source of 0.1. The number of spatial cells varies between
calculations. All of the calculaﬁons in this model problem were performed with Ss
quadrature set.

The results for Problem # 1 for c=1 are shown in Table 5.6. Since the multi-
level method introduced in Chapter 3 is used to solve the coarse mesh diffusion
equation, the observed spectral radii can be slightly greater than the analytic
spectral radii, due to the insufficient convergence in the asymptotic or FLBLD
diffusion equations. For thin mesh spacing problems, the observed spectral radii are
sometimes much less than the analytic spectral radii because of the large amount of
leakage. However, the observed spectral radii correspond well with the analytical
spectral radii. '

Table 5.7 shows the observed spectral radii for Problem # 1 with the
scattering ratio of 0.95. As shown in the table, the coarse mesh DSA with method-3
is rapidly convergent for any mesh spacing. Since the typical neutronic problems
include highly scattering media but not purely scattering media, this procedure can
be applied to most practical heutronic analyses and will accelerate the transport
calculation with less computational time spent in the diffusion 9alc1ﬂaﬁon.

Table 5.8 shows the observed spectral radii from Problem #2 for the various
scattering ratios. Since the mesh spacing is set to 1.0 mfp, all‘ three methods are
rapidly cbnvergent for all scattering ratios.

Table 5.9 shows how coarse mesh DSA works in mildly inhomogeneous
source problems with-the scattering ratio of 0.95. The results show that coarse mesh
DSA is rapidly convergent for the inhomogeneous problem. We did not consider
the inhomogeneous problem where fine mesh cells with different material
properties are collapsed into a homogeneous coarse mesh cell. In that case the
volume-flux averaged cross sections must be incorporated to obtain reasonable

results. In this research we have used the volume averaged cross sections.




Results for Problem # 1 (FLBLD, S3, ¢=1.0)

Table 5.6
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Ax Ay Method-1 Method-2 Method-3
(mnfp) | (mfp) Ttera- | Spectral | Itera- | Spectral | Itera- | Spectral
tions | Radius | tions Radius tions | Radius

0.01 | 0.01 6 0.09 6 0.10 6 0.10
0.01 0.1 6 0.14 6 0.14 6 0.14
0.01 1.0 7 0.30 6 0.26 6 0.17
0.01 3.0 6 0.30 6 .0.26 6 0.18
0.01 | 10.0 6 0.23 6 0.19 6 0.14
0.01 | 100.0 6 0.11 6 0.12 6 0.11
0.1 0.1 8 0.25 8 0.28 8 0.27
0.1 1.0 13 0.66 11 0.59 9 0.50
0.1 3.0 | >I15 0.85 >15 0.80 15 0.67
01} 100 >15 090 | >I15 0.87 >15 - 0.78
0.1 11000 | 7 050 | 7 0.50 7 0.37
1.0 1.0 14 0.67 8 0.44 8 0.44
1.0 30| >I15 0.90 >15 0.66 14 0.53
10| 100 >15| o8 | >15| o8 | >15 | oss
1.0 | 100.0 | =>15 0.98 >15 0.99 >15 0.98
3.0 3.0 | >15 0.90 12 0.54 11 0.52
3.0 | 10.0 Unconverged >15 0.91 >15 0.80
3.0 | 100.0 | >15 0.94 >15 0.98 >15 0.99
10.0 | 10.0 Unconverged Unconverged Unconverged
10.0 [ 100.0 | >15 0.97 >15 0.97 >15 0.96
100.0 | 100.0 Unconverged Unconverged UnconVergéd




Results for Problem # 1 (FLBLD, Ss, ¢=0.95)

Table 5.7
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Ax Ay Method-1 Method-2 Method-3
(mfp) | (mfp) | Itera- | Spectral | Itera- | Spectral | Itera- | Spectral
| tions | Radius tions Radius tions Radius
0.01 [ 0.01 5 0.09 6 0.09 6 0.09
0.01 01| 6 0.13 6 0.13 6 0.13
0.01 1.0 6 0.25 6 0.26 6 0.17
0.01 30| 6 0.24 6 0.26 6 0.17
001 | 100| 6 0.23 6 0.19 6 0.13
001 | 1000 | 5 010 | 6 0.11 6 0.11
0.1 0.1 7 | 023 8 0.26 8 0.25
0.1 10| 12 | 063 10 0.55 8 0.45
0.1 30 >15| 080 | >I5 0.74 12 0.59
01| 100 >15| 086 | >15 0.81 13 0.69
0. | 1000 | 6 [ 051 6 0.46 6 0.45
1.0 10| 13| 067 8 | 042 7 0.40
1.0 30| >15 0.86 12 0.57 9 0.47
10| 100| >15| 093 | >15 0.72 12 0.61
1.0 | 1000 | 13 0.89 7 0.76 7 0.66
3.0 30| >15 0.87 9 0.46 7 0.36
30 | 100]| >15 0.91 11 0.57 8 0.42
3.0 | 1000 | >15 0.87 6 0.59 6 0.44
100 | 100 | >15 0.93 7 0.40 6 0.23
10.0 | 100.0 | >15 0.93 5 0.38 4 0.19
100.0 | 1000 5 0.10 3 0.07 3 0.03




Table 5.8

Results for Problem # 2 (FLBLD, S3)
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Scattering | Unaccelerated Method-1 Method-2 Method-3
Ratio
1.0 1078 14 8 8
0.9 67 12 7 7
0.8 36 10 6 6
0.7 24 8 5 5
0.6 18 7 5 5
0.5 14 6 4 4
0.4 11 5 4 4
0.3 9 5 4 4
0.2 7 4 4 4
0.1 5 4 3 3




Table 5.9

Results for Problem # 3 (FLBLD, Ss, ¢=0.95)
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Method-1 Method-2 Method-3
Mesh Size | Ax=Ay
(mfp) | Itera- | Spectral | Itera- | Spectral | Itera- | Spectral
tions | Radius | tions | Radius tions} Radius
10x10 | 500 | >20| 086 o | 043 7 0.30
20x20 | 250 | >20| 0.80 9 0.43 7 0.37
30 x 30 167 | 16 0.73 8 0.43 7 0.39
40 x 40 125 | 14 0.71 8 | 044 7 0.41
50 x 50 1.00 | 12 0.61 8 0.43 7 0.41
60x60 | 083 | 10 0.56 7 0.40 7 0.41
70x70 | 0.71 9 0.52 7 0.38 7 0.38
80x80 | 063 | 9 0.48 7 0.35 7 0.35
90x90 | 056 | 9 0.45 7 0.32 7 0.28
100x 100 | 0.50 8 | 042 7 0.30 7 0.26
120x120 | 042 | 8 038 | 7 0.27 7 027
140x140 | 036 | 7 0.34 7 0.25 7 0.26
160 x 160 | 0.31 7 0.31 7 0.24 7 0.25
180x180 | 028 | 7 0.27 7 0.23 7 0.23
200x200 | 0.25 7 0.26 7 0.23 7 0.23
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5.4 Summary

In this section we presented that the low order diffusion equation on a
coarse mesh could be employed to accelerate the transport equation for advanced
discretization schemes. Our procedure includes three steps: SI for Sy transport
calculation, the solution for the coarse mesh diffusion equation and the linearly
interpolating and the fine mesh local prolongation. We applied this procedure to the
LD M4S DSA schemes in slab geometry and the BLD and FLBLD DSA schemes in
x-y geometry. We performed Fourier analysis to predict' the analytic spectral radius
and compared those with the observed specﬁal radius.‘ We used the band-diagonal
matrix solver and the multi-level téchnique to solve fhe coarse mesh diffusion
equations in slab and x-y geometries, respectively.

Our results in slab geometry showed that the coarse mesh DSA was
unconditionally stable and as rapidly convergent as fine mesh DSA. This means
that we can save the computing time in the diffusion calculation.

The results in x-y geometry showed-that coarse mesh DSA is as effective as
conventional DSA for thin and intermediate mesh spacings, but not efficient for
thick mesh spacings when the scattering ratio is unity. When the scattering ratio is
less than 1.0 (¢<0.95), coarse mesh DSA converges as fast as fine mesh DSA for all
mesh spacings. As the scattering ratio decreases for the thick mesh spacing, the
spectral radius decreases drastically. We note that this procedure will be very
effective for most practical neutronic reactor analysis problems, because most of

this type of problems do not include purely scattering media.
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- CHAPTER 6
CONCLUSION AND FUTURE WORK

The objectives of this thesis are divided into three categories, the
development of solution techniques for the low order diffusion equation in x-y
geometry, the design and testing of DSA schemes based on one-cell block inversion
'an.d the investigation of coérse mesh DSA for advanced differencing schemes in
slab and x-y geometry.

We have developed an improved solution technique for the low order
diffusion equations associated with the FLBLD, SCB and UCB M4S DSA schemes
in x-y geometry, which is unconditionally stable and rapidly convergent. Previous
researchers showed that the Sy transport equations with BLD, linear-bilinear nodal
and linear-bilinear characteristics schemes could be accelerated by exactly the same
diffusion equation and solution technique. We showed that Sy transport equations
with FLBLD, SCB and UCB schemes could be accelerated by the same equation
and technique. ' |

We developed new DSA procedures coupled with one-cell block inversion
transport which can be easily parallelized. We showed that one-CI based DSA
schemes preceded by SI are very efficient and rapidly convergent in slab and x-y
geometry. We also showed that 1-CI based DSA without SI was not effective for
thin mesh spacings, but is effective and rapidly convergent for the intermediate and
thick mesh spacing.

We demonstrated that the low order diffusion equation discretized on a
coarse mesh (relative to the transport equation) could be employed to accelerate the
high order transport equation. Our result showed that coarse mesh DSA is
unconditionally stable and is a rapidly convergent as fine mesh DSA in slab
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geometry. For x-y geometry our coarse mesh DSA is very effective for thin and
intermediate mesh spacings for the probléms with any scattering ratio, but is not
effective for problem with a unit scattering ratio and high aspect ratios. However, if
the scattering ratio is less than about 0.95, this procedure is very effective for all
mesh spacing.

In this chapter we summarize and discuss the results of our research and

consider areas for future work.

6.1 Improved Solution Techniques for the M4S DSA Equations
in x-y Geometry -

We first discussed the solution technique for the low order diffusion
equations of M4S DSA in slab geometry for advanced discretizations such as LD,
LLD, SCB and UCB. The discretized low order diffusion equations of DSA in slab
geometry can be solved easily by standard tri-diagonal matrix or band-diagonal
matrix solvers. _ . |

We then considered solution techniques for the diffusion equations of
FLBLD, SCB and UCB M4S DSA in x-y geometry. Previous researchers developed
a “multi-level” method to solve the discretized diffusion equations of M4S BLD
DSA in x-y geometry. These equations have also been used to accelerate the Sy
transport equations with Linear-Bilinear Nodai and Characteristics methods. In this
research we developed a similar multi-level method to solve the diffusion equation
of FLBLD, SCB and UCB M4S DSA in x-y geometry. This multi-level method is
slightly different from Morel’s multi-level method: 1) it includes block (cell)
Gauss-Seidel iteration for the M4S discontinﬁous diffusion equation, instead of line
Jacobi iterations, 2) the continuous diffusion equation ( five-point stencil with one-
point removal term ) is derived from the asymptotic analysis, and no void cell
calculation is necessary. The first step of this méthod is a transport sweep. The
second is four different bleck Gauss-Seidel iterations for the FLBLD M4S DSA
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diffusion equations for each direction. The residual is then calculated for the next
calculation. The third step is the solution of the continuous diffusion equations by
multigrid, with the residual as the source. There are three iterations for both the
second and third steps. We implemented this multi-level procedure and performed
four model problem calculations. The results showed that the FLBLD, SCB and
UCB M4S DSA schemes with this multi-level technique are unconditionally stable
and rapidly convergent. In this research we did not employ the multigrid method to
solve the continuous diffusion equation. This is set aside as future work.

To simplify the multi-level procedure fdr FLBLD, SCB and UCB M4S
DSA, we suggested a new method which avoids iterating the second and third
steps. The first step in this method is also a transport sweep. The second step is the
solution of the asymptotic continuous diffusion equation by multigrid and the
expansion of this continuous solution into the discontinuous solution. The final step
is x- and y-line Gauss-Seidel iterations on the discontinuous diffusion equations.
This new procedure does not include iterations on the diffusion calculation or the
residual calculation. While the previous multi-level method could not be Fourier
analyzed exactly to get the analytic spectral radius, this procedure was Fourier
analyzed. This procedure requires a well-converged solution for the asymptotic
continuous diffusion equation, but this is very cheap if using multigrid. The results
of the Fourier analysis showed that this new procedure was as rapidly convergent as
the conventional M4S DSA.

6.2 Diffusion Synthetic Acceleration Based on 1-Cell Block
Inversion
Source iteration has been commonly used to calculate solutions to the Sy
transport equation, but SI has a number of drawbacks which are a large spectral
radius for optically thick problems and difficulty in parallelization due to the serial
nature of sweeping. The high spectral radius for optically thick problems has been
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addressed through the use of DSA, where the acceleration diffusion equation had
been derived from SI. However, SI with transport sweeping in combination with
DSA is also not inherently parallel. We have tried to solve both problems using the
“parallel friendly” cell block inversion method coupled with DSA. The commonly
used CI methods are 1- and 2-CI. We chose 1-CI because of its simplicity and ease
of coupling with DSA. Our research in this area falls into two categories: SI+1-
CI+DSA and 1-CI+DSA.

We showed that one-CI based DSA schemes preceded by SI are efficient
and rapidly convergent for LD and LLD in slab geometry and for BLD and FLBLD
in x-y geometry. There continues to be problems, however, with the FLBLD M4S
DSA scheme for high aspect ratio grids. In this procedure the 1-CI transport
equation was reformulated and simplified to obtain the scalar fluxes directly using
the incident angular fluxes. We then derived the low order diffusion equation from
the 1-CI Sy transport equations. The low order diffusion includes the residual
source in the form of currents. In LLD SI+1-CI+DSA in slab geometry, an algebraic
averaging procedure was required to reduce the spectral radius and to make the
- scheme stable. This procedure is more efficient than the standard SI+DSA for
intermediate mesh spacings, but less efficient for thin mesh spacings. Since this
procedure still includes SI in the first step, there will be no benefit in
parallelization. However, this was the first trial to couple CI with DSA and can give
some possibility that this procedure can be used in anisotropic scattering problems.
While M4S DSA does not work well for highly anisotopic scattering problem,
SI+CI with the multigrid works well for the anisotropic scattering problems.

For 1-CI based DSA without SI in slab geometry, the results showed that
this procedure is very efficient and effective for any cases. For thin mesh spacing,
multigrid must be incorporated to reduce the spectral radius and make the method a
practical tool. The overall efficiency was very good in the sense that the spectral
radii for the intermediate and thick mesh spacings are very low and a low effective

spectral radius can be obtained for thin mesh spacing problems using multigrid. The
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- p-line matrix inversion will be cheap if an algebraic treatment (such as that from

Manteuffel) is used. Furthermore, this procedure can be easily paralleliié&.
However, the results in x-y geometry were worse than those from our slab geometry
analysis. The spectral radii for intermediate and thick mesh spacings (=1.0 mfp)
were very low. Here we tried the Po, Py (double Pg) and P; approximations to
obtain the angular flux correction from the scalar flux correction from the diffusion
solution. The P; approximation worked best for the intermediate and thick mesh
spacings, but became unstable for thin mesh spacings. The Py approximation
worked best for thin mesh spacings, but was also slightly unstable. Results showed
the interesting trend that while the conventional SI iteration scheme has difficulty
with optically thick problems, 1-CI has difficulties with optically thin grids. We
must develop more accuraté angular flux approximations from the diffusion
calculations to improve the efficiency of this method. However, the procedure as it
currently exists is very effective for intermediate and thick mesh spacings with high

scattering ratio materials, and can be easily parallelized.

6.3 Coarse Mesh Diffusion ‘Synfheﬁc Acceleration

In this section of the thesis we show that the low order diffusion equation on
a coarse mesh (relative to the transport mesh) can be employed to accelerate the
high order transport equation for advanced discretization schemes. Our procedure
includes three steps. The first step is SI for the Sy transport equation. The second
step includes a residual calculation with the restriction operation and the solution of
the coarse mesh diffusion equations. We used the. spatial moment conservation
method for the restriction operation. The final step is the prolongation operation
which includes both a linearly interpolating prolongation and a final prolongation
through the fine mesh local calculation. We applied this procedure to LD M4S DSA
schemes in slab geometry and BLD and FLBLD DSA schemes in x-y geometry. We
performed a Fourier analysis to predict the analytic spectral radius and compared
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those with the spectral radius observed in a number of model problem calculations.
We used the band-diagonal matrix solver and the multi-level technique to solve the
coarse mesh diffusion equations in slab and x-y geometries, respectively.

Our results in slab geometry showed that coarse mesh DSA was
unconditionally stable and as rapidly convergent as fine mesh DSA. This means
that we can save computing time in the diffusion calculation. We also found that
although the method-1 is very easy and simple to use, this method is very effective
for thin and intermediate mesh spacings.

The results in x-y geometry showed that coarse mesh DSA is as effective as
conventional DSA for thin and intermediate mesh spacings, but is not efficient for
thick mesh spacings when the scattering ratio is unity. However, if the scattering
ratio is less than 1.0 (¢<0.95), coarse mesh DSA converges as fast as fine mesh
DSA for all mesh spacings. As the scattering ratio decreases for thick mesh
spacings, the spectral radius decreases drastically. We may solve high spectral
radius problem for the thick mesh spacing on:purely scattering problem by the
slight manipulation. We note that this procedure will be very effective for most
practical neutronic or reactor analysis problems, because most of these problems do

not include purely scattering media.

6.4 Future Work

Our future work includes.

‘1. Implementation of Dendy’s black box multigrid method.

For our convenience we did not implement the multigrid method to solve the
continuous asymptotic diffusion. Although this will not have a large influence
on the predicted spectral radii, the time spent solving the low order problem
impacts the efficiency of the technique in practice. Implementation of a fast
solver for the continuous equation is indispensable for the success of the newly

suggested solution technique. (See the next paragraph)
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. Implementation of new solution technique.

We suggested a new solution technique for the FLBLD, SCB and UCB
diffusion equations and showed the results of a Fourier analysis. We need to

| implement this method and compare the observed spectral radii with those

predicted by our Fourier analysis.

. Unstructured mesh schemes

Since unstructured mesh DSA .schemes are not currently solved by
unconditionally efficient techniques to solve the low order diffusion equation, a
similar multi-level technique should be developed which is accurate and easily

solvable for these problems.

. Highly anisotropic scaﬁeﬁgg problem

The M4S DSA scheme is"eﬂicient only for isotropic and mildly anisotropic
scattering problems. According to Barnett’s research, SI+CI with multigrid is
very efficient for highly anisotropic scattering problems. We need to review the
applicability of our SI+1-CI+DSA procedufe to highly anisotropic scattering

problems.

. Improvement of angular flux expansion for 1-CI+DSA procedure

Improvement of the 1-CI+DSA scheme is needed for problems with thin mesh
spacings. Other approximations to obtain the angular flux correction from the
diffusion solution should be evaluated. Although this procedure is very
applicable to the intermediate and thick mesh spacings, a more general
procedure applicable to all problems must be developed.

. High spectral radius for optically thick diffusive problems in coarse mesh DSA
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Since the spectral radius is decreasing drastically with a slight decrease in the
scattering ratio from unity, it seems that a slight modification of our current
technique may result in vast improvement in the convergence behavior for
optically thick and diffusive problemé. One possibility is to incorporate the
smoothing procedure introduced in Baghel’s paper. Another possibility is to use
the P; approximation to get the incident flux from the continuous diffusion

equation at the interface in the coarse mesh grid.

. Generalization of coarse mesh DSA

We analyzed our coarse mesh procedure only for problems where the coarse
mesh cells contain homogeneous materials and used a simple volume averaging
of the cross sections. We can extend our coarse mesh DSA to the more general
problem in which the coarse mesh boundaries contain a heterogeneous
materials. It seems that we must use the volume-flux averaged cross sections to
solve this problem. We should also extend our procedure to increase the degree
of coarsening. It seems that the number of fine mesh cells in each coarse mesh

can be increased for problems where the fine mesh consists of thin mesh cells.
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