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In this thesis we focus on a graphical model for multivariate spatially

correlated data—isomorphic chain graphs (ICG; Gitelman and Herlihy, 2007).

We feel ICG allow flexibility for modeling spatial correlation and are intuitively

appealing because each model has an associated graph that visually represents a

complex multivariate system. We examine three ICG models: one (IsoY) that

assumes the residuals follow a Gaussian spatial process with an independent

predictor, another (IsoX) assumes that the predictor follows a Gaussian spatial

process and the residuals are independent, and a third (IsoXY) that assumes the

response and predictor have a joint spatial process.

We enumerate the conditional and marginal independencies and the resulting

likelihood factorization for each model. We are able to rely on results provided in

Andersson et al. (2001) and Gitelman and Herlihy (2007) to formulate statistical

models for the three ICG. However, parameterizing these models as valid spatial

models is not as straightforward. Thus, in Chapter 2, we verify for IsoX and IsoY

that parametrizations using the available valid univariate spatial covariances do

not violate the assumptions needed to use the results in Andersson et al. (2001).

In Chapter 3, we demonstrate that IsoXY can be parameterized using

multivariate spatial covariance functions.



Chapters 2 and 3 provide the groundwork for Chapter 4, in which we apply

the three models to a stream sulfate dataset. These results raise several questions

that we address via simulations, and we consider how an analyst would select

among the ICG models. Also, we investigate whether the skewness in the

effective range posterior intervals is related to the strength of spatial

correlation—similar to the REML results in Irvine et al. (2007)—or whether it

can be attributed to fitting an incorrect model. And finally, we explore the

consequences of assuming an incorrect ICG on parameter estimation.

Our work contributes to the field of spatial statistics by providing an

additional way to visually display multivariate spatial models. Also, we present

accessible suggestions for how to select among the ICG models. Code is provided

such that one can implement these models under the Bayesian paradigm using

the available freeware, Winbugs (Lunn et al., 2000).
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Chapter 1 – Introduction

Parts of this chapter are originally from Irvine et al. (2007), in which we consider

the effects of strength of spatial correlation and sampling design on estimating co-

variance parameters in a spatial regression model using REML and ML. In this

thesis, we extend that work to consider estimating spatial correlation in Bayesian

graphical models. In doing so, we consider the fairly complicated setting of multi-

variate spatial data, rather than the usual, univariate case.

In a spatial regression model the dependence between observations in a sample

collected close together on a landscape is modeled by a parametric covariance

function (Cressie, 1993). In some cases, the covariance function is needed only to

the extent that it assists in standard error estimation for regression coefficients

and/or in making predictions (i.e., kriging). In other cases, however, practical,

physical interpretations of covariance function parameters are equally as important

as regression coefficient estimates. Indeed, spatial covariance parameter estimates

in ecological settings have been interpreted to describe the spatial heterogeneity

or “patchiness” in a landscape that cannot be explained by measured covariates

(e.g., Rossi et al., 1992; Bellehumeur and Legendre, 1998; Dalthorp et al., 2000;

Augustine and Frank, 2001; Schwarz et al., 2003; Rufino et al., 2004; Kennard and

Outcalt, 2006). For this reason, we focus on interpretation of the spatial correlation

as opposed to considering it a nuisance.

Spatial regression models do not typically make assumptions about the dis-

tributions and/or correlation structures of predictors—a covariance component is

only assumed for the residuals in these models, assuming fixed predictors. On
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the other hand, multivariate spatial models, such as the linear model of core-

gionalization (LMC) and separable model (as in Banerjee et al., 2004), specify a

covariance matrix for both a response and a predictor. We explore an alternative

to these models for spatial data—isomorphic chain graphs (ICG; Gitelman and

Herlihy 2007)—that allow for greater flexibility in modeling spatial correlation.

The ICG model can be parameterized as a LMC or separable model, or as alterna-

tives that model the covariance of the predictor alone or the response alone. More

importantly, we believe the ICG model to be more appealing intuitively because it

represents complex multivariate systems visually, increasing interpretability. We

examine three ICG models: one (IsoY) in which we assume that the residuals

follow a gaussian spatial process and an independent predictor, another (IsoX)

in which we assume the predictor follows a gaussian spatial process and that the

residuals are iid, and a third (IsoXY) in which we assume a joint spatial process

for the response and predictor.

In Section 1.1, we introduce a stream sulfate data set that illuminates issues

that may arise in terms of covariance parameter estimation using Restricted Max-

imum Likelihood (REML) and Maximum Likelihood (ML; Irvine et al., 2007).

More importantly, these data demonstrate the benefit of using a Bayesian graphi-

cal model instead of the more commonly used spatial regression model because one

of the covariates, wet deposition, is known to have spatial correlation. Further,

Bayesian estimation provides a measure of uncertainty for the estimated effective

range that is elusive for REML and ML estimation using readily available software.

In this thesis, we focus on a graphical model for multivariate spatially corre-

lated data—isomorphic chain graphs. This chapter provides a motivating data

set, introduction and notation for graphical models, and an introduction and brief

literature review of the univariate and multivariate techniques available to model

spatial data. Specifically, the chapter is organized as follows: Section 1.1 introduces
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the stream sulfate data set, Section 1.2 provides a brief background and notation

of graphical models, Section 1.3 reviews spatial regression models highlighting the

differences between areal and geostatistical models specifically in terms of their

covariances, Section 1.4 outlines the extension of geostatistical models to the mul-

tivariate case (separable and LMC), Section 1.5 touches on structural equation

models and path analysis and explores their relationship to Bayesian graphical

models, and Section 1.6 outlines the remaining chapters in this thesis.

1.1 Stream Sulfate Concentration

Beginning in the late 1970s, the effects of surface water acidification caused by

atmospheric deposition became one of the leading political and scientific issues in

the United States. The major sources of anthropogenic surface water acidification

are atmospheric deposition, acid mine drainage, and roadcuts that expose sulfide

minerals to air and water (Baker et al., 1991; Herlihy et al., 1990, 1991; Kaufmann

et al., 1992). To study the spatial heterogeneity of available surface water acidifi-

cation data, we modeled the sulfate concentration in streams in the Mid-Atlantic

U.S using water chemistry data available from the U. S. Environmental Protec-

tion Agency’s Environmental Monitoring and Assessment Program (EMAP). We

focused on stream sulfate concentration because of its observed positive spatial

relationship with atmospheric SO2−
4 deposition (Kaufmann et al., 1991).

The Mid-Atlantic region consists of five southwest-to-northeast trending phys-

iographic regions: the Coastal Plain, Piedmont, Blue Ridge Mountains, Valley and

Ridge, and Appalachian Plateau (Herlihy et al., 1993). We used a sample of 322

points located throughout this region (Figure 1.1). In addition to water chemistry

data, we have potential explanatory variables derived from a Geographic Informa-

tion System (GIS). The percent of forest, agriculture, urban, and mining within
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0 100 200 km

Figure 1.1: Locations of Mid-Atlantic Highlands Region EMAP Samples.

each stream’s contributing watershed are calculated from a land-cover map. An-

other important factor for modeling stream sulfate is the ability of the watershed

soils to retain atmospherically deposited sulfur (Herlihy et al., 1993). We calcu-

lated, for each watershed, the proportion of that watershed located within the Blue

Ridge and Piedmont ecoregions known to have soils with a high capacity for ad-

sorbing sulfate (Herlihy et al., 1993, and Herlihy personal communication)—notice

that this proportion is zero for those watersheds not overlapping with Blue Ridge

and Piedmont.

Probably the most important component to modeling stream sulfate is the in-

put from atmospheric deposition. This occurs through several mechanisms: wet de-

position (rain and snow), dry deposition (direct deposition of particles and gases),

and cloud water deposition (direct deposition of cloud and fog droplets; Ollinger

et al., 1993). The EMAP data does not contain information about atmospheric

deposition at particular stream locations. Instead we used data from the National

Atmospheric Deposition Program (NADP) to develop a predictive regression model

for wet SO2−
4 deposition at stream locations, with the intent of using those predic-
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tions as explanatory variables in our model for stream sulfate concentration. We

used precipitation weighted SO2−
4 (in equivalents/liter) from NADP monitoring

stations within the same geographic region as the EMAP stream locations, only

including stations that met the completeness criterion provided by the NADP. Be-

cause the stream locations are geographically referenced we are able to use latitude,

longitude, and elevation as predictors of wet SO2−
4 . This approach is similar to

Ollinger et al. (1993); in addition, there was no evidence of spatial correlation in

the residuals from our predictive model. An important consequence of this method

is predicted wet deposition at all of our sites is spatially correlated. Our original

approach of a spatial regression model does not account for this, it assumes the

predictors are non-stochastic and only the residual term is spatially correlated

(Irvine et al., 2007).

Since we have data from different sources (NADP and EMAP), we used the two-

dimensional projection suggested by Banerjee et al. (2004, p. 29) for the predictive

wet deposition model and the spatial model of stream sulfate concentration. The

Euclidean distance metric applied to this projection’s coordinates approximate

the geodesic distance between two locations. Thus instead of using latitude and

longitude as predictors of wet deposition, we used the X and Y coordinates from

this projection. Also, the intersite distances used in the covariance matrix of the

stream sulfate models are based on this projection.

1.2 Graphical Models

A graphical model provides a framework for visually displaying the independence

relationships between variables. In this thesis, we assume a non-singular multivari-

ate normal distribution such that the usual independence relationships hold. We

use |= to indicate statistical independence and 6 |= to indicate non-independence.
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For example in, 


Yi

Yj

Yk



∼ MV N3(0, Σ

∗),

where (σij) is the corresponding element from Σ∗−1 and (σij) is the ijth element

from Σ∗, the independence relationships

Yi |= Yj if and only if σij = 0

and

Yi |= Yj|Yk if and only if σij = 0,

hold for a non-singular joint covariance (Cox and Wermuth, 1993). Obviously, if

the joint covariance matrix is singular, Σ∗−1 does not exist and the conditional

independence relationship no longer holds.

The following notation is adopted from Andersson et al. (2001) and Gitelman

and Herlihy (2007). A graph G is basically a circle (nodes) and arrow/line (edges)

diagram. Variables are represented as nodes or vertices. The presence of an edge

between two nodes indicates a dependence between the nodes (variables). An

arrow (as in v −→ w) represents a directed relationship between nodes. A line

(as in v — w) represents an undirected relationship between nodes. We adopt the

convention that directed edges are modeled in the mean structure and undirected

edges are modeled in the covariance (Andersson et al., 2001).

Mathematically, a graph G is a pair of sets, (V,E), where V = {v1, v2, . . . , vk}
denotes a finite set of vertices (for us, univariate variables) and

E = {(v, w) : v, w,∈ V and there is a directed edge from v to w}
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denotes a set of edges represented by ordered pairs of vertices. If both (v, w) and

(w, v) are in E, then there is an undirected edge (chain link) between v and w. A

path of length n ≥ 1 is a sequence of nodes from v to w in G such that v0 = v,

vn = w and (vi−1, vi) ∈ E for all i = 1, ..., n.

Relationships between nodes, V, in a graph, G, are described using ‘family tree’

terminology; e.g., ancestors, descendants, parents, and children. For G ≡ (V,E),

and for a subset A of V, the parents of A, denoted pa(A), comprise the set of

all nodes v ∈ V\A, such that (v, a) ∈ E for some a ∈ A. The children of A in

G denoted ch(A) := {v ∈ V \A|a −→ v for some a ∈ A}. The set of ancestors

of A in G is defined as an(A) := {v ∈ V \A| there is a directed path from v

to a in G for some a ∈ A}. The descendants of a subset A in G is defined as

de(A) := {v ∈ V \A| there is a directed path from a to v in G for some a ∈ A}.
A set A is ancestral if and only if pa(A) = ∅. A set A is terminal if and only if

ch(A) = ∅.
For example, in Figure 1.2, the parent of Ys is Xs, and thus Ys is the child of

Xs. The set {Ys, Ys+h} is terminal and the set {Xs, Xs+h} is ancestral.

Xs Xs+h

Ys+hYs

G*

??

1

Figure 1.2: Example of Chain Graphical Model

Graphical models are a general class of models that include acyclic directed

graphs (ADG), undirected graphs (UG) and chain graphs (CG). An ADG is a

graph with only directed edges and no cycles (a cycle is a path leading to and

from the same node). In the non-statistical literature an ADG in a Bayesian
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implementation is called a Bayesian belief network (Castelletti and Soncini-Sessa,

2007). An UG is a graph with only undirected edges between nodes, commonly

used to represent log-linear models (Darroch et al., 1980). In this thesis, we focus

on CG which have a combination of directed and undirected edges, but must have

no directed or semi-directed cycles (a cycle in which at least one of the edges is

directed).

For an ADG, the Markov factorization (Pearl, 2000, p. 16) allows for expressing

the joint probability distribution of a collection of nodes as the product of each

node, conditional only on its parents. That is, the joint probability distribution of

all the vertices in a graph can be written:

f(v1, . . . , vk) =
k∏

j=1

f(vj|pa(vj)). (1.1)

In subsequent sections, we explore a simple case of an ADG with only one

parent and one child node, so the Markov factorization is identical to the mul-

tiplicative rule for joint probabilities, f(Y, X) = f(Y |X)f(X), where X is the

parent node and Y is the child node. However, with a more complicated graph

structure, the Markov factorization can lead to substantial simplifications of the

joint distribution.

In a chain graph, G, the set V can be decomposed into a union of connected

(chain) components; V ≡ ⋃
i τ

i, τ i ∈ T , where T is the set of connected (chain)

components in the undirected graph of G, denoted G∧. That is, each node belongs

to a unique chain component, τ i. For example, in Figure 1.2, there are three chain

components in G∗; namely, τ 1 = {Ys, Ys+h}, τ 2 = {Xs}, and τ 3 = {Xs+h}. The

undirected graph, G∗∧, and directed graph, G∗
D, for the chain components of G∗

are represented in Figure 1.3. The undirected graph of G∗, G∗∧, is obtained by

deleting all directed edges, and the chain components are enumerated by drawing
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a box to enclose all those nodes that are connected; i.e., have an undirected path

between them. The directed graph, G∗
D, of the chain components is found by

drawing a directed edge from τ i to τ j if and only if ∃v ∈ τ i, w ∈ τ j such that

(v, w) ∈ E of G∗.

Xs Xs+h

τ
2

τ
3

τ
1

Ys Ys+h

G
∗∧

τ
2

τ
3

τ
1

G
∗
D

U �

1

Figure 1.3: Undirected and Directed Graph of Chain Components of G∗

In Chapter 2, we use the alternative Markov property (AMP) for chain graphs

with the assumption of a non-singular multivariate Gaussian joint distribution,

V ∼ Nn(0, Σ∗
V ) where Σ∗

V is a n× n real positive definite symmetric matrix. This

implies that the joint probability distribution can be factored based on the chain

components (Andersson et al., 2001):

f(V) =
∏

i

f(τ i|pa(τ i)D), (1.2)

where pa(τ i)D is the set of parents of τ i in the directed graph for the chain com-

ponents T . For example, the directed graph for the chain components in G∗ is

shown on the righthand side of Figure 1.3. This graph can be used to find the

associated pa(τ i)D of interest. For instance, the parent set of the chain component

τ 1 is {τ 2, τ 3} or simply {Xs, Xs+h}.
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The decomposition in (1.2) applied to a multivariate normal p.d.f in turn im-

plies the conditional distributions are in the form of multivariate linear regression

models

τ i|pa(τ i)D ∼ Nτ i(βτ ipa(τ i)D, Λτ i), (1.3)

where Λτ i is the non-singular τ i × τ i conditional variance matrix of τ i given

pa(τ i)D and βτ i ≡ Στ i,pa(τ i)Σ
−1
pa(τ i)

is the τ i × pa(τ i)D matrix of regression co-

efficients for τ i given pa(τ i)D. We verify in Chapter 2 for IsoY and IsoX that

parameterizing Λτ i using valid univariate spatial covariances does not violate the

assumption that Σ∗
V is p.d. This assumption is required to translate the graphs

conditional independence statements into restrictions on the covariance elements.

To translate a graph G into a set of conditional and marginal independence

relationships we use d-separation for ADG and AMP-separation for CG. Pearl

(1988, p.16) proposed d-separation as a criterion to identify the conditional and

marginal independencies implied by an ADG. Andersson et al. (2001) introduced

AMP-separation, a similar criterion for CG models (AMP stands for “alternative

Markov property”). We use AMP-separation and results in Gitelman and Herlihy

(2007) to determine the conditional and marginal independencies of a graph in

the subsequent derivations. These independence relationships are equivalent to

constraints on βτ and Λ−1
τ in (1.3), which are the basis for the arguments relating

IsoX, IsoY, and IsoXY to multivariate spatial models and spatial lag models in

Chapter 3.

1.2.1 Isomorphic Chain Graphs

The emphasis of our research is isomorphic chain graphs (ICG), a chain graph

introduced to incorporate spatial correlation (Gitelman and Herlihy, 2007). An

ICG is ‘a chain graph constructed by connecting identical ADG (i.e., identically
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distributed ADG) with undirected edges between corresponding nodes (Gitelman

and Herlihy, 2007).’ We assume that the same graphical structure (ADG) exists

at all sites. The correlation between sites is represented by a chain link connecting

the same node (isomorphic) in each site ADG.

The formal definition follows (Gitelman and Herlihy, 2007):

Let G1 = (V1,E1); G2 = (V2,E2); . . . ;Gn = (Vn,En) be identically dis-

tributed ADG, where Vi = {vi1, . . . , vik} for i = 1, . . . , n are the same ordered

k-tuples. Then

G =

( ⋃
i=1,...,n

Vi,
⋃

i=1,...,n

Ei ∪ E∗
)

,

E∗ = {(vij, vi′j), (vi′j, vij) : vij ∈ Vi, vi′j ∈ Vi′ for j ∈ J, (i, i′) ∈ Ij},

where J = {1, ..., k}. Ij identifies those ADG which are connected by a chain link,

where the chain link connects the corresponding jth node. The nodes in E∗ are

called the isomorphic nodes. In this thesis, we assume Ij contains all possible pairs

of (i, i′).

As suggested in Gitelman and Herlihy (2007), the nodes with the chain link

connection could be a child node (response variable) or parent node (predictor

variable) or both. We explore three ICG models, introduced in Section 2.2, one

that has a chain link connecting the response (IsoY), another with a chain link

connecting the predictor variable (IsoX), and a third with a chain link on both the

response and predicator variable (IsoXY).

In Chapter 3, we discuss the connections between the different ICG models

and commonly used models for multivariate spatial data. A complication arises

when parameterizing ICG as spatial models because the chain links (isomorphic

nodes) represent the spatial correlation between sites. We take the approach of
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adopting the available parametric spatial covariance functions to formulate ICG

into statistical models. We decide where to specify the spatial correlation based

on the results in Chapter 2.

Maximum Likelihood techniques can be used to estimate the parameters of a

graphical model with the additional assumption of multivariate normality (Ander-

sson et al., 2001). We estimate the parameters of the ICG models using Bayesian

methods. Bayesian inference is well-suited for modeling ecological and environmen-

tal data (Ellison, 2004). Our primary objective is interpretation of the covariance

parameters, specifically the effective range as a measure of spatial heterogeneity

and/or patch size. A benefit of using Bayesian inference is the complicated deriva-

tions to determine the sampling distribution of the REML or ML effective range

estimates are not required.

1.3 Spatial Regression Models

In Irvine et al. (2007), we model stream sulfate concentration using a spatial re-

gression model. Let Z(si) denote the response variable at location si and assume

Z(s) = (Z(s1), . . . , Z(sn))′ are observations on a continuous random field Z(s) over

the finite study area, D, where s ∈ D. We consider the spatial regression model

for Z(s) given by

Z(s) = X(s)β + δ(s), (1.4)

δ(s) ∼ MV Nn(0, Σ(θ)) (1.5)

where X(s) = (1, X1(s), . . . , Xp(s)) is a (n× p + 1)–matrix of known predictor

variables for locations s, β are the corresponding unknown coefficients, δ(s) is the

Gaussian spatial error process at locations s, and Σ(θ) is the spatial covariance

matrix which is a function of unknown parameters, θ.
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In the next sub-sections, we discuss the differences between geostatistical mod-

els and areal data models. Geostatistical models specify the covariance matrix

Σ(θ) as a parametric function of distance, directly modeling the spatial correlation

of the errors. By contrast, as pointed out by Anselin (2002), areal data models

indirectly model the spatial correlation by the specification of a neighborhood or

adjacency matrix.

1.3.1 Geostatistical Models

In this thesis, we assume second-order stationarity and consider the isotropic ex-

ponential covariance function:

C(h) =





σ2exp(−φh) if h > 0,

τ 2 + σ2 if h = 0
(1.6)

where h = ||si − sj|| is the distance between two locations si and sj. In this

parameterization of the exponential-with-nugget (following Banerjee et al., 2004,

p. 29), τ 2 is the nugget, τ 2 + σ2 is the sill, and 1/φ is the range parameter. If

τ 2 = 0, the covariance function is the exponential-without-nugget. We interpret

the nugget as unexplained measurement error, however it could be considered

mircroscale variation (Cressie, 1993, p. 59). If we specify Σ(θ) in equation (1.5)

as exponential-with-nugget in matrix notation, we get:

Σ(θ) = τ 2I + σ2exp(−φD), (1.7)

where D is a n× n matrix of pairwise distances with dij = h and (dii = 0).

We focus on the estimation and interpretation of the “effective range,” de-

fined as the distance beyond which the correlation between observations, ρ(t) =
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C(t)/C(0), is less than or equal to 0.05. Also, it is sometimes defined in terms of

where the variogram, γ(t) = C(0) − C(t), reaches 95 percent of the sill: γ(t) =

0.95(τ 2 + σ2). In the isotropic exponential-with-nugget covariance function the ef-

fective range, which we will denote ξ, corresponds under both definitions; namely:

ξ = −1

φ
log

(
0.05

τ 2 + σ2

σ2

)
. (1.8)

The effective range for the exponential-without-nugget covariance function is ap-

proximately 3/φ.

Numerous authors interpret the effective range in the exponential covariance

function as a measure to describe the spatial heterogeneity or “patchiness” in a

landscape (Saetre and Baath, 2000; Augustine and Frank, 2001; Hirobe et al., 2001;

Franklin et al., 2002; Kravchenko and Bullock, 2002; Guo et al., 2003; Schwarz

et al., 2003; Lilleskov et al., 2004; Ritz et al., 2004; Rufino et al., 2004; Kennard

and Outcalt, 2006). Dalthorp et al. (2000) demonstrate with discrete data that

the range and nugget parameters influence the patch configuration on a simulated

landscape, although Schabenberger and Gotway (2005, p. 140) question the use of

the range parameter as an estimate of patch size. In Chapter 5, we consider how

an ICG model could be used to visualize such an interpretation.

When using geostatistical models a decision must be made concerning the ap-

propriate distance metric, required for calculating h or dij for each pair of locations

si and sj. For example with the stream sulfate data, we use Euclidean distance in-

stead of distance along the stream network because the greatest source of sulfate in

streams is from atmospheric deposition: the covariance between spatial locations

is likely to be more influenced by features that affect atmospheric transport such

as, geography, wind directions, etc.; influences acting across the landscape and not

within the stream network. The use of Euclidean distance for this response is also



15

supported by an analysis of a similar data set where Euclidean distance is pre-

ferred as the distance measure in a spatial model as compared to several metrics

based on stream distance (Peterson et al., 2006). However, there are situations

in which riverine data is analyzed using distance along a stream network (Cressie

and Majure, 1997; Gardner et al., 2003; Ganio et al., 2005).

Our concern with using a geostatistical spatial regression model for stream

sulfate concentration is the assumption of ‘fixed’ predictors. In Irvine et al. (2007),

we predicted wet deposition as a function of latitude, longitude, and elevation; thus,

we already know these predicted values contain errors and may more appropriately

be modeled as a stochastic spatial process. In the present work, we consider the

alternative of a Bayesian graphical model in which the entire multivariate system

is modeled stochastically, allowing for greater flexibility in the modeling of spatial

correlation.

1.3.2 Areal Data Models

Areal spatial data models assume observations are collected on a lattice (Cressie,

1993, p. 8), such as commonly encountered with raster-based Geographic Informa-

tion System (G.I.S.) applications. A raster-based image subdivides a spatial region

into smaller equally spaced grid cells or pixels. However, it is common practice to

use areal data models for point observations due to their superior computational ef-

ficiency (Banerjee et al., 2004, p. 389). The three most common areal data models

are the conditional autoregressive model (CAR), the simultaneous autoregressive

model (SAR), and an extension of an AR(1) model from time series analysis to

spatial data, the spatial lag model (Cressie, 1993; Anselin, 2002; Congdon, 2003).

The following notation and explanation regarding areal data models is adopted

from Schabenberger and Gotway (2005, pp. 333-341). Areal data models are an
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extension of autoregressive time series models where the data at time t is a linear

combination of past values. The spatial extension is to consider a neighborhood

of values, so the data at location s is a linear combination of data at neighboring

locations. There are two common areal data models: the simultaneous autoregres-

sive (SAR) model and the conditionally autoregressive (CAR) model. The main

distinction between these models is the SAR model applies the concept of spatial

autoregression to the error terms, δ(s) in 1.4, and the CAR model specifies a se-

ries of conditional probability distributions for the response, Z(s) in 1.4, at each

location s, given all the other observations.

(Cressie, 1993, p. 409) has noted conditions when the SAR and CAR model

are equivalent. He shows any SAR model can be represented as a CAR model,

but the converse is not true. The SAR model specifies the spatial correlation

directly via the weight matrix in the covariance, whereas the CAR model induces

a distribution on the residuals via the assumption of the conditional distributions

of the Z(s)’s. Although the generating mechanism is different, both of these models

can be considered spatial error models, as defined by Anselin (2002), because they

describe the spatial process of the residuals Z(s)−X(s)β, or as in equation (1.4),

δ(s).

Simultaneous Autoregressive Model (SAR)

The simultaneous autoregressive (SAR) model is defined as:

Z(s) = X(s)β + δ(s)

δ(s) = Bδ(s) + v (1.9)
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where B is an n×n matrix of spatial dependence parameters with bii = 0, so that

δ(si) is not regressed on itself. The vi, i = 1, ..., n, have mean zero and a diagonal

covariance matrix Σv = diag[σ2
1, .., σ

2
n]. The SAR model can also be expressed as

(I−B)(Z(s)−X(s)β) = v,

and from this expression we obtain

ΣSAR = V ar[Z(s)] = (I−B)−1Σv(I−B′)−1, (1.10)

assuming (I−B)−1 exists and X(s)β is fixed. The autoregession of the residuals

(1.9) based on the structure of B induces a particular covariance, ΣSAR, for the

data Z(s), this covariance is indirectly defined by the assumed B and Σv.

One simplification defines B = ρsW where W is a neighborhood matrix and

ρs is the spatial correlation parameter. This results in the following formulation

Z(s) = X(s)β + δ(s)

δ(s) = ρsWδ(s) + v.

This shows that an easier way to fit the SAR model in practice is by using spatially

lagged terms ρsWXβ and ρsWZ(s). Rewriting the model as

Z(s) = X(s)β + (I− ρsW)−1v (1.11)

and then using matrix algebra to simplify to

Z(s) = X(s)β − ρsWXβ + ρsWZ(s) + v, (1.12)
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clarifies that the term (I − ρsW)−1v induces the autocorrelation in the linear

regression model.

One difference between the SAR model and the geostatistical model is the

SAR model is not covariance stationary. Even if we assume a diagonal matrix

for Σv, e.g., (Σv = σ2I), the diagonal elements of ΣSAR are not constant. The

heteroscedasticity depends on the specified neighborhood matrix (Anselin, 2001),

whereas with the exponential covariance (1.7) the diagonal elements are all τ 2+σ2.

Conditional Autoregressive Model (CAR)

The conditional autoregressive model (CAR) specifies a series of conditional

distributions, f(Z(si)|Z(s−i)), where s−i denotes all locations other than si. If we

assume the conditional distributions are Gaussian we write

Z(si)|Z(s−i) ∼ N(x(si)
′β +

∑
j∈si∗

cij(Z(sj)− x(sj)
′β), σ2

i )

where si∗ is the set of locations within a specified neighborhood of location si,

E(Z(si)) = x(si)
′β, σ2

i is conditional variance, and the cij are non-zero spatial

dependence parameters except for cii = 0, for i = 1, ..., n. To simplify one could

assume σ2
i = σ2.

The Hammersley-Clifford theorem (first provided in Besag, 1974) can be used

to define the valid joint distribution for the Z(si)’s, f(Z(s1), .., Z(sn)), which is

Gaussian with mean X(s)β and variance

ΣCAR = (I−C)−1Σc, (1.13)

where Σc = σ2I and C = ρcW. W is a neighborhood or adjacency matrix and ρc is
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the spatial correlation parameter. In a sense, σ2 is similar to the partial sill in the

exponential-without-nugget covariance. If ρc = 0, then Zi
iid∼ N(0, σ2) (Banerjee

et al., 2004, p. 81). It is important to point out for the subsequent chapters; this

joint distribution is still a function of X in the mean structure. More accurately

f(Z(s1), .., Z(sn)) ≡ f(Z|X) because the joint distribution is conditional on the

vector of predictors, X.

ρc and ρs are commonly referred to as the spatial correlation or spatial depen-

dence parameters, for the CAR and SAR models, respectively. However, as pointed

out by Wall (2004), the spatial structure is actually explained by (I − B)−1 and

(I−C)−1. These are both functions of the specified neighborhood matrix W. There

are many ways to define a neighborhood and there is no clear understanding of how

these choices effect the resulting implied spatial structure as a function of ρc or ρs

(Anselin, 2002). A novel approach defines the neighborhood of a stream network

via an ADG to account for the unidirectional flow similar to causal relationships

(Clement and Thas, 2007).

Spatial Lag Model

An alternative to the CAR and SAR models, proposed in the econometrics

literature, is a spatial lag model, an extension of the AR(1) model in time series

(Anselin, 2002). This model

Z(s) = ρ`WZ(s) + X(s)β + δ(s)

is equivalently expressed as

Z(s) = (I− ρ`W)−1X(s)β + (I− ρ`W)−1δ(s),

where δ(si) ∼ N(0, σ2) ∀si. Again ρ` is a spatial correlation parameter and W is

the neighborhood or adjacency matrix as in the CAR and SAR models.
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In comparison to the CAR and SAR model, the spatial lag model has the

following joint distribution for Z(s)

Z(s) ∼ MV N([I− ρ`W]−1X(s)β, σ2[(I− ρ`W)′(I− ρ`W)]−1). (1.14)

For the spatial lag model the value of a particular Z(s) is a function of both the

residuals and the explanatory variables within the ‘neighborhood’ of Z(si), whereas

in the CAR and SAR models Z(si) is only a function of explanatory variables at

that particular Z(si) and the residuals in the ‘neighborhood’ of Z(si). Interest-

ingly, in Chapter 3 Section 3.3, we demonstrate there are no equivalences between

the spatial lag model and the IsoX, IsoY and IsoXY because of the conditional

independencies implied by their associated graphs.

Practically speaking, the decision as to which model is appropriate should be

determined by the researcher’s knowledge of the particular ecological (or other)

system. Anselin (2002, 2001) suggests that if one is interested in the spatial cor-

relation one should use the spatial lag model, but if the spatial correlation is

considered a nuisance, one should model that ‘nuisance’ as a CAR or SAR model.

However, as noted in Section 1.1, many ecologists are interested in interpreting

the ‘nuisance’ covariance parameters of a geostatistical or areal data model (ef-

fective range and ρ’s, respectively). It should be mentioned that Wall (2004) has

investigated interpreting the ρ parameter in the SAR and CAR models as a mea-

sure of spatial correlation and has found that with irregular lattices it can lead to

nonsensical results.

1.4 Multivariate Spatial Models

A spatial regression model assumes the explanatory variables to be fixed, and the

spatial process is specified in terms of the residual error term. On the other hand, if
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we assume the explanatory variables to be stochastic and spatially correlated, as in

the stream sulfate data, we can model both the response and explanatory variables

jointly as a Gaussian spatial process (Banerjee and Gelfand, 2002). Prediction in

this setting is referred to as co-kriging. We only consider multivariate geostatistical

models, but there is also a multivariate extension to the CAR model (MCAR in

Banerjee et al., 2004, pp. 245–253).

To make this discussion easier, consider a bivariate setting where only two

variables, (X(s), Y (s)), are measured at each spatial location s. Assume a bivariate

Gaussian distribution; that is,




X

Y


 ∼ MV N [µ, Σ∗] ,

where X = (X(s1), ..., X(sn)) and Y = (Y (s1), ..., Y (sn)). The mean µ is a 2n× 1

vector and the covariance Σ∗ is a 2n × 2n matrix. The added complication for

multivariate spatial data is the cross-covariance, Cov(X,Y). The joint covariance

can be written as

Σ∗ ≡ Cov([X,Y], [X,Y]) ≡




Cov(X,X) Cov(X,Y)

Cov(X,Y) Cov(Y,Y)


 .

In subsequent chapters, for easier notation we denote the marginal covariance of

X, Cov(X,X), as Σxx; the cross-covariance of X and Y, Cov(X,Y), as Σxy; and

the marginal covariance for Y, Cov(Y,Y), as Σyy. The joint covariance can be

represented as a partition matrix,

Σ∗ =




Σxx Σxy

Σyx Σyy


 .
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The requirement of a valid (i.e., positive definite) joint covariance is needed for

co-kriging predictions.

Several authors have explored parameterizing the covariance in a multivariate

spatial model (Ver Hoef and Barry, 1998; Gelfand et al., 2004). Royle and Berliner

(1999) refer to a hierarchical approach to multivariate spatial modeling by spec-

ifying simpler conditional models that indirectly determine a joint distribution.

Their approach models the spatial dependence between variables through the con-

ditional mean as opposed to the cross-covariance. This method is very similar

to the graphical modeling approach. However, Royle and Berliner (1999) do not

present their method in terms of a graph or in the Bayesian framework ideal for

ecological datasets (Ellison, 2004). Schmidt and Gelfand (2003) explore a similar

Bayesian approach for environmental pollutant data, but not within a Bayesian

graphical model framework. This thesis provides a connection between multivari-

ate spatial models such as in Royle and Berliner (1999); Schmidt and Gelfand

(2003) and isomorphic chain graphs as developed in Gitelman and Herlihy (2007).

1.4.1 Separable Model

We assume only X and Y variables (p = 2) are measured at each of n locations. In

this setting, the separable model is a fairly restrictive model in that it is assumed

that the same univariate spatial process applies to both X and Y (as in Banerjee

et al., 2004, pp. 217-230). A valid covariance is built by first specifying a valid

univariate process, for example exponential-without-nugget

ρ(φ) = exp(−φD), (1.15)

where 1/φ is the range parameter and D is a matrix of pairwise distances. Let T

be a p× p (just 2× 2 for the bivariate case) positive definite matrix, then the joint
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covariance is constructed by taking

Σ∗ = T
⊗

ρ(φ), (1.16)

where
⊗

is the Kronecker product. For our situation, T =




T11 T12

T21 T22


 is in-

terpreted as the covariance matrix associated with the 2 × 1 vector, (X, Y ). The

ρ(φ) term decreases the covariance as the distance between sites increases. To

incorporate measurement error or micro-scale variability a nugget term is added

to (1.16) by assuming independent white noise components for both X and Y,

ε2n×1 ∼ MV N


0,




a11 0

0 a22


 ⊗

In


 (Banerjee and Gelfand, 2002).

The bivariate joint distribution for the separable-without-nugget model assum-

ing normality is then




X

Y


 ∼ MV N








~0

~0


 ,




T11 T21

T21 T22




⊗
exp(−φD)





. (1.17)

This model assumes both X and Y have the same spatial correlation; namely, the

effective range for both X and Y is just 3/φ. The bivariate joint distribution for

the separable-with-nugget model is:




X

Y


 ∼ MV N








~0

~0


 ,




T11 T21

T21 T22




⊗
exp(−φD) +




a11 0

0 a22




⊗
I





,

(1.18)

where a11 (a22) is the nugget term for X (Y). In this model the effective ranges

for X and Y are different because of the measurement error on X and Y. The

effective range for X is:

−1

φ
log

(
.05

T11 + a11

T11

)
;
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and for Y:

−1

φ
log

(
.05

T22 + a22

T22

)
.

An important point is both the effective ranges have the same spatial range param-

eter, 1/φ, an assumption that may not be appropriate for ecological applications

in which spatial processes may operate on different scales for different variables.

1.4.2 Linear Model of Coregionalization

Perhaps a more realistic multivariate spatial model for ecological and environmen-

tal applications would assume the spatial correlation of X is different from that

of Y. The linear model of coregionalization (LMC) specifies a multivariate spatial

process as a linear combination of independent spatial processes (as in Banerjee

et al., 2004). The versatility of the LMC for multivariate environmental data is

well documented (Schmidt and Gelfand, 2003; Royle and Berliner, 1999).

The LMC assumes the following for the bivariate joint distribution of (X, Y ):




X

Y


 ∼ MV N








~0

~0


 ,




a2
11ρ(φ1) a11a21ρ(φ1)

a21a11ρ(φ1) a2
21ρ(φ1) + a2

22ρ(φ2)








, (1.19)

where ρ(·) could be the exponential-without-nugget correlation function or any

other univariate spatial correlation function.

In this bivariate distribution, the marginal covariance for X is just Σxx =

a2
11ρ(φ1) and the marginal spatial covariance for Y is Σyy = a2

21ρ(φ1) + a2
22ρ(φ2),

a linear combination of two univariate processes. The benefit of specifying the

cross-covariance in such a way is that the conditional spatial covariance for Y |X
is just a2

22ρ(φ2). This means X, Y, and Y|X all have different effective range

parameters—allowing for a more flexible and realistic model. For example, if ρ(φ)
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is exponential-without-nugget then the effective range for X is 3/φ1 and for the

residuals (Y − βX), it is 3/φ2. The formula for the effective range of Y is a little

more complicated: it is the solution, t, of a weighted average of the two correlations

a2
21exp(−φ1t) + a2

22exp(−φ2t)

a2
21 + a2

22

= .05

(Banerjee et al., 2004, p. 232). The separable-with-nugget model also assumes

different effective ranges for X and Y, but they differ as a result of the nugget

terms; φ is common to both variables. On the other hand, in the LMC we assume

a spatial correlation parameter for X, φ1, and for Y, φ2; for this reason, it seems

more realistic than the separable model.

The assumption of independent spatial processes for constructing the LMC is

violated when measurement error is included for both X and Y (Banerjee et al.,

2004). Therefore, with measurement error, the unconditional likelihood, f(Y,X),

is no longer equivalent to a product of the conditional and marginal distributions.

More importantly, the independence relationships of the IsoXY graph are violated

in the LMC with two measurement error components, see results in Section 3.2.3.

Zimmerman (2006) explores a separable model with two measurement error com-

ponents to combine data from different monitoring networks. Presumably, this

situation is also not equivalent to the IsoXY model, again see results in Section

3.2.3.

In Chapter 3, we explore the equivalences between these two multivariate spa-

tial models and isomorphic chain graphs. We prefer ICG because they allow for a

visual representation which seems more intuitively appealing than the more compli-

cated, purely mathematical representation. Also, the relationships to multivariate

spatial models help inform the interpretation of spatial correlation in ICG models

in a familiar framework for spatial analysts.
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1.5 Spatial Structural Equation Models and Path Analysis

In this thesis, we do not focus on structural equation models (SEM) and path anal-

ysis models. Nonetheless, they deserve a brief mention and explanation regarding

their similarities to and differences from graphical models. The main difference be-

tween SEM and graphical models, with the assumption of multivariate normality,

is the notion of a latent variable. A SEM assumes there are latent or unobserved

factors. The observed variables are then linearly related to these unobserved fac-

tors (Shipley, 2000, p. 162). Path analysis is a special case of an SEM, as in

Shipley (2000, p. 162), in which there is one measured variable per latent variable

and we assume they are perfectly correlated. Unlike SEM, graphical models allow

for nonlinear relationships between variables and non-Gaussian error distributions

(Pearl, 2000, pp. 28–29).

An SEM diagram looks very similar to a chain graph except typically the

latent factors are enclosed in circles and the observed variables are enclosed in

boxes; whereas, chain graphs only have nodes to represent observed variables.

One could think of an undirected edge between two nodes in a chain graph as

representing a common latent factor (Spirtes et al., 2000). This construct allows

for re-expressing a chain graph or SEM with correlated errors as a directed graph

to which d-separation can be applied to determine the independence relationships.

An undirected edge (u—w) can be thought of as a double-headed arrow, wherein

the true causal ‘direction’ is unknown. This ambiguous relationship could result

from u causing w, u → w; w causing u, u ← w; or from some latent cause of

both u and w. The last case could result from an underlying spatial process. For

example, sometimes the spatial correlation between variables is considered due to

missing explanatory variables (i.e., a latent causal variable).

In Figures 1.4 and 1.5, we adopt the convention proposed in Spirtes et al. (2000)

to present two alternative visualizations for the separable and LMC multivariate
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spatial models; that is, as an ICG or as a SEM transformed to an ADG. Figures

1.4 and 1.5 are solely for illustrative purposes. In Figure 1.4, the undirected edges

in (a) can be re-expressed as in (b), where the connection between the two sites is

represented as a common ‘causal’ parent. We would consider Z to be an unobserved

latent spatial factor that is common to both X and Y, similar to the separable

model. The LMC model has two latent spatial factors Z1 and Z2, as shown in

Figure 1.5. We discuss these two visual representations further in Chapter 3, in

which we present the connections between ICG models and the separable and

LMC.
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Figure 1.4: ICG (a) and SEM as ADG (b) representation of Separable Model

Structural equations models were traditionally estimated using Maximum Like-

lihood (Shipley, 2000, pp. 100–135). Recently, several authors have developed

Bayesian structural equation models (SEM) for spatially correlated data (Liu et al.,

2005; Hogan and Tchernis, 2004; Wang and Wall, 2003). A common spatial factor

model specifies a common underlying latent spatial factor in that it assumes a

separable model for the covariance between spatial factors (Wang and Wall, 2003).

A generalized spatial structural equation model assumes different underlying spa-
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Figure 1.5: ICG (a) and SEM as ADG (b) representation of LMC

tial factors—essentially specifying a LMC for the covariance between latent spatial

factors (Liu et al., 2005). However, Pearl (2000, pp. 30–31) points out graphical

models do not rely on the assumption of linearity and/or multivariate normality,

in contrast to SEM. Our work in this thesis could be extended to count data or

more complicated non-linear situations.

An important distinction is made between structural equations and chain graphs

in Cox and Wermuth (1993). A missing edge in a graphical representation of lin-

ear structural equations does not necessarily imply independencies (conditional

or unconditional) unless the structural equation and chain graph models are dis-

tributionally equivalent (that is, both have the same joint distribution and the

parameter vectors are in one-to-one correspondence). Thus, it is possible that our

work with ICG could be reformulated as SEM but with the added benefit of a

visual representation of the linear dependencies.
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1.6 Outline of Thesis

In the next chapter, Chapter 2, we introduce three isomorphic chain graphs (IsoX,

IsoY, IsoXY), enumerate their conditional and marginal independencies and the

resulting likelihood factorization for each model. We also provide results that show

how to parameterize the ICG as valid spatial models. We provide an example in

which strong restrictions are needed on the correlation parameter to guarantee that

the joint covariance remains positive definite after parameterizing the marginal

distribution of Y as a spatial process. This provides further clarification and more

evidence for the similarity between IsoY and spatial regression models.

In Chapter 3, we explore the connections between multivariate spatial models

(separable and LMC) and three ICG (IsoX, IsoY, and IsoXY). We show that we

can parameterize IsoXY as a separable model or as a LMC. Also, under certain

assumptions, IsoX is equivalent to the separable model. Interestingly, spatial lag

models violate the conditional independencies of all three graphs. Establishing

these relationships informs our interpretation of spatial correlation in the three

ICG models as spatial error models. Also, re-expressing complicated multivari-

ate spatial models in a graphical modeling framework allows for a more readily

interpretable visual representation.

Based on these connections and derivations we model the stream sulfate data

using the three ICG in Chapter 4. The results raise questions as to the effect

of strength of correlation on posterior interval skewness and about how to select

among the different ICG, which differ only in the location of isomorphic node(s).

In Chapter 4 we address these questions via simulations and relate our findings to

the stream sulfate data. We provide overall conclusions to the thesis and discuss

future extensions to our work in Chapter 5.
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Chapter 2 – Three Isomorphic Chain Graphs: IsoY, IsoX, and

IsoXY

2.1 Introduction

A Bayesian graphical model provides a framework for visually displaying relation-

ships between variables, and in turn the conditional and marginal independencies

implied by the graph lead to simplifications of the entire multivariate joint dis-

tribution represented by the graph. Often this simplified probability distribution

is relatively easier to model and interpret than the unsimplified version. An ad-

vantage of using graphical models, as compared to path analysis or structural

equations models, is their greater flexibility. For instance, graphical models allow

for specifying nonlinear relationships between variables (Pearl, 2000, pp. 28–29).

Also, a mixture of discrete and continuous variables can be modeled simultane-

ously (Lauritzen and Wermuth, 1989). Further, using Bayesian inference allows

for easily interpretable posterior intervals as well as the incorporation of prior

knowledge—an advantage for modeling ecological and environmental data (Elli-

son, 2004). In this chapter, we focus on a specific graphical model, an isomorphic

chain graph (ICG), introduced by Gitelman and Herlihy (2007) to account for

spatially dependent data.

In the applied literature, recent attention has been drawn to the utility of

Bayesian belief networks (BBN) for modeling complex multivariate systems such

as found in Forestry and Water Resource management (e.g., special issues of the

Canadian Journal of Forest Research volume 36, no. 12 and Environmental Mod-

elling and Software volume 22). A BBN is considered a special case of a Bayesian
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graphical model, in which all the variables are discrete (or in some cases, Gaussian)

and the relationships between variables are directed or ‘causal’ (Castelletti and

Soncini-Sessa, 2007). In these special issues, BBN are commonly used as a tool to

determine the implications of management decisions. Typically, researchers elicit

expert input to develop a hypothetical causal structure (ADG) and then explore

the ramifications of different management decisions on the probability distribution

of an output (response) of interest. This approach is an improvement over the

usual mechanistic models because it acknowledges and incorporates uncertainty in

the parameter estimates (Borsuk et al., 2003).

In this chapter, we consider the more general class of models, chain graphs,

allowing for both directed and undirected relationships, as opposed to solely di-

rected edges between variables. We begin with a hypothetical “causal” structure

represented as an ADG, but we incorporate spatial correlation between continu-

ous variables by specifying an isomorphic node to connect the individual ADG at

different sites in a spatial region.

In graphical models, the product rule for joint probabilities is simplified based

on the independencies in the graph. For example, with a three variable system

(X, Y , and Z) the joint distribution

f(X, Y, Z) = f(X|Y, Z)f(Y |Z)f(Z)

can be further simplified to

f(X|Y )f(Y |Z)f(Z),

if the graph implies the independence relationship

X |= Z|Y.
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The properties of multivariate normality guarantee that the conditional and marginal

distributions are normal with the assumption of a normal joint distribution (for

example Mukhopadhyay, 2000). However, specifying marginal and conditional dis-

tributions as normal doesn’t guarantee the joint is normal. Schabenberger and

Gotway (2005, pp. 292-295) discuss the potential problems in spatial modeling

with specifying a sequence of conditional distributions without considering the

possible restrictions on the joint distribution. The ICG models add a new twist

because specifying a non-singular marginal distribution doesn’t guarantee a non-

singular joint probability distribution even in a multivariate Gaussian setting as

shown in Section 2.3.1.

We believe that ICG are a flexible, more intuitive option for modeling mul-

tivariate spatial data than the traditional models for multivariate spatial data.

Spatial models are considered ‘valid’ if their covariance functions are positive def-

inite, which guarantees positive kriging (co-kriging) prediction variances (Cressie,

1993, p. 90). We begin with the assumption of a non-singular multivariate normal

distribution for the nodes of the graph, so we can proceed with the machinery

provided in Andersson et al. (2001) for translating a chain graph into constraints

on the regression coefficients and conditional covariance matrices. We verify for

IsoY and IsoX that this assumption guarantees that the conditional covariance,

Σy|x in IsoY, and marginal covariance, Σxx in IsoX, must be positive definite, and

so that is where we add the spatial covariance parameters to fit the different ICG.

By specifying these matrices as valid spatial covariances we are guaranteed the re-

sulting ICG model is still a valid model. Our use of the terminology ‘valid’ model

is consistent with the use in spatial statistics as well.

This chapter is organized as follows: in Section 2.2 we introduce three ICG

models: IsoY, IsoX, and IsoXY and provide intuition about each of them. We

enumerate the independence relationships unique to each graph and summarize
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them in Table 2.2. Sections 2.3, 2.4, and 2.5 focus on each ICG model individually.

In each section, we derive the likelihood and state the form of the joint covariance

for each graph. Each graph has a different joint covariance (Σ∗
IsoY , Σ∗

IsoX , and

Σ∗
IsoXY ) because of their unique independence relationships. We verify, based

on the unique covariance structure for IsoY and IsoX, that the isomorphic node

conditional distribution must be valid. These derivations suggest how we should

parameterize IsoY and IsoX using the available spatial covariance functions, such

that we still have valid spatial models. IsoXY, on the other hand, is easier to

parameterize using the available valid multivariate spatial models.

2.2 Three Isomorphic Chain Graphs (ICG)

The stream sulfate data, introduced in Section 1.1, are useful for demonstrating

the flexibility of isomorphic chain graphs for multivariate data. Although the

stream sulfate data has multiple explanatory variables, for now we’ll use, from

each location s, only wet deposition, X(s), and stream sulfate concentration, Y(s).

Because of the biology of this system, we know the directional relationship between

these two variables: it is only plausible for the wet deposition variable to affect

the stream sulfate concentration, the converse being biologically impossible. For

simplicity, consider two sites, s and s + h. For these two sites, a simple ADG

in which we assume spatial independence is shown in Figure 2.1. In this ADG,

wet deposition at location s affects stream sulfate at location s, and it does so

independently of location s + h.

We adopt the notation used in Gitelman and Herlihy (2007) by defining Gs =

(Vs,Es) and Gs+h = (Vs+h,Es+h), as the ADG at locations s and s + h, respec-

tively. The graph for this two variable, two site system is G = (Vs ∪Vs+h,Es ∪ Es+h) ,
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Xs Xs+h

Ys+hYs

(Gs) (Gs+h)

??

1

Figure 2.1: ADG for site s and s + h, assuming spatial independence

where the sets of vertices are Vs = {Xs, Ys} and Vs+h = {Xs+h, Ys+h} and the

sets of edges are Es = {(Xs, Ys)} and Es+h = {(Xs+h, Ys+h)}.
The structure in Figure 2.1 serves as the point of departure for three ICG

models, each of which incorporate spatial dependence between sites in different

ways. The three ICG, IsoY, IsoX, and IsoXY are given in Figure 2.2. In all three

ICG we retain the directed edges between X and Y; however, in each we add

a different set of isomorphic nodes, E∗, see Table 2.1. The model nomenclature

(IsoX, IsoY, and IsoXY) reflects these different isomorphic node sets.

Xs Xs XsXs+h Xs+h Xs+h

Ys+h Ys+h Ys+hYs Ys Ys

(IsoY) (IsoX) (IsoXY)

? ? ?? ? ?

1

Figure 2.2: Three ICG models for spatially correlated data

In IsoY we assume a chain link (undirected edge) between the nodes {Ys, Ys+h}
(Table 2.1, second line). In terms of the stream sulfate data, this corresponds to

specifying the spatial component on stream sulfate concentration only. In IsoX we

specify that the chain link is between {Xs, Xs+h} (Table 2.1, third line), suggesting

the spatial component on wet deposition only. Finally, in IsoXY we assume that
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Table 2.1: Four Different Isomorphic Node Sets (E∗) for Independent, IsoY, IsoX,
and IsoXY

Independent E∗ = ∅

IsoY E∗ = {(Ys, Ys+h), (Ys+h, Ys)}

IsoX E∗ = {(Xs, Xs+h), (Xs+h, Xs)}

IsoXY E∗ = {(Xs, Xs+h), (Xs+h, Xs), (Ys, Ys+h), (Ys+h, Ys)}

both {Ys, Ys+h} and {Xs, Xs+h} are connected by a chain link (Table 2.1, fourth

line), suggesting a (possibly different) spatial component for both wet deposition

and stream sulfate concentration.

We use the phrase ‘spatial component’ instead of spatial correlation when de-

scribing the three models, because an isomorphic node induces marginal spatial

correlation in the respective children in each ADG. For example, the IsoX model

induces spatial correlation between Ys and Ys+h (Cov(Ys, Ys+h) 6= 0), the children

in the ADGs of the isomorphic nodes Xs and Xs+h.

2.2.1 Conditional and Marginal Independencies

Following the multiplication rule for joint probabilities, we write

f(Y,X) = f(Y|X)f(X),

or, with the four variables under consideration,

f(Y,X) = f(Ys, Ys+h|Xs, Xs+h)f(Xs, Xs+h). (2.1)
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There are conditional and marginal independencies implied by each of the graphs

in Figures 2.1 and 2.2, which lead to further simplifications of the factorization

(2.1).

We use a subscript on the random variable (for example, Xs) to distinguish a

variable at one particular site, s, from the vector-valued random variable corre-

sponding to all n sites X = {X(s1), ..., X(sn)}. In the independent model there

are no additional dependencies beyond the directed edge which is accounted for in

the mean structure, whereby the final factorization is

f(Y,X) =
∏

s

f(Ys|Xs)
∏

s

f(Xs).

In the IsoY model, using Result 2* from Gitelman and Herlihy (2007) and

AMP separation, defined in Section 2.7, the Y’s are conditionally dependent and

the X’s are marginally independent (Table 2.2 first row, second column); thus, the

final factorization can be written as

f(Y,X) = f(Y|X)
∏

s

f(Xs).

Using the same results for the IsoX model, we show the Y ’s are conditionally

independent and the X’s are marginally dependent (Table 2.2 second row, second

column) resulting in

f(Y,X) =
∏

s

f(Ys|Xs)f(X).

However, with the IsoXY model there are no additional independencies (the X’s

are marginally correlated and the Y’s are conditionally correlated) implied by the

graph (Table 2.2 third row second column) which means the joint density f(Y,X)
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in its simplest form is just

f(Y,X) = f(Y|X)f(X).

Table 2.2: Conditional and Marginal Independencies for Independent, IsoY, IsoX,
and IsoXY
Graph Dependencies Likelihood Factorization

Xs Xs+h

Ys+hYs

Independent

??

Ys |= Ys+h

∣∣ (Xs, Xs+h)

Xs |= Xs+h

Ys |= Xs+h and Ys+h |= Xs

∏
s f(Ys|Xs)

∏
s f(Xs)

Xs Xs+h

Ys+hYs

IsoY

??

Ys 6 |= Ys+h

∣∣ (Xs, Xs+h)

Xs |= Xs+h

Ys |= Xs+h and Ys+h |= Xs

f(Y|X)
∏

s f(Xs)

Xs Xs+h

Ys+hYs

IsoX

??
∏

s f(Ys|Xs)f(X)

Ys |= Ys+h

∣∣ (Xs, Xs+h)

Xs 6 |= Xs+h

Ys 6 |= Xs+h and Ys+h 6 |= Xs

Xs Xs+h

Ys+hYs

IsoXY

??

Ys 6 |= Ys+h

∣∣ (Xs, Xs+h)

Xs 6 |= Xs+h

Ys 6 |= Xs+h and Ys+h 6 |= Xs

f(Y|X)f(X)

Table 2.2 summarizes these independencies and the resulting factorizations as

derived in section 2.7. The second column shows those dependencies that are

unique to each graph. The third column shows the factorization of the joint prob-

ability distribution for each graph. The derivations are based on applying Result
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2* from Gitelman and Herlihy (2007) and AMP separation from Andersson et al.

(2001) to the graphs in Figure 2.2, the definitions are provided in Section 2.7 along

with the derivations.

Interestingly, all three models, IsoY, IsoX, and IsoXY, have the same two con-

ditional independencies

Ys |= Xs+h

∣∣ Xs

and

Ys+h |= Xs

∣∣ Xs+h

(the derivation is skipped for readability, but is provided in Section 2.7). That is,

once we know the covariate information at location s, we do not need the covariate

information from neighboring locations to model Y at location s. It turns out that

these conditional independencies are violated when we specify the IsoX or IsoY

model as a spatial lag model. Recall the spatial lag model has a mean structure

where the value of a particular Ys is a function of both the residuals and the

explanatory variables within the ‘neighborhood’ of Ys.

2.2.2 Notation and Assumptions

For each ICG model we make two simplifying assumptions:

• (A1) The joint probability distribution of (Xs, Xs+h, Ys, Ys+h) is multivariate

normal with a positive definite covariance Σ∗ and

• (A2) A common β: the relationship between Xs and Ys is the same for s and

s + h.

The notation introduced in section 1.4 is summarized again in Table 2.3. The

joint covariance Σ∗ has dimension 4× 4, and Σxx, Σyy, and ΣY |X are all dimension
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2× 2 for the four variable ICG displayed in Figure 2.2.

Table 2.3: Notation for Derivation of ICG likelihoods

Σ∗
4×4 =

Σxx Σxy

Σxy Σyy
Joint Covariance Matrix

Σxx=Cov(X,X) Marginal Covariance of X
Σxy= Cov(X,Y) Cross-Covariance of X,Y
Σyy= Cov(Y,Y) Marginal Covariance of Y
ΣY |X = Σyy − ΣxyΣ

−1
xx Σxy Conditional Covariance of Y given X

Assumption (A1): Multivariate Normality

To this point we have used f(·) to denote a generic distribution, by (A1) we

can use the results in Andersson et al. (2001) to write a specific likelihood for each

ICG model. Denote the joint pdf, f(X,Y), using the notation in Table 2.3:




X

Y


 ∼ MV N








~0

~0


 ,




Σxx Σxy

Σxy Σyy







≡ MV N(~0, Σ∗).

For the two-site scenario this is a multivariate normal distribution with dimension

4. We assume a symmetric joint covariance matrix with Σxy = Σyx and zero

marginal means for both X and Y because we assume centered variables. This

assumption is for ease of notation and allows for us to use the results in Andersson

et al. (2001) directly.

The joint distribution will always factor into a product of conditional and

marginal distributions. By (A1), these marginal and conditional distributions are

also multivariate normal (see for example Mukhopadhyay, 2000). The marginal

distribution of X is just

X ∼ MV N2(~0, Σxx),

and the conditional distribution of Y|X is

(Y|X) ∼ MV N2(BX, ΣY |X),
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where B = ΣxyΣ
−1
xx and ΣY |X is the conditional covariance. The conditional co-

variance is a function of all the sub-matrices (marginals and cross-covariance; see

Table 2.3).

Based on the results in Andersson et al. (2001), for all three ICG, B, a 2 × 2

matrix, has off-diagonal elements that are zero

B =




βs,s 0

0 βs+h,s+h


 .

This is simply because for all three models

Ys |= Xs+h

∣∣ Xs

and

Ys+h |= Xs

∣∣ Xs+h.

In terms of modeling the conditional mean (E[Ys|Xs]), we assume no covariate

information is needed from the surrounding locations. It is this assumption that

is violated with the spatial lag model.

Assumption (A2): A common β

By (A2) βs,s = βs+h,s+h = β, and

B =




β 0

0 β


 = βI2.

Assuming βss 6= βs+h,s+h, is akin to specifying a model similar to a spatially vary-

ing coefficients model as mentioned in Banerjee et al. (2004, pp.355-366). The
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important consequence of (A2) is that, for all three ICG models,

B = ΣxyΣ
−1
xx = βI2 (2.2)

which implies

Σxy = βΣxx,

assuming Σxx is invertible (true for valid spatial covariances). Therefore, the inde-

pendencies of the graph and (A2) determine the form of the cross-covariance matrix

(Σxy). Thus, the conditional covariance matrix, ΣY |X = Σyy − β2Σxx, because for

all three ICG, Σxy = βΣxx.

Spatial Covariance Notation

In matrix notation the exponential-with-nugget covariance, introduced in sec-

tion 1.3.1, is

τ 2I + σ2exp(−φD),

and if τ 2 = 0, the covariance matrix is just exponential-without-nugget:

σ2exp(−φD),

where D is a n×n matrix of pairwise distances. In this parametrization (following

Banerjee et al., 2004, p. 29), τ 2 is the nugget, τ 2 + σ2 is the sill, and 1/φ is the

range parameter.

We use the following convention to distinguish between the parameters of a

spatial process on X versus Y. If we specify the Y ’s to have an exponential-with-

nugget covariance we will add a subscript y on the partial sill, nugget, and range

parameters, σ2
y, τ 2

y , and φy. If we assume the X’s have an exponential-with-nugget

covariance we use a subscript x on the spatial covariance parameters, e.g. σ2
x. For

example, assuming the marginal covariance of Y is exponential-with-nugget, we
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write:

Σyy = τ 2
y I + σ2

yexp(−φyD). (2.3)

The next sections focus on deriving the likelihoods for each ICG. By (A1)

and the results in Andersson et al. (2001) we derive the joint covariance structure

specific to each ICG. Then by applying accessible matrix results to our specific

positive definite joint covariances (Σ∗
IsoY and Σ∗

IsoX), we verify that ΣY |X for IsoY

and Σxx for IsoX must each be positive definite. Based on these derivations, we

discuss the possible parameterizations such that IsoX, IsoY, and IsoXY can be

structured as valid spatial models.

2.3 Isomorphic Y ICG (IsoY)

Xs Xs+h

Ys+hYs

IsoY

??

1

Figure 2.3: ICG model for spatially correlated response

For the IsoY model (Figure 2.3), the X’s are marginally independent (see Table

2.2), and therefore the marginal covariance for X is just a diagonal matrix. We

assume a common variance for X in IsoY: (A3) equal variance of the predictor

Σxx = τ 2
xI,

where τ 2
x is the measurement error for X. The joint likelihood for the IsoY model
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is

f(Y,X) = f(Y|X)
∏

s

f(Xs)

∝ 1

|ΣY |X |1/2

1

τ 2n
x

exp{−1

2
[(Y − βX)′Σ−1

Y |X(Y − βX) +
1

τ 2
x

X′IX]}, (2.4)

where the conditional covariance is

ΣY |X = Σyy − β2τ 2
xI. (2.5)

To satisfy the conditional dependence of the Y ′s, the conditional covariance ma-

trix (ΣY |X) should have non-zero off-diagonal elements, expressed as a function of

distance for a spatial model.

In our analysis of the stream sulfate data we used a spatial regression model,

assuming the residuals (Y − βX) to be spatially correlated (Irvine et al., 2007).

Intuitively, an ICG with an isomorphic node connecting the response variable

at different locations (Figure 2.3) should be the graphical model equivalent to a

spatial regression model. And indeed, the likelihood for the IsoY model (2.4) looks

similar to the likelihood for a spatial regression model. The key difference is that

with a spatial regression model one does not assume a distribution for the X’s.

Examining (2.5), there are two ways to specify ΣY |X : (1) define ΣY |X directly,

or (2) indirectly by specifying Σyy as a function of distance. For either approach

(direct or indirect) the error term or residuals will follow a spatial process, called

a spatial error model (Anselin, 2001).

For IsoY, the joint covariance based on the independencies of the graph (Table

2.2), (A1), (A2), and (A3) is (derivation in Section 2.7):

Σ∗
IsoY =




τ 2
xI βτ 2

xI

βτ 2
xI Σyy


 .. (2.6)
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It turns out that for IsoY, the joint covariance is positive definite if and only

if the conditional covariance is positive definite. We require positive definiteness

of the joint covariance in order to apply the results in Andersson et al. (2001).

However, this verification is useful because it clarifies we should parameterize the

conditional covariance of the isomorphic node as a valid spatial covariance. Then

we are assured upon parametrization as a statistical model we have not inadver-

tently violated our assumption of a positive definite joint covariance.

Claim 1: Σ∗
IsoY is positive definite if and only if ΣY |X is positive definite and

τ 2
x > 0, where ΣY |X = Σyy − β2τ 2

xI.

Verification: The derivation is a straightforward application of Corollary 14.8.6

in Harville (1997, pp. 244-245).

Let A be a n × n matrix with partition as follows:




T U

U ′ W


, then A is

positive definite if and only if T and W − U ′T−1U are positive definite.

Applying Corollary 14.8.6 to (2.6) shows Σ∗
IsoY is positive definite if and only

if Σxx = τ 2
xI and

ΣY |X = Σyy − βτ 2
xI

1

τ 2
x

Iβτ 2
xI

are positive definite. By Lemma 14.2.1 in Harville (1997, p. 211) Σxx is p.d. if and

only if τ 2
x > 0. Therefore, the joint covariance is p.d. if and only if the conditional

covariance is also positive definite and τ 2
x > 0. This completes the derivation.

Our claim verifies a non-singular joint distribution, needed to use the results

in Andersson et al. (2001), guarantees a non-singular conditional distribution—

the isomorphic node distribution—thereby suggesting the better approach for us

to parameterize the IsoY ICG as a spatial model is to specify ΣY |X directly. We

present an example in Section 2.3.1 to show that parameterizing the marginal (Σyy)

as a valid spatial covariance results in strong restrictions on the spatial parameters

to guarantee a valid joint distribution.
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Schabenberger and Gotway (2005, p. 206) note that verifying the positive

definiteness of a spatial covariance based on an observed configuration of spatial

locations (a particular distance matrix, D, or neighborhood matrix, W) does not

prove that a particular spatial model is valid. The preceding derivation only re-

quires (A1), (A2), (A3), and the dependencies implied by the graph (Table 2.2

first row) – no assumption about D or W. We have verified, by specifying the

conditional covariance as a valid areal or geostatistical spatial covariance, IsoY

ICG is parameterized as a valid spatial model. This is important because a valid

(i.e. positive definite) spatial covariance guarantees non-negative prediction errors

(Schabenberger and Gotway, 2005, p. 44).

2.3.1 Parameter Constraints due to Marginal Specification of Spa-

tial Correlation

Alternatively, let’s consider an example in which we assume that the marginal

covariance matrix for Y , Σyy, is a valid spatial covariance. This approach results

in restrictions on the spatial correlation parameters (ρc, ρs, or φ) in the graphical

spatial model. In a spatial regression model (non-graphical spatial model), we do

not have these additional constraints because we always specify the residuals to

follow a spatial process—the same as specifying the conditional covariance directly

in a graphical spatial model.

In the next sections, we explore parameterizing Σyy as areal (CAR and SAR)

and geostatistical (exponential-with and without-nugget) spatial covariances. Deriva-

tions of the resulting restrictions are provided in Section 2.7. For the following

discussion we still assume the two-site setting, in which we observe X and Y at

two locations, s and s+h, and the relationship between variables is as displayed in

the IsoY graph (Figure 2.3). The derivations rely heavily on the equality between
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the distance matrix, D, and the weighting matrix, W; both are simply,

W = D =




0 1

1 0


 .

CAR Model

If we assume Σyy = σ2(I−ρcW)−1, the commonly used CAR spatial covariance

for the two-site scenario, we get the following for ΣY |X = Σyy − β2τ 2
xI:

σ2

|1− ρ2
c |




1 ρ

ρ 1


−




β2τ 2
x 0

0 β2τ 2
x


 .

We must have σ2 > τ 2
xβ2 and

{ρc : ωiρc > 1− σ2/τ 2
xβ2 ∀i}, (2.7)

where ωi is an eigenvalue for W, to guarantee the conditional distribution is pos-

itive definite (the derivation is provided in Section 2.7.2). For example, with pa-

rameter values σ2 = 3, β = 1, and τ 2
x = 2, we need −.5 < ρc < .5 to have

a non-singular bivariate distribution (positive definite covariance matrix). This

would mean the spatial correlation of the response has to be small or moderate.

For the same values of the parameters, directly specifying ΣY |X , the conditional

covariance, as ΣCAR results in no additional constraints on ρc.

SAR Model

Another option for Σyy is the SAR model covariance. Under this parametriza-

tion, the conditional distribution for Y given X is:




Ys|Xs

Ys+h|Xs+h


 ∼ MV N








βXs

βXs+h


 , σ2




1+ρ2
s

(1−ρ2
s)2

2ρs

(1−ρ2
s)2

2ρs

(1−ρ2
s)2

1+ρ2
s

(1−ρ2
s)2


−




τ 2
xβ2 0

0 τ 2
xβ2








.
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We need the same condition, σ2 > τ 2
xβ2, and now

{ρs : ωiρs > 1− (
σ2

τ 2
xβ2

)1/2 ∀i}, (2.8)

to be satisfied for the conditional and joint covariances to be valid. These con-

straints guarantee that the eigenvalues for the conditional matrix are all positive

which in turn implies the matrix is positive definite. The derivation supplied in

Section 2.7.2 uses the fact ΣSAR = Σ2
CAR for the two site scenario. For example,

for parameter values σ2 = 9, β = 1, and τ 2
x = 2 the marginal distribution is

valid, and there is the restriction on ρs (−1.12 < ρs < 1.12). The restriction on

ρs is counter-intuitive to the notion that ρs is a correlation parameter, we would

expect it to range between [−1, 1]. This was also noted by Wall (2004) for more

complicated weighting matrices.

Geostatistical Model

Unfortunately, the geostatistical model suffers from the same problem as the

CAR model, in terms of the restriction on the spatial correlation parameter. The

marginal spatial process for the response must have a nugget term; otherwise, there

are strong restrictions on the spatial covariance parameters.

For example, assume Σyy = σ2
yexp(−φyD), where D =




0 1

1 0


. This yields

the following joint distribution:




X

Y


 ∼ MV N







0

0


 ,




τ 2
xI βτ 2

xI

βτ 2
xI σ2

yexp(−φyD)





 .

This in turn implies ΣY |X = σ2
yexp(−φyD) − β2τ 2

xI which means f(Y |X) has a

covariance matrix with negative diagonal elements if σ2
y < β2τ 2

x . Even σ2
y > β2τ 2

x ,
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does not insure a valid joint covariance unless

φy > −log

(
1− β2τ 2

x

σ2
y

)
, (2.9)

as well.

For example, for β = 2, τ 2
x = 1, σ2

y = 5, the response’s range parameter (1/φy)

must be less than 1.86 for the conditional covariance to be positive definite. This is

relatively meaningless for the two-site setting because the distance between sites is

only 1. To investigate a more realistic situation of 100 sites on a 10 x 10 lattice with

the example parameter values, we used a simple iterative process of investigating

a range of φ values and then assessing the positive definiteness of the conditional

covariance. We found the response’s effective range must be less than 1.18, meaning

all the observations are uncorrelated except immediate neighbors—strong spatial

correlation is not possible—for the conditional covariance to be positive definite.

This is similar to the restriction on ρc; in that, only weak or moderate correlation is

permitted. The derivation for condition (2.9), available in Section 2.7.2, hinges on

the equivalence between the exponential and CAR spatial correlation parameters,

ρc = exp(−φy), with the two site scenario. Unfortunately, even when the adjacency

matrix in the CAR model is a function of Euclidean distance this relationship is

even more complicated.

However, parameterizing IsoY by specifying ΣY |X = σ2
yexp(−φD) implies that

Σyy = σ2
yexp(−φD) + β2τ 2

xI. Essentially, assuming the residuals are exponential-

without-nugget implies the marginal process for Y must have a nugget, β2τ 2
x . This

makes intuitive sense because modeling the marginal of Y means we ignore the

information provided by X, so it seems likely there should be measurement error,

i.e., a nugget. Our claim 1 suggests we should parameterize the IsoY model as a

valid spatial model by assuming the ‘residual’ error term follows a spatial process;
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otherwise, as we discussed, there are potentially strange restrictions on the spatial

correlation parameters.

2.4 Isomorphic X ICG (IsoX)

Xs Xs+h

Ys+hYs

IsoX

??

1

Figure 2.4: ICG model for spatially correlated predictor

An alternative spatial model for the stream sulfate data expresses the spatial

correlation through the covariance of the wet deposition variable. This is a practical

choice because the wet deposition variable was interpolated to each stream location

using a model with latitude and longitude. These predicted values have associated

uncertainty and the empirical correlogram displays evidence of spatial correlation.

These correlated uncertainties are ignored using a spatial regression model.

In the IsoX model (Figure 2.4), the X’s are marginally dependent and the Y’s

are conditionally independent given the X’s (Table 2.2). These relationships imply

that Σxx should have non-zero off-diagonal elements and that ΣY |X is a diagonal

matrix. We make an additional assumption for IsoX:

(A3) equal variance of the residuals

ΣY |X = τ 2
y|xI.

Based on (A1), (A2), (A3), and the independence relationships in Table 2.2, the
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joint covariance of (X, Y ) in IsoX is

Σ∗
IsoX =




Σxx βΣxx

βΣxx τ 2
y|xI + β2Σxx


 . (2.10)

The derivation of (3.5) is provided in Section 2.7.

Under these same assumptions, the joint likelihood for the IsoX model is:

f(Y,X) =
∏

s

f(Ys|Xs)f(X)

∝ 1

|Σxx|1/2

1

τ 2n
y|x

exp{−1

2
[

1

τ 2
y|x

(Y − βX)′I(Y − βX) + X′Σ−1
xxX]}, (2.11)

where ΣY |X = Σyy − β2Σxx = τ 2
y|xI. The derivation of the likelihood based on

Andersson et al. (2001) is provided in section 2.7.

The following claim suggests that to parameterize IsoX as a valid spatial model

we should specify Σxx using a valid univariate spatial covariance. The derivation

is similar to that for IsoY.

Claim 2: Σ∗
IsoX is positive definite if and only if Σxx is positive definite and

τ 2
y|x > 0.

Verification: By Corollary 14.8.6 in Harville (1997, pp. 244-245),

Σ∗
IsoX is positive definite if and only if Σxx and

ΣY |X = (τ 2
y|xI + β2Σxx)− (βΣxx)Σ

−1
xx (βΣxx) (2.12)

are positive definite. Simplifying (2.12) shows we only require τ 2
y|x > 0 to satisfy the

positive definite condition. Thus, the joint covariance (Σ∗
IsoX) is positive definite

if and only if the marginal covariance of X (Σxx) is positive definite and τ 2
y|x > 0 .

This completes the derivation.
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Claim 2 verifies assuming a positive definite joint covariance for Σ∗
IsoX implies

the isomorphic node distribution must be non-singular. Also, the claim verifies that

parameterizing Σxx as a valid spatial covariance does not inadvertently violate

our original assumption of a p.d. joint covariance. As with the IsoY model,

there are multiple choices (geostatistical or areal spatial covariances) for Σxx that

parameterize IsoX as a spatial model. However, the preceding claim suggests that

unlike the IsoY model, there are no further restrictions on the spatial correlation

parameters when the marginal covariance of X is parameterized as a geostatistical

or areal spatial covariance.

2.5 Isomorphic X and Y ICG (IsoXY)

Xs Xs+h

Ys+hYs

IsoXY

??

1

Figure 2.5: ICG model for spatially correlated predictor and response

For the IsoXY model (Figure 2.5), because the X’s are marginally dependent

and the Y ’s are conditionally dependent (Table 2.2), there are no further simplifi-

cations to the joint distribution:

f(Y,X) = f(Y|X)f(X)

∝ 1

|Σxx|1/2

1

|ΣY |X |1/2
exp{−1

2
[(Y − βX)′Σ−1

Y |X(Y − βX) + X′Σ−1
xx X]}. (2.13)

It turns out that for the IsoXY model, we can make use of the available valid

spatial covariances for multivariate data, such as in the separable model and linear
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model of coregionalization, to parameterize the joint covariance, Σ∗
IsoXY . The only

constraint for the IsoXY joint covariance (Σ∗
IsoXY ) is the cross-covariance have the

form βΣxx, or

Σ∗
IsoXY =




Σxx βΣxx

βΣxx Σyy


 ; (2.14)

as a result of (A2). The derivation of (2.14) is provided in Section 2.7. Other meth-

ods could be used to build valid joint covariances such as in Ver Hoef and Barry

(1998), but here we only explore the separable model and LMC parameterizations.

By specifying the joint pdf as a multivariate spatial model, it turns out that

ΣY |X and Σxx are spatial covariances. The only constraint implied by the graph

is Σxy = βΣxx, and most multivariate spatial models meet this condition. An

interesting consideration for the IsoXY ICG parameterized as the separable model

or LMC is that to have the conditional specification equivalent to the joint spec-

ification (i.e., f(Y |X)f(X) ≡ f(X, Y )), only one of the variables (X or Y) can

include measurement error (τ 2
x , τ 2

y ), but not both (Banerjee et al., 2004, p. 236).

The IsoXY model, where there is a chain link on both X and Y, is well-suited

for a data set where, after accounting for the correlation in X, there is ‘left-over’

unaccounted for spatial correlation in the residuals (Y − Xβ). For the stream

sulfate data, we might fit the IsoXY model if we thought there was still correlation

in the residuals after fitting IsoX, which accounts for the spatial correlation in wet

deposition. We shall point out in Chapter 4 that this is likely in the stream sulfate

data and therefore a better approach may be to fit a multivariate model to these

data. We also hypothesize a reason for encountering convergence issues for the

range parameter in a Bayesian spatial regression model for the stream sulfate data

is that we assume only the residuals are spatially correlated. A thorough analysis

of the stream sulfate data set is presented in Chapter 4.
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Another example of data that may be suitable for an IsoXY model is provided

by beetle grub counts which are associated with soil organic matter (Dalthorp,

2004). Beetles are known to have clustered spatial distributions regardless of soil

organic matter patterns. Thus, with beetle grub counts we might expect the degree

of spatial correlation to occur on two different scales or according to two different

patterns, suggesting that a LMC model may be appropriate.

Royle and Berliner (1999) analyze ozone and temperature data by specifying

the conditional and marginal distributions, i.e. f(Y |X)f(X). They claim this

approach–specifying f(Y |X)f(X) versus f(X,Y )— is simpler than using a mul-

tivariate spatial model when there is a directional relationship between variables.

Their approach is similar to the IsoXY ICG formulation, except they do not ac-

knowledge the restrictions on the joint distribution and that there are instances

when the conditional and joint specifications are not equivalent. Furthermore, we

show in Chapter 3 that using a separable model or LMC for the joint distribu-

tion maintains the restrictions of the graph which is a result of the directional

relationship between X and Y.

2.6 Discussion

Schabenberger and Gotway (2005, pp. 292-295) discuss the potential problems

for spatial analysts with specifying marginal and conditional distributions without

considering the requirements for valid joint distributions. An additional consid-

eration with our ICG models is that the requirements for the joint distribution

must also satisfy the relationships dictated by the graph structure. For IsoY, the

better choice is specifying the conditional distribution of Y|X as a spatial error

process because specifying the marginal of Y could result in strong restrictions on

the spatial correlation parameter (φ, ρc, or ρs) to guarantee a non-singular joint
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probability distribution. For IsoX, if we parameterize the marginal covariance of X

as a valid spatial covariance, we are guaranteed that the ICG is still a valid spatial

model. IsoXY, on the other hand, should be parameterized using the available

valid spatial covariances for multivariate spatial data.

We assume a joint multivariate normal probability distribution (A1) in the

derivations for IsoX, IsoY and IsoXY. It is acknowledged that spatial modeling

increases in complexity for non-normal data (Schabenberger and Gotway, 2005,

p. 292). A useful extension would develop ICG models for spatially correlated

discrete data using a conditional Gaussian distribution or the discrete regression

distribution (Lauritzen and Wermuth, 1989; Johnson and Hoeting, 2003). But if

(A1) were modified to include a mixture distribution (i.e., discrete and continuous

variables) the restrictions on the spatial correlation parameter could be severe.

Another extension to the ICG models would relax (A2) assuming βs 6= βs+h,

while still having a diagonal coefficient matrix to maintain the properties of the

graph. These ICG would be related to the spatially varying coefficient models

described in Banerjee et al. (2004); Cressie (1993); Schabenberger and Gotway

(2005). However, there will be added complications when deriving a valid joint

distribution because the simple equality of Σxy = βΣxx would not hold, instead

β ≡ β̃(s) it is now a vector of coefficients that varies by location. Banerjee et al.

(2004, pp. 356-361) model β̃ as a realization from a Gaussian spatial process.

At this point, it seems that we could adopt a similar strategy to parameterize the

ICG model and it may be related to assuming a non-stationary multivariate spatial

process.

With more than two variables verifying that the joint covariance remains pos-

itive definite after parameterizing as a spatial model could be more complicated,

particularly with non-terminal, ch(E∗) 6= ∅, or non-ancestral, pa(E∗) = ∅, iso-

morphic nodes. However, with terminal isomorphic nodes, such as in IsoY, and
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ancestral isomorphic nodes, as in IsoX, the claims given here still hold for addi-

tional predictors because the joint covariance can be partitioned such that Theorem

7.4 in Schott (1997) still applies. Therefore, we can use IsoX or IsoY to model the

stream sulfate data and do so in Chapter 4.

To apply the AMP in Andersson et al. (2001), we assume that the joint co-

variance is positive definite and symmetric. This assumption implies that the

ancestral isomorphic node marginal distribution and the terminal isomorphic node

conditional distribution, f(E∗|pa(E∗)), must have a positive definite covariance.

Therefore, to parameterize these graphs as valid spatial models we use valid uni-

variate spatial covariances for these distributions. The IsoXY model, on the other

hand, is naturally parameterized as a multivariate spatial model such as the sepa-

rable or LMC model, which both maintain the restrictions of the graph. In Chapter

3 we discuss the connections between the IsoX, IsoY, and IsoXY and models for

multivariate spatial data.

2.7 Derivations

Note: We continue with the notation introduced in Table 2.3. Also, we use the

following convention in the derivations of the covariance matrices; namely, Σ∗
IsoY ,

Σ∗
IsoX , and Σ∗

IsoXY . A matrix with non-zero off-diagonal elements is denoted as Σ

with an appropriate sub-script as in Table 2.3, as opposed to aI where a is a scalar

and I is the identity matrix.
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2.7.1 Notation and Terminology

This notation and terminology is taken from Gitelman and Herlihy (2007) and

Andersson et al. (2001).

Definition 1: ancestral set. Consider the graph G = (V,E), and take

A ⊆ V. A node v ∈ V is an ancestor of a node a ∈ A if there is a directed path

from v to a in G. The ancestral set of A is

An(A)
def
= A ∪ {v ∈ V : v is an ancestor of a for some a ∈ A}.

That is, An(A) is that subset of V that contains A and all of its ancestors.

Definition 2: Skeleton of G. The skeleton of G denoted by G∨, where

G∨ ≡ (V,E∨) and

E∨ := {(v, w)|(v, w) ∈ E or (w, u) ∈ E}.

That is, the skeleton of G is the underlying UDG obtained by converting all arrows

into lines in G.

Definition 3: ∩∗ operator For a subset A of V1 ∪V2,

{a1j, a2j} ∈ A ∩∗ E∗
j

if {a1j, a2j} ∈ A and (a1j, a2j) ∈ E∗
j .

Definition 4: Undirected Graph of G, G∧. The undirected graph of

G, G∧, is obtained by deleting all arrows in G, which results in a graph of only

undirected edges (chain links)

E∧ := {(v, w)|(v, w) ∈ E ∧ (w, u) ∈ E}.
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Definition 5: Coherent Set. For two nodes v, w ∈ V, v is coherent to w

if there is an undirected path in G between v and w. The coherent set of a set

A ⊆ V is

Co(A)
def
= A ∪ {v ∈ V : v is coherent to a for some a ∈ A}.

Co(A) is that subset of V that contains A and all nodes coherent to A.

Definition 6: Extended Subgraph

For a CG G ≡ (V,E) with pairwise disjoint subsets A,B and C of V, the

extended subgraph is

G[A ∪B ∪C]
def
= GAn(A∪B∪C) ∪G∧

Co(An(A∪B∪C)),

where for G1 ≡ (V1,E1) and G2 ≡ (V2,E2), G1 ∪G2 ≡ (V1 ∪V2,E1 ∪ E2).

Definition 7: Augmented Graph

Figure 2.6 shows flags in (a), (b) and (c). These are ordered triples of nodes

with the given configurations. If G is an ADG, then the only kind of flag is that

in Figure 2.6 (a). Figure 2.6 (d) encodes four different configurations of bi-flags, in

that ? can be replaced by a directed edge in either direction, an undirected edge or

no edge. Moralizing flags and bi-flags is accomplished by adding undirected edges

where no edges exist (in the three- or four-node system). Figure 2.7 shows the

moralized versions of the flags and bi-flags of Figure 2.6.

For an ADG or CG G ≡ (V,E), the augmented graph, denoted Ga, is an UDG

constructed according to:

(i) identify all flags and bi-flags (see Fig. 2.6);

(ii) moralize all flags and bi-flags (see Fig.2.6);

(iii) replace all directed edges with undirected edges (see Fig.2.7).
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Figure 2.6: Flags (a), (b), (c) and a bi-flag (d).
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Figure 2.7: Augmented versions of the flags in Figures 2.6 a,b,c and the bi-flags in
Figure 2.6 (d).

Definition 8: connected set. A set A, where A ⊂ V , is connected if there

is an undirected path between all u, v ∈ A.

Definition 9: T. The set T is composed of the connected components in G∧.

Each vertex v ∈ V lies in a unique chain component τ i, where all the vertices in τ i

are connected by an undirected path. We add the super-script to distinguish the

unique chain components of G, so that V ≡ ⋃
τ i ≡ T .

Definition 10: adjacent. Two vertices v, w ∈ V are adjacent in G if (v, w) ∈
E or (w, v) ∈ E or both. For a chain component, τ , two vertices are adjacent if

there is an undirected edge between them.

Definition 11: d-separation. For an ADG G ≡ (V,E) and pairwise disjoint

subsets of V, A,B and C, if A and B are separated by C in G[A ∪B ∪C]a, then
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A and B are d-separated by C in G. If A and B are separated in G[A ∪B]a,

then A and B are d-separated in G. Pearl’s result then implies the conditional

(marginal) independencies.

Definition 12: AMP-Separation. Suppose A, B and C are pairwise disjoint

subsets of V in a CG, G ≡ (V,E). Then if C separates A and B in G[A ∪B ∪C]a,

this is called AMP-separation and A and B are conditionally independent given C,

denoted A |= B
∣∣C. In the special case that C = ∅, then A and B are marginally

independent if there are no paths connecting them in G[A ∪B]a.

Result 2* (Gitelman and Herlihy, 2007):

(a) For A1 ⊆ V1 and A2 ⊆ V2, if An(A1 ∪A2)∩∗ E∗
j = ∅ then A1 |= A2 in G.

(b) For A1 ⊆ V1 and A2 ⊆ V2 such that (A1∪A2)∩∗E∗
j = ∅ but An(A1 ∪A2)∩∗

E∗
j = {a1j, a2j}:

(i) A1\{a1k} |= A2\{a2k}
∣∣ {a1k, a2k}.

(ii) A1\{a1k} |= a2k

∣∣ a1k.

(iii) A2\{a2k} |= a1k

∣∣ a2k.

Alternative Markov Property (AMP) for multivariate normal distri-

butions (Andersson et al., 2001):

If V ∼ Nn(0, Σ∗
V ) where Σ∗

V is a n× n real positive definite symmetric matrix,

then the factorization

f(V ) =
∏

i

f(τ i|pa(τ i)D) τ i ∈ T, (2.15)

where T is the set of connected (chain) components of G∧, pa(τ i)D is the set

of parents of τ i in the directed graph for the chain components T , denoted GD,
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implies the conditional distributions are in the form of multivariate linear regression

models

τ i|pa(τ i)D ∼ Nτ i(βτ ipa(τ i)D, Λτ i), (2.16)

where Λτ i is the non-singular τ i × τ i conditional variance matrix of τ i given

pa(τ i)D and βτ i ≡ Στ i,pa(τ i)Σ
−1
pa(τ i)

is the τ i×pa(τ i)D matrix of regression coefficients

for τ i given pa(τ i)D.

If we assume multivariate normality and the AMP for a chain graph the fol-

lowing conditions can be used to interpret the graph structure into restrictions on

the regression coefficients, βτ , and covariance matrix, λτ .

Condition (C1):

u, v ∈ τ, u, v not adjacent in Gτ =⇒ (Λ−1
τ )uv = 0. (2.17)

where Gτ = {Vτ , Eτ}, Gτ ⊆ G∧, Vτ denotes the vertices in the chain component

τ , and by definition Eτ has only undirected edges.

Condition (C2):

u ∈ τ, v ∈ pa(τ)D\pa(u)G =⇒ (βτ )uv = 0 (2.18)

where u is an element of the chain component τ , pa(τ)D are the parents of τ in

GD, and pa(u)G are the set of parents of u in G. This condition translates the

conditional independence relationship Xs |= Ys+h

∣∣ Ys into the constraint on the

regression coefficients B.
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2.7.2 Derivations for Isomorphic Y ICG

Independence Relationships in row 2 of Table 2.2:

The following derives the independence relationships and subsequent factor-

ization of the joint pdf for IsoY, as summarized in Table 2.2 row 2. We rely on

Result 2* from Gitelman and Herlihy (2007) and AMP separation in the deriva-

tions. We provide the most detail for deriving the independence relationships for

IsoY because they are similar for IsoX and IsoXY and thus omitted in subsequent

sections.

Xs Xs+h

Ys+hYs

IsoY

??

1

Figure 2.8: G ≡ IsoY

We begin by assuming G =IsoY (Figure 2.8), to show the marginal indepen-

dence of X we use Result 2*. Setting up the notation to match that used in

Result 2*, let G1 = (V1,E1) where V1 = {Xs, Ys} and E1 = {(Xs, Ys)}; and let

G2 = (V2,E2), where V2 = {Xs+h, Ys+h} and E2 = {(Xs+h, Ys+h)}. The isomor-

phic node set is E∗ = {(Ys, Ys+h), (Ys+h, Ys)}.
For A1 = Xs and A2 = Xs+h,

An(Xs, Xs+h) ∩∗ E∗ = ∅,

result 2* (a) implies that

Xs |= Xs+h in G, (2.19)

or the marginal independence of Xs and Xs+h in IsoY.
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To establish the conditional dependence relationship in row 2 of Table 2.2 we

use AMP separation. For A = {Ys}, B = {Ys+h}, and C = {Xs, Xs+h} the

extended subgraph of [{Ys, Ys+h, Xs, Xs+h}] is just IsoY≡ G, as in panel (a) in

Figure 2.9. The augmented graph Ga is formed by moralizing the bi-flag, as in

panel (d) Figures 2.6 and 2.7, and is displayed in panel (b) in Figure 2.9.

Xs XsXs+h Xs+h

Ys+h Ys+hYs Ys

(G) (Ga)

(a) (b)

? ?

1

Figure 2.9: Graph and Augmented Graph of [Xs, Xs+h, Ys, Ys+h] in IsoY

Because there is an edge connecting Ys and Ys+h in Ga,

Ys 6 |= Ys+h

∣∣ (Xs, Xs+h); (2.20)

that is, Ys and Ys+h are not separated in IsoY by the conditioning set (Xs, Xs+h).

IsoY has a stronger condition compared to IsoX and IsoY because it has the

marginal independence relationships,

Ys |= Xs+h and Ys+h |= Xs. (2.21)

This is shown by applying AMP separation to A = Xs+h, B = Ys, and C = ∅. The

associated extended graph for {Xs+h, Ys} is panel (a) in Figure 2.10. Moralizing

the flag, as in panel (b) Figures 2.6 and 2.7, results in the augmented graph as in

panel (b) Figure 2.10. The flag does not create a connection between Xs+h and Ys;

therefore, they are separated in IsoY. We can do a similar exercise to show that

Ys+h is marginally independent of Xs.
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Xs XsXs+h Xs+h

Ys+h Ys+hYs Ys

G[Ys, Xs+h] G[Ys, Xs+h]
a

(a) (b)

? ?

1

Figure 2.10: Graph and Augmented Graph for [Ys, Ys+h] in IsoY

To establish the conditional independence relationships common to IsoY, IsoX,

and IsoXY we apply the AMP Separation criterion for A = {Xs+h}, B = {Ys},
and C = {Xs}. The extended subgraph is the same as in panel (a) Figure 2.10

because an(Xs) = ∅ and co(Xs) = ∅; there are no additional nodes or edges needed

to convert G[Ys, Xs+h] to be G[Ys, Xs+h, Xs]. Therefore, the augmented graph for

{Ys, Xs+h, Xs} is the same as for {Ys, Xs+h} in panel (b) Figure 2.10. Since there

is still no connection between Ys and Xs+h, they are conditionally independent as

follows:

Ys |= Xs+h

∣∣ Xs in G. (2.22)

A similar exercise shows Ys+h is independent of Xs conditioned on Xs+h in

IsoY; therefore,

Ys+h |= Xs

∣∣ Xs+h in G. (2.23)

The independence relationships (2.20), (2.21), (2.22), and (2.23) imply the joint

probability distribution of IsoY can be simplified as follows:
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f(X, Y) = f(Ys, Ys+h, Xs, Xs+h) (2.24)

= f(Ys+h

∣∣ Xs+h, Xs, Ys)f(Ys

∣∣ Xs, Xs+h)f(Xs|Xs+h)f(Xs+h) (2.25)

= f(Ys+h

∣∣ Xs+h, Ys)f(Ys

∣∣ Xs)f(Xs)f(Xs+h) (2.26)

= f(Ys, Ys+h

∣∣ Xs, Xs+h)f(Xs)f(Xs+h). (2.27)

Derivation of Σ∗
IsoY (2.6):

If we assume a non-singular multivariate normal distribution for V (A1), we

then can formulate the IsoY ICG as a statistical model by applying (C1) and (C2).

These results coincide with the independence relationships derived in the previous

section, as expected.

Xs Xs+h

τ
2

τ
3

τ
1

Ys Ys+h

G
∧

for IsoY

τ
2

τ
3

τ
1

GD for IsoY

U �

1

Figure 2.11: Undirected G∧ and Directed Graph GD of the Chain Components in
IsoY
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By (A1) the joint pdf, (Y,X) ∼ MV N(0, Σ∗), where

Σ∗ =




Σyy Σyx

Σyx Σxx


 . (2.28)

For G ≡ IsoY, there are three chain components, τ 2 = {Xs}, τ 3 = {Xs+h} and

τ 1 = {Ys, Ys+h} as shown on the left-hand side of Figure 2.11. The set pa(τ 1)D ≡
{τ2, τ3} is the same as the set {Xs, Xs+h} as shown on the righthand side of Figure

2.11. The conditional distribution for Ys, Ys+h|Xs, Xs+h, in IsoY, is written as

follows:

τ 1|pa(τ 1)D = (Ys, Ys+h)|(Xs, Xs+h) ∼ MV N2





B




Xs

Xs+h


 , Λτ1





(2.29)

where

B =




βss βs,s+h

βs+h,s βs+h,s+h


 .

Relating B to the notation used in Andersson et al. (2001):

B ≡ βτ1 ≡ Στ1,pa(τ1)D
Σ−1

pa(τ1)D
.

Using the notation in the text or as in (2.28), Στ1,pa(τ1)D
corresponds to the sub-

matrix Σyx and Σ−1
pa(τ1)D

corresponds to the sub-matrix Σ−1
xx ; this means that B =

ΣyxΣ
−1
xx .

Xs (Xs+h) is not a parent of Ys+h (Ys) in IsoY. Thus, (C2) implies that

βs,s+h = βs+h,s = 0,
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and so B is a diagonal coefficient matrix:




βss 0

0 βs+h,s+h


 ,

that is equal to ΣyxΣ
−1
xx . As mentioned in the text, this diagonal matrix with the

assumption of a common β (A2) implies Σyx = βΣxx in Σ∗
IsoY .

The form of Λ1
τ in (2.29) is dictated by (C1). For IsoY, Ys, Ys+h ∈ τ 1 are adja-

cent in Gτ1 , this implies (Λ−1)uv 6= 0 where Gτ1 is the graph for the chain compo-

nent alone. For IsoY, Λ−1
τ1 in (2.29) corresponds to Σ−1

Y |X = [Σyy − ΣyxΣ
−1
xx Σxy]

−1

using the notation in (2.28). Thus, Σyy, and consequently ΣY |X , because it is a

function of Σyy, have non-zero off-diagonals in Σ∗
IsoY .

The distribution for Xs and Xs+h is simpler because both are ancestral nodes,

pa(Xs) = pa(Xs+h) = ∅. Therefore, f(Xs|pa(Xs)) = f(Xs) ∀s, and f(Xs, Xs+h)

(by (A1) and common variance (A3)) is just the product of univariate Gaussian

distributions. In the joint covariance we can simplify Σxx to τ 2
xI in Σ∗

IsoY .

In conclusion, by (A1), (A2), (A3), (C1), and (C2) the joint covariance for IsoY

must take the form:

Σ∗
IsoY =




τ 2
xI βτ 2

xI

βτ 2
xI Σyy


 (2.30)

to satisfy the constraints implied by the graph structure. It is straightforward to

show that the joint likelihood for IsoY is (2.4) by using the factorization of the

likelihood (2.27) as applied to a multivariate Gaussian distribution with covariance

matrix, Σ∗
IsoY (2.6).
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Constraints on spatial correlation parameters presented in Section

2.3.1:

In this section we derive the constraints on the spatial correlation parameters

when the marginal covariance Σyy in IsoY is specified as a spatial covariance (expo-

nential, CAR, or SAR). The constraints for exponential-without-nugget and SAR

can be derived from the constraints to guarantee ΣCAR is positive definite; thus, we

begin with this derivation first. The determinant is denoted by | | in the following

derivations.

(Σyy = Σcar) CAR constraint (2.7):

For the two-site setting the distance matrix, D, is equal to the weighting matrix,

W; namely, 


0 1

1 0


 .

Let ωi denote an eigenvalue from the weighting matrix (W) and λi an eigenvalue

for the Σ−1
CAR = (I− ρcW) matrix.

From the definition of an eigenvalue (Schott, 1997, p 85),

|W − ωI| = 0 (2.31)

and

|(I− ρcW)− λI| = 0. (2.32)
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Using algebraic manipulations (2.32) equals

| − ρcW − (λ− 1)I| (2.33)

= |(−ρc)(W + λ−1
ρc

I)| (2.34)

= (−ρc)
n|W − 1−λ

ρc
I| (2.35)

= |W − 1−λ
ρc

I| = 0. (2.36)

Matching (2.31) to (2.36) shows that

ωi =
1− λi

ρc

∀i. (2.37)

If the eigenvalues are positive and nonzero (λi > 0 ∀i), then Σ−1
CAR is positive

definite. This is satisfied if

λi = 1− ωiρc > 0 ∀i. (2.38)

The common practice is to standardize the rows to 1 for the weighting matrix,

which means ωmax = 1 (Haining, 1990). In order for (λi > 0 ∀i), the parameter

space for ρc must be {ρc : ρc < 1} in the CAR model with a standardized W

matrix or {ρc : ωiρc < 1 ∀i}.
If we assume ΣCAR = Σyy, this in turn implies ΣY |X = ΣCAR − β2τ 2

xI in the

IsoY ICG. Our goal is to establish the constraints on ρc that imply ΣY |X is positive

definite.

Denote the eigenvalues of ΣCAR as λ∗i . By Theorem 3.4 (Schott, 1997, p. 89)

λ∗i = 1/λi. (2.39)
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The eigenvalues for σ2ΣCAR, using (2.38) and (2.39), are

σ2λ∗i =
σ2

1− ωiρc

.

Because ΣY |X = σ2ΣCAR−β2τ 2
xI, the eigenvalues of the conditional covariance will

be greater than zero if

σ2

1− ωiρc

> β2τ 2
x ,

by the properties of determinants. Then solving for ωiρc establishes condition

(2.7):

{ρc : ωiρc > 1− σ2/τ 2
xβ2 ∀i}.

For our W, ω1 = 1 and ω2 = −1; an important additional consideration is that we

must have

σ2

τ 2
xβ2

> 1; (2.40)

otherwise there are no values for ρc that would satisfy (2.7). These two conditions,

(2.7) and (2.40), guarantee that the conditional distribution is positive definite.

This completes the derivation for the constraint on ρc if the marginal parametriza-

tion of IsoY is the CAR covariance.

(Σyy = ΣSAR) SAR constraint (2.8):

For the two-site setting, (2.7) is easily extended to establish the condition for the

SAR model, (2.8). The SAR model is related to the CAR model by Σ2
CAR = ΣSAR

because for the two-site setting we have the following form for ΣCAR:

1

|1− ρ2
c |




1 ρc

ρc 1


 , (2.41)



70

and so Σ2
CAR is equal to

1

(1− ρ2
c)

2




1 + ρ2
c 2ρc

2ρc 1 + ρ2
c


 ; (2.42)

this is ΣSAR for the two-site setting.

This relationship implies that the eigenvalues of ΣSAR are just λ∗2i , where λ∗i are

the eigenvalues for ΣCAR by Theorem 3.4 (Schott, 1997, p. 89). Therefore, if we

assume Σyy = ΣSAR, the conditional covariance, ΣY |X , is equal to σ2ΣSAR−β2τ 2
xI.

Thus,

σ2

(1− ωiρs)2
− β2τ 2

x > 0

is required to guarantee the eigenvalues of the conditional covariance are all greater

than zero. Then by solving for ωiρs we establish (2.8):

{
ρs : ωiρs > 1−

(
σ2

τ 2
xβ2

)1/2

∀i
}

.

This completes the derivation to show that the constraints for a positive definite

conditional covariance for Σyy = ΣSAR are σ2 > β2τ 2
x and (2.8).

(Σyy = Σexp) Exponential-without-Nugget Constraint (2.9):

Extending to the exponential-without-nugget covariance is not as straightfor-

ward unless the distance matrix is equivalent to the weighting matrix for the CAR

model, which is true for the two-site setting. Denote the exponential-without-
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nugget covariance as

Σexp = σ2
y




1 exp(−φ)

exp(−φ) 1


 .

If ρc = exp(−φ) and σ2
y = σ2

1−ρ2
c
, then Σexp is equal to σ2ΣCAR, where ΣCAR as in

(2.41). The condition σ2 > β2τ 2
x is still required.

For the two-site situation, the eigenvalues for W are ω1 = 1 and ω2 = −1, so

the constraint

1− σ2

β2τ 2
x

< ρc <
σ2

β2τ 2
x

− 1 (2.43)

implies ΣY |X is positive definite when Σyy = ΣCAR.

The equivalence between Σexp and σ2ΣCAR implies (2.43), re-written in terms

of σ2
y and exp(−φ) is

1− σ2
y(1− exp2(−φ))

β2τ 2
x

< exp(−φ) <
σ2

y(1− exp2(−φ)

β2τ 2
x

− 1, (2.44)

where
σ2

y(1− exp2(−φ))

τ 2
xβ2

> 1.

But the exponential is strictly positive, exp(−φ) > 0, which implies we only have

the right-hand side of the inequality in (2.44),

exp(−φ) <
σ2

y(1− exp2(−φ))

τ 2
xβ2

− 1. (2.45)

Simplifying (2.45) results in

exp(−φ) < 1− τ 2
xβ2

σ2
y

,
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which implies the desired constraint on φ

φ > −log

(
1− τ 2

xβ2

σ2
y

)
. (2.9)

This constraint is fairly specific to the two-site setting, and as mentioned in

Section 2.3.1, it can be avoided altogether by assuming the marginal covariance

has a nugget term, Σyy = Σexp + τ 2
y I.

2.7.3 Derivations for Isomorphic X ICG

The following derivations are not as thorough as recounted for IsoY because they

use the same AMP separation criteria. For brevity, we do not show the associated

extended graphs and augmented graphs.

Independence Relationships in row 3 of Table 2.2:

This section establishes the independence relationships summarized in Table

2.2 row 3.

We can use result 2* to show the conditional independence relationship,

Ys |= Ys+h

∣∣ {Xs, Xs+h},

in IsoX. For G =IsoX (as in Figure 2.12), let G1 = (V1,E1) where V1 =

{Xs, Ys} and E1 = {(Xs, Ys)}, and let G2 = (V2,E2) where V2 = {Xs+h, Ys+h}
and E2 = {(Xs+h, Ys+h)}. The isomorphic node set in IsoX is denoted E∗ =

{(Xs, Xs+h), (Xs+h, Xs)}.
Using result 2* (b) for A1 = {Ys} and A2 = {Ys+h}, then

(A1

⋃
A2) ∩∗ E∗

X = ∅

and An(A1

⋃
A2) ∩∗ E∗

X = {Xs, Xs+h};
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therefore,

Ys |= Ys+h

∣∣ {Xs, Xs+h} in IsoX. (2.46)

The conditional independence

Ys |= Xs+h

∣∣ Xs (2.47)

and

Ys+h |= Xs

∣∣ Xs+h (2.48)

is established by using AMP separation. There are no flags in the associated

augmented graph; the only path from Ys to Xs+h passes through Xs. Therefore,

Xs separates Ys and Xs+h, and the conditional independence (2.47) holds in IsoX.

A similar argument can be made to establish (2.48) in IsoX.

To show Xs and Xs+h are not marginally independent,

Xs 6 |= Xs+h in IsoX, (2.49)

AMP separation is applied for A = {Xs}, B = {Xs+h}, and C = ∅.
Based on (2.46), (2.47), (2.48) and (2.49), the joint probability distribution for

IsoX simplifies to:

f(X,Y) = f(Ys|Xs)f(Ys+h|Xs+h)f(X). (2.50)

Derivation of Σ∗
IsoX (3.5):

To derive the form of the joint covariance for IsoX, Σ∗
IsoX , (C1) and (C2) are

used to translate the IsoX graph under (A1) into constraints on the regression

coefficient matrix, B, and the joint covariance, Σ∗.
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Xs Xs+h

Ys+hYs

IsoX

??

1

Figure 2.12: G ≡ IsoX

τ
1

τ 2τ 3

GD for IsoX

	 RXs Xs+h

τ 1

τ 2τ 3

Ys+hYs

G∧
for IsoX

1

Figure 2.13: Undirected Graph G∧ and Directed Graph GD of Chain Components
in IsoX
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By (A1) we can denote the joint distribution of {Ys, Ys+h, Xs, Xs+h} as:




Ys

Ys+h

Xs

Xs+h



∼ MV N

(
~0, Σ∗

)

where

Σ∗ =




σ11 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44




=




Σyy Σyx

Σyx Σxx


 .

In this notation, all the σij parameters are scalars; we have just enumerated the

sub-matrices Σxx, Σyx and Σyy; such that we can use (C1) and (C2).

The chain components of G ≡ IsoX are τ 1 = {Xs, Xs+h}, τ 2 = {Ys+h}, and

τ 3 = {Ys}, as displayed on the left-hand side of Figure 2.13. The righthand side

of Figure 2.13 displays the directed graph of the chain components, GD. The set

τ 1 is the parent set for both τ 3 and τ 2 (i.e., pa(τ 3)D = {Xs, Xs+h}). By (C1) and

(C2), the conditional distribution of the chain component, τ 3 ≡ {Ys}, given it’s

parents in the associated graph, (Xs, Xs+h), takes the form of a linear regression

model as follows:

(τ 3|pa(τ 3)D) = (Ys|Xs, Xs+h) ∼ N(β1X, V1)

where

β1X = [βss, 0]




Xs

Xs+h



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because Xs+h is not a parent of Ys in IsoX (Figure 2.12), and

V1 = σ11 − [σ13, σ14]




σ33 σ34

σ43 σ44




−1 


σ13

σ14


 ,

a scalar variance.

Similarly, by (C1) and (C2) the conditional distribution of the chain component,

τ 2 ≡ {Ys+h}, given it’s parents in the associated graph, (Xs, Xs+h), takes a form

of a linear regression model as follows:

(
τ 2|pa(τ 2)D

)
= (Ys+h|Xs, Xs+h) ∼ N(β2X, V2),

where

β2X =

[
0 βs+h,s+h

]



Xs

Xs+h




because Xs is not a parent of Ys+h in IsoX (Figure 2.12), and

V2 = σ22 −
[

σ23 σ24

]



σ33 σ34

σ43 σ44







σ23

σ24


 ,

again a scalar variance.

The chain component τ 1 = {Xs, Xs+h} is ancestral (pa(τ 1)D = ∅). Therefore

by (C1) and (C2), (Xs, Xs+h) ∼ MV N(0, Σxx) where Σxx =




σ33 σ34

σ43 σ44


 . This

covariance has all non-zero elements because Xs and Xs+h are adjacent in Gτ1 . In

conclusion, Σxx cannot be simplified to a diagonal matrix in Σ∗
IsoX .

The following relationships are based on (C2) applied to τ 2 and τ 3 in IsoX:

β1 = [βss, 0] = [σ13, σ14]Σ
−1
xx (2.51)
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and

β2 = [0, βs+h,s+h] = [σ23, σ24]Σ
−1
xx . (2.52)

Combining both equations shows that




βss 0

0 βs+h,s+h


 =




σ13 σ14

σ23 σ24


 Σ−1

xx = ΣyxΣ
−1
xx ,

and by (A2) this simplifies to βI.

Thus, (C2) and (A2) specify the relationship,

ΣyxΣ
−1
xx = βI,

which dictates the form of the cross-covariance as Σxy = βΣxx in Σ∗
IsoX .

The additional assumption of common variance (A3) implies V1 = V2 = τ 2
y|x, or

ΣY |X = τ 2
y|xI. By multivariate normality (A1)

Σyy = ΣY |X + ΣyxΣ
−1
xx Σyx;

thus in the covariance of IsoX, Σ∗
IsoX ,

Σyy = τ 2
y|xI + β2Σxx.

This completes the derivation of the joint covariance, (3.5), for the IsoX model

as the following:

Σ∗
IsoX =




Σxx βΣxx

βΣxx τ 2
y|xI + β2Σxx


 .
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It is straightforward to show the joint likelihood for IsoX is (2.11) using the fac-

torization as in (2.50) for a multivariate Gaussian distribution with joint covariance

matrix (3.5).

2.7.4 Derivations for Isomorphic X and Y ICG

Independence Relationships in row 4 of Table 2.2:

To establish the conditional dependence in IsoXY as summarized in row 4 of

Table 2.2, we use AMP separation.

For G ≡ IsoXY, Figure 2.14, the augmented graph for the set {Ys, Xs, Ys+h, Xs+h}
in G is displayed in Figure 2.15. The added diagonal undirected edges are a result

of moralizing the bi-flag, as in Figures 2.6 and 2.7 panel (d).

Xs Xs+h

Ys+hYs

IsoXY

??

1

Figure 2.14: G ≡ IsoXY

Xs Xs+h

Ys+hYs

(G[Ys,Xs,Ys+h,Xs+h]a)

1

Figure 2.15: Augmented Graph for {Xs, Xs+h, Ys, Ys+h} in IsoXY
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Ys and Ys+h are adjacent in G[Ys, Xs, Ys+h, Xs+h]
a; that is the conditional de-

pendence

Ys 6 |= Ys+h

∣∣ (Xs, Xs+h) (2.53)

holds in IsoXY.

Consider just the 3 vertices {Xs, Ys, Xs+h}, G[Ys ∪Xs+h ∪Xs]
a has a flag from

Figures 2.6 and 2.7 panel (b). But the flag does not create a connection between

Ys and Xs+h, so they are conditionally independent given Xs. A similar situation

occurs in G[Ys+h ∪ Xs+h ∪ Xs]
a. Thus, the following conditional independence

relationships still hold in IsoXY

Ys |= Xs+h

∣∣ Xs (2.54)

and

Ys+h |= Xs

∣∣ Xs+h (2.55)

as in IsoY and IsoX.

Also, because Xs and Xs+h are adjacent in IsoXY, using AMP separation, they

are marginally dependent,

Xs 6 |= Xs+h. (2.56)

These independence relationships (2.53), (2.54), (2.55), and (2.56) imply the

joint probability distribution cannot be further simplified for IsoXY:

f(Ys, Ys+h, Xs+h, Xs) = f(Ys+h|Xs+h, Xs, Ys)f(Ys|Xs)f(Xs, Xs+h)

or

= f(Ys+h, Ys|Xs+h, Xs)f(Xs, Xs+h). (2.57)
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Derivation of Σ∗
IsoXY (2.14):

Xs Xs+h

τ 1

τ 2

Ys Ys+h

G∧
for IsoXY

τ 1

τ
2

GD for IsoXY

?

1

Figure 2.16: Undirected Graph G∧ and Directed Graph GD of Chain Components
in IsoXY

Assume G ≡ IsoXY as in Figure 2.14, there are two chain components τ 1 =

{Xs, Xs+h} and τ 2 = {Ys, Ys+h} as shown on the left-hand side of Figure 2.16.

Further we assume the joint probability density function of (X,Y ) is multivariate

normal written as follows:




X

Y


 ∼ MV N(~0, Σ∗), with Σ∗ =




Σxx Σyx

Σyx Σyy


 .

By (C1) and (C2), the marginal distribution for the ancestral chain component

τ 1 is:

τ 1 =




Xs

Xs+h


 ∼ MV N(~0, Σxx),

where Σxx has off-diagonal elements that are non-zero because the two nodes are

adjacent in Gτ1 . Therefore, Σxx is not simplified in Σ∗
IsoXY .
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By (C1) and (C2) the conditional distribution of the terminal chain component

τ 2 is: 


Ys|Xs, Xs+h

Ys+h|Xs, Xs+h


 ∼ MV N


B




Xs

Xs+h


 , ΣY |X


 ,

where B =




βs,s 0

0 βs+h,s+h


 because by (C2) the only direct parents in G ≡IsoXY

are Xs and Xs+h for Ys and Ys+h, respectively; therefore, the off-diagonal elements

are zero. ΣY |X is 2 × 2 with non-zero off-diagonal elements because Ys and Ys+h

are adjacent in Gτ2 . Therefore, ΣY |X is not simplified in Σ∗
IsoXY .

The assumption that βs,s = βs+h,s+h (A2) implies the same form of the cross-

covariance Σyx = βΣxx, as that in IsoX and IsoY. By the properties of multivariate

normality ΣY |X = Σyy −ΣyxΣ
−1
xx Σyx; for IsoXY this is equivalent to ΣY |X = Σyy −

β2Σxx. This results in (2.14) or the form of the joint covariance for IsoXY (2.14):

Σ∗
IsoXY =




Σxx βΣxx

βΣxx ΣY |X + β2Σxx


 .

It is straightforward to show the joint likelihood for IsoXY is (2.13) by applying

the factorization (2.57) to a multivariate Gaussian distribution with covariance

matrix as in (2.14).
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Chapter 3 – Connections to Multivariate Spatial Models

Multivariate spatial models are commonly applied to monitoring stream network

data in which multiple environmental variables are measured at each location.

Co-kriging is then used for prediction at unobserved locations; this method is

an improvement over ordinary kriging because the correlation between (cross-

correlation) and within variables (auto-correlation) across space is modeled. The

difficulty for multivariate spatial modeling is deriving valid joint covariance func-

tions (i.e. ones that are positive definite) to account for the correlation between

variables. An additional complication for graphical spatial models is that the joint

covariance must maintain the independence relationships implied by the graph

structure.

Table 3.1: Joint Covariances for IsoY, IsoX, IsoXY, Separable, and LMC

IsoY Σ∗
IsoY =

[
τ 2
xI βτ 2

xI
βτ 2

xI σ2
y|xρ(φy|x, d) + β2τ 2

xI

]

IsoX Σ∗
IsoX =

[
σ2

xρ(φx, d) βσ2
xρ(φx, d)

βσ2
xρ(φx, d) τ 2

y|xI + β2σ2
xρ(φx, d)

]

IsoXY Σ∗
IsoXY =

[
σ2

xρ(φx, d) βσ2
xρ(φx, d)

βσ2
xρ(φx, d) σ2

y|xρ(φy|x, d) + β2σ2
xρ(φx, d)

]

Separable Σ∗
sep =

[
T11 T21

T21 T22

] ⊗
ρ(φ, d)

Separable-with-nugget Σ∗
sepwn =

[
T11 T21

T21 T22

] ⊗
ρ(φ, d) +

[
a11 0
0 a22

] ⊗
I

LMC Σ∗
lmc =

[
a2

11ρ(φ1, d) a11a21ρ(φ1, d)
a21a11ρ(φ1, d) a2

21ρ(φ1, d) + a2
22ρ(φ2, d)

]
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In Chapter 2, we summarized the independence/dependence relationships unique

to IsoY, IsoX, and IsoXY in Table 2.2. An important commonality for all three

models is

Ys |= Xs+h|Xs (3.1)

and

Ys+h |= Xs|Xs+h. (3.2)

In this chapter, we extend this conditional independence to n sites by simply

assuming the same directed graph for each site with an isomorphic connection

between all possible pairs of site graphs. IsoX, IsoY, and IsoXY only differ in that

we specify the isomorphic connection on X, Y, and both X and Y, respectively.

We can then re-write (3.1) and (3.2) as follows:

Ys |= Xs+h|Xs ∀ s, ∀h > 0. (3.3)

These conditional independencies are important because they determine the form

of the cross-covariance, namely Σxy = βΣxx. Thus, any parametrization of IsoY,

IsoX, or IsoXY must maintain this structure in addition to other constraints unique

to each graph.

The joint covariances investigated in this Chapter are summarized in Table

3.1. We have changed the notation of the joint covariance matrices for IsoX, IsoY,

and IsoXY slightly to build on the results from Chapter 2. We continue with

the spatial analysis convention of defining a ‘valid’ model as one with a positive

definite covariance matrix. Recall that IsoX requires a valid spatial covariance

for the marginal of X (denoted by ρ(φx, d) instead of Σxx), whereas IsoY requires

a valid spatial covariance for the conditional distribution of Y |X (denoted by

ρ(φy|x, d)) for a non-singular joint probability distribution. In general, ρ(φ, d) is

the univariate exponential correlation function with 1/φ the range parameter and
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d, distance. We assume a stationary multivariate process and accordingly, we

investigate the separable and LMC as possible parameterizations of IsoY, IsoX,

and IsoXY.

Graphical models offer visual representations of multivariate systems, and it

seems reasonable to use a standard multivariate spatial model, such as the sepa-

rable and LMC model, to parameterize them. In this Chapter, we determine the

correspondence between the covariance parameters of the ICG models and these

standard multivariate spatial models. Specifically, we examine necessary condi-

tions for aligning the covariance matrices in Table 3.1. In Section 3.1 we focus on

the separable model (comparing the first three rows with the fourth and fifth rows

of Table 3.1) and in Section 3.2 we consider the LMC (comparing the first three

rows with the last row). In Section 3.3, we consider spatial lag models and their

relationship to IsoY, IsoX, and IsoXY.

We show that IsoXY can be parameterized using the separable or LMC without

violating dependence relationships in the graph. IsoX, on the other hand, is related

to the separable model under certain assumptions. The complication for IsoY is

that multivariate spatial models assume spatially correlated predictors, and the

graph for IsoY (Figure 2.3) implies the predictors are independent across locations.

Thus, the IsoY model is more similar to a non-graphical univariate geostatistical

model as we pointed out in Section 2.3. In Section 3.3, we discover that IsoX

and IsoY are not related to spatial lag models because the directed edges exist

only between variables within a site. These connections clarify the interpretation

of spatial correlation in the ICG models and at the same time provide a visual

representation for multivariate spatial models.

In ICG models, isomorphic nodes across sites imply a non-zero off-diagonal in

the inverse conditional covariance matrix (denoted as λ−1
τ in Section 1.2); a further

reason for our change in notation for this chapter. For illustration, let’s consider
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IsoX in which the isomorphic nodes are ancestral (pa(X) = ∅) meaning that λ−1
τ

equals Σ−1
xx , using the notation from Chapters 1 and 2. The IsoX graph, extended

to n sites, has undirected edges between all the X’s ({(Xs, Xs′), (Xs′ , Xs) ∀s, s′} ⊂
E). The AMP for this graph structure with the assumption of multivariate nor-

mality implies that the off-diagonal elements in Σ−1
xx are non-zero. When we pa-

rameterize IsoX as a spatial model, we model the spatial dependence between sites

in the error structure or covariance matrix, Σxx (which is the reason Table 3.1 de-

notes Σxx as σ2
xρ(φx, d)). This notion along with the lack of a relationship between

ICG and spatial lag models, as we point out in Section 3.3, clarifies that ICG are

more similar to spatial error models.

An interesting feature of all three graphs is the conditional independence rela-

tionship (3.3). This is a result of only specifying a directed edge between X and

Y within a site—there are no directed edges between sites. Because of this, the

directed relationship between X and Y is modeled in the cross-correlation, or in

other words, in the conditional mean. But the conditional mean takes on a very

specific form for these graphs, that of a diagonal matrix, βI. It is this relationship,

a direct result of (3.3), which is violated if we assume a spatial lag model or LMC

with multiple measurement errors.

Royle and Berliner (1999) and Schmidt and Gelfand (2003) use the LMC for

modeling environmental monitoring network data with a known directional rela-

tionship. However, we take this one step further and point out the equivalence

of the LMC to an ICG model, which then provides a visual representation of the

complicated multivariate distribution. We also provide a practical strategy for

deciding between one-isomorphic versus two-isomorphic node models based on the

relationship between IsoX, IsoY, and IsoXY and the LMC.
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3.1 Separable Model

Xs Xs+h

Ys Ys+h

corrXY ICG

? ?

Xs Xs+h

Ys Ys+h

Separable Model

Z

I �

M �

1

Figure 3.1: IsoXY ICG and latent parent Separable Model

In Figure 3.1, undirected edges in the IsoXY graph on the left are alternatively

represented as a common latent parent, Z, in the graphical representation of the

separable model on the right. The idea is that Z represents an underlying spatial

factor common to both X and Y. Because the spatial factor is common to both,

there is no longer a directed edge from X to Y in the representation on the right.

This is the separable model discussed earlier (see Section 1.4.1). In ecological ap-

plications, the separable model has what may be a fairly restrictive assumption of a

common range parameter for both variables X and Y. By contrast, the ICG on the

left implies that the association between X and Y is due to the causal relationship

(directed edge) between nodes. Under the separable model, the association atten-

uates as the distance between nodes increases—the marginal dependence between

Xs and Ys+h is less than the dependence between Xs and Ys, for h > 0. However,

upon conditioning on X at location s, there is no longer a dependence between X

and Y (conditionally independent). That is, information provided by neighboring

locations is not necessary in modeling the association between the response and

predictor. Recall that the AMP and (A1) imply Ys |= Xs+h|Xs ∀s, h > 0 for all

ICG models.
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In the next subsections we discuss the similarities and differences between the

separable model and IsoY, IsoX, and IsoXY. In Section 3.1.1, we show the indepen-

dence relationships implied by the IsoY graph are violated in the separable model.

However, under relatively strong assumptions, IsoX is equivalent to the separable

model (Section 3.1.2). IsoXY can be parameterized as the separable model (sub-

section 3.1.3), which in turn informs our interpretation of spatial correlation in

this model.

3.1.1 IsoY

IsoY is closely related to a spatial regression model in the respect that both models

assume the residuals are correlated. The main difference between the models is

that IsoY assumes the predictors are also stochastic. The separable model assumes

spatially correlated predictors, but the IsoY graph implies that the X’s are inde-

pendent (Xs |= Xs+h). This independence relationship in turn implies that the

marginal covariance for X is diagonal (τ 2
xI); that is, X has a non-spatial marginal

distribution. Next, we shall demonstrate that there are no logical restrictions to

modify Σ∗
sep or Σ∗

sepwn to maintain the independence relationships inherent in the

IsoY graph.

If we assume the separable-without-nugget covariance with ρ(φ, d) = exp(−φD)

(fourth row Table 3.1), then to coerce Σ∗
sep to match Σ∗

IsoY , the range parameter

must be zero (φ −→∞) thereby satisfying the diagonal matrix condition. Due to

the assumption of a common underlying spatial process for both X and Y, this

implies the residuals also have an effective range of zero; namely, an independent

model. But, an independent model violates the conditional dependence implied by

the IsoY graph Ys 6 |= Ys+h

∣∣ (Xs, Xs+h); so we conclude that we can’t equilibrate

Σ∗
sep to match Σ∗

IsoY .
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Alternatively, let’s explore parameterizing the IsoY model as separable-with-

nugget covariance (row 5 Table 3.1). The essence of the problem is that we need the

partial sill for X to be zero, implying that the variation in X is purely measurement

error. We begin by re-writing Σ∗
IsoY to match the structure of Σ∗

sepwn in Table 3.1

as follows:

Σ∗
IsoY =




0 0

0 σ2
y|x




⊗
ρ(φy|x, d) +




τ 2
x βτ 2

x

βτ 2
x β2τ 2

x




⊗
I. (3.4)

Comparing (3.4) to Σ∗
sepwn, we notice the partial sill for X, T11, is in fact

zero, but we have violated one of the assumptions of the separable-with-nugget

as formulated in Banerjee and Gelfand (2002). That is, the assumption that the

component variables have independent measurement errors or white noise. Upon

inspection of (3.4), the white noise components are no longer independent because

the off-diagonal elements, βτ 2
x are non-zero, due to the association between X and

Y. Therefore, IsoY is not equivalent to the separable-with-nugget model because it

violates the independence assumption of the separable model (1.4.1). We conclude

that the separable covariance function, either with or without nugget, cannot be

adjusted in a reasonable manner to parameterize the probability distribution of

the IsoY graph.

3.1.2 IsoX

For point referenced data in a spatial regression model the error process has a

covariance matrix that is a function of distance. IsoX is unique in that we assume

the X’s follow a spatial process, a new approach for modeling spatial correlation.

Assuming the marginal covariance of X is exponential-without-nugget, updating

Σ∗
IsoX in Table 3.1 results in:
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Σ∗
IsoX =




σ2
xexp(−φxD) βσ2

xexp(−φxD)

βσ2
xexp(−φxD) τ 2

y|xI + β2σ2
xexp(−φxD)


 . (3.5)

This parametrization of IsoX looks very similar to the separable-with-nugget co-

variance (Σ∗
sepwn row 5 Table 3.1). Indeed, adding a nugget to Y in the separable

model (3.6) yields the IsoX model, this observation leads to the following result.

Result 1: The IsoX model, with assumptions (A1), (A2), (A3), and param-

eterized as exponential-without-nugget is equivalent to the separable-with-nugget

model if and only if T22 = T 2
21/T11 and a11 = 0 in Σ∗

sepwn.

Derivation:

The separable-with-nugget model has the following joint covariance:

Σ∗
sepwn =







T11 T21

T21 T22




⊗
exp(−φ ∗D) +




a11 0

0 a22




⊗
I


 (3.6)

where
⊗

is the Kronecker product, D is a matrix of pairwise distances, and I

is the identity matrix.

To make the equivalence fairly obvious, we can re-write (3.5) which is IsoX with

assumptions (A1), (A2), (A3) and parameterized as exponential-with-nugget, as

follows:

Σ∗
IsoX =







σ2
x βσ2

x

βσ2
x β2σ2

x




⊗
exp(−φ ∗D) +




0 0

0 τ 2
y|x




⊗
I


 . (3.7)

Matching the elements of the covariance matrices (3.7) and (3.6), gives the

following relationships:

a11 = 0,

τ 2
y|x = a22,
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σ2
x = T11,

βσ2
x = T21 ⇒ β =

T21

T11

,

and so

β2σ2
x =

T 2
21

T 2
11

T11 =
T 2

21

T11

= T22.

Therefore, apart from simple notational changes, for Σ∗
sepwn ≡ Σ∗

IsoX we require

that T22 = T 2
21/T11 and a11 = 0 in Σ∗

sepwn. Although T with the condition T22 =

T 2
21/T11 is singular, Σ∗

IsoX is still non-singular because of the added nugget term

on Y . This completes the derivation.

One might wonder whether in practice we could distinguish the separable-with-

nugget from the IsoX model. The main distinction between IsoX and separable-

with-nugget model is the assumption of non-correlated versus correlated residuals.

To fit a separable model we could use a conditional specification, where

Y|X ∼ MV N(Xβ, τ 2
y|xI + σ2

y|xexp(−φD))

and

X ∼ MV N(0, σ2
xexp(−φD)),

where D is a pairwise distance matrix. But under the conditional specification,

Σ∗
sepwn with the condition T22 = T 2

21/T11 (i.e., as IsoX) implies that the partial sill

in the conditional distribution for Y|X (or the residuals) must be zero because

σ2
y|x = T22 − T 2

21/T11 = 0.

That is, the conditional distribution is non-spatial; it must have a diagonal covari-

ance.
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A test of T 2
21/T11 = T22 is equivalent to testing if the partial sill for Y (σ2

y|x)

is equal to zero. In the Bayesian framework, the support for the gamma prior on

σ2
y|x, typically used for spatial covariance parameters, is always greater than zero.

Therefore, we could plot the posterior distribution of the partial sill to see if most

of the posterior density is located close to zero as in Gelman et al. (2000, p. 145).

An alternative test checks for ϕ = 1, where ϕ = T21/(T22T11)
1/2. If we have

T22 = T 2
21/T11 =⇒ 1 = T 2

21/T22T11,

taking the square root implies

T21/(T22T11)
1/2 = ±1,

and so

ϕ = ±1.

An estimate of ϕ in the separable-with-nugget is

ϕ̃ =
˜β(σ2

x)
1/2

(σ2
y|x + β2σ2

x)
1/2

.

Remark:

The parameter, ϕ, is not like a correlation parameter because of the additional

nugget term. The linear correlation coefficient, Corr(X,Y), as commonly denoted

by ρ, in the separable-with-nugget model is

Corr(X,Y) = Cov(X,Y)/(Var(X)Var(Y))1/2

=
T21

(T11(T22 + a22))1/2
exp(−φD).
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This is not equal to ϕ because of the nugget term, a22. Interestingly, the correlation

at the same site, Corr(Xs, Ys), is equal to T21

T11(T22+a22)1/2 , but the correlation between

sites, for instance Xs and Ys+h, attenuates based on the distance, h, between them.

It makes more intuitive sense to check the posterior density of the partial sill, σ2
y|x,

instead of using a formal test for ϕ.

Result 1 shows that under certain conditions the IsoX ICG is equivalent to the

separable-with-nugget model. However, if σ2
y|x 6= 0, then the partial sill in the con-

ditional distribution is non-zero; that is, the residuals follow a spatial distribution.

If (σ2
y|x) 6= 0, or equivalently T22 6= T 2

21/T11, the separable model (3.6), has the

following for the conditional distribution of Y|X,

f(Y|X) ∼ MV N [T12/T11X, (T22 − T 2
12/T11)exp(−φD)];

therefore, Ys 6 |= Ys+h

∣∣ (Xs, Xs+h) because Cov(Ys, Ys+h|Xs, Xs+h) 6= 0; the off-

diagonal elements are non-zero. This conditional independence does hold for the

IsoXY graph, and in the next section we show that IsoXY can be parameterized

as the separable model.

3.1.3 IsoXY

It is straightforward to show Σ∗
IsoXY ≡ Σ∗

sep by matching up the elements of the

covariance matrices. If we assume ρ(φx, d) = ρ(φy|x, d) = exp(−φD) in Σ∗
IsoXY , we

can re-write the third line in Table 3.1 as follows:

Σ∗
IsoXY =







σ2
x βσ2

x

βσ2
x β2σ2

x + σ2
y|x




⊗
exp(−φD)


 . (3.8)
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When we compare (3.8) to the fourth row of Table 3.1, we have the following

relationships:

σ2
x = T11,

βσ2
x = T21 ⇒ β = T21/T11,

and

β2σ2
x + σ2

y|x = T22 ⇒ σ2
y|x = T22 − T 2

21/T11.

The constraint βΣxx = Σxy, that is a result of the AMP, (A1), and (A2), is

satisfied in the separable covariance because

βΣxx = T21/T11T11exp(−φD) = T21exp(−φD) = Σxy (3.9)

in Σsep. This is a result of matching the covariance elements of Σ∗
sep and Σ∗

IsoXY .

Therefore, the constraint Σxy = βΣxx is satisfied in Σ∗
sep.

Parameterizing IsoXY as separable implies

Cov(Xs, Ys) = β ∀s

and

Cov(Xs, Ys+h) = βexp(−φh),

where h is the Euclidean distance between locations s and s + h. In terms of our

stream sulfate example, this means the association between wet deposition and

stream sulfate concentration at locations h distance apart is less than the associa-

tion at the same site. This seems reasonable; however, an important consideration

is the appropriateness of assuming a common effective range for both variables.

This assumption seems unlikely for the stream sulfate data because of our bio-

logical knowledge of the system. The correlation in wet deposition is likely to be
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driven by regional processes, since sulfate is transported via wind and rain, but

the residual correlation is probably due to more local watershed characteristics

(Herlihy, personal communication).

3.2 Linear Model of Coregionalization

A more flexible multivariate spatial model is the LMC that assumes a distinct

effective range for each variable. For the LMC model we assume the following

joint distribution of (X,Y ):




X

Y


 ∼ MV N








0

0


 ,




a2
11ρ(φ1) a11a21ρ(φ1)

a21a11ρ(φ1) a2
21ρ(φ1) + a2

22ρ(φ2)








, (3.10)

where ρ(·) is exponential-without-nugget. Comparing (3.10) to the parametrization

introduced in Chapter 1 and 2 for the exponential-without-nugget, a2
11 ≡ σ2

x, the

partial sill for X, and a2
22 ≡ σ2

y|x, the partial sill for the residual process. This joint

distribution is a linear combination of independent univariate spatial processes,

allowing for X and Y to have different spatial processes. For example, equation

(3.10) assumes the effective range for X is approximately 3/φ1 and for Y|X (or

the residuals) it is approximately 3/φ2.

A graphical representation of the LMC is shown on the right-hand side of Figure

3.2, in which the spatial parents for Y are the latent variables, Z1 and Z2, and

the spatial parent of X is Z2 only. The LMC graph doesn’t include a directed

edge between X and Y because the common parent, Z2, accounts for this directed

relationship between X and Y. We believe that IsoXY, on the left-hand side of

Figure 3.2, is a better visual representation of the stream sulfate data because of



95

Xs Xs+h

Ys Ys+h

? ?

corrXY ICG

Xs Xs+h

Ys Ys+h

Z1

I �

Z2

	 R


 N

LMC

1

Figure 3.2: IsoXY ICG and latent parent LMC

the known directed relationship between wet deposition and stream sulfate. The

LMC diagram doesn’t represent this relationship as clearly.

Several authors explore using the LMC for a hierarchical Bayesian multivari-

ate spatial model (Schmidt and Gelfand, 2003; Royle and Berliner, 1999; Gelfand

et al., 2004). In Section 3.2.3, we supply another extension by using the LMC to

parameterize ICG with two isomorphic nodes, and thereby provide an additional

visual representation of the multivariate system. However, in Section 3.2.1 and

3.2.2, we indicate that the LMC is not appropriate for parameterizing ICG with

only one isomorphic node (IsoX and IsoY) because the conditional and marginal

independencies of the graph are violated. Although IsoX and IsoY cannot be pa-

rameterized using LMC, we use the connection between IsoXY and LMC to suggest

some practical diagnostic checks for deciding between a simpler one-isomorphic

(IsoX or IsoY) or a two-isomorphic node model (IsoXY) for a given dataset. For

easy reference we provide this list at the end of Section 3.2.2.
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3.2.1 IsoY

IsoY and IsoX cannot be parameterized as the LMC because of the conditional

and marginal independence assumptions of the graphs (Table 2.2). For example, in

IsoY, Xs |= Xs+h, and thus the marginal covariance for X is assumed to be a diago-

nal matrix. This independence is violated in the LMC in which Cov(Xs, Xs+h) 6= 0;

the off-diagonals are a function of distance. However, the correspondence of the

covariance parameters suggests diagnostics, in addition to the empirical correlo-

grams, to determine if the IsoY or IsoX model better represents a given multivariate

dataset.

To clarify this relationship for IsoY, assume the true structure for a particular

dataset is IsoY, but we fit IsoXY parameterized as the LMC. A posterior density

for the range parameter of X that is concentrated around zero would suggest

that IsoY is more appropriate (the range parameter for X corresponds to 1/φ1 in

Σ∗
lmc). Essentially, when we compare row 6 to row 1 in Table 3.1 with ρ(φi, d) =

exp(−φiD), we notice Σ∗
lmc ≡ Σ∗

IsoY under the following constraints:

φ1 −→∞,

φ2 = φy|x,

a2
11 = τ 2

x , (3.11)

a21/a11 = β, (3.12)

(3.11) and (3.12) imply

a2
21 = β2τ 2

x ,

and

a2
22 = σ2

y|x.
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That is, if we fit IsoXY parameterized as LMC and the true model for the data is

IsoY then the main difference is

φ1 −→∞,

and so the posterior density of the predictor’s range parameter should be con-

centrated around zero. Additionally, the empirical correlogram for the predictor

should provide supportive evidence of no correlation with a relatively flat line;

thereby corroborating that the estimated range parameter of the predictor, 1/φ̂1,

should be close to zero—no evidence of spatially correlated predictors.

3.2.2 IsoX

A similar situation occurs when we examine Σ∗
IsoX (row 2 in Table 3.1) compared

to Σ∗
lmc (row 6 in Table 3.1), except now the estimated range parameter of the

residuals should be close to zero. The IsoX model assumes the conditional co-

variance ΣY |X is a diagonal matrix because Ys |= Ys+h

∣∣ (Xs, Xs+h), but the LMC

specifies this as a non-diagonal matrix unless 1/φ2 −→ 0, which corresponds to

the range parameter of the residuals. Therefore, evaluating the posterior interval

of the range parameter of the residuals, 1/φ2, in the IsoXY parameterized as LMC

could provide information about the relative fit of these models.

To demonstrate the relationship, we compare covariance parameters of row 6

to row 2 in Table 3.1, if

φ2 −→∞,

φ1 = φx,

a2
11 = σ2

x,
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a21/a11 = β,

and

a2
22 = τ 2

y|x

then Σ∗
lmc ≡ Σ∗

IsoX .

So we can examine the empirical correlogram for the residuals and the pos-

terior density of 1/φ2 in IsoXY parameterized as LMC to help distinguish if the

simpler IsoY model may be sufficient for a given multivariate dataset. This can

be combined with the steps suggested in Section 3.2.1 to evaluate whether IsoX or

IsoY is a better fit compared to LMC for the data.

The following steps could be followed by a practitioner to distinguish between

IsoX or IsoY and IsoXY parameterized as LMC:

1. Fit an independent model and calculate the residuals in Winbugs (code pro-

vided in Section 4.7)

2. Investigate the empirical correlograms for residuals and predictors

3. Fit IsoXY parameterized as LMC in Winbugs (code provided in Section 4.7)

4. Investigate the posterior densities for the range parameters 1/φx and 1/φy|x

5. The evidence in Step 2 and 4 should indicate whether IsoX or IsoY is pre-

ferred.

If there is evidence of spatial correlation in only the predictor (residuals) and

the posterior density of the range parameter for the residuals (predictor) is concen-

trated around zero, then IsoX (IsoY) is preferred. We shall demonstrate in Chapter

4 that a deviance criteria can also assist in selecting the appropriate model if the

correct model is in fact IsoXY.
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The LMC is not appropriate to parameterize IsoY or IsoX because of the inde-

pendence relationships unique to each graph. However, we can use the connections

between IsoX, IsoY, and LMC to assess if a simpler model (one-isomorphic node)

is preferred over a two-isomorphic node model (IsoXY) for a given dataset. This

observation is based on the equivalence between the IsoXY and LMC as shown in

the next section.

3.2.3 IsoXY

If we compare IsoXY to the LMC (row 3 to row 6 in Table 3.1), it is fairly straight-

forward to notice there is an equivalence between the covariance parameters;

thereby suggesting IsoXY can be parameterized as the LMC. This parametrization

would be preferred over the separable version, if it is appropriate for each compo-

nent to have a different range parameter, a likely situation for the stream sulfate

data.

Equilibrating the covariance parameters of IsoXY (row 3 Table 3.1) to LMC

(last row Table 3.1), results in the following equivalences

σ2
x = a2

11,

β = a21/a11,

σ2
y|x = a2

22,

φy|x = φ2,

and

φx = φ1.
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As with the separable parametrization, using the LMC cross-covariance to pa-

rameterize IsoXY maintains the restriction on the cross-covariance which results

from the AMP, (A1), and (A2); that is,

βΣxx =
a21

a11

a2
11ρ(φ1) = a21a11ρ(φ1) = Σxy.

And so, it is appropriate to use LMC or separable to parameterize IsoXY because

both maintain the restrictions on the cross-covariance implied by the graph struc-

ture, and there is a one-to-one correspondence between covariance parameters.

The choice as to which is more appropriate for a given dataset can be based on

subject matter knowledge and the empirical correlograms; this choice is the same

as that faced by non-graphical modelers.

Importantly, using a graphical spatial model provides an additional visual rep-

resentation of the multivariate system. Also, parameterizing the IsoXY as LMC

clarifies the interpretation of spatial correlation in a two-isomorphic node ICG. In

this parametrization, φ1 corresponds to the spatial correlation parameter for X

and φ2 corresponds to the spatial correlation parameter for the spatial error pro-

cess (residuals). The spatial correlation parameter for Y is a linear combination

of both φ1 and φ2.

The previous parameterizations, using Σ∗
lmc or Σ∗

sep for Σ∗
IsoXY from Table 3.1,

assume both X and Y are purely spatial, neither have measurement error. Inter-

estingly, if independent measurement errors are added to both X and Y in Σ∗
IsoXY ,

the resulting joint p.d.f violates the conditional independence

Ys |= Xs+h

∣∣ Xs ∀ s, h > 0, (3.13)

implied by the graph. The AMP for multivariate normal distributions specifies that

the conditional independence (3.13) of the graph implies a diagonal restriction
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on the coefficient matrix. This restriction is violated if the joint p.d.f includes

measurement error for both X and Y; this is the substance of our next result.

Result 2: A joint p.d.f that includes independent measurement error compo-

nents for a predictor and a response is not equivalent to the probability density of

the IsoXY graph.

To establish this result, assume a joint p.d.f with measurement error on both

X and Y altering Σ∗
IsoXY (row 3 Table 3.1) to be:




X

Y


 ∼ MV N








0

0


 ,




ρ(φx, d) βρ(φx, d)

βρ(φx, d) β2ρ(φx, d) + ρ(φy|x, d)


 +




τ 2
x 0

0 τ 2
y




⊗
I





.

(3.14)

This implies

E[Y|X] = βρ(φx, d)[ρ(φx, d) + τ 2
xI]

−1

from the properties of multivariate normality. But notice that then the conditional

expectation is not a diagonal matrix,

E[Y|X] 6= βI.

This is the crux of the result because (3.13) implies that the coefficient matrix,

B, as in Chapter 2, must be a diagonal matrix. Therefore, this joint p.d.f is

not equivalent to the one generating the graph for IsoXY. This completes the

derivation.

This result holds for either the separable or LMC parameterization of IsoXY.

If φx = φy, (3.14) is separable, whereas if φx 6= φy, (3.14) is the LMC with

measurement error on both X and Y. The key point is neither parametrization

of (3.14) is appropriate for IsoXY because (3.13) is violated if we assume the joint

p.d.f (3.14).
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Relating the LMC and separable model to graphical models, which provide vi-

sual representations of a multivariate system, informs our interpretation of spatial

correlation in ICG as spatial error models or disturbance models. However, di-

rected edges in a chain graph imply a directional relationship between variables—

which is not explicit in the LMC or separable model: the separable and LMC

graphs in Figures 2.5 and 2.6 do not have directed edges between X and Y. Thus,

the notion of ‘causality’ needs to be determined by subject matter—the directed

edge between X and Y cannot be determined solely from the IsoXY covariance

structure. This is a familiar complication with discovering the chain graph for

a given data set (Shipley, 2000, p. 264). Royle and Berliner (1999) claim that if

there is a known directional relationship then the conditional approach is appropri-

ate. For example, with the stream sulfate data we know wet deposition influences

stream sulfate concentration, and so conditioning on wet deposition and modeling

the cross-covariance by the regression coefficient seems reasonable.

3.3 Spatial Lag Models

A spatial lag model is an extension of the AR(1) model in time series (Anselin,

2002), in which we specify the conditional mean of Ys|Xs as a function of all

the predictors within a neighborhood of location s. ICG models considered in

this thesis are not equivalent to a spatial lag model because the neighborhood

condition violates the conditional independencies common to all three (IsoY, IsoX,

and IsoXY); namely,

Ys |= Xs+h

∣∣ Xs ∀ s, h > 0.

Interpreting the IsoX, IsoY and IsoXY graphs as in Andersson et al. (2001) suggests

each response’s conditional mean (E(Ys|Xs)) is only a function of its parent node

in the directed graph—not of a neighborhood of nodes. A graph with directed
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edges connecting Xs to Ys+h, as in Figure 3.3 may be more similar to a spatial lag

model.

Xs Xs+h

Ys+hYs

??	R

1

Figure 3.3: Graph with only directed edges

Xs Xs+h

Ys+hYs

IsoY

??

1

Figure 3.4: ICG model for spatially correlated response

Although the following discussion generalizes to n sites, we return to the IsoY

ICG originally introduced in Chapter 2 with the graph as in Figure 3.4 for two

sites. If we assume a spatial lag model for the conditional distribution of Y|X in

IsoY, we have




Ys|Xs, Xs+h

Ys+h|Xs, Xs+h


 ∼ MV N{(I− ρW )−1




Xs

Xs+h


 β, σ2[(I− ρW )′(I− ρW )]−1}.

(3.15)

In (3.15), the conditional mean has the form

(I− ρW )−1




Xs

Xs+h


 β,

where β is a scalar because there is only one regressor. After simplification, we
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have

1

1− ρ2




β βρ

βρ β







Xs

Xs+h


 . (3.16)

The complication is that, from Andersson et al. (2001),

βX =




βss 0

0 βs+h,s+h







Xs

Xs+h


 (3.17)

for IsoY with only two-sites. So in comparing 3.17 to 3.16, we notice the off-

diagonal elements in the coefficients matrix are non-zero in (3.16); thus, the spatial

lag model is not equivalent to the IsoY ICG. A similar example can be shown for

IsoX and a spatially lagged independent model.

These comparisons help to further clarify the interpretation of the spatial cor-

relation in the IsoY and IsoX models, in terms of a spatial error model and not

a spatial autoregression or spatially lagged model as defined in Anselin (2001);

Congdon (2003). This is reassuring given that in ICG models an isomorphic node

implies a non-zero off-diagonal element in the conditional covariance using Ander-

sson et al. (2001).

The key conditional independence assumption, which is violated in a spatial lag

model, would not hold if there were additional directed edges as in Figure 3.3 for all

the graphs (IsoX, IsoY, and IsoXY) introduced in Chapter 2. Such a graph could

possibly be parameterized as an LMC with additional white noise components or a

spatial lag model. But then, the complication is that the interpretation of spatial

correlation in such a graphical model seems unclear.
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3.4 Discussion

The previous sections provide insight into the connections between IsoY, IsoX, and

IsoXY and commonly used spatial models for multivariate data. We feel ICG mod-

els have an intuitive edge over the standard multivariate spatial models because

the different ICG have unique graphs that aid in interpretation and explanation

of the various spatial components. We believe that it is much easier to explain a

graphical representation of a multivariate system than a co-kriging model. Further

establishing that ICG are not spatial lag models, but more similar to spatial error

models helps inform our interpretation of spatial correlation in these models.

IsoY is very similar to the standard spatial regression models—the main differ-

ence being that the ICG specifies X to be stochastic. IsoX, on the other hand, is a

new way to model spatially correlated data by specifying the spatial correlation in

the covariate instead of the residuals. In terms of parameterizing IsoX, the spatial

covariances typically used for a residual process are suitable for this ICG as well.

Finally, the IsoXY ICG can be parameterized as the separable model or the linear

model of coregionalization, the difference being an assumption of a common or

different underlying spatial processes. The choice of which is more appropriate

(LMC or separable) for a particular ecological problem would be the same as that

faced by non-graphical modelers.

An important consideration for the IsoXY model parameterized as LMC or

separable is, in order for the AMP for multivariate normal distributions to imply

restrictions on the chain component conditional distributions, only the response

(child) chain component can include measurement error or white noise. However,

either parametrization could be modified to accommodate a graph with more pre-

dictors. Possibly, IsoXY with additional directed edges connecting the different
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locations (Xs → Ys+h) could be parameterized with two measurement error vari-

ance components because (3.13) will no longer hold.

We assume an isotropic process for all components of the multivariate system.

ICG models could easily be modified to accommodate anisotropy via different

parameterizations that are still consistent with the graph structures. For example,

perhaps an extension to the LMC developed by Gelfand et al. (2004) that allows

for a spatial process with spatially varying variance for IsoXY. Or possibly relaxing

(A2) would result in another option for incorporating anisotropy in ICG with one

or two-isomorphic nodes.

A more creative alternative may be to pursue an approach similar to Clement

and Thas (2007), but for geostatistical anisotropic models. They use a ADG de-

rived from a river network topology to determine the spatial dependence structure

of a river monitoring network spatio-temporal regression model. The conditional

independencies implied by the ADG define the spatial covariance structure, sim-

ilar to defining the neighborhood matrix in areal data models. In this thesis, we

use chain links to connect ADG structures between sites. We specify undirected

relationships between sites based on the assumption of isotropy, correlation is a

function of distance and not direction. It would be interesting to explore using

directed edges to connect site-specific ADGs to account for anisotropic spatial

processes.

In the next Chapter, we explore via simulations the consequences of speci-

fying the wrong isomorphic nodes on interpreting the spatial correlation. Also,

we evaluate whether the IsoX model is a viable alternative to model spatially

correlated data. It turns out that the IsoX posterior intervals for the regression

coefficients are not adjusted to account for spatial correlation as in the IsoY and

IsoXY models. The posterior intervals are the same as those that result from an

independent model—they are too narrow. Also, we assess whether a deviance cri-
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teria is sufficient to select the “correct” model over the “incorrect” models through

simulations, motivated by the desire to select the appropriate model for the stream

sulfate concentration data.
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Chapter 4 – Consequences of Misspecification of the Isomorphic

Node(s) for Parameter Estimation

4.1 Introduction

In Chapter 2, we introduced three ICG with different isomorphic node sets. In

this chapter, we now apply these models to the stream sulfate data introduced in

Section 1.1. We also use simulations to determine if a deviance criteria is suffi-

cient to use for selecting among competing models. In all three ICG we assume

the same acyclic directed graph within each site, but how we connect the ADGs

across sites is unique to IsoY, IsoX, and IsoXY. The results in Chapter 2 and

3 provide the groundwork for developing valid statistical models for each graph

structure. We showed that for IsoX and IsoY the covariance of the isomorphic

nodes conditional on their parent sets is best parameterized using univariate spa-

tial correlation functions, whereas multivariate spatial correlation functions can be

used to parameterize IsoXY. In this chapter, we proceed with parameter estima-

tion for the multivariate stream sulfate dataset using these parameterizations in

a Bayesian framework. We explore the consequences on parameter estimation of

assuming the wrong isomorphic node via simulations.

We feel these ICG models are intuitively appealing because there is an ad-

ditional visual representation (graph) of the multivariate stream and watershed

data. Furthermore, ICG are more versatile compared to the spatial regression

model (SRM) used in Irvine et al. (2007). Upon estimating the parameters of a

spatial regression stream sulfate model in a Bayesian framework, we encountered

convergence issues when estimating the spatial range parameter. The complication
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we encountered may be due to assuming a simplified correlation structure. Really,

we should also account for the correlation within wet deposition by using a multi-

variate spatial correlation function. As we acknowledged in Section 1.1, there is an

obvious stochastic spatial dependence in the wet deposition predictor because it

was interpolated to all the sampled stream locations using a model that included

latitude and longitude. An ICG is more flexible than the SRM because with a

stream sulfate ICG model, the wet deposition variable (IsoX), the stream sulfate

concentration variable (IsoY), or both (IsoXY) can be modeled as a Gaussian

spatial process. Also, these three models have unique graphical representations.

The benefit of using Bayesian estimation for the ICG models is two-fold: the

easier interpretation of 95% posterior intervals based on the Bayesian probability

framework, and the ease of calculating posterior intervals for the effective range

and other spatial covariance parameters. Standard functions for R or Splus only

provide REML and ML point estimates for spatial covariance parameters. More

importantly, the complicated derivations of the asymptotic distribution of the ef-

fective range are not required with Bayesian inference, as we can rely on posterior

intervals from MCMC draws.

Our simulations in this chapter are designed to address how to select among

IsoY, IsoX, and IsoXY, and, if an incorrect model is used, examining the conse-

quences for parameter estimation. These questions are of interest based on fitting

IsoX, IsoY, and IsoXY to the stream sulfate data. Interestingly, for these data,

specifying the “wrong” isomorphic node could have severe repercussions if the ana-

lyst is interested in interpreting the effective range. The effective range is very often

interpreted by ecologists as patch size and a relative measure of spatial heterogene-

ity (e.g., Rossi et al., 1992; Bellehumeur and Legendre, 1998; Dalthorp et al., 2000;

Augustine and Frank, 2001; Schwarz et al., 2003; Rufino et al., 2004; Kennard and

Outcalt, 2006). The correlated stream sulfate concentration model (IsoY) esti-
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mated the effective range of the residuals to be 356.8 km, but the separable model

(IsoXY) estimated the effective range to be almost twice as large, at 787.0 km

(Table 4.3). The differences in the effective range estimates of wet deposition for

the different models are not as disparate, although the true parameter values for

the stream sulfate data are unknown. Therefore, we use simulations to explore the

consequences of assuming an incorrect model on estimating the effective range for

the residuals and a predictor variable.

The stream sulfate ICG results also made us question if there was a similar

relationship between posterior interval variability and spatial correlation as we

noticed for REML estimates in Irvine et al. (2007). In terms of variability, the

LMC (IsoXY) posterior estimate has the most reasonable interval for the effective

range (70.21 to 944.4 KM) whereas the IsoY and separable (IsoXY) intervals have

severe right skewness (Table 4.3). Based on our experience with REML and ML

estimation, the variability in the posterior estimates of the effective ranges could

be related to the strength of the spatial correlation (large range parameter). Lark

(2000) noted the magnitude of the nugget-to-sill ratio may effect estimation—

in our experience there is little difference for REML and ML estimation (Irvine

et al., 2007). Also, with the IsoXY (LMC) model, the effective range for wet

deposition is much larger compared to the effective range of the residuals. What

if the effective range were larger for the residuals— does this matter in terms of

parameter estimation? We address this question using simulations in Section 4.4.3.

The posterior intervals for the regression coefficients are not as dramatically

different as those for the effective ranges when we compare across ICG models.

However, there are slight differences in the median and the 95% posterior interval

widths between models (Table 4.5). The real concern with overly narrow poste-

rior intervals is model selection; in that intervals that are too narrow may lead to

including non-meaningful predictors (Ver Hoef et al., 2001). In a graphical model,
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this translates into incorrectly modeling the correlative structure of the multivari-

ate system—a potential concern for more complicated models. Although model

selection is not a primary focus of this thesis, we do explore whether observed

differences between ICG models are meaningful using simulations.

In Section 4.2, we re-introduce the ICG used to model stream sulfate concentra-

tion and present results for each model. In Section 4.3, we describe our simulation

design to address the questions raised from the analysis of stream sulfate concen-

tration. We report our simulation results in Section 4.4. Specifically, we explore

the consequences of specifying the wrong isomorphic node in a Bayesian graphical

model (i.e. using a IsoX or IsoY model when the true model is the IsoXY model).

We focus on parameter estimation and on whether specifying the wrong isomorphic

node results in misleading conclusions about the effective range. Furthermore, we

assess if a deviance criteria is useful for selecting the correct model. In the dis-

cussion (Section 4.5) we provide recommendations for deciding on the appropriate

ICG model for the stream sulfate data.

4.2 Analysis of Stream Sulfate Data

After accounting for the association between watershed scale environmental factors

and stream sulfate concentration, there remains spatial correlation in the residu-

als (Figure 4.1). Most importantly, the empirical correlogram for wet deposition

(denoted by triangles) indicates the presence of spatial correlation with a different

effective range than the residuals. The correlogram for the residuals drops to zero

quicker than that of the wet deposition predictor. The stream sulfate concentra-

tion empirical correlogram (denoted by crosses) not surprisingly appears to be a

combination of the residual and wet deposition correlograms.
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Figure 4.1: Empirical Correlograms for Stream Sulfate Data.

Our first approach to model these data, and the more common technique, is

a spatial regression model (Section 1.3), assuming the residual error δ(s) is a sta-

tionary, isotropic, mean-zero Gaussian spatial process (Irvine et al., 2007). We do

not make any distributional assumptions about the predictors (wet deposition).

But the empirical correlogram provides evidence of spatial correlation in the wet

deposition predictor that is ignored in a spatial regression model. Thus, based on

the empirical correlograms, an ICG model accounting for the spatial correlation in

both the residuals and predictor may be a better choice. In the next section, we

explore four different isomorphic chain graphs for the stream sulfate data (Inde-

pendent, IsoX, IsoY, and IsoXY (Separable and LMC)).
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4.2.1 Isomorphic Chain Graph Models

We fit an independent, IsoX, IsoY, IsoXY separable, and IsoXY LMC to the stream

sulfate data. Because the empirical correlogram indicates the presence of a nugget

in the residuals, we use an exponential-with-nugget covariance to model the spatial

correlation of the residuals in the IsoY and IsoXY models. In Chapter 2, we showed

that the IsoXY model can be parameterized as the separable model or the LMC

multivariate spatial model. To avoid cumbersome wording we will just refer to

these two models as separable and LMC. The main difference between the two

specifications is the assumption of the same spatial process (in the separable)

or different spatial processes for the residuals and predictor (in the LMC). The

correlograms for stream sulfate concentration and wet deposition suggest there are

different range parameters, so the LMC parametrization may be more appropriate

for these data.

We implement the following models using the freeware Winbugs, using the

notation introduced in Section 2.2.2. The variable abbreviations are provided in

Table 4.1. For all the models, we make the simplification of assuming the Mining

(M), Forest (F), Urban (U), Agriculture (AG), and Adsorption (AD) predictor

variables are non-stochastic.

In chain graphs with the assumption of a joint multivariate normal density

with positive definite covariance, directed edges are specified in the mean struc-

ture and undirected edges are modeled in the covariance. We assume the same

mean structure for all the graphical models, the acyclic directed graphs (ADG) at

each site have directed edges from all the predictors to the response stream sulfate

concentration (SC), and these are the only directed edges in the graphs. However,

the models differ in the location of the isomorphic node (Table 4.2). Spatial de-

pendence is modeled in the error structure for wet deposition (M2), or for stream

sulfate concentration (M3), or for both variables (M4 and M5).
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Table 4.1: Variable Notation for Stream Sulfate Models

M Mining

F Forest

U Urban

AD Adsorption

SC Stream Sulfate Concentration

WD Wet Deposition

Table 4.2: Isomorphic Nodes for Stream Sulfate Data

M1 E∗ = ∅

M2 E∗ = {WDi,WDi′} ∀i, i′

M3 E∗ = {SCi, SCi′} ∀i, i′

M4 E∗ = {SCi, SCi′ ,WDi,WDi′} ∀i, i′

Model 1 Independent Model (M1):

WDi
iid∼ N(µwd, τ

2
wd); SCi

ind∼ N(γi, τ
2
sc); (4.1)

where

γi = β0 + β1Fi + β2AGi + β3Ui + β4Mi + β5WDi + β6ADi, (4.2)

for i = 1, 2, . . . n and ind refers to independent. Because we assume the same mean

structure for all models, γi (4.2) for the independent model (M1) is the same for

all the models, and thus we omit it in the following model specifications (M2, M3,
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M4, and M5).

Model 2 Correlated Wet Deposition Model (M2):

WD ∼ MV N(µwd, Σ
wd(φwd)); SCi

ind∼ N(γi, τ
2
sc); (4.3)

where WD is a n× 1 vector.

Model 3 Correlated Stream Sulfate Concentration Model (M3):

WDi
iid∼ N(µwd, τ

2
wd); SC ∼ MV N(γ, Σsc(φsc)); (4.4)

where SC is a n× 1 vector.

Model 4 Wet Deposition and Stream Sulfate Concentration Correlated Model

(Separable) (M4):

WD ∼ MV N(µwd, Σ
wd(φ)); SC ∼ MV N(γ, Σsc(φ)); (4.5)

where 1/φ is a common range parameter for SC and WD.

Model 5 Wet Deposition and Stream Sulfate Concentration Correlated Model

(LMC) (M5):

WD ∼ MV N(µwd, Σ
wd(φwd)); SC ∼ MV N(γ, Σsc(φsc)); (4.6)

where the range parameters for WD and SC are 1/φwd and 1/φsc, respectively.

For all the graphical models, we assume the exponential-with-nugget covariance

for stream sulfate concentration

Σsc(φsc) = σ2
scexp(−φscD) + τ2

scI
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and the exponential-without-nugget covariance for wet deposition

Σwd(φwd) = σ2
wdexp(−φwdD).

This parametrization assumes D is a n×n matrix of pairwise Euclidean distances,

τ 2
sc is the nugget term for stream sulfate, and the σ2 terms are partial sill parame-

ters. In this notation, in M4 we assume φsc = φwd, whereas in M5 we assume there

are two different range parameters, 1/φsc and 1/φwd, respectively. Winbugs code

to fit IsoXY, IsoX, and IsoY with one predictor is provided in Section 4.7, but

is easily modified to include multiple predictors. The results reported in Section

4.2.2 includes all predictors, but again only WD and SC are assumed stochastic.

To complete the specification of ICG in a Bayesian framework, we assume

prior distributions on all of the parameters. The following priors were used for all

models:

σ2
wd, σ

2
sc, τ

2
wd, τ

2
sc ∼ Inv −Gamma(.1, .1),

βj ∼ N(0, .0001), for j = 0, 1, ..., 6,

and φsc, φwd ∼ Uniform(a, b),

where a = − log(.5)

dmax

and b = − log(.01)

dmin

where dmin and dmax are the minimum and maximum based on the observed D

matrix (Wang and Wall, 2003). This corresponds to a correlation of .5 at the

maximum distance and correlation of .01 at the minimum distance, for the stream

sulfate data the prior is Uniform(.001, 5.98).

Each MCMC chain was run for 5000 iterations. Because of the large sample

size, n = 322, the runtime for the spatial models was quite long. We checked

convergence to the posterior distribution by examining the time series plots for

the parameters in each model.
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4.2.2 Results

We report the posterior intervals for the effective range (Tables 4.3 and 4.4) because

it is of scientific interest and a function of all the spatial correlation parameters.

The regression coefficients for wet deposition are reported in Table 4.5, the other

regression coefficients displayed similar patterns.

Table 4.3: Residual Effective Range Posterior Estimates

model mean sd MC error 2.5 % median 97.5%
IsoY (M3) 576.4 570.3 62.89 94.82 356.8 2323.0
separable (M4) 923.4 473.5 51.03 356.7 787.0 2114.0
LMC (M5) 297.3 224.0 22.56 70.21 237.2 944.4

Table 4.4: Wet Deposition Effective Range Posterior Estimates

model mean sd MC error 2.5% median 97.5%
IsoX (M2) 1457.0 613.4 51.57 563.9 1351.0 2796.0
Separable (M4) 1099.0 506.7 54.8 504.5 957.3 2375.0
LMC (M5) 1392.0 600.5 53.2 581.5 1245.0 2772.0

The different ICG models have different posterior estimates for the effective

range of the residuals (Table 4.3), whereas the estimates for the effective range

of wet deposition are more similar across the models (Table 4.4). It is possible

that the skewness in the posterior intervals is related to the strength of the spatial

correlation, as noted for REML estimates in Irvine et al. (2007). However, the

posterior interval for the effective range of the residuals in the LMC (M5) does not

have this problem— the variability is fairly reasonable. A possible explanation is

that the residual correlation is weaker compared to that within wet deposition—

perhaps estimation behaves better when the correlation is stronger on the predictor

compared to the response for LMC. Or a simpler explanation is that the LMC is

the better model choice and the variability in the posterior intervals in the other

models is because they are incorrect for these data.
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The high MC error in Tables 4.3 and 4.4 isn’t surprising given the large standard

deviations, this is consistent with the large variability in the REML estimates of

the effective range as noted in Irvine et al. (2007). MC error is an estimate of the

Monte Carlo standard deviation of the mean in Winbugs (from documentation),

and thus could be decreased with more iterations. Because of the computational

time for each of these models we used 5000 iterations for these results.

Table 4.5: Coefficient Posterior Estimates for Wet Deposition

model 2.5 % median 97.5 %
iid (M1) 0.126 0.242 0.360
IsoX (M2) 0.129 0.241 0.363
IsoY (M3) 0.015 0.209 0.406
Separable (M4) 0.036 0.238 0.409
LMC (M5) 0.021 0.198 0.379

The wet deposition coefficient posterior estimates for IsoX and the independent

model are virtually the same across all the models (Table 4.5). The posterior inter-

vals are wider for IsoY (.391), LMC (.358), and separable (.373) models compared

to the independent model and IsoX (.234) as one would expect— in the presence

of positive correlation the variability is under-estimated in an independent model.

In terms of the medians, the IsoX, independent, and separable are all very similar

to each other (around 0.24), whereas both the IsoY and LMC are around 0.20.

It is hard to discern whether or not this difference is practically meaningful. The

posterior intervals for the other predictor variables display a similar relationship

between models.

These results raise several questions: (1) how does an analyst select among the

ICG models; (2) is the skewness in the effective range posterior intervals related

to the strength of spatial correlation similar to the REML results in Irvine et al.

(2007) or can it be attributed to fitting an incorrect model; and (3) what are the

consequences of assuming an incorrect one-isomorphic node model for parameter

estimation? We address these questions via simulations in the next sections.
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4.3 Simulation Design

We now consider a model with only one predictor variable. Using simulations, we

examine the consequences of misspecification of the isomorphic node; specifically

its effect on the estimation of the effective range. Because the IsoXY model can

be parameterized as the separable or LMC multivariate spatial models (Chapter

2) we simulate data from both parameterizations using R. We use 100 different

simulated data sets, assuming only one predictor variable as in Chapter 2. We

then fit the true model (separable or LMC) and incorrect models, IsoX and IsoY

in Winbugs. We use 100 locations (n = 100) located on a 10 x 10 unit grid (lattice

design) for all simulations.

For IsoXY parameterized as a separable model, we explore three different range

parameters (φ = 1, .5, and .33) corresponding to an effective range of 3, 6, and

9 (weak, medium, strong spatial correlation). These values were selected because

REML estimates had increased variability with stronger spatial correlation (Irvine

et al., 2007); thus, the observed variability in the effective ranges for the stream

sulfate data may be related to the strength of spatial correlation. The effective

range for the residuals, the predictor and the response are the same for this model.

We evaluate the benefit of using the IsoXY compared to IsoX or IsoY in terms of

variability and estimation error. The results are presented in Section 4.4.1.

We also investigate the separable-with-nugget covariance model because the

stream sulfate data has evidence of a nugget in the residuals. We use two different

nugget-to-sill ratios (1/3 and 2/3) with 1/φ = 2 to explore the consequences of

adding measurement error. Here, we only use two ratios because in our experience

nugget-to-sill ratio is not as critical as is the range parameter in terms of covariance

parameter estimation (Irvine et al., 2007). For simulations under the separable-

with-nugget covariance model, the effective ranges are different due to the presence

of a nugget. Thus, IsoXY should be preferred because it provides a complete
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representation of the multivariate spatial process, whereas IsoX and IsoY provide

an incomplete representation of only a univariate process. The results are presented

in Section 4.4.2.

For simulations from IsoXY parameterized as a linear model of coregionaliza-

tion, we explore whether the relationship between the different spatial processes

matters for parameter estimation. In particular, we investigate the affects of the

relative spatial correlation on X and Y. For simulations with stronger spatial

correlation in the residuals, we assume the range parameter is 3 for the residuals

and 1 for the predictor. We also explore the situation similar to the stream sulfate

data, with X having the larger range parameter (φ = .33) and the residuals a

smaller range parameter (φ = 1). Again in modelling the multivariate spatial pro-

cess, IsoXY should outperform IsoX and IsoY because we know there are different

processes for both the predictor and residuals. The results are presented in Section

4.4.3.

To complete the Bayesian model specification we specify prior distributions for

all the parameters. We used a Uniform(.05, 4.6) prior on φ based on Wang and Wall

(2003) and the same non-informative gamma priors on the variance components

and non-informative Gaussian prior for the regression coefficient as for the stream

sulfate data.

4.4 Simulation Results

In the following sections, figures for the posterior intervals of the regression coeffi-

cient and effective range parameters use the following convention. For each fitted

model (IsoXY, IsoX, and IsoY), the 95% posterior intervals for each parameter are

calculated for each of the 100 simulated datasets. The posterior intervals depicted

in the figures are based on the median of the 100 2.5%, 50%, and 97.5% posterior

interval percentiles.
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Figure 4.2: Example Correlogram for Separable-Without-Nugget.

These median 95% posterior intervals are represented by vertical lines: dot-

dash lines for IsoY, dotted lines for IsoX; and the true model (separable or LMC)

are always dashed lines. The shorter horizontal lines represent the median of

the medians from the 100 posterior distributions. The true parameter value is

denoted by a longer horizontal line that crosses the relevant posterior intervals.

This convention provides easy visual comparisons of the estimation error (vertical

displacement from the true line) and the variability (lengths of the vertical lines)

between incorrect and true models.

4.4.1 IsoXY: Separable-without-Nugget Model

Figure 4.2 displays the correlograms of X, Y, and the residuals for one realization

from the separable-without-nugget model with an effective range of 6 (moderate

spatial correlation). In the correlogram plot, the lines overlap and there is not a
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Figure 4.3: Regression Coefficient Posterior Estimates for Separable-without-
Nugget Simulations.

clear separation between them. This is expected since the residuals, predictor (X),

and response (Y) all have the same effective range. We address whether there is

any gain in fitting the more complicated IsoXY ICG in terms of the estimation of

the effective range in this setting. Also, we investigate if there are differences in

the regression coefficient posterior intervals between models.

In Figure 4.3, the median posterior intervals for the regression coefficient are

very similar when there is weak spatial correlation (left three lines). This makes

sense given that with an effective range of 1, only adjacent points are correlated,

so that the effective sample size is 82 as compared to 100. However, when the

effective range is 6 and 9 (middle and right three lines), IsoX median underesti-

mates and IsoY and separable overestimate the truth; however, this difference is

not remarkable. For all effective range values, the posterior intervals contain the
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Figure 4.4: Effective Range Posterior Estimates for Separable-without-Nugget Sim-
ulations.

true value. In terms of variability, IsoY and separable model are similar and wider

compared to IsoX.

Figure 4.4 displays the median posterior estimates for the effective range for

the three different values (3, 6, and 9 from left to right) for the three models

(IsoX, IsoY, and separable). The most dramatic pattern is the increasing skewness

for all models as the spatial correlation increases, perhaps not surprising given

our observations for REML estimates in Irvine et al. (2007). The skewness and

variability is not as dramatic for the true model whose intervals are less variable

compared to the incorrect models. Also, all the medians underestimate the true

value more when the effective range is 9 (set of horizontal lines on the right), this is

most pronounced for the IsoX median (7.6 compared to 8.5). However it is likely,

this difference is not biologically meaningfully.
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The posterior interval of the residual variance in IsoX (not shown) underesti-

mates the true value and has less variability compared to the other models. This

is consistent with the fact the IsoX model incorrectly assumes the residuals are in-

dependent. A similar observation is made with the variance of X, the IsoY model

has the narrowest posterior interval again assuming the X’s are independent when

in fact they are spatially correlated. This suggests in a more complicated graph-

ical model where Xs has a set of parent nodes (pa(Xs) 6= ∅), the estimates of

the directed edges (regression coefficients) from the parent nodes to X would have

narrower posterior intervals. These narrower intervals may affect model selection

because non-significant variables are more likely to be included as parent nodes of

X, possibly resulting in incorrect correlative relationships between variables.

Table 4.6: Deviance Percentiles and BIC* for Separable-without-Nugget

φ = 1
2.5% 50% 97.5% BIC*

separable 585.90 588.75 596.58 634.80
IsoX 605.55 608.55 616.93 654.60
IsoY 609.10 612.10 620.00 658.15

φ = .5
separable 500.75 503.55 511.15 549.60
IsoX 563.55 566.35 574.33 612.40
IsoY 562.22 565.05 572.73 611.10

φ = .33
separable 429.60 432.40 440.48 478.45
IsoX 518.95 521.70 528.98 567.75
IsoY 526.00 528.85 536.60 574.90

The deviance (-2log(likelihood)) is calculated for each iteration of the MCMC

chains. The deviance, if corrected for the effective number of parameters, is the

Deviance Criteria (DIC) supplied in the Winbugs output and commonly used for

model selection in other non-spatial situations. This criteria is similar to the more

familiar AIC and BIC model selection criterias. We also include an average BIC,
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Figure 4.5: Example Correlogram of Separable-with-Nugget.

BIC*, in Table 4.6. We define BIC* as the median of the deviance increased by a

factor of ln(n)*k, where n is the sample size and k is the number of parameters.

In this case the adjustment factor is 46.052 (=ln(100)*10) for all models. The

BIC* is consistently lower for the true model compared to the incorrect models

for all the ranges of spatial correlation investigated (Table 4.6). Therefore, in this

case, deviance (BIC*) appears to be a good measure to select the appropriate ICG

model if the true model is IsoXY parameterized as separable-without-nugget.

4.4.2 IsoXY: Separable-with-Nugget Model

Figure 4.5 displays the correlograms of X, Y, and the residuals from one realization

of a separable model with nugget-to-sill ratio of 2/3 and range parameter 2. The ef-

fective range of the residuals is 1.65 basically an independent model, only adjacent
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Figure 4.6: Regression Coefficient Posterior Estimates for Separable-with-Nugget
Simulations.

neighbors are correlated, an almost flat line correlogram (line with circles). The

predictor variable X (line with triangles) has moderate spatial correlation (effec-

tive range=6) and the response (line with crosses) has weak correlation (effective

range=2.47). The effective ranges are different because of the nugget term for Y.

This empirical correlogram is slightly misleading, since the value of the theoretical

correlogram at zero distance is displaced from 1 for the residuals and Y. Because

the simulations are on a 10x10 lattice, the smallest intersite distance is 1, so the

empirical correlogram is interpolated to 1 at zero distance.

Figure 4.6, displays the regression coefficient median posterior intervals for

the three models (IsoX, IsoY-with-nugget, and separable-with-nugget) at the two

different nugget-to-sill ratio settings (1/3 left and 2/3 right). Particularly for the

larger ratio, the IsoX posterior interval is slightly more narrow compared to the

IsoY-with-nugget and separable-with-nugget models. The separable-with-nugget
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Figure 4.7: Posterior Estimates for X Effective Range for Separable-with-Nugget
Simulations.

model has the widest interval for both ratios; however, all the posterior intervals

contain the true value.

Figure 4.7 displays the median posterior intervals for the effective range of X

(true value is 6) for both the IsoX and separable-with-nugget models. This plot

does not have estimates for the IsoY-with-nugget because in that model we assume

independent predictors. Also, in the separable-with-nugget model the effective

range for the residuals and X are now different. For the larger nugget-to-sill ratio,

the medians underestimate the true value. Interestingly, the variability is about

the same for the larger ratio, but the true model has less variability for the smaller

nugget-to-sill ratio.

The effective range median posterior intervals for the residuals and Y are shown

together in Figure 4.8. The cross represents the true value for the response’s

effective range in the separable-with-nugget model. There is a large difference
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Figure 4.8: Posterior Estimates for Residual and Y Effective Range for Separable-
with-Nugget Simulations.

compared to the pattern in Figure 4.7. With smaller nugget the posterior intervals

for the effective range of the residuals completely miss the true value. The posterior

intervals capture the true value for the larger nugget-to-sill ratio, but the medians

still over-estimate. The IsoY-with-nugget median is closer to the truth compared

to the true model for both ratios. This is intriguing because in terms of estimating

the spatial covariance parameters individually, the separable-with-nugget model

outperforms the IsoY-with-nugget model based on estimation error. The range

parameter in the IsoY-with-nugget model did not converge, the median posterior

interval runs from .21 to 4.02, nearly the same width of the uniform prior—the

other models did not have this problem.

The BIC* in the situation with measurement error could be misleading (Ta-

ble 4.7). The IsoY-with-nugget has lower median values compared to the true

model; however, the variance of the deviance is quite large and possibly unreli-
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Table 4.7: Deviance Percentiles and BIC* for Separable-with-Nugget

ratio=0.33
2.5% 50% 97.5% BIC*

IsoX 604.00 606.85 614.83 652.90
IsoYwnugg 81.25 396.18 606.73 446.83
sepwnugg 246.90 469.08 552.16 519.73

ratio=0.66
2.5% 50% 97.5% BIC*

IsoX 605.85 608.70 616.53 654.75
IsoYwnugg 147.10 561.23 651.27 611.88
sepwnugg 471.45 564.47 597.32 615.13

able due to the convergence issues for φ. Thus, calculating BIC*, a function of

only the median deviance, could be misleading in this case. The IsoY-with-nugget

and separable-with-nugget have one more parameter compared to the IsoX (the

nugget). Apparently in the case of measurement error (i.e. nugget), a more holistic

approach incorporating the usual diagnostics for verifying convergence should be

used to select the correct ICG, not just focusing on one summary number.

4.4.3 IsoXY: Linear Model of Coregionalization

The linear model of coregionalization for a bivariate setting assumes both variables

follow different spatial processes. Figure 4.9 displays the empirical correlograms

of X, Y, and the residuals for one realization from an LMC multivariate spatial

model. There is separation between the correlograms for X, with an effective

range of 3, versus the residuals, with an effective range of 9. This plot is similar

to the empirical correlograms for the stream sulfate data (Figure 4.1) except there

is evidence of a nugget in the stream sulfate residuals.

The results for the median posterior intervals of the regression coefficient raise

some concern, because when the spatial correlation is stronger on the residuals

(Figure 4.10, right side) the intervals do not include the true value. Also, oddly,
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Figure 4.10: Regression Coefficient Posterior Estimates for LMC Simulations.
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Figure 4.11: Posterior Estimates for X Effective Range for LMC Simulations.

the intervals are more narrow for the IsoY and LMC models than the IsoX model,

although the medians are all about the same. When the correlation is stronger for

the predictor (left side of Figure 4.10), the LMC and IsoY intervals are wider and

barely contain the true value compared to IsoX. This pattern is consistent with

the complete conditional for β, which is a function only of the residual correlation.

In IsoX, the complete conditional for β is similar to an independent model that

assumes uncorrelated residuals. Thus, we might expect IsoX to have narrower

posterior intervals compared to IsoY and IsoXY that both account for positive

correlation in the residuals. The complete conditionals for independent, IsoX,

IsoY, and LMC are provided in Section 4.6.

The results for the effective range of X, displayed in Figure 4.11, are similar to

the separable results in Section 4.4.1. There is more skewness with the stronger

spatial correlation (left two lines) and the median slightly underestimates the true

value. There is little difference between the IsoX and LMC results. This is not
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Figure 4.12: Posterior Estimates for Residual Effective Range for LMC Simula-
tions.

surprising, again given the complete conditional for φx is similar for IsoX and LMC

(Section 4.6).

The posterior intervals for the effective range of the residuals are consistent with

the previous results as well (Figure 4.12). The posterior intervals are highly skewed

when the spatial correlation is stronger and there is little difference between IsoY

and LMC. This last point is consistent with the fact the complete conditional for φy

is similar for both models (Section 4.6). The results for the other spatial variance

components are consistent with the complete conditionals for the different models.

The posterior intervals are similar for IsoY and LMC for the residual variance,

whereas IsoX and LMC are similar for the variance of X (Section 4.6).

When the correlation is stronger on X, the true model has a lower BIC*

(644.75), as expected, but IsoX has the next lowest (665.55). However, when

the spatial correlation is stronger on the residuals, the BIC* is lowest for the true
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Table 4.8: Deviance Percentiles and BIC* for LMC
X > Y

2.5% 50% 97.5% BIC*
LMC 619.20 622.75 631.400 644.75
IsoX 642.85 645.55 653.376 665.55
IsoY 709.85 712.65 720.452 732.65

Y > X
2.5% 50% 97.5% BIC*

IsoX 706.40 709.18 717.58 729.18
IsoY 639.10 641.90 649.78 661.90
LMC 616.07 619.65 628.45 641.65

model (641.65) and then for IsoY (661.9). The LMC has an extra parameter com-

pared to IsoX and IsoY (estimating another φ). In practice, the deviance criteria

seems a reliable measure to select the correct ICG model in this situation.

4.5 Discussion

The simulation results enhance our ability to select the “best” ICG model for the

stream sulfate data. Because the empirical correlograms for the stream sulfate

data indicate different effective ranges for wet deposition and the residuals, IsoXY

parameterized as LMC is a better choice compared to the other models. Also, the

BIC for the stream sulfate data suggests that the appropriate model is the LMC

(with lowest value=940.53). Reassuringly, the simulations support the use of the

BIC* to select the appropriate model in the case of no-nugget; however, conver-

gence of the parameters and the empirical correlograms should also be considered

in the decision. The BIC* is not exactly the same as the BIC because it uses the

median deviance over 100 realizations, but BIC could be calculated for each of the

100 realizations and the number of times the ‘correct’ model was selected based

on BIC could be computed.
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The estimated effective range for wet deposition in IsoXY parameterized as

LMC is quite large at 1245 km. This is consistent with the scientific knowledge—

wet deposition is dispersed through atmospheric processes such as wind and rain.

The largest atmospheric sulfate concentration is in the Ohio River Valley and the

EMAP samples are along the eastern seaboard (Figure 1.1). Thus, it makes sense

that the scale of the spatial process for wet deposition is more regional as compared

to a more local residual spatial process. Relating the LMC results to those found

in Irvine et al. (2007), we notice the LMC median estimate of the effective range

of the residuals is similar to the REML estimate of 272.49 km from the spatial

regression model; however, the posterior interval contains both the REML and ML

point estimates. An important point is, using Bayesian estimation we can report

a 95% posterior interval as opposed to simply a point estimate. But beyond that,

the LMC ICG model provides a complete depiction of the multivariate process

by estimating the spatial correlation ‘left-over’ in the residuals and in the wet

deposition variable.

The consequences of incorrectly assuming a one-isomorphic model are more

severe when the goal is interpreting the multivariate spatial process accurately.

Although sometimes the isomorphic one-node models (IsoX and IsoY) have ef-

fective range medians that are very similar to the isomorphic two-node model

(IsoXY), the IsoXY model is preferred because it estimates both effective ranges

simultaneously (LMC) or with less variable posteriors (separable). The isomor-

phic one-node models provide an incomplete picture of the spatial processes, for

example the IsoX (IsoY) can only be used to explain the spatial process of the

predictors (residuals). Practically, a IsoX or IsoY model would not be useful to

distinguish the scales of the different spatial processes for wet deposition and the

residuals.
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The simulations suggest the consequences of assuming an incorrect one-isomorphic

node model are minimal in terms of estimating the regression coefficient. The pos-

terior intervals were only subtly different between correct and incorrect ICG models

in most cases. The simulation findings are consistent with the complete condition-

als for β, the IsoY and LMC coefficient posterior intervals should be similar and

wider, adjusting for correlated residuals, as compared to the IsoX model. Only

when the true multivariate spatial process has a very strong residual spatial pro-

cess do all the intervals underestimate the true value completely. But this case,

with the residual effective range of 9, can be misleading because the spatial domain

is only a 10 x 10 grid—basically all the observations are correlated and the effective

sample size is far less than 100.

It seems possible that for any situation with different effective ranges, it is better

to use a LMC parametrization that accounts for different effective ranges without

the added complication of estimating a nugget parameter. When the response’s

spatial process had a small nugget-to-sill ratio in the separable-with-nugget, the

posterior intervals of the residual effective range did not contain the true value.

Also, in these simulations we encountered convergence issues with the estimates of

the IsoY-with-nugget model. This observation suggests the convergence issues we

encountered fitting the Bayesian spatial regression model to the stream sulfate data

could be due to the nugget term and using an incorrect, simplified model. We did

not compare the different parameterizations of IsoXY directly in the simulations

to verify an LMC would out-perform the separable-with-nugget parametrization.

However, when all variables have the same effective range, the separable model

is preferred because it has narrower posterior intervals for the effective range com-

pared to IsoX and IsoY. We also found the skewness in the posterior intervals is

related to the strength of spatial correlation as with REML estimation. A possible

solution to modeling the exponential covariance with long range spatial depen-
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dence is to use a different covariance function that has a slower decay rate, a

spatial version of the fractional differenced process (Percival and Rothrock, 2007).

There could be complications if we consider more complex models, for example

Xs with a non-empty parent set (pa(Xs) 6= ∅). It seems likely, based on the com-

plete conditionals and the simulation results, that we could encounter problems

by assuming an isomorphic node on the wrong descendant nodes. For example,

if the truth is IsoX and we use IsoY, essentially we assume the X’s are uncorre-

lated and so the estimated directed edges (pa(Xs) → Xs) would likely have too

narrow posterior intervals. The consequence being the correlative structure in the

multivariate system could be incorrectly modeled.

The stream sulfate data present an unusual example because we have both an

interpolation and a regression problem. Essentially, we account for the prediction

error and spatial dependence in the interpolated values for wet deposition by using

a graphical model instead of other misaligned covariate techniques (as in Banerjee

et al., 2004, pp. 175-212). An ideal and less complicated example would have wet

deposition measured at each stream location along with sulfate concentration. For

example, Gitelman and Herlihy (2007) propose two ICG models for a macroinver-

tebrate health index using land-use characteristics. One model is similar to IsoY,

the health metric is the isomorphic node, and the other is similar to IsoX, with

percent agriculture as the isomorphic node.

Our simulations only address the setting in which we know, for example, both

the health metric and agriculture have spatial correlation, the correct model has

two-isomorphic nodes. As discussed in Chapter 3, to assess if a simpler one-

isomorphic node model is preferred one could use the empirical correlograms, the

posterior densities for the range parameters, as well as possibly the BIC criteria

to select the correct model. Further simulations should be done to explore if the

BIC could be used to select a one-isomorphic node model (IsoX or IsoY).
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4.6 Complete Conditionals for Graphical Spatial Model

Model 1 (iid):

X ∼ MV N(0, τ 2
xI)

Y|X ∼ MV N(Xβ, τ 2
y|xI)

Model 2 (Isomorphic X):

X ∼ MV N(0, σ2
x exp(−φxD))

Y|X ∼ MV N(Xβ, τ 2
y|xI)

Model 3 (Isomorphic Y):

X ∼ MV N(0, τ 2
xI)

Y|X ∼ MV N(Xβ, σ2
y|x exp(−φyD))

Model 4 (Isomorphic X and Y (LMC)):

X ∼ MV N(0, σ2
x exp(−φxD))

Y|X ∼ MV N(Xβ, σ2
y|x exp(−φyD))

Complete Conditionals:

1. p(β|rest)
Assume a conjugate prior for β ∼ N(µβ, σ2

β), the following complete con-
ditional matches that in Congdon (2003, p.95). Let bOLS = (X ′X)−1X ′Y
and

bGLS = (X ′[σ2
y|xΣ(φy)]

−1X)−1X ′[σ2
y|xΣ(φy)]

−1Y,

then iid and IsoX have β|rest ∼ N(µ, σ2)
where µ =

(X ′X
1

τ 2
y|x

+
1

σ2
β

)−1(
1

τ 2
y|x

X ′XbOLS +
1

σ2
β

µβ)

and

σ2 =

(
X ′X
τ 2
y|x

+
1

σ2
β

)−1

.

IsoY and IsoXY have β|rest ∼ N(µ, σ2)
where µ =

(
X ′[σ2

y|xΣ(φy)]
−1X +

1

σ2
β

)−1 (
(X ′[σ2

y|xΣ(φy)]
−1X)bGLS +

1

σ2
β

µβ

)
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and

σ2 =

(
X ′[σ2

y|xΣ(φ)]−1X +
1

σ2
β

)−1

.

2. p( 1
σ2

y|x
|rest)

Suppose a conjugate inverse gamma prior,

σ2
y|x ∼ Inv −Gamma(α0, β0),

the un-normalized Inverse-Gamma density is

∝ (σ2
y|x)

−(α+1)exp

(
− β

σ2
y|x

)
,

then IsoY and IsoXY have the following complete conditional:

1

σy|x
∼ Inv −Gamma(α0 + n/2, .5(Y −Xβ)′[exp(−φyD)]−1(Y −Xβ) + β0)

3. p( 1
τ2
y|x
|rest)

Assume conjugate inverse gamma prior,

τ 2
y|x ∼ Inv −Gamma(α0, β0)

where the un-normalized Inverse-Gamma density is proportional to

(τ 2
y|x)

−(α+1)exp

(
− β

τ 2
y|x

)
.

The iid model and IsoX have the following complete conditional

1

τ 2
y|x
∼ Inv −Gamma(α0 + n/2, .5(Y −Xβ)′(Y −Xβ) + β0).

4. p( 1
τ2
x
|rest)

Assume conjugate inverse gamma prior,

τ 2
x ∼ Inv −Gamma(α0, β0)

where the un-normalized inverse Gamma density is proportional to

(τ 2
x)−(α+1)exp

(
− β

τ 2
x

)
.
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The iid model and IsoY have the following complete conditional:

1

τ 2
x

∼ Inv −Gamma(α0 + n/2, .5(X ′X) + β0).

5. p( 1
σ2

x
|rest)

Assume conjugate inverse gamma prior,

σ2
x ∼ Inv −Gamma(α0, β0)

where the un-normalized inverse Gamma density is proportional to

(σ2
x)
−(α+1)exp

(
− β

σ2
x

)
.

The complete conditional for IsoX and IsoXY follows:

1

σ2
x

∼ Inv −Gamma(α0 + n/2, .5(X ′[exp(−φxD)]−1X + β0).

6. p(φx|rest)
Assume a uniform prior, φx ∼ Uniform(a, b),

then up to a normalizing constant the complete conditional distribution,
p(φx|rest), follows as

∝ |exp(−φxD)|−1/2exp{−.5(X)′[σ2
xexp(−φxD)]−1(X)} 1

b− a
I[a,b](φx),

for IsoX and IsoXY.

7. p(φy|rest)
Up to a normalizing constant the complete conditional distribution, p(φY |rest),
for IsoY IsoXY is:

∝ |exp(−φyD)|−1/2exp{−.5(Y−Xβ)′[σ2
y|xexp(−φyD)]−1(Y−Xβ)} 1

b− a
I[a,b](φy).
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4.7 Winbugs Code for Simulations

The following code was used for the simulations. They could be easily extended
to multiple explanatory variables.

4.7.1 Independent Model

Model{for (j in 1:100)

{Y2[j]~dnorm(mu[j],sigma.Y)

X2[j]~dnorm(0,tau.x)

mu[j]<-beta*X2[j]

}

sigma.Y~dgamma(.01,.01)

tau.x~dgamma(.01,.01)

var.x<-1/tau.x

var.sigmaY<-1/sigma.Y

beta~dnorm(2,1.0E-4)

}

4.7.2 Isomorphic X Model (IsoX)

Model{

for (j in 1:100)

{Y2[j]~dnorm(mu[j],sigma.Y)

mu[j]<-beta*X2[j]

mu.X[j]<-0

}

#SPATIAL CORRELATION ON X

X2[1:100]~spatial.exp(mu.X[],x[],y[],tau.x,phi,1)

#PRIORS

sigma.Y~dgamma(.01,.01)

phi ~ dunif(0.05,4.6)

tau.x~dgamma(.01,.01)

beta~dnorm(2,1.0E-4)

#PARAMETER VALUES OF INTEREST

var.sigmaY<-1/sigma.Y

var.tau.x <- 1/tau.x

prod.X<-phi* var.tau.x

#CALCULATING THE EFFECTIVE RANGE FOR X

eff.r<-3/phi

}
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4.7.3 Isomorphic Y Model (IsoY)

With Nugget Model

Model{

for (j in 1:100)

{Y2[j]~dnorm(mu[j],sigma)

mu[j]<-beta*X2[j] +W[j]

mu.W[j]<-0

X2[j]~dnorm(0,tau.x)

}

#SPATIAL CORRELATION ON THE RESIDUALS

W[1:100]~spatial.exp(mu.W[],x[],y[],sigma.y,phi,1)

#PRIORS

sigma.y~dgamma(.01,.01)

phi ~ dunif(0.05,4.6)

sigma~dgamma(0.01,0.01)

tau.x~dgamma(.01,.01)

beta~dnorm(2,1.0E-4)

#PARAMETER VALUES OF INTEREST

var.sigma.y<-1/sigma.y

var.tau.x <- 1/tau.x

nugg<-1/sigma

prod.Y<-phi* var.sigma.y

#CALCULATING THE EFFECTIVE RANGE FOR THE RESIDUALS

eff.r<--1/phi*log(.05*((nugg+var.sigma.y)/var.sigma.y))

}

4.7.4 Isomorphic X and Y Model (IsoXY)

Separable-without-Nugget

model{

for (j in 1:100)

{

mu[j]<-beta*X2[j]

mu.X[j]<-0

}

#SPATIAL CORRELATION ON X AND Y

X2[1:100]~spatial.exp(mu.X[],x[],y[],tau.x,phi,1)
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Y2[1:100]~spatial.exp(mu[],x[],y[],tau.res,phi,1)

#PRIORS

phi ~ dunif(0.05,4.6)

tau.x~dgamma(.01,.01)

tau.res ~ dgamma(.01,.01)

beta~dnorm(2,1.0E-4)

#PARAMETER VALUES OF INTEREST

ps.x <- 1/tau.x

ps.res<-1/tau.res

prod.X<-phi* ps.x

prod.Y<-phi*ps.res

#EFFECTIVE RANGE FOR X AND RESIDUALS

eff.r<-3/phi

}

Separable-with-Nugget

Model{

for (j in 1:100)

{Y2[j]~dnorm(mu[j],sigma)

mu[j]<-beta*X2[j] +W[j]

mu.X[j]<-0

mu.W[j]<-0

}

#SPATIAL CORRELATION ON X AND RESIDUALS

X2[1:100]~spatial.exp(mu.X[],x[],y[],tau.x,phi,1)

W[1:100]~spatial.exp(mu.W[],x[],y[],tau.y,phi,1)

#PRIORS

phi ~ dunif(0.05,4.6)

sigma~dgamma(0.10,0.10)

tau.x~dgamma(0.10,0.10)

tau.y ~ dgamma(0.10, 0.10)

beta~dnorm(2,1.0E-4)

#PARAMETERS OF INTEREST

ps.x <- 1/tau.x

ps.y<-1/tau.y

prod.X<-phi* ps.x

prod.Y<-phi*ps.y

nugg<-1/sigma



143

#EFFECTIVE RANGE FOR RESIDUALS, X, AND Y

eff.range.res<-(-1/phi)*log(.05*(ps.y+nugg)/ps.y)

eff.range.x<-3/phi

eff.range.Y<-(-1/phi)*log(.05*(ps.y+pow(beta,2)*ps.x+nugg)/

(ps.y+pow(beta,2)*ps.x))

}

Linear Model of Coregionalization

Model{

for (j in 1:100)

{

mu[j]<-beta*X2[j]

mu.X[j]<-0

}

#SPATIAL CORRELATION ON X AND Y

X2[1:100]~spatial.exp(mu.X[],x[],y[],tau.x,phi.x,1)

Y2[1:100]~spatial.exp(mu[],x[],y[],tau.y,phi.y,1)

#PRIORS

phi.x ~ dunif(0.05,4.6)

phi.y ~ dunif(0.05,4.6)

tau.x~dgamma(0.01,0.01)

tau.y ~ dgamma(0.010, 0.010)

beta~dnorm(2,1.0E-4)

#PARAMETERS OF INTEREST

ps.x <- 1/tau.x

ps.y<-1/tau.y

prod.X<-phi.x* ps.x

prod.Y<-phi.y*ps.y

#EFFECTIVE RANGE FOR X AND RESIDUALS

eff.range.x<-3/phi.x

eff.range.res<-3/phi.y

}
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Chapter 5 – Discussion

In this thesis we explore three ICG models that can be distinguished by their dif-

ferent isomorphic node sets. In Chapter 2, we show each ICG yields a different

factorization of the joint likelihood based on the marginal and conditional inde-

pendencies implied by the graphs. With the assumption of multivariate normality

(A1) for the nodes in the graph, we are able to formulate these graphs into iden-

tifiable statistical models by utilizing the results in Andersson et al. (2001). The

results in Chapter 2 and Chapter 3 help to parameterize these models as valid

spatial models.

In Chapter 2, we show that for IsoX it is sufficient to parameterize the marginal

covariance of X as a valid univariate spatial covariance. For IsoY, it is preferred

to parameterize the conditional covariance as a valid univariate spatial covariance,

otherwise there are potentially strong restrictions on the spatial range parameters.

For IsoXY, with two-isomorphic nodes, making use of the available multivariate

spatial covariances is preferred.

In Chapter 3, we demonstrate that IsoXY can be parameterized as a LMC

or as a separable model. Also, based on the connections between IsoY and IsoX

to LMC, we provide diagnostics for assessing if a one-isomorphic node model is

sufficient for a given dataset. Also, we show IsoX, IsoY, and IsoXY are not related

to spatial lag models. This is because in an ICG, we assume the same ADG within
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each site and use a chain link to connect ADG across sites as opposed to assuming

a directed connection between sites.

The results of Chapter 2 and 3 also suggest the appropriate interpretation of

spatial correlation in ICG. As described succinctly in Schmidt and Gelfand (2003),

data consistent with IsoXY can be thought of as arising from a multivariate spatial

process. This multivariate process consists of two dependent surfaces over the

entire study region, one for the residuals and one for the predictor. The mechanism

generating the dependence could be due to missing covariates at different scales,

or, as with the wet deposition variable in the stream sulfate data, the interpolated

values are considered an incomplete observation of one realization of the spatial

process. It is incomplete because there are only n sites located throughout the

continuous surface.

One could envisage more situations in which IsoY would be appropriate. In

this model, we assume that after accounting for the predictors at each site there is

‘left-over’ correlation between sites. This correlation could be a result of missing

spatially correlated predictors. It is interesting to note that the missing predictors

must be spatially correlated, otherwise the missing information would roll into

the non-spatial variance component. This can be easily demonstrated assuming

multivariate normality of a three-variable system. Also, simulations (results are

not included in this thesis) suggest that if the correct model is IsoY but the mean

is misspecified, the effective range estimates may underestimate the true value.

IsoX is a stepping stone for more complicated models with non-terminal iso-

morphic nodes. In practice, IsoX would be useful if a researcher was interested in
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the scale of the spatial process of a covariate. However, for interpreting regression

coefficients IsoX may not be appropriate. In essence, with IsoX we assume an

independent model for the responses, so the corresponding posterior intervals may

be too narrow. This observation raises a concern for more complicated models. If

we had a more complicated ADG with an incorrect isomorphic connection between

the identical site ADG, it is possible we could be misled to drop important directed

edges within the ADG.

In a non-graphical model Ver Hoef et al. (2001) found that, in terms of model

selection, it is better to use a geostatistical regression model allowing for correlated

errors than a standard regression model assuming independent errors. They found

that with an iid model they included a non-significant covariate more often than

they did in a spatial regression model. Essentially, the correlation ‘soaks’ up the

wrong specification of the mean.

In Chapter 4, we do consider the consequences of misspecification of the isomor-

phic node(s). Our simulation results suggest that the main issue with assuming an

incorrect one-isomorphic node model is the incomplete representation of the mul-

tivariate process. For example, with the stream sulfate data, we would be unable

to distinguish the more regional wet deposition spatial process from the more local

residual process. The posterior parameter estimates for IsoXY (LMC) suggest the

spatial correlation in wet deposition (effective range of 1392 km) is due to a more

regional mechanism such as wind and rain, whereas the residual correlation (ef-

fective range of 297.3 km) may be due to missing covariates on a watershed scale.

Interestingly, if we used only the estimates from the IsoXY (separable) we would
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be led to believe the spatial process of the residuals and wet deposition are more

similar with effective ranges of 923.4 and 1099 km. However, the better model is

the IsoXY (LMC) based on the deviance criteria, the empirical correlograms, and

the convergence diagnostics.

Several authors acknowledge that one analyst’s mean structure is another’s

variance structure. For example, Cressie (1993, pp. 212-224) states there is no way

to identify large-scale variation from small-scale variation, and he mentions that

the problem is typically resolved by using the scientific knowledge of the system.

In his Wolfcamp-Aquifer example, and he shows that anisotropy in one model’s

error process cannot be distinguished from the non-stationarity in another model’s

mean. Schabenberger and Gotway (2005, pp. 243-244) give a toy example in which

a deterministic mean that is a function of distance can be modeled as random

spatial variation. In terms of the ICG models, we model the spatial variation in

the error components, since an isomorphic node implies a non-zero off-diagonal in

the covariance matrix.

It is interesting to note that we could formulate a graphical spatial model in

terms of large-scale trend if we were to draw a graph that had directed edges con-

necting ADG at the different sites, as opposed to having a chain link between ADG.

Haas et al. (1994) use this approach to incorporate temporal correlation in a Bayes

network model for aspen stand growth. As discussed in Section 3.3, a directed edge

from Xs+h to Ys implies a spatially lagged model where (Ys 6 |= Xs+h

∣∣ Xs), or a

non-diagonal coefficient matrix, B. This non-diagonal coefficient matrix could be

specified as in Royle and Berliner (1999). They propose a neighborhood matrix
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similar to a CAR or SAR model for B where Ys is a function of the Xs and Xs′ ’s

where s′ are sites within the neighborhood of site s, again this model would not be

an ICG per se. Remember, the results from Andersson et al. (2001) dictate that

the coefficient matrix, B, is diagonal based on the ICG structures.

Clement and Thas (2007) use a ADG to define the spatial covariance structure

for a river monitoring network. This is a creative approach to deal with the network

topology of riverine systems. It would be interesting to pursue this sort of approach

with the IsoX or IsoY model as an application for stream network data and explore

if it still yields positive definite covariance matrices.

The essence of an ICG model is we account for the correlation between sites by

a chain link between identical ADG across sites. In this thesis, we model the spatial

correlation using the exponential correlation function with range parameter 1/φ.

Schabenberger and Gotway (2005, p. 140) question the use of the range parameter

as an estimate of patch size on a landscape. We could present a graph for all n sites

and utilize the inherent graphical structure of the isomorphic nodes to display the

effective range throughout the spatial domain. The graph of the chain component

(or the isomorphic node set) doesn’t necessarily have to be a maximally complete

set (a clique). A clique, defined for an undirected graph, is a set of nodes that are

all connected (complete) and not contained in any other set of all connected nodes

(maximal). The isomorphic node graph could be a union of cliques; in which the

cliques are defined by the effective range of the data. For instance, sites that have

an inter-site distance less than the effective range will have an undirected edge,

but those with an inter-site distance greater then the effective range will not have
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an undirected edge. Using this method we could construct a web-like image in

which the points (defined by their spatial coordinates) are connected in a G.I.S.

based on the estimated effective range. All the sites (nodes) within a clique would

be a ‘patch.’ This image can be used to assess if the effective range is meaningful

to interpret as ‘patch size’ for a particular application.

We feel our work contributes to the field of spatial statistics by providing an

alternative method for visually displaying multivariate spatial models. Also, we

present accessible suggestions for selecting among ICG models.
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