AN INVENTORY OF FILLED LANDS

IN THE

CHETCO RIVER

November 1972

ADVISORY COMMITTEE TO THE STATE LAND BOARD

Representative Anthony Meeker, Chairman
Senator Gordon W. McKay, Vice Chairman
Senator Betty Browne
Senator George Eivers
Representative Paul Hanneman
Representative Rod McKenzie
Representative Richard Magruder
Mr. Patrick Gilroy

Mr. Cecil L. Edwards, Executive Assistant

Prepared by the Advisory Committee's Engineering Staff under the direction of

Stanley F. Hamilton, P.E.
Staff Engineer
Oregon Division of State Lands

This report was funded by the Advisory Committee to the State Land Board and a grant from the U.S. Department of Labor's Emergency Employment Act of 1971
The Chetco River subbasin covers an area of 719 square miles within the limits of Curry County. However, only 359 square miles of this area are drained by the Chetco River. The remaining 360 square miles are drained by the Winchuck River, Pistol River and Hunter Creek. These three small streams empty into minor estuaries before discharging into the Pacific Ocean.

The Chetco River is located in the extreme southwest corner of Oregon and discharges directly into the Pacific Ocean at Brookings, Oregon approximately five miles north of the California border. The estuarine portion of the river has a total area of 100 acres of which 55 acres are tidelands. The remaining 45 acres are permanently submerged land. Approximately 51 acres have been deeded to private owners by the State Land Board. The river has a navigable length of 8.5 miles and the head of tidewater has been established at 1.5 miles above U.S. Highway 101 bridge.

The Chetco River offers excellent opportunities for both commercial and recreational fishing with abundant chinook salmon, silver salmon, steelhead trout, cutthroat trout, bass and shad fishing. Crab and shrimp fishing is also excellent in this area. At the present time, there is no railroad in Curry County and the Port is too shallow for large ocean-going ships. Therefore, industry has faced somewhat limited development in this area.

The purpose of this study was to determine the location, ownership history, owner of record and use of filled land in the Chetco River Estuary. Filled lands or "new land" and related terms are defined by Oregon Statute Law which in many cases paraphrases English Common Law. A few of the more important definitions pertaining to filled land are shown below.

274.905 Definitions for ORS 274.905 to 274.940.

As used in ORS 274.905 to 274.940, unless the context requires otherwise:

(1) "New lands" means those lands, as distinguished from bridges, wharves, quays and similar structures, protruding above the line of ordinary high water, whether or not connected with the adjoining or opposite upland or riparian lands on the same side of the thread of the stream, which have been created upon submersible or submerged lands by artificial fill or deposit.
(2) "Public body" means the State of Oregon or any port organized under the laws of this state or any dock commission of any city of this state.

ORS 274.005. (7) "Submerged lands," except as provided in ORS 274.705, means lands lying below the line of ordinary low water of all navigable waters within the boundaries of this state as heretofore established, whether such waters are tidal or nontidal.

(8) "Submersible lands," except as provided in ORS 274.705, means lands lying between the line of ordinary high water and the line of ordinary low water of all navigable waters and all islands, shore lands or other such lands held by or granted to this state by virtue of her sovereignty, wherever applicable, within the boundaries of this state as heretofore or hereafter established, whether such waters or lands are tidal or nontidal.

Selected terms pertaining to tidelands and tidal boundaries are defined in Appendix A.

A brief summary of the procedure used to obtain information about the landfills in Chetco River is shown below:

1) Obtain copies of all U.S. Army Corps of Engineers (U.S.C.E.) permits for landfills or related projects in study area. Compile and tabulate data.

2) Obtain aerial photographs covering entire study area from U.S. Army Corps of Engineers, U.S. Forest Service, Oregon State Highway Dept., and other agencies.

3) Prepare a comparison overlay showing earliest and latest shorelines. Tentatively locate landfills on overlay using permit data, aerial photographs, and large changes in shoreline as shown by the overlay. The list of charts used is shown at the end of this report.

4) Visit estuary to verify location of landfills. Document size, location, and use of fills.

5) Visit County Courthouse to obtain ownership and assessment data if available.

6) Compile and complete report.
Information collected during this study which pertains to landfill ownership has been summarized in Table I. Detailed sketches of each landfill are shown in Appendix B, and a plate showing the location and relative size of each landfill is located at the end of this text. (The shaded areas on the sketch and plate denote landfills.)

Table I shows ownership and location data. Each landfill has been designated by a two part number -- the first part being an arbitrary number assigned during this study and the second part being the Curry County Tax Lot number. In addition to ownership and location, this Table lists the area of the fill and indicates whether a Corps of Engineers' permit was issued.

The relative size and location of each fill discussed in Table I are shown on Plate I at the back of this report. In addition, detailed drawings of each landfill parcel and a brief summary of pertinent data concerning the fill appears in Appendix B.

1/ Oregon State Water Resources Board
2/ Crisis in Oregon Estuaries
3/ Crisis in Oregon Estuaries (U.S.C. and G.S. charts)
 (area between M.L.L.W. and M.H.H.W.)
4/ Total acreage deeded to private owners by State Land Board
5/ U.S. Army Corps of Engineers
SUMMARY

There are 5.10 acres of landfill on submerged and submersible lands in the Chetco River Estuary. Approximately 1.13 acres are located on state-owned submerged land -- the remaining 3.97 acres are on privately-owned submersible land.

The majority of these fills have been constructed within the past six years. The primary purpose for filling was to create better docking facilities for recreational and commercial boats (fishing and sports-craft).

We wish to take this opportunity to thank all the agencies which provided portions of the necessary information enabling the completion of this report. In particular, we wish to extend our gratitude to the following agencies:

U.S. Army Corps of Engineers, Portland District
Oregon State Water Resources Board
Oregon Division of State Lands
Curry County Assessor
Port of Brookings
APPENDIX A

DEFINITIONS OF TERMS PERTAINING TO TIDELANDS AND TIDAL BOUNDARIES
Mean Higher High Tide. - Same as Mean Higher High Water.

Mean Higher-High-Tide line. - Same as Mean Higher-High-Water line.

Mean Higher High Water. - The average height of the higher high waters over a 19-year period. See Higher High Water, Nineteen-year Tidal Cycle.

Mean Higher High Water Line. - The intersection of the tidal plane of mean higher high water with the shore. See Mean Higher High Water.

Mean High Tide. - Same as Mean High Water.

Mean High Water. - The average height of the high waters over a 19-year period. All high waters are included in the average where the tide is either semidiurnal or mixed. Where the type of tide is predominantly diurnal, only the higher high-water heights are included in the average on those days when the tide is semidiurnal. See mixed tides, semidiurnal tides, diurnal tides, Nineteen-year Tidal Cycle.

Mean High-Water Line. - The intersection of the tidal plane of mean high water with the shore.

Mean High-Water Mark. - Same as Mean High-Water Line.

Mean Lower Low Water. - The average height of the lower low waters over a 19-year period. The tidal plane used on the Pacific Coast as a datum for soundings on the hydrographic surveys and nautical charts of the Coast and Geodetic Survey.
Mean Low Water. - The average height of the low waters over a 19-year period. All low water heights are included in the average where the type of tide is either semi-diurnal or mixed. Where the type of tide is predominantly diurnal, only the lower low water heights are included in the average on those days when the tide becomes semi-diurnal.

Mean Low-Water Line. - The intersection of the tidal plane of mean low water with the shore.

Mean Sea Level. - The average height of the surface of the sea for all stages of the tide over a 19-year period, usually determined from hourly height readings. A determination of mean sea level that has been adopted as a standard for heights is called a sea level datum.

Mean Tide Level. - Same as Half-tide Level. A tidal datum midway between Mean High Water and Mean Low Water.

Ordinary High Water. - A nontechnical term considered by the Coast and Geodetic Survey to be the same as the tidal plane of mean high water.

Ordinary Low Water. - A nontechnical term considered by the Coast and Geodetic Survey to be the same as the tidal plane of mean low water.

Diurnal Tide. - Tides having a period or cycle of approximately one tidal day. Such tides exhibit only one high and one low water during a tidal day; the predominant type of tide in the Gulf of Mexico.

Semidiurnal Tides. - Tides having a period of approximately one-half a tidal day; the type of tide that is predominant throughout the world, with two high waters and two low waters each tidal day. Tides along the Atlantic Coast are of this type.

Mixed Tides. - Tides in which the presence of a diurnal wave is conspicuous by a large inequality in either the high or low-water heights, or in both, with two high waters and two low waters occurring each tidal day. Tides along the California (and Oregon) Coast are of the mixed type.

Tidelands. - The land that is covered and uncovered by the daily rise and fall of the tide. More specifically, it is the zone between the mean high-water line and the mean low-water line along a coast, and is commonly known as the "shore" or "beach." Referred to in legal decisions as between ordinary high-water mark and ordinary low-water mark. Tidelands presuppose a high-water line as the upper boundary.
Maps and Charts Used in This Study

Curry County Assessor's Maps
Department of Revenue Forest Cover Maps
United States Department of the Interior Geological Survey (Cape Ferrelo Quadrangle)

U.S. Army Corps of Engineers' Aerial Photos
1939 1962
1956 1965

Oregon State Highway Department Aerial Photos
1971

Oregon Division of State Lands Aerial Photos
1972
Chetco River (T4S-R13W)

Total Area: 100 acres
Tidelands: 55 acres
Tidelands Sold: 51 acres
Navigable Length: 8.5 miles
Tidewater: 1.5 miles above U.S. 101 Bridge

Tide Data

<table>
<thead>
<tr>
<th>Stage</th>
<th>M.L.L.W.</th>
<th>M.S.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.H.W.</td>
<td>+6.3</td>
<td>+2.65</td>
</tr>
<tr>
<td>M.L.W.</td>
<td>+1.2</td>
<td>-2.45</td>
</tr>
<tr>
<td>M.L.L.W.</td>
<td>0.0</td>
<td>-3.65</td>
</tr>
</tbody>
</table>

Port District: Port of Brookings
APPENDIX B
SKETCH PLATES OF LANDFILL PARCELS
<table>
<thead>
<tr>
<th>PARCEL</th>
<th>OWNERSHIP</th>
<th>DATES CONSTRUCTED</th>
<th>USE</th>
<th>PERMIT</th>
<th>FILL ACREAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRESENT</td>
<td>WHEN FILLED</td>
<td>ORIGINAL</td>
<td>PRESENT</td>
<td>NUMBER</td>
</tr>
<tr>
<td>1-101</td>
<td>Curry County</td>
<td>Curry County c/o</td>
<td>Jan.1968</td>
<td>Jan.1970</td>
<td>Marina</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Total acreage of filled land fronting Tax Lots 101-200-200-200-200-312-317