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Chapter 1: Introduction

Many users, such as scientists, are not familiar with (formal) query languages and

concepts like schema [22]. Also, they often do not exactly know the schema and

content of their databases. Thus, it is challenging for them to formulate their

information needs over semi-structured and structured data-sets. To address this

problem, researches have proposed keyword query interfaces (KQIs) over which a

user can express a query simply as a set of keywords without any need to know

any formal query languages and/or the schema of their databases [20, 9, 12]. As

an example, consider the DBLP (dblp.uni-trier.de) database which contains infor-

mation on computer science publications whose fragments are shown in Figure 1.1.

Suppose that a user wants to find the papers on cluster data processing by Sanjay

Ghemawat. These are the papers with IDs 01 and 03 in Figure 1.1. To retrieve

these answers, the user may submit the keyword query q1 : “cluster data processing

sanjay” to retrieve these papers.

Since keyword queries do not generally express users’ exact information needs,

ID Title Author Year

01 MapReduce: simplified data processing on large clusters Jeff Dean, Sanjay Ghemawat 2008

02 Enabling cross-platform data processing D. Agrawal, Sanjay Chawla 2011

03 MapReduce: a flexible data processing tool Jeff Dean, Sanjay Ghemawat 2010

04 Graph data processing on clusters Sanjay Rakesh 2014

05 Secure data processing in clusters Sanjay Balraj 2015
...

...
...

...

Figure 1.1: A Fragment of the DBLP Database
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it is challenging for a KQI to satisfy the true information needs behind these queries

[30, 12]. Generally speaking, the KQI finds the tuples in the database that contain

the input keywords, ranks them according to some ranking function that measure

how well each tuple matches the keywords in the query, and returns the ranked list

to the user. For instance, in our example, as an answer to q1 over the database in

figure 1.1, the user may get a ranked list of papers with IDs 04, 05, 01 and 03, as

all these records contain the keywords in q1. Although all of the returned tuples

contain the keywords in the query, only the last two, i.e., papers with IDs 01 and

03, are relevant to the input query.

Current KQIs often return too many non-relevant answers and suffer from

low ranking quality over large databases [2, 7, 8, 14, 30]. Therefore, users often

cannot find their desired information using these queries. Empirical evaluations

of keyword query answering systems over semi-structured data indicate that most

returned answers including the top-ranked ones are not relevant to the input query

[2, 7, 8]. Similar results have been reported in the empirical evaluation of the KQIs

over relational databases [14]. For example, in many cases, only 10%-20% of the

returned answers are relevant to the input query [2, 7, 14].

Moreover, as KQIs have to examine a large number of possible matches and

answers to the input keyword query, it takes a long time for them to answer

users’ queries [14, 6]. The query processing time is particularly time-consuming

over relational databases [6]. For queries over relational databases, a KQI has

to first find tuples in the base relations. Since none of the tuples in the base

tables may be sufficiently relevant to the query and have a relatively low score, the
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KQI has to compute all possible joins of these tuples across various base relations.

Empirical studies show that it may take up to 200-400 seconds to process a keyword

query over relational databases [6]. Since keyword queries may often be used in

an interactive fashion to explore the database, users need a significantly shorter

response time [12, 1].

It has been long established that in most information systems, query frequencies

and their relevant answers follow a power law distribution [32, 34]. This assumption

is the basis of our key intuition that there is a small subset of tuples in the database

that contains many relevant answers to most queries. Because this subset has far

fewer tuples than the entire database, the chance of making a mistake by KQI

over this subset, i.e., returning a non-relevant answer, is less than doing so over

the entire database [30]. Thus, on average, the KQI may return fewer non-relevant

answers to queries than when it processes the queries over the entire database.

Furthermore, since this subset is much smaller than the database, answering queries

over the subset will be potentially much faster.

For example, assume that papers with IDs 01, 03, and 05 are more popular

among users, i.e., they are relevant answers to more queries than the papers with

IDs 02 and 04 in the database shown in Figure 1.1. One may run q1 : “cluster data

processing sanjay” over only these records and get a ranked list of papers with

IDs 05, 01, and 03, which contains more relevant answer than the returned list of

tuples over the entire database illustrated in Figure 1.1. As a matter of fact, our

empirical results over several real-world query workloads confirm our key intuition.

The first challenge in enhancing the mentioned idea is to find such an effective
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subset. If the subset contains too few tuples, it will not contain the relevant answers

of the majority of the queries or it may contain only a small fraction of the relevant

answers of most queries (small recall). On the other hand, if the subset contains

too many tuples, then it will suffer from the same problems as running queries

over the entire database. Thus, we should address how to pick an effective subset

that contains many relevant answers to most queries.

Although an effective subset contains relevant answers of many queries, it will

not contain any relevant answers to a small fraction of queries. Thus, the database

system should identify these queries and use the full database to answer these

queries.

In this report, we open the debate on using an effective subset of a large

database to answer keyword queries over the database to increase their effective-

ness. To the best of our knowledge, this approach has not been examined to

improve the effectiveness of answering keyword queries over datasets. We show

that using an effective subset, the KQI can significantly reduce the number of

non-relevant answers in its results and reduce the query response time. Moreover,

we show that by carefully selecting the tuples in the effective subset, one can also

improve the recall of answering queries on average. The improvement of the recall

is, in fact, an interesting result as one may expect otherwise. To further improve

the effectiveness of answering queries, we propose a method that predicts whether

a query can be answered more effectively on the subset or the entire database

and forwards the query accordingly. One may increase the effectiveness of the

keyword search by designing new search and ranking algorithms. Our proposed
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approach is orthogonal to such methods and can be used with any of the keyword

search algorithms to increase its effectiveness. To this end, we make the following

contributions.

• We analyze the impact of using a subset of the entire database to answer

keyword queries. Our results indicate that there are effective subsets such

that, using only those subsets to answer queries, a KQI is able to improve

the average ranking quality, average recall, or both for submitted queries

(Chapter 3).

• As we discussed, the effective subset may not have all or some of the relevant

answers to many queries. We propose a novel method to predict whether a

query can be answered more effectively over the effective subset or the entire

database. A KQI uses the result of this method to forward each input query

to the effective subset or the entire dataset (Chapter 4).

• We provide a comprehensive empirical study of our method over multiple

real-world large databases and query logs. Our results indicate that our ap-

proach substantially improves both precision and recall of answering keyword

queries over large databases. They also show that our method to find the

right subset of the dataset to answer the query significantly increases ranking

quality and recall of answering queries (Chapter 5).
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Chapter 2: Related Works

Existing approaches to keyword search over relational data-bases fall into two

categories: graph-based systems and schema-based systems. Graph based methods

convert the database into a data graph and perform the search on it [9, 23, 16, 19].

Schema based approaches consider the schema as a graph and directly search the

relational database by generating and executing SQL queries [20, 21, 26, 29]. We

refer the reader to [12] for a survey of keyword search approaches. Although the

mentioned methods have high effectiveness and efficiency on small and medium size

databases, most of them do not scale well to larger databases [13, 14]. Our proposed

approach can be coupled with these search methods to increase the effectiveness

of search over large databases.

In [6], the authors propose a keyword search method where the system quickly

returns some answers to the user by scanning a part of the database, and generates

forms to allow the user to explore the rest. Our approach is different because we

aim to answer the queries in one shot without the need for further interactions.

Hawkin et al. [18] have studied the impact of collection size on information

retrieval effectiveness. Their hypothesis states that precision@20 on a sample of

a collection is less than precision@20 on the whole collection. This is because, in

their experiment, the number of relevant answers over the sampled collection is

less than the original collection. They provide a theoretical framework as well as
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experimental results to justify this hypothesis and examine the causes of the drop

in the search effectiveness. Furthermore, they state Document Frequency feature

used in most retrieval methods varies over sample and original collection. In their

experiments, they pick the subsets randomly, however, we pick the subsets based

on user interaction history.

Search engines store large inverted indexes to answer users’ queries. To reduce

the inverted index size and query time, search engines prune their inverted index.

The main objective of pruning is to reduce the size of the index as much as possible

without changing the top ranked query results. Pruning techniques fall into two

classes: keyword pruning and document pruning. In the first method, each term

in the inverted index is assigned a score. The score can be computed based on IR

scoring functions, access counts and information in the query log. Then, the key-

words with low scores and their relevant postings are removed from the index. In

the second approach, documents of each keyword are assigned a score and for each

keyword, the documents with low scores are pruned [31]. Our approach is different

than pruning in that its objective is to increases the search effectiveness whereas

the pruning methods only focus on improving search efficiency while maintaining

the search effectiveness. In fact, most of the pruning techniques sacrifice search

effectiveness for its efficiency [4]. Furthermore, some IR systems use a two-tier

index in which the first tier consists of a pruned index and the second tier is the

original index. When a query is submitted to the system, the first batch of answers

is computed based on the first tier of the index and the rest is computed based on

the second tier. While this approach increases the efficiency of the search, it leads
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to a degradation of the effectiveness [31]. In contrast, our system only uses one

source and it does not combine the results of queries from different tiers/sources.

Caching techniques have been used in search engines [5, 10], database manage-

ment systems and multi-tier client-server web-based applications [15, 28, 3, 25].

Our proposed framework has three major differences with a cache: 1) The goal

of caching is solely to improve the efficiency of the search but the main objective

of our framework is to increase the search effectiveness. 2) Size of a traditional

cache is fixed and determined based on the available resources however the size of

the effective subset does not depend on the available resources. In fact, finding

the right size for the effective subset is one of the main challenges of using such

systems. 3) A larger cache has a better overall performance but a larger subset

does not always perform better than a smaller one.

Volume and velocity of big data makes its handling and analytical processing

a costly process. To cope with these problems, a radical approach is to let the

database semi-autonomously remove some of its data. Kersten et al. [24] have

proposed a database with amnesia where tuples get forgotten based on different

strategies. Their goal is to fix an upper bound for the database and yet be able to

answer the submitted aggregate queries. Their work is different than ours as they

are focused on numerical data and they do not intend to increase the accuracy of

answering the queries.

Machine learning based ranking methods (a.k.a learn to rank methods) use

prior probabilities as a feature to train their ranking models [27]. These prior

probabilities are independent of any specific query and may be computed based
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on the previous interactions with users or side information, e.g., PageRank scores.

Our approach is different as we ignore the items with lower prior access count when

searching for relevant answers of popular queries instead of using the access counts

for ranking candidate answers.

Dong et al. [17] have studied the problem of picking a subset of data sources

to optimize data fusion accuracy. Their problem is similar to ours as both of them

are trying to discard a part of the data to achieve higher effectiveness or accuracy

but there are fundamental differences between the two. In their setting, adding

data sources is costly and data sources may have common information. But in our

setting, adding data does not have a cost and the added data does not have any

tuples in common with the existing data.
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Chapter 3: Impact of Database Size on The Search Effectiveness

In this chapter, we analyze the impact of database size on search effectiveness.

We focus on databases with a single relation. This can be a relational database

with one table or a collection of semi-structured documents such as XML or JSON

documents.

3.1 Empirical Study

There is an upper bound for the search effectiveness based on the database size.

However, it remains an open question whether the provided bounds are tight

enough to be used in practice. In this section, we answer this question by conduct-

ing extensive experiments on real-world datasets and query logs.

3.1.1 Datasets and Query Workloads

We conduct the empirical study using three datasets from Wikipedia, StackOver-

flow and MSLR-WEB30K. The Wikipedia dataset contains the information on 11.2

million Wikipedia articles1. Each article has a title and a body field. This dataset

also contains users’ access count for each article that is collected over a period of 3

1Available at: http://inex.mmci.uni-saarland.de/tracks/lod/2013/index.html
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months2 and we use them to compute data item popularities. For this dataset, we

carry out the experiments on two query workloads with different characteristics.

The first query workload is obtained from INEX Adhoc Track [8]. It is formed of

150 keyword queries and their relevant answers over Wikipedia. For each query, the

number of relevant answers varies between 1 and 134. The second query workload

is a sample of queries submitted to the Bing search engine. It contains more than

6000 keyword queries, most of which have a single relevant answer in Wikipedia.

Note that these two query workloads and the access count of Wikipedia articles

are collected independently. This is important because otherwise the data items

that are relevant to a query in our query log will have a high popularity which will

introduce a bias into the final results.

The StackOverflow dataset contains the information of StackOverflow questions

and answers3. Each post in the StackOverflow

website has a question and may have zero or one accepted answer. Using the

questions and their accepted answer, we build a query workload for StackOverflow

dataset. We pick the questions that have accepted answers in the dataset and use

the title of the question as a keyword query. The final query workload contains 1

million queries and 1 million relevant answers. Furthermore, each post in Stack-

Overflow has a view count that is the number of times a post has been viewed. We

use this number to compute data item popularities and query frequencies. More

precisely, if a question (or an accepted answer) has been visited a certain amount

2Available at http://dumps.wikimedia.org/other/analytics
3Available at: https://archive.org/download/stackexchange
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of time, we set the frequency of the query (or the popularity of the accepted an-

swer) to this number. We divide the view counts into two independent sets, one

for queries and the other for the answers.

The MSLR-WEB30K dataset contains 30,000 queries sampled from Bing search

engine and 3.7 million distinct URLs. Rows of this dataset are query-URL pairs.

Each pair consists of query ID, URL ID and a 136 dimensional feature vector

including query-URL click count. We use URL click counts to compute access

counts of each URL. Furthermore, for each query, we use the maximum query-

URL click count as the frequency of that query. More details on this dataset can

be found in [33].

3.1.2 Implementation

We have implemented the experiments using Apache Lucene 6.54 with BM25

scoring method [30]. For the Wikipedia dataset where each article has a title and a

body, we compute the relevance score of the document as a weighted sum of scores

of its attributes. We find the optimal values of the weights using grid search. For

each query, we retrieve the top k relevant tuples. We set the k = 20 for p@20

and MRR and k = 100 for recall. Some search engines use the access count of

a web page as a feature in their scoring function to increase the effectiveness of

the retrieval. This approach is called score boosting. We have tried boosting the

retrieval system in our experiments and it did not have a significant improvement.

4https://lucene.apache.org/
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Thus, we report the results of retrieval without any boosting techniques[30].

3.1.3 Experimental Environment

We run the experiments on a

Linux server with 30 Intel(R) Xeon(R) 2.30GHz cores, 500GB of memory, 100

TB of disk space and CentOS 7 operating system. We have implemented the

experiments using Java 1.8 and Python 3.6.4.

3.1.4 Building The Subset of The Database

We evaluate the effectiveness of query answering over subsets with different sizes.

We build subsets of different sizes and compute the effectiveness using each subset.

Given database I, let Ik be the subset of I that contains the top k% of the most

popular tuples in the database. We build a sequence of subsets of I as {I1 . . . I100}.

Given tuple t ∈ I, we denote the popularity of t as w(t). The sequence of the

subsets has the following characteristics:

1. Ii ⊂ Ii+1

2. ∀t ∈ Ii,∀t′ ∈ Ii+1 : w(t) ≥ w(t′)

We submit queries of the different query workloads to each subset and report the

results of each dataset.
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Figure 3.1: Effectiveness of answering INEX queries

Figure 3.2: MRR of answering INEX, Bing and StackOverflow
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3.1.5 Results of The Wikipedia Experiment

Figure 3.1 shows the effectiveness of answering INEX queries over subsets I1 . . . I100

of Wiki-pedia. The x axis shows the size of the subset as a fraction of the whole

database and the y axis shows the average p@20 and recall of the queries. For

very small subsets, the system has a low p@20 because these subsets do not contain

enough relevant answers. As the size of the subset gets larger, p@20 increases until

a certain point. After this point, even though increasing the size, adds more

relevant answers to the subset, it increases the chance of making mistakes by the

database and we see a decrease in the p@20. The same analysis holds for recall.

Figure 3.2 shows a similar experiment on Wikipedia using Bing queries. Most of

these queries have a single relevant answer. Thus, we use the mean reciprocal rank

of the results to measure the effectiveness of the search. For this query workload,

I2 has the highest MRR and for subsets larger than I2, MRR has a decreasing

trend.

3.1.6 Results of The StackOverflow Experiment

Figure 3.2 shows the effectiveness of query answering over different subsets of

the StackOverflow dataset. The subset with 18% of the data has the highest

effectiveness. For larger subsets, the effectiveness gradually decreases. In this

experiment, there is a one-to-one mapping between the queries and their answers.

Thus, excluding one answer from a subset will result in zero relevant answers for its

corresponding query. More precisely, the effective subset with 18% of the data only
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Figure 3.3: Effectiveness of MSLR queries

contains the relevant answers of 18% of the queries. However, these queries are

submitted so frequently that on average, the subset achieves higher effectiveness

than the full collection.

3.1.7 Results of the MSLR-WEB30K Experiment

Figure 3.3 shows P@10 and recall@10 and nDCG@10 of query answering over

different subsets of MSLR dataset. The results show that the subset of URLs with

54% of the URLs achieves the highest search effectiveness. In this experiment,

the effective subset is larger than the previous cases. Also, the decrease in the

effectiveness is not as intense. One reason for this is that the URLs of MSLR

dataset are sampled from results of Bing and for each query more than 54% of the

URLs are relevant answers. However, in a regular collection, number of relevant

answers for each query is a very small percentage of the whole collection.

These experiments show that, given a database, if the size of the database
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grows larger than a threshold, the effectiveness of query answering will drop. As

the database gets larger, the decrease in effectiveness becomes more significant. In

the next section, we use these results to build a subset of the database that delivers

significantly higher effectiveness in answering queries.
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Chapter 4: Improving The Effectiveness of Answering Infrequent

Queries

In this chapter, we present an approaches to improve the search effectiveness of the

infrequent queries. We develop a methods that, given the subset and full database,

predict which one of these data sources deliver a higher search effectiveness. If the

models predict that the full database has a higher search effectiveness, then the

query is classified/labeled as infrequent. The queries that are labeled as infrequent,

are submitted to the full database rather than the subset.

4.1 Detecting Infrequent Queries using Machine Learning

In this section, we present a method to train a logistic regression classifier that

predicts if a query is infrequent or not. Each query is represented by a feature

vector. We extract the features over the subset and the rest of the database i.e.

database excluding the subset. We present three sets of features that are used in

our system and explain why each group is useful for building the classifier.
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4.1.1 Content-Based Features

Content-based features are based on the probability distribution of words in the

given database. Query likelihood score explained in the previous section is one of

the content-based features. Some other examples of these features are as follows:

Covered term ratio: is the fraction of the terms in the query that appear in a data

source. If a query has a higher covered term ratio over the subset compared to

the rest of the database, answering this query over the subset will return relevant

results with a higher likelihood. For example, consider a user that is looking for

Michael Stonebraker’s paper on VoltDB and submits query stonebraker voltDB.

If the subset contains the VoltDB paper, the subset has covered term ratio = 1.

Now, if the rest of the database contains other papers of Stonebraker which are

not about VoltDB, the covered term ratio of the rest of the database for the given

query will be 1
2
. In this case, the subset has a better coverage than the rest of

the database which means the query is not likely to be infrequent. However, if

the VoltDB paper is included in the rest of the database, the feature will have

a higher value over the rest of the database compared to the subset and with a

higher chance, the query is infrequent.

Tuple Frequency: is the number of the tuples that a term appears in. Assume a

user who is looking for papers of Stonebraker and submits the query Stonebraker.

Let’s assume the subset contains 50 papers by Stonebraker and the rest of the

database contains 5. In this case, Tuple Frequency can be a good signal that the

database should use the subset to answer the query. For queries with more than
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one term, the aggregate tuple frequency of the terms is used as the final value of

the feature. We use different aggregate functions such as average tuple frequency

of terms of the query.

Most of the content-based features are defined based on the terms of the query.

We extract the same features for bi-words of the query as well. For example,

given query data processing and feature Tuple Frequency, we extract the tuple

frequency of the term data, processing and also the tuple frequency of the bi-word

data processing.

4.1.2 Popularity-Based Features

One of the major distinguishing factors of the subset from the rest of the database

is the popularity of the tuples in them. More precisely, any tuple that has a higher

popularity than a certain threshold is included in the subset. We use this charac-

teristic of the subset to design a second set of features which reflects the popularity

of the relevant answers of a query. Inspired by the language model approach, we

design a popularity model which is a statistical model of the popularity of the

terms in a database. For each term in the database, we compute two popularity

statistics: 1) The average popularity of the tuples containing that term. 2) The

minimum popularity of the tuples containing that term. We use these two statistics

to estimate the popularity of terms of a query. Then we aggregate the popularities

of all query terms into a single value that estimates the popularity of the relevant

answers of that query. For aggregation, we use minimum and average functions.
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Consider a user that is looking for papers on data processing using MapReduce

and submits map-reduce framework. The term framework can happen in tuples

with different popularities thus its popularity is 0.45 whereas the term MapReduce

happens in the tuples with high popularity and it’s popularity is 0.85. The average

popularity of these two terms is 0.65 which is an indicator that most of the rele-

vant answers of this query can be popular, thus query is not likely to be infrequent.

Similar to content-based features, we extract popularity features for terms as well

as bi-words of the query.

4.1.3 Query Difficulty Based Features

IR researchers have developed query difficulty metrics to predict the quality of the

search results of a query [11]. Given a query and a data source, these methods

compute a number that indicates the hardness of a query. These metrics can be

applied to our problem to extract further features. Let us say the user submits

query q where its difficulty metric over the full database is a value close to zero.

This is an indicator that answering this query over the full database is easy and

will result in high search effectiveness. In this case, it is reasonable to use the

full database rather than the subset. However, if the estimated query difficulty

is high over the full database, it means the quality of the search over the full

database is likely to be low and one may consider submitting it to the subset. We

use different difficulty metrics such as Clarity Score, Collection Query Similarity,

etc [11]. We only include the difficulty metrics that can be computed for a query
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without actually conducting the search. There are other difficulty metrics that

are computed based on the search results, however, using those metrics in our

system would be inefficient as it doubles the search time. More precisely, to use

those features, one should conduct the search twice, once to compute the metric

and classify the query and second time to conduct the search on the subset or full

database based on the results of the classifier.

4.1.4 Training The Infrequent Query Classifier

We use the logistic regression method to train our classifier. Logistic regression is a

good fit for this problem because of the following reasons. First, it has higher inter-

pretability and it is easier to see which features have a higher impact on the classifi-

cation decision. Second, when the

signal-to-noise ratio is low, logistic regression usually outperforms other meth-

ods. To train the classifier, we use a sample of the query workload. To build the

training data, we submit each query in the sample once to the subset and once

to the full database. If the search effectiveness over the full database is larger

than the subset, we label the query as infrequent. Otherwise, it is labeled as a

popular query. We extract 36 features per each field of the database. Most of the

features mentioned above are extracted once over the subset as fs and once over

the rest of the database as fr. A comparison of these two features can be an indi-

cator of the class of the query. Since logistic regression is a linear model, it does

not consider the non-linear comparison of these features. To include non-linear
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comparison of these features, we add division of them defined as fs
fr

. These extra

features represent the multitude of the difference between features.

The final classifier is trained using the extracted features and their non-linear

combinations. Using this classifier, we are able to predict the type of query prior

to the search and submit the infrequent queries to the full database. We evaluate

the effectiveness of this system in Chapter 5. Furthermore, we show the overhead

of using a classifier prior to search is negligible compared to the search time. This

is because the features are extracted using the pre-built indexes on the database.

Also applying logistic regression classifier to a feature vector is very fast. The

detailed performance evaluation of this system is presented in Chapter 5.
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Chapter 5: Experiments

In this section, first, we evaluate the effectiveness of the subsets we have built

based on exhaustive search. Then, we evaluate the effectiveness of query answering

using our system. Furthermore, we evaluate the accuracy of the infrequent query

detection method presented in Chapter 4.

5.1 Experiment Setting

We use the normalized forms of Wikipedia and StackOverflow

databases introduced in Section 3.1. The details of these datasets are shown in

Table 5.1. The Wikipedia database contains 5 tables: article, article-link, link,

article-image and image stored in a MySQL database. The indexed text attributes

used for search are article.body, image.caption and link.url. This dataset con-

tains access counts for articles, images, and links. The StackOverflow dataset

contains the information of StackOverflow posts with the following tables: posts,

post-comment, comments, post-tag, tags and their access counts. The attributes

used for search are posts.text, tags.tag names and comments.body. We store these

databases in a MySQL 5.1 engine. The query workloads used in this section are

the same as Section 3.1.

To create the tuple sets with relevance score we use Apache Lucene and
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Table 5.1: Dataset Information
Dataset #Tuples #Relations Size (GB)
Wikipedia 130M 5 35
StackOverflow 304M 5 2.3

Table 5.2: Evaluating the built subset against full database

Experiment
Effectiveness
Subset DB

INEX-p@20 0.33 0.22
INEX-rec 0.29 0.22
Bing 0.51 0.08
StackOverflow 0.51 0.38

BM25 scoring technique [30]. We limit the size of the generated tuple sets based

on a fraction of their max score. For example, if the highest score in a tuple set is

s, we remove all the tuples with a score less than s
2

from the tuple set. This helps

the IRStyle method to process the queries a reasonable time. For the experiment

on p@20 and MRR, we retrieve the top 20 tuples and for the recall we retrieve the

top 100 tuples. The experiment environment is similar to Section 3.1.

5.2 Evaluation of The Effective Subset

In this section, we evaluate the effectiveness of our subset estimator method. Given

a database and a query workload, we randomly select 20% of the queries as train-

ing queries and keep the rest for testing. For INEX queries, we run the experiment

once to maximize the p@20 and once to maximize the recall. For Bing and Stack-

Overflow we run the algorithm with MRR as the effectiveness function. We execute
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the test queries using IRStyle search method explained above once over the full

database as the baseline and once over the effective subsets. For INEX experi-

ment we report precision-at-20 (p@20) and recall as the effectiveness metrics and

for Wikipedia-Bing and StackOverflow, we report MRR (as the queries of these

experiments have one relevant answer).

The results of this experiment are shown in table 5.2. The rows are associated

with experiments and the columns are the results of that experiment. As shown

in the table, the subset delivers higher effectiveness than the baseline in all four

experiments. The highest gain happens in the Bing experiment. This is because for

the Bing experiment, the effective subset is much smaller (2%) and as discussed in

Chapter 3, a smaller subset results in much fewer search mistakes by the database

system. Furthermore, the effective subset for the recall has the largest size as

explained in Chapter 3.

5.3 Evaluating The Infrequent Query Detection

In this section, we evaluate the query type prediction method. The objective

of query type prediction is to detect the infrequent queries and improve their

results while maintaining high average effectiveness for all queries. We present the

effectiveness of query answering using the two infrequent query detection methods

and compare it with the cases that we do not use this approach. Following is a list

of different settings used for evaluating the infrequent query detection method:

• Subset: Using the effective subset to answer all queries
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Table 5.3: Results of answering Bing Queries

Experiment
MRR

Popular Infrequent All

Subset 0.53 0.03 0.51
Database 0.07 0.51 0.08
ML 0.48 0.28 0.50
Best 0.53 0.51 0.53

• Database: Using the database to answer all queries

• ML: Using the logistic regression model to predict infrequent queries and

reroute them to the database

• Best: Using an Oracle that knows the exact type of the query and routes the

infrequent queries to the full database

To simulate the Oracle, we submit the query to both database and the subset and

pick the results with higher effectiveness. The result of using the Oracle shows the

best possible effectiveness that one can achieve. We carry out the evaluations on

different datasets as before.

In the first experiment, the effective subset is built over Wikipedia using Bing

train queries, and we train the logistic regression model as explained in Chapter

4. The accuracy of this model is 0.83. Then we use the test queries to evaluate

the machine learning based infrequent query detection method. The result of this

experiment is shown in Table 5.3. The columns of the table show the search

effectiveness (MRR) of popular queries, infrequent queries, and all queries as well

as the average running time of all queries in seconds. The rows indicate different



28

Table 5.4: Results of answering StackOverflow queries

Experiment
MRR

Popular Infrequent All

Subset 0.56 0.01 0.51
Database 0.36 0.50 0.38
ML 0.55 0.29 0.49
Best 0.56 0.50 0.55

settings related to each system. For all queries, the subset outperforms all other

methods. However, it has a very low MRR of 0.03 for infrequent queries. The ML

method has high effectiveness for all queries (0.50) and it increases the MRR of

infrequent queries from 0.03 on subset to 0.28.

Next, we evaluate our system using the StackOverflow dataset using a similar

approach as above. The results of this experiment are shown in Table 5.4. Similar

to the previous experiment, the system that only uses the subset achieves the

highest MRR for all queries. However, it suffers from low MRR on bad queries.

The system that uses the full database has an opposite performance and finally

the machine learning based infrequent query detection method is able to increase

the effectiveness of infrequent queries from 0.01 to 0.29 while maintaining a high

MRR for all queries.
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Chapter 6: Conclusion

The objective of this report was to demonstrate the limitations of current key-

word query systems over large databases and propose a method to improve these

boundaries. Our main idea is to enhance user interaction information to identify

a hot subset of the database, build a system based on this subset and use machine

learning to utilize it in a keyword query system. Experimental results of evaluating

this approach indicates that it is successful in increasing the effectiveness of the

keyword search systems.
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