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Grid Search Based Production Switching Heuristic
for Aggregate Production Planning

INTRODUCTION

1. PROBLEM ENVIRONMENT

Aggregate production planning (APP) involves the

simultaneous determination of a company's production,

inventory and employment levels over a finite time horizon.

Its objective is to minimize the total relevant costs while

meeting non-constant, time varying demand, assuming fixed

sales and production capacity [Silver 1967]. Since the

early 1950's, approaches for APP have varied from

simplistic, graphical methods to more sophisticated

optimizing, search, parametric, and dynamic methods. These

fall into two broad categories those which guarantee a

mathematically optimal solution with respect to the model

and those that do not. Within each of these categories are

numerous alternative approaches, resulting in an abundance

of theoretical solution procedures.

Despite all the approaches available to managers, the

impact of APP methods on industry operating practices has

been insignificant. Several reasons are cited for the lack

of assimilation of aggregate planning techniques into

management practice [Mellichamp and Love 1978].

Foremost among these is that the optimal solution

models in APP linear programming (LP) [Hanssmann and Hess

1960], goal programming (GP) [Goodman 1974, Lee and Moore
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1974], transportation techniques (TPT) [Bowman 1956], and

the linear decision rule (LDR) [Holt et al. 1960] all

incorporate various simplifying assumptions which limit

their-applicability. As an example, cost functions

associated with mathematical programming approaches (LP,

GP, TPT) are all required to be linear. If non-linear cost

functions are used instead, piecewise linear approximations

may be employed to convert them into suitable linear forms.

However, the additional complexity required to perform

these conversions does not justify wide application of the

various models involving non-linear cost functions.

As a second example, the LDR approach, which has

become a standard for comparison, utilizes quadratic cost

functions for all components of costs. In actual industry

situations, however, some costs are non-linear. None of

the optimal approaches allow for mixed costs.

Another troublesome simplification involves the way in

which demand is treated in the mathematical programming

approaches. All these methods incorporate the assumptions

that demand forecasts both are accurate and equally

weighted over the planning horizon. The result is that the

production level for the forthcoming period can be

significantly affected by forecasts for future periods even

though forecasts for distant periods are less reliable than

forecasts for the immediate future [McGarrah 1983].



Near-optimal approaches, including Search decision

rule (SDR) [Taubert 1968], Management coefficient model

(MCM) [Bowman 1963], Parametric production planning (PPP)

[Jones 1967], overcome some of the problems associated with

optimal approaches. Complex cost functions which accurately

describe actual costs may be embodied in most near-optimal

models. An analysis of the impact of forecast errors on

strategy development may also be performed by incorporating

stochastic demand characteristics in near-optimal models

[Mellichamp and Love 1978]. Despite these improvements,

however, these models suffer from a limitation that also

applies to optimal models. That is, most of these models

produces a different set of values for the decision

variables production rate (Pt), work force level (Wt),

and inventory level (It)- for each period in the planning

horizon. This probably is the single most important factor

that has contributed to limiting the application of all

aggregate planning models. In other words, a majority of

APP approaches incorporate continuous decision variables

that require frequent adjustments to both production and

work force settings to achieve a minimum cost solution.

A large set of decision variable values which

frequently adjust the production and workforce level on a

planning period by period basis has been observed as being

inconsistent with management practices in industry. The

Production Switching Heuristic [Mellichamp and Love 1978]
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was developed to address this inconsistency with the

belief, thus, of having more appeal to practicing managers.

This heuristic is based on the observation that

managers seem to favor one large change in work force over

a series of smaller and more frequent changes over the

planning horizon. Thus, as long as demand is being met,

i.e., stockouts do not occur too frequently and inventory

levels do not increase drastically, managers are often

inclined to maintain the same production and work force

levels, making minor adjustments when necessary.

Furthermore, a policy that requires frequent hiring

and firing of personnel might be impractical because of

prior contract agreements, or undesirable due to the

potential negative effects on the firm's public image

[Nahmias 1989]. If production is confined to a relatively

small number of prescribed levels (so that adjustment in

production is achieved by given discrete steps), experience

of performance and scheduled activities at each level

provide good opportunities for controlling costs and

minimizing the effects of change [Eilon 1975].

From these and other arguments Mellichamp and Love

reasoned that an aggregate production planning methodology

which utilizes near-optimal solution techniques to select a

small number of decision variable values that are efficient

over most levels of demand would have much potential for

industry applications. Interestingly, the basic theory of
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such a method had been previously developed by Orr (1962).

It was this method which was dressed up to become the

Production Switching Heuristic (PSH) and applied to a

limited set of production problems by Mellichamp and Love

[Mellichamp and Love 1978].

2. RESEARCH OBJECTIVES

When production operations are carried out at certain

predetermined levels (analogous to opening or shutting of a

production line), it is not appropriate to treat the level

of production as a continuous variable. Mellichamp and Love

(1978) described a modified random walk production-

inventory heuristic for three production levels which they

felt should appeal to managers on the basis of simplicity

as well as efficiency. This approach is directed to

situations where three-production levels (high, normal, and

low) can only be changed in discrete increments or

decrements, such as adding or removing a production shift.

In their approach they also described switching

algorithms for desirable fixed production levels by

analyzing alternative values of various control parameters

which provided a set of production, work force, and

inventory decisions which were directly related to cost

performance over a planning horizon. The problem,

therefore, was to find the best set of the control

parameters. The Production switching heuristic of

Mellichamp and Love, however, limited grid search options
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in analyzing all sets of control parameters in effect

hindering their approach from determining a better

solution.

In this research, the 'production switching heuristic

by Mellichamp and Love (1978) is modified by using a more

elaborate grid search method, which exhausts reasonable

incremental values over the entire cost surface. This

search method widely opens all grid options to evaluate a

broader set of alternative parameters than the original PSH

approach.

Two different schemes have been proposed as options of

the grid search with this alternative approach for

evaluating the productivity function used in PSH and then

to determine the optimum combination between production and

work force sizes. The productivity function, developed in

PSH, has been modified in the proposed approach to provide

for a better balance between regular work force and

overtime rates than that in PSH. Furthermore, it has been

demonstrated that the modified productivity function yields

better results for reducing overweight regular payroll

costs.

To evaluate and validate the modified approach

offered, the paint factory problem first described by

Modigliani et al. (1955) has been used. Based on the two

search schemes, which are labeled as MPSH1, and MPSH2, the

paint factory problem is solved using THINK PASCAL software
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on an IBM PC compatible computer. The results are compared

with those obtained from the Parametric Production Planning

(PPP), PSH, and Linear Decision Rule (LDR)- (i.e both other

near-optimal and optimal solutions) reported in Mellichamp

and Love to demonstrate a better performance of the

modified PSH.
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LITERATURE REVIEW

A review of literature on APP will reveal a number of

important issues. These issues are described in the

sections that follow. They include: general background

about APP and its role in production planning and

operation; the common APP strategies used by practitioners

and the costs relevant to those strategies; the various

problems with various APP approaches; general APP

methodology and its classification; and the significant

historical highlights of the more notable APP models

developed since 1950.

I. BACKGROUND

Production planning is concerned with the

determination of production, inventory, and work force

levels to meet fluctuating demand requirements. Normally,

the physical resources of the firm are assumed to be fixed

during the planning horizon of interest and the planning

effort is oriented toward the best utilization of those

resources, given the external demand requirements. A

problem usually arises because the times and quantities

imposed by the demand requirements seldom coincide with the

times and quantities which result in the efficient use of

the firm's resources. Whenever the conditions affecting the

production process are not stable in time (due to changes

in demand, components of costs, or capacity availability),



9

production should be planned on an aggregate level to

ensure the most efficient utilization of resources. The

time horizon (commonly 6 to 12 months) of this planning

activity is dictated by the nature of the dynamic

variations such as seasonalities.

Since it is usually impossible to consider every fine

detail associated with the production process while

maintaining such a long planning horizon, it is mandatory

to aggregate the information being processed. This

aggregation can take place by consolidating similar items

into product groups, different machines into machine

centers, different labor skills into labor centers, and

individual customers into market regions. The type of

aggregation to be performed is suggested by the nature of

the planning systems to be used, and the technical as well

as managerial characteristics of the production activities.

Aggregation forces the use of a consistent set of

measurement units. It is common to express aggregate demand

in production hours [Hax and Candea 1984].

Once the aggregate plan is generated, constraints are

imposed on the detailed production scheduling process which

decide the specific quantities to be produced of each

individual item. These constraints normally specify

production rates or total amounts to be produced per month

for a given product family. In addition, crew sizes, levels
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of machine utilization, and amounts of overtime to be used

are determined.

The output of the aggregate production planning

process is a master schedule for final assembly/production.

Figure 1 shows a schematic diagram of the aggregate

planning function and its place in the hierarchy of

production planning decisions [Vollmann et al. 1988].

Figure 1. A Schematic Diagram of a Sequential Production Planning Process
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2. STRATEGIES AND COSTS IN APP

In general, APP can take either one or a combination

of several pure strategies in responding to fluctuating

demand [Buffa and Taubert 1972]:

1. Management can change the size of the work force by

hiring and laying off, thus allowing changes in the

production rate to take place. Excessive use of these

practices, however, can create severe labor problems.

2. While maintaining a uniform regular work force,

management can vary the production rate by introducing

overtime and/or idle time.

3. While maintaining a uniform production rate,

management can anticipate future demand by

accumulating seasonal inventories. The tradeoff

between the cost incurred in changing production rates

and holding seasonal inventories is the basic question

to be resolved in most practical situations.

4. Management can also resort to planned backlogs

whenever customers may accept delays in filling their

orders.

5. Additionally, Management may have the opportunity to

use subcontracting as a suitable alternative to a part

of production.

As with most of the optimization problems considered in

production management, the goal of the analysis is to

choose the aggregate plan that minimizes cost. It is
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important to identify and measure those specific costs that

are affected by the planning decision (Bedworth and Bailey

1987).

1. Smoothing costs. Smoothing costs refer to those

costs that accrue as a result of changing the production

levels from one period to the next. In the aggregate

planning context, the most salient smoothing cost is the

cost of changing the size of the work force. Increasing the

size of the work force requires time and expense to

advertise positions, interview prospective employees, and

train new hires. Decreasing the size of the work force

means that workers must be laid off. Severance pay is one

cost of decreasing the size of the work force. Other costs

associated with decreasing the work force size which are

harder to measure are (1) the costs of a decline in worker

morale that may result and (2) the potential for decreasing

the size of the labor pool in the future, as workers who

are laid off acquire jobs with other firms or in other

industries.

2. Holding costs. Holding costs are the costs that

accrue as a result of having capital tied up in inventory.

If the firm can decrease its inventory, the money saved

could be invested elsewhere with a return that will vary

with the specific company. These costs are usually charged

against the inventory remaining on hand at the end of the

planning period.
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3. Shortage costs. Holding costs are charged against

the aggregate inventory as long as it is positive. In some

situations it may be necessary to incur shortages, which

are represented by a negative level of inventory. Shortages

can occur when forecasted demand exceeds the capacity of

the production facility or when demands are higher than

anticipated. For the purposes of aggregate planning, it is

generally assumed that excess demand is backlogged and

filled in a future period. In a highly competitive

situation, however, it is possible that excess demand is

lost and the customer goes elsewhere. This case, which is

known as lost sales, is more appropriate in the management

of single item and is more common in retailing than in a

manufacturing context.

4. Regular time costs. - These costs involve the cost

of producing one unit of output during regular working

hours. Included in this category are the actual payroll

costs of regular employees working on regular time, the

direct and indirect costs of materials, and other

manufacturing expenses. When all production is carried out

on regular time, regular payroll costs become a "sunk

cost,' since the number of units produced must equal the

number of units demanded over any planning horizon of

sufficient length. If there is no overtime or worker idle

time, regular payroll costs do not have to be included in

the evaluation of different strategies.
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5. Overtime and subcontracting costs. - Overtime and

subcontracting costs are the costs of production of units

not produced on regular time. Overtime refers to production

by regular time employees beyond the normal work day, while

subcontracting refers to the production of items by an

outside supplier.

When planning is done at a relatively high level of

the firm, the effects of intangible factors are more

pronounced. Any solution to the aggregate planning problem

obtained from a cost-based model must be considered

carefully in the context of company policy.

3. PROBLEMS IN APP

For the high-volume standardized product system and

for the closed job shop system (a shop not open to job

order outside the enterprise) the concepts and methods of

aggregate planning and scheduling are of particularly great

importance. They are important if managers are to obtain

the best possible use of facilities within the constraints

of policies regarding hiring and layoff, inventories, the

use of outside capacity (subcontracting) and internal

capacity. Indeed, the process of aggregate planning yields

a range of alternative capacity utilizations for

management's consideration. In employing the term aggregate

planning, we include scheduling, and as used here the term

schedule means a production program. The economic

significance of aggregate planning and scheduling is by no
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means minor, for we are confronted with broad, basic

questions such as the following: To what extent should

inventory be used to absorb these fluctuation in demand

that will occur over the next six to 12 months? Why not

absorb the fluctuations simply by varying the size of the

work force? Hire and fire as demand increases or decreases.

Why not maintain a fairly stable work force size and absorb

fluctuations through changing production rates by resorting

to overtime or shorter hours? Why not maintain a fairly

stable work force size and production rate and let

subcontractors wrestle with the problems of fluctuating

order rates? Should we purposely not meet all demands? In

most instances there would not be a single pure strategy

that would be applicable but rather a combination of the

various strategies. There are costs associated with each

strategy, so what we seek is an astute selection of a

combination of the alternatives.

If we use inventories to absorb seasonal changes in

demand, capital and obsolescence costs as well as the costs

associated with storage, insurance, and handling will tend

to increase. Besides seasonal factors, the use of

inventories to absorb short-term fluctuations will incur

increases in the same costs compared to some ideal or

minimum inventory level necessary to maintain the

production process. When inventories fall below this ideal

or minimum level, stock-out costs will increase and all of
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the costs associated with short runs will increase. Changes

in the size of the work force affect the total cost of

labor turnover. When new workers are hired, there are costs

of selection, training, and lower production effectiveness.

The termination of workers may involve unemployment

compensation or other termination costs as well as an

intangible effect on public relations and public image. If

changes in the size of the work force are large, it may

mean adding or subtracting an entire shift. The incremental

costs involved here are shift premiums, incremental

supervision and other overheads. If we absorb fluctuations

through changes in the production rate, we will absorb

overtime premium costs for increases and probably idle

labor costs (higher average labor costs per unit) for

decreases. Usually managers try to maintain the same

average labor costs by reducing hours worked below normal

levels to some extent. Where undertime schedules persist,

labor turnover and the costs attendant to it are likely to

increase. Many of the costs affected by aggregate planning

and scheduling decisions are difficult to measure and are

not segregated in accounting records. Some are alternative

costs of opportunity, such as interest costs on inventory

investment; some cost are not measurable, such as those

associated with public relations and public image. However,

all of the costs are real and have a bearing on aggregate

planning decisions [Groff and Muth 1972].
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4. APP METHODOLOGY

Models have played an important role in supporting

management decisions in aggregate production planning.

Anshen et al. (1958) indicate that models are of great

value in helping managers to :

1. Quantify and use the intangibles which are always

present in the background of their thinking but which

are incorporated only vaguely and sporadically in

scheduling decisions.

2. Make routine the comprehensive consideration of all

factors relevant to scheduling decisions, thereby

inhibiting judgments based on incomplete, obvious, or

easily handled criteria.

3. Fit each scheduling decision into its appropriate

place in the historical series of decisions and,

through the feed back mechanism incorporated in the

decision rule, automatically correct for prior

forecasting errors.

4. Free themselves from routine decision-making

activities, thereby giving them greater freedom and

opportunity for dealing with extraordinary situations.

Research literature on APP since 1950 reflects various

graphical, mathematical, and heuristic techniques designed

to be used to generally implement those specific APP

strategies and related cost function. In general, the more

adaptable the technique is to all of the strategies listed
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above, the more robust it is. Furthermore, the more

limiting the data assumptions to implement these techniques

have been, generally, the more apt the technique is to

provide an exact mathematical answer for the APP planner.

At the very broadest level of categorization of the

various techniques reported on, two classifications of

techniques exist [Silver 1972]. The first classification

includes techniques that produce an exact, mathematically

optimal solution, while the second includes those that do

not. Within this framework, all of the various techniques

can be placed and an evolution traced over the years

starting with the very simple linear mathematical models

and graphical techniques to the present day sophisticated

multiple objective goal programming models and search and

heuristic approaches. Table 1 shows the classification and

a selection of prominent aggregate planning approaches.

The mathematically optimal approaches to APP are by

far the greatest in number, and they can cater for a

greater number of decision variables than the near-optimal

approaches. However, their use in aggregate production

planning involves the planner in a dilemma, since although

they can obtain optimum results, their ability to model

actual problems realistically is still limited.

The near-optimal approaches can more readily handle

uncertainty and non-linearities. They can better describe

the aggregate planning problem and, when used in
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conjunction with a computer, they have the potential to

consider a wider range of planning variables.

Table 1. A Classification of APP Selected Methods and Models

Classification Type of Model Developer(s)

I. Optimal (a) Linear Transportation Bowman (1956)

Mathematical L.P Hanssman and Hess (1960)

(b) Linear Decision Rule Holt et al. (1960)

(c) Lot size model Wagner and whitin (1958)

(d) Go& programming

Manne (1958),

Goodman (1974)

Lee and Moore (1974)

II. Near-optimal (e) Management Coefficient Model Bowman (1963)

(f) Search Decision Rule Taubert (I 968)

(g) Parametric Production Planning Jones (1967)

(h) Production Switching Heuristics Mellichamp and

Love (1978)

(i) Simulation Silver (1966)

Lee and Khumawala (1974)

Eilon (1975)
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5. HISTORICAL NOTES ON APP

The aggregate production planning problem was

conceived in an important series of papers which appeared

in the mid 1950's. The first, by Holt, Modigliani, and

Simon (1955), discussed the structure of the problem and

introduced the quadratic cost approach, while a later study

by Holt, Modigliani, and Muth (1956) concentrated on the

computational aspects of the model. A complete description

of the method which is called the Linear Decision Rule

(LDR) and its application to production planning for a

paint company is presented in Holt, Modigliani, Muth, and

Simon (1960) .

Bowman (1956) discussed the use of a transportation

model for production planning. The advanced linear

programming formulation was due to Manne (1958) who

conceived of an innovative approach of incorporating setup

cost into a linear program classified as the Lot Size

Model in Table 1. Dzielinski and Gomory (1965) treated

computational issues concerning the Lot Size Model. Lasdon

and Terjung (1971) considered a number of further

computational refinements.

This particular linear programming formulation of the

aggregate planning problem is essentially the same as the

one developed by Hansmann and Hess (1960). Other linear

programming formulations of the production planning problem
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generally involve multiple products or more complex cost

structures [Newson 1975a, 1975b].

More recent work on the aggregate planning problem has

focused on aggregation and disaggregation issues [Axsater

1981, Bitran and Hax 1977, and Zoller 1971], the

incorporation of learning curves into linear decision rules

[Ebert 1976], extensions to allow for multiple products

[Bergstrom and Smith 1970], and inclusion of marketing

and/or financial variables [Damon and Schramm 1972, and

Leitch 1974].

The limitations of the linear and quadratic forms have

encouraged management scientists to investigate other

models. Some heuristic procedures have been applied to more

complex models. Jones (1967), for example, has suggested a

heuristic procedure in which the form of the decision rule

is hypothesized and the parameters of the rule determined

by simulation of the cost model. This procedure enables

flexibility of modeling, and promising computational

results have been obtained. This method necessitates the

prior determination of the mathematical form of the

decision rule. In addition, a simulation must be performed

in order to determine values for the decision rule

parameters.

Vergin (1966) has proposed a simulation approach in

order to achieve maximum realism in modeling. The

disadvantage of the simulation approach is that it does not
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offer any specific means for finding an optimal or nearly

optimal solution. In an attempt to strike a good balance

between realism and solvability, Taubert (1968) has applied

several search techniques to higher-than-second-degree

models having more than two decision variables. Encouraging

computational results were obtained. These methods are

limited by the size of the problem, and results are

dependent on particular parameter settings of the search

technique.

Bowman (1963) advocated a procedure for modeling

management decision making with an illustration in the area

of production smoothing and work force balancing.
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PROBLEM STATEMENT

1. PRODUCTION SWITCHING HEURISTIC (PSH)

Orr (1962) has suggested that certain production-

inventory problems can be treated with random walk

inventory policies. Based on his work, the approach of

Elmaleh and Eilon (1974) assumed that production can only

be carried out at discrete levels, which would be the case

if certain facilities could be either running or shut. As

such, this approach can resemble the decision making

process in a wide variety of circumstances more closely

than other techniques.

The approach operates by setting control levels on the

inventory whereby if the inventory passes a control level

then a change in production rate is triggered. The cost

parameters used for the determination of the control levels

and production rate are purely those directly related to

changes in production rate, i.e. a fixed cost per change in

production rate and a cost proportional to the magnitude of

the change. Their results, based on these parameters, show

that solutions can be obtained which are better than those

obtained using a simple inventory control model.

The disadvantages of Elmaleh and Eilon's approach are

that it cannot easily be applied to a multi-product batch

manufacturing system (as it is essentially a single-product

or aggregate model) and that it does not accommodate the
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planning of a variety of products within overall capacity

constraints. Furthermore, the method does not implicitly

use a forecast of demand. Consequently, since there is no

mechanism for producing more during slack periods in

anticipation of demand overall production rates can vary

dramatically from period to period [O'Grady and Byrne

1986] .

Mellichamp and Love (1978) assume that demand can be

forecasted accurately and is equally weighted over the

planning horizon. This is a simplistic view. They developed

an approach which allowed the use of a company's cost

structure, which could therefore be made as close as

possible to the real system costs. The results obtained

showed very small cost penalties as compared with the

optimum LDR method [Holt et al. 1960]. Their results have

since been criticized [Vergin 1980] on the basis that their

cost comparisons were based upon total costs, and if only

the controllable costs (variable costs i.e. overtime,

hiring and firing costs and inventory costs) are considered

then the cost penalties are much greater.

Oliff and Burch (1985) used PSH for Owens-Corning

Fiberglas, a manufacturer of glass fiber products, to

determine aggregate inventory levels, production and work

force levels. Recently, Oliff and Leong (1987) and Oliff,

Lewis and Markland (1989) developed a discrete production

switching rule for crew-loaded facilities.
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2. SWITCHING ALGORITHM

The production switching algorithm accomplishes the

assignment of production levels to each planning period

using a reasonable control mechanism. This control

mechanism is illustrated by the simple two-production-level

case, presented in Fig.2-(A) : the levels H and L represent

the high and low production rates at which the system can

operate. The inventory level is monitored and when it

crosses a control level a from below, the production is

switched from H to L and vice versa. A more elaborate

control mechanism would involve two control levels a and b

(where a > b) and switching from L to H will take place

when the inventory level crosses the control limit a from

below (see Figure. 2-(B)). The rationale for such switching

policies is similar to the two-bin or (s,S) inventory

control system. The random walk approach to APP proposed by

Orr (1962) and adapted by Elmaleh and Eilon (1974), is

formulated using three-production-levels as follows:

specify three inventory levels, a > b > c, and three

production levels, H > N > L, with the operating

instructions:

Pt = H if It.4 passes c from above,

N if passes b,

L if It.4 passes a from below. (1)
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Values for a, b, c and H, N, L are obtained by simulating

various combinations of these control parameters over a

historical demand series and choosing the set for which

costs are minimum.

We propose incorporating Ft, the demand forecast for

period t, in the rule for determining P, as follows. The

estimated closing inventory It in period t is:

It = It-i + Pt Ft (2)

Since we are attempting to control both production and

inventory costs, we can replace It by B where B represents

a target inventory level to be determined. Rearranging

equation (2) such that the input variables and Ft are

on the left side of the equation and the decision variables

Pt and B are on the right yields:

F, I,4 = Pt - B (2')

The left side of the equation represents the amount

of anticipated demand in period t which cannot be met with

on-hand inventory, while the right side of the equation

reflects the production from period t available to meet

demand after satisfying the target inventory requirement.

Finally, the rule for Pt is as follows:

Pt = L if Ft - I,4 < L C

H if F, > H A

N otherwise (3)

Where Ft = forecasted demand for period t, = ending

inventory for period t-1, A = Minimum acceptable target
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inventory, C = Maximum acceptable target inventory, and B =

target inventory level (= (C + 20/2).

The heuristic suggests that if the net production

required after taking into account on-hand and target

inventories is less than the low level of production,

produce at the low level. If the net production required is

greater than the high level of production, produce at the

high level. Finally, if required net production is between

the low and high levels of production, produce at the

normal level (see Figure. 2-(C)).

A general production switching rule that allows both

overtime and direct application to discrete operations is

presented as following:

For some inventory target A < C and n discrete

production levels R1 > R2 > R3 .... > R4,, choose the

production rate as

Pt =

R1 if Ft It -1 + A > R1
R2 if R1 > Ft It_1 + A > R2

.Rk if Rk_i > Ft It_l + A > Rk

Rk+2 if Rk+3 > Ft It -1 + C > Rk+2

A. if Ft It_l + C > R,
Rk +l otherwise (4)

The rule suggests that if net production required

after accounting for on-hand inventory and target

inventories exceed the highest production level (R1),

produce at the highest level. If net production required is
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less than the lowest production level(RO, produce at the

lowest level. The remaining switches are interpreted

similarly.

It is straightforward now to include overtime in the

model by doubling the number of production levels to 2n,

where

0T1 > R1 > 0T2 > R2 > . . . OTn > Rn,

corresponding to n discrete work force levels

> W2 > > Wn

where

Ri = regular time production rate i

OTi = cumulative regular and overtime

production rate i

Wi = work force level for production rates Ri and OTi

following the general form of equation (4). The model

requires estimation of payroll (regular) cost (PC),

overtime costs (OC), hiring (HC) and firing (FC) cost, and

inventory costs (IC).

Total costs then are

TC = PC + OC + HC + FC + IC. (5)

Although the general model could incorporate back orders

with minor modifications, a manufacturer seldom would stock

out his entire aggregate product line. In the context of a

typical aggregate planning problem, the objective is to

minimize these total costs.
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Generally speaking, the PSH, based on the existing

rationale, may be extended to incorporate more than three

levels. In other words, more than three different pairs of

production and work force sizes may be used to smooth the

production over the entire planning horizon. With a greater

number of levels, the PSH is expected to perform better

since its ability to meet fluctuations in demand increases.

On the other hand, as the number of levels increases, the

frequency of switching and, therefore, the complexity of

the production system also increases. The very advantage of

a switching heuristic less frequent rescheduling of

production and work force, is lost gradually as more levels

are added. This research is, therefore, directed to

situations where the three-production levels (high, normal,

and low) can only be changed in discrete increments or

decrements, such as adding or removing a production shift.

3. GRID SEARCH PROCEDURE

The problem is to determine values for the control

parameters (for the three-production rate) H, N, L and A,

B, C which generate a set of production, work force, and

inventory decisions (Pt , Wt , and It) that will be cost

efficient over the planning horizon. Once appropriate

values have been determined, planning decisions for each

period are made using the above rule.

The procedure used in this research for selecting

values for the control parameters of the heuristic is an
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iterative simulation approach utilizing a historical demand

series and includes the following steps:

Step 1. Obtain input data ;

1. Forecasted demand (Ft)

2. Initial values: Po, Wo , and Io.

3. Productivity function : Wt = f(Pt , G) where G is

the % increase or decrease in the work force

required to achieve a high or low level of

production.

4. Cost functions : cost component, Cit for i=1,

2,...,n.

Step 2. Specify various values of control parameters that

are to be evaluated. Any one of several different

search options including various grid and gradient

procedures may be used.

Step 3. Initialize control parameters (N and B).

Step 4. Assign the production levels (Pt) for each period

using the switching algorithm, then calculate It using

equation (2), and Wt using productivity function.

Step 5. Calculate cost component Ci, and total cost(TC)

from equation (5).

Step 6. Repeat Steps 4 and 5 for all combinations of the

control parameters H, N, L and A, B, C.

Step 7. Select those values for H, N, L and A, B, C for

which TC is minimum.



32

A computer search for the minimum TC was then

conducted using an elaborate grid procedure in which the

initial values, increments, and ranges were specified for

N, E, B, and D in this research. Thereafter, using the

relationships specified below:

H = N + E,

L = N E,

A = B D,

C = B + D,

all combinations of the control parameters (i.e. grid) were

systematically searched to determine a minimum total cost.

For several reasons, the simple grid search procedure

used in the PSH cannot precisely determine the location of

the best possible solution by the heuristic. First, the

normal production level, N, is preset to the average demand

over the planning horizon. Second, the high production

level, H, and the low production level, L, are required to

be equally spaced about the normal production level, N.

Finally, the low target inventory level, A, and the high

target inventory level, C are again constrained to be

equally spaced from the normal target inventory level, B.

The heuristic rules in PSH clearly define how the

production sizes are to be selected for the periods given

in the planning horizon. However, the corresponding

decision with regard to the size of the work force to be

used for each period in the planning horizon is not
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explicitly specified by the PSH (Mellichamp and Love)

model.

Theoretically, for a given amount of production, Pt,

an infinite number of possibilities exist for the

corresponding work force size, Wt, using a combination of

regular work force and overtime labor. Therefore, the

effectiveness of the heuristic is dependent upon the

functional relationship between these combinations, because

it controls the costs associated with regular payroll,

hiring/firing, and overtime.

Mellichamp and Love (1978) presented this issue by

introducing a productivity function, with little or no

explanation about its operation in determining an

appropriate level of regular payroll versus overtime labor.

Their productivity function was given as:

Wt = f(Pt G)

where G was the percent increase or decrease in the work

force required to achieve high or low levels of production.

In order to determine the optimum combination between

the production and the work force sizes, the following two

schemes are used in this research each of these can run

separately, labeled MPSH1 (Modified PSH1) for scheme 1, and

MPSH2 (Modified PSH2) for scheme 2:

Scheme 1 Wt = N/k if Pt = N

= (H/k) *G if Pt = H

= (L/k) *G if Pt = L (5)
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Scheme 2 W, = N/k if Pt = N

= N/k + (E/k) *G if Pt = H

= N/k (E/k) *G if P, = L (6)

where k is the productivity factor such that N/k equals the

number of workers necessary to produce N units in regular

time without incurring any overtime or undertime.

The other factor, G, which ranges from 1 to 0

(decreased in steps of 0.1), controls the proportion of

hiring (firing) and overtime in adjusting the work force

size when production is switched from normal to high (low)

levels. For example, when G equals one in both of the

schemes, the work force sizes for high and low production

levels become H/k and L/k respectively, resulting in no

overtime costs but high hiring and firing costs. The

procedure searches for the optimal value of G.

Table 2 is a sample output that shows the number of

the work force that will be needed when the normal

production level (N) is 300 units, productivity (k) is 5.4

units per worker and parameter E which determines the high

and low production level is 75. In the table N-k,

and L-W, represent the size of the work force for a given

level of production (Normal, High, or Low).

Examining the values in the table using Scheme 1, it

can be noted that there are significantly different values

observed in W, according to the different values of G. When
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these values of Wt are applied to the total cost function,

TC, they will cause TC to become very large. This is due to

the fact that at low G values the resulting size of the

work force will always be meaningless (i.e. 0.0 for high

and low regular work force size literally means that no

workers should be employed and further implies that all

production is accomplished using overtime labor which is

impossible if no workers are employed).

Table 2. Sample calculations using SCHEME 1, and SCHEME 2.

Scheme 1 Scheme 2

G N-14,, 11-1k le-1N, N-Wt II-1k 1,-Tir,

1.0 55.6 69.4 41.6 55.6 69.4 41.6

0.9 55.6 62.5 37.5 55.6 68.1 43.0

0.8 55.6 55.5 33.3 55.6 66.7 44.4

0.7 55.6 48.6 29.1 55.6 65.3 45.8

0.6 55.6 41.7 25.0 55.6 63.9 47.2

0.5 55.6 34.7 20.8 55.6 62.5 48.6

0.4 55.6 27.8 16.6 55.6 61.1 50.0

0.3 55.6 20.8 12.5 55.6 59.7 51.4

0.2 55.6 13.9 8.3 55.6 58.3 52.8

0.1 55.6 6.9 4.2 55.6 56.9 54.2

0.0 55.6 0.0 0.0 55.6 55.6 55.6

Therefore, only a limited portion of the range of G needs

to be evaluated (actually around 0.9 the minimum costs will

always occur) to determine a minimum cost solution. This
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fact is very useful in reducing the computer run time

required to evaluate the problem using scheme 1.

On the other hand, using scheme 2 seems more

reasonable as there are only small incremental changes to

the work force size for each change in G. Therefore, the

whole range needs to be examined to find the minimum cost.



37

APPLICATION

In order to demonstrate the modified production

switching heuristics (MPSH) described and to evaluate its

performance relative to other aggregate production planning

approaches, the MPSH proposed in this research is applied

to the paint factory problem originally described by Holt,

Modigliani, and Simon (1955). The paint factory problem has

been used in the context of introducing most new or

modified APP models proposed by various authors to evaluate

whether the newer model can perform as well as the LDR.

Competing models are generally judged by evaluating the

method which minimizes the total costs using LDR-type

quadratic cost functions.

1. LINEAR DECISION RULE (LDR)

LDR is a mathematical model designed to make decisions

that set aggregate production rates and work force levels

for the upcoming period. The two decision rules involved

(one for production rate and one for work force level) are

derived from a cost model developed for each individual

situation and are optimum for the model. The cost model is

the simple sum of the following cost functions:

(1) Regular payroll costs. The cost of regular-time

production in period t was assumed to be

Cit = C1 Wt
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Notice that the cost of regular production was

linearly related to the size of work force, as shown in

Figure 3-(a).

(2) Hiring and firing costs. The cost of increasing or

decreasing the work force in period t was assumed to be

C2t = C2 (Wt Wt-1) 2

The cost of changing the work force was a squared function

of the amount of increase or decrease in the work force.

This function was an approximation to the costs observed in

the paint factory, as shown in Figure 3-(b). The quadratic

form was chosen for mathematical convenience, as an

approximation.

(3) Overtime costs. The overtime cost was expressed as

zero cost up to 100 percent utilization of the work force

and then as a linear cost for overtime production beyond

100 percent (Figure 3-(c)). Through the use of a quadratic

function, this overtime cost was approximated as follows:

Cat = C3 (Pt C4Wt ) 2 C5Pt C5Wt

(4) Cost of inventories and back orders. In the LDR

formulation, back orders were treated as negative

inventory. The following quadratic inventory/back order

cost function was used (figure 3-(d)).

Cat = c8 (It c8) 2

The resulting two decision rules are simple

expressions that make it possible to compute the required

decisions (production and work force level) for the
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upcoming period in five to ten minutes, given the ending

aggregate work force and inventory levels and sales

forecasts for the planning horizon [Buffa and Taubert

1967].

The mere proposal of the LDR probably would not have

achieved so much attention had it not been for the fact

that its authors had the wisdom and foresight to carry

their research through to an actual extensive application

in a paint factory. It was in a sense an ideal piece of

academic-management research because it involved the

derivation and development of a theory as well as its

application. At any rate, the LDR rapidly achieved the

status of the "standard for comparison" for aggregate

production planning models because it proposed optimum

rules, given the model, and because of the extensive

reporting of the paint factory data and the LDR

approximating cost structure as the basis for comparison

[Buffa and Taubert 1972].
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Figure 3. Costs for Linear Decision Rule
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2. COST ESTIMATION

Regular payroll costs that include fixed or allocated

portions are easily accessible via the firm's accounting

system. From a modeling standpoint, however, we are

interested in marginal or variable costs costs that often

are difficult to obtain. Vergin (1980) noted that much of

the APP literature is plagued by this problem; models are

developed or compared utilizing costs that are constant,

regardless of the methodology involved. The PSH utilizes

only direct payroll costs and fringe payments that vary

directly with hours worked. Overtime costs are estimated

directly as a multiple of the regular hourly rate. An upper

bound on these hours normally is established by the union.

Hiring and firing costs, at best, are difficult to

quantify. These costs result directly from training time

incurred for new or bumped personnel. Losses in efficiency

are experienced following a layoff or a hire. In most

firms, union seniority rules often force experienced

workers into new production areas requiring various levels

of retraining. Expected values are required for layoff

periods, bumping costs, new (versus retrained) workers

involved per hire and per layoff, and related training

costs.

The inventory costs are approximated using the point

estimate of Holt, Modigliani, Muth and Simon (1960) rather

than interval estimate. Holt et al.'s economic
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justification is based on the assumption that individual

lot sizes and safety stocks can be aggregated to determine

an overall target inventory that reflects the relevant

costs of setups and inventory. Quadratic, linear, or

general cost functions are formulated to penalize

deviations from this point estimate. It is assumed that

setup costs increase as inventory drops below the target

and lots become smaller and more frequent. Handling and

obsolescence costs increase as inventory moves above the

desired point.

3. THE PAINT FACTORY

The cost relationships used for the paint factory

were:

C1 = 340*Wt (Regular Payroll)

C2t =64.3* (Wt Wt-1)2 (Hiring and Layoffs)

Cat =0.2* (Pt 5.67*W02 + 51.2*Pt 281*Wt (overtime)

Cot =0.0825*(It 320)2 (Inventory)

and the objective is to minimize total costs

TC = Clt + CR + CR +

where,

Pt = production level during the period t

Wt = work force size during the period t

It = ending inventory for period t

t = 1,2, . . ., 12

beginning inventory (Is) = 263

beginning work force (W0) = 81.
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forecasted demands are:

Table 3. Forecasted Demand

t F (t) t F(t)

1 430 7 292
2 447 8 458
3 440 9 400
4 316 10 350
5 397 11 284
6 375 12 400

Especially, 5.67, the coefficient in the overtime cost

component, is the average worker productivity which is

introduced as k. The overtime cost component yields

negative overtime costs for certain values of Pt and Wt.

Whenever this occurred in the calculations, Cat was set to

zero. In the paint factory problem, when back orders occur

they show up in the results as minus inventory.

4. PROGRAM SUMMARY

The program seeks to minimize total production costs

by looking at the best combinations of inventory, work

force and overtime costs. Two different schemes are used in

determining this. A fundamental assumption made is that

productivity per worker is a constant. Starting with the

forecasts, an initial production rate (N) is arbitrarily

determined by looking at the demand over the time horizon

and picking an initial value for N that falls somewhere

between the high and low demand value. An estimation of the

target inventory level (B) is made by looking at the
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current level of inventory, I" then picking an inventory

level small enough to include the initial inventory level

in a grid search (in the paint factory problem 240 was

selected). With initial values for N and B the grid search

can be iterated by fixed increments to determine the best

values of N and B to minimize the cost function.

The level of production needs to be assigned as either

High, Normal or Low by using the appropriate switching

algorithms. The differences between Normal and High

production rates and inventory levels are labeled E and D,

respectively. These differences are also increased by fixed

increments after each iteration.

At each iteration, only one parameter is exhausted

according to the FOR LOOP in a computer program. The search

method is carried out in three steps to reduce cpu time and

systematically searches over the entire cost surface for

the minimum cost point. First, using a relatively large

incremental value "20" for the parameter N, it rapidly

determines the zone for the lowest cost point. It then uses

a medium incremental value "5" to search a smaller surface

around the previous point for a better solution. Finally,

the small incremental value "1" is used to determine the

global minimum point here "global" means not mathematical

optimum but the best answer for the entire set of

incremental values. Clearly, the smaller incremental value

yields the better solution.
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Given the demand forecasts for the next twelve months

in the paint factory problem, the PSH determines the best

control parameters available. These parameters determine

shift settings, overtime levels, production levels, and

inventory levels that minimize aggregate costs.

The MPSH is interactive in nature. The firm exercises

the option to view the total set of regular and overtime

production settings and inventory target levels or any

number thereof. Aggregate plans can be determined based on

restricted production rate shift settings, with or without

overtime, with various forecast series and with varying

ranges for inventory targets. Figure 4 illustrates the

decision tree and interactive nature of the MPSH's. It

shows the MPSH options as compared with the original PSH,

including the incremental values of each parameter, the

range varied for the parameter, and the number of arrays

(combinations) for each iteration. Starting conditions are

provided, aggregate costs are then calculated for each

planning component and explicitly given. A flow chart of

the MPSH is provided in Appendix 1. The program listing is

provided in Appendix 2. The program was run using a MacII

personal computer in THINK PASCAL.
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RESULTS AND ANALYSIS

1. RESULTS

A computer search routine based on the seven step

procedure described previously was conducted to determine

the best values to use for control parameters with the

MPSH. With MPSH1 the computer run time was 52 minutes. With

MPSH2, the run time was 92 minutes. In both cases the

program was in THINK PASCAL and a MacII, personal computer

was utilized to perform the computer runs. Table 4 below

shows the results of that search routine.

Table 4. Results For MPSH Parameters

PARAMETER MPSH1 MPSH2

H 450 447

N 360 362

L 270 277

E 90 85

A 300 290

B 300 290

C 300 290

D 0 0

With these sets of parameters, MPSH1 and MPSH2 were

used to determine a production plan. Tables 5, and 6 show

the computer results of production plans including

production and work force levels, and overtime rates for
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Table 5. Production planning for MPSH1

PRODUCTION (Pt) WORK FORCE (' 4) OVERTIME

period level gallon people people gallon

1 H 450 71.43 7.9 45

2 H 450 71.43 7.9 45

3 H 450 71.43 7.9 45

4 N 360 63.49 0.0 0

5 N 360 63.49 0.0 0

6 N 360 63.49 0.0 0

7 N 360 63.49 0.0 0

8 N 360 63.49 0.0 0

9 N 360 63.49 0.0 0

10 N 360 63.49 0.0 0

11 N 360 63.49 0.0 0

12 N 360 63.49 0.0 0

Table roducti n planning for MPSH2

PRODUCTION (Ps) WORK FORCE (1(e) OVERTIME

period level gallon people people gallon

1 H 447 72.83 6.0 34

2 H 447 72.83 6.0 34

3 H 447 72.83 6.0 34

4 N 362 63.84 0.0 0

5 N 362 63.84 0.0 0

6 N 362 63.84 0.0 0

7 N 362 63.84 0.0 0

8 N 362 63.84 0.0 0

9 N 362 63.84 0.0

_

0

10 N 362 63.84 0.0 0

11 N 362 63.84 0.0 0

12 N 362 63.84 0.0 0
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the problem planning horizon. These results show that only

two production levels (high and normal), without a low

production level, are chased to minimize the total cost

over the planning horizon.

From these results, it is easy to determine the

appropriate values for G which provide the best combination

of production and work force levels.

G for MPSH1 is 0.9 ((450 / k)* G = 71.43), and

G for MPSH2 is 0.6 ((362 / k) + (85 / k)* G = 72.83),

where k (the productivity rate) is equal to 5.67. The

overtime production required at the high production level

for each production planning period can then be calculated,

simply, as follows:

overtime used for MPSH1 : 450 / 5.67 - 71.43 = 7.9 people

overtime used for MPSH2 : 447 / 5.67 72.83 = 6 people

These calculations yield overtime rates of 11% and 8.2% for

MPSH1 and MPSH2, respectively. It is important to note that

only high and low production levels can have overtime

production associated with them (see equation 4, and 5).

In the overtime component, Cat,

Cat = 0.2(Pt - 5.6714102 + 51.2Pt - 281Wt

the coefficient value, 5.67 represents the average worker's

productivity rate. The linear portion of the overtime

component, Pt 5.67Wt, denotes the required overtime

production at the average worker productivity level in

order to achieve the production rate, Pt, at a work force
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level, Wt. Clearly, overtime production can only occur in

period t if Pt 5.67Wt > 0. Since the low production level

is not used in the production schedule produced by MPSH1

and MPSH2, Pt 5.67Wt is evaluated as 45, and 34,

respectively. Both of these values are > 0, indicating

that, in the case of the high production level required

overtime labor will be used.

Table 7 gives the total costs and cost components

(i.e. payroll, hiring, firing, overtime and inventory

costs) for MPSH1 and MPSH2, respectively. The overall total

cost was $295,178 with MPSH1 and $294,979 with MPSH2. This

is reasonable since MPSH2 requires a more elaborate search

and thus should produce a better cost solution. It should

also be noted that MPSH1 yields a solution with less

regular labor costs and more overtime costs than does

MPSH2. This is further reflected in the hiring and firing

costs in that, since MPSH2 chases a higher regular payroll

and less overtime combination, it produces hiring and

firing costs that are somewhat less than MPSH1 which chases

an opposite combination of regular payroll and overtime.

Inventory costs will be addressed later in the comparative

analysis section.
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Table 7. Cost Component and Total Cost for Paint Factory,

COST COMSONICNT liSSE1 MPS=

Regular payroll $ 267,142 $ 269,661

Overtime 15,437 13,259

Siring/firing 9,941 9,484

Inventory 2,658 2,538

Total cost 295,178 294,979

2. COMPARISON WITH OTHER APPROACHES

Tables 8, 9, and 10 provide the period by period

production plans resulting from using LDR, PPP, PSH with

the paint factory problem, respectively, when perfect

forecasts (no errors between forecasted and actual sales)

are available to the firm. These values have been well

reported on in numerous APP articles. These particular

values are taken from the article by Mellichamp and Love

(1978). At this point, it should be recognized that LDR

gives an optimal solution to the paint factory problem

against which all other approaches should be compared. The

PPP and PSH results are both near optimal. PSH uses fixed

increments or decrements based on the production level

selected, high, low or normal. The results for the period

by period production plans using MPSH1 and MPSH2 are shown

in table 10. These results were determined much like those

in the original PSH model except that they use the best

control parameters as determined and given previously in

table 2.
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Table 8: Linear Decision Rule (LDR) Optimal Aggregate Plan

period Forecast

(gallons)

Production

(gallons)

Work force

(people)

Inventory

(gallons)

0 - - 81.00 263.00

1 430 467.72 78.63 292.72

2 447 441.32 75.32 289.08

3 440 414.88 72.24 263.92

4 316 379.83 69.55 328.75

5 397 375.28 67.21 309.03

6 375 367.09 66.29 301.12

7 292 358.51 65.66 369.64

8 458 380.57 65.87 295.21

9 400 376.80 66.49 270.01

10 350 366.70 67.68 283.71

11 284 366.59 69.67 365.30

12 400 405.95 72.62 366.24

Table 9: Parametric Production Planning (PPP) Aggregate Plan

period Forecast

(gallons)

Production

(gallons)

Work force

(people)

Inventory

(gallons)

0 81.00 263.00

1 430 461.26 78.56 286.26

2 447 440.50 75.37 281.76

3 440 417.11 72.44 258.88

4 316 380.38 69.82 324.25

5 397 379.80 67.98 309.06

6 375 371.34 66..74 305.39

7 292 360.91 66.13 376.30

8 458 390.73 66.53 312.03

9 400 385.71 67.25 297.74

10 350 372.14 68.39 314.88

11 284 367.31 70.17 397.19

12 400 408.72 72.93 400.91
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Table 10: PSH Mellichamp and Love's Aggregate Plan

period Forecast

(gallons)

Production

(gallons)

Work force

(people)

Inventory

(gallons)

0 - 81.00 263.00

1 430 452.42 70.82 285.42

2 447 452.42 70.82 290.83

3 440 382.42 67.45 233.25

4 316 382.42 67.45 299.67

5 397 382.42 67.45 285.09

6 375 382.42 67.45 292.50

7 292 382.42 67.45 382.92

8 458 382.42 67.45 307.34

9 400 382.42 67.45 289.75

10 350 382.42 67.45 322.17

11 284 312.42 64.07 350.59

12 400 382.42 67.45 333.00

Table 11. Modified PSH aggregate plans

WPM(' P4PSH2

Period Forecast Production Work force Inventory Production Work Inventory
force

0 81.0 263 81.0 263

1 430 450 71.43 283 447 72.83 280

2 447 450 71.43 286 447 72.83 200

3 440 450 71.43 296 447 72.03 287

4 316 360 63.49 340 362 63.84 333

5 397 360 63.49 303 362 63.84 290

6 375 360 63.49 288 362 63.84 285

7 292 360 63.49 356 362 63.84 355

8 458 360 63.49 258 362 63.84 259

9 400 360 63.49 210 362 63.84 221

10 350 360 63.49 228 362 63.84 233

11 284 360 63.49 304 362 63.84 311

12 400 360 63.49 264 362 63.84 273
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The values obtained using all methods are discussed in more

detail later, however one should note several obvious

differences in the production, work force and inventory

columns corresponding to each period in the planning

horizon.

If total production is considered between the various

techniques, PPP yields the largest annual production with

4735 gallons. Next is LDR with 4,700. PSH yields 4,659

while MPSH1 & 2 yields 4,590 and 4,599, respectively. This

production can be compared against the total annual demand

of 4,589 gallons to show that MPSH1 & 2 yield the least

difference between the amount of total annual production

and forecasted demand.

In the paint factory problem, the inventory cost

function is represented by the inventory costs accrued from

the difference between the end of the month inventory and a

target inventory value of 320 (i.e. C,It = 0.0825* (It

320)2). This means that the penalty costs of holding

inventory will be greatly reduced even when It is large,

due to multiplying by a very small constant (.0825).

Another way to view this would be that with regard to

the total inventory costs where the holding costs cz is

some amount in the formulation:

IC = CZ * (Pt Ft + It_I)

The best policy would be to chase production (that's why

LDR production is greater than the other approaches) since
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doing so serves to minimize the total costs for holding

inventory.

As stated previously, the work force level changes at

every period with both the optimal LDR approach and the PPP

near-optimal approach. PSH was developed in part to reduce

these numerous production changes. The results presented in

table 10 show four changes with respect to work force, to

include the requirement for low level production in period

11. With the MPSH1 & 2 approaches, these changes are

further reduced to just two production changes over the

planning horizon. This should be even more appealing to

practitioners. Finally the tables show that when ending

inventory balances are not restricted to some level, MPSH1

& 2 yield the least amount of ending inventory.

Table 12 below shows a comparison for all approaches

with respect to their total variable costs. Note that as in

previous comparisons of APP approaches the regular payroll

costs are considered in analyzing the performance of the

approaches.

Table 12. Cost Comparison Results

Cost component MPSH1 MPSH2 PSH PPP LDR

Regular payroll $267,142 $269,661 $276,338 $285,141 $282,642

Overtime 15,437 13,295 13,200 7,810 8,518

Hiring/layoff 9,941 9,484 8,863 3,229 3,514

Inventory 2,658 2,538 1,494 1,865 1,362

Total cost 295,178 294,979 299,895 298,045 $296,036

Adjusted cost $301,294* $300,555 $301,873

* $301,294 - 295,178 + 340*(102 gallons)/(5.67 gallons/man month).
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Vergin (1980) has pointed out that these payroll costs

should be treated as essentially fixed or the various

models should require some similar ending conditions if any

comparative analysis is to be made. The total cost values

of $295,178 for MPSH1, and $294,979 for MPSH2 are excellent

in comparison to PSH and the other models. However, noting

Vergin's notes, no direct comparison of the models can be

made since the figures in table 12 include neither only

"relevant" costs nor similar ending conditions.

To develop similar ending conditions (i.e.

inventories) it is known that MPSH1, and MPSH2 resulted in

an ending inventory difference from the optimal LDR balance

of 102 gallons (366-264) and 93 gallons (366-273),

respectively. In order to make MPSH1 and MPSH2 costs

comparable we must consider the cost without overtime to

make their ending inventories equal to that in the optimal

LDR. The regular payroll cost associated with producing 102

and 93 gallons is determined from the cost function C12 =

340 * Wt . This means that, at most, we must incur $6116 (=

102*340/5.67) and $5576 (= 93*340/5.67), respectively.

These amounts are added to the total costs in table 12 to

arrive at the adjusted MPSH1, MPSH2 cost figures.

Now comparing these results based on similar ending

conditions we find that the modified PSH's both MPSH1 and

MPSH2, perform better than PSH by $579 and $1,318,

respectively. The total cost value of $300,555 ($301,294)
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obtained with MPSH2 (MPSH1) is only 1.52 (1.77) percent

greater than the optimum value of $296,036 generated by

LDR. This coupled with the less frequent production changes

should make both MPSH models more appealing to

practitioners than the PSH approach.

3. ANALYSIS OF THE RESULTS

This section addresses the analysis of the sensitivity

of the various control parameters with regard to the total

cost function. To conduct this analysis, one parameter was

retained as a constant value while the others were varied

according to the grid search routine. This amounted to

evaluating various combinations of the control parameters

at fixed values of N, E, B, D, and G, respectively, to

determine for each fixed value the local minimum associated

with that value. Tables 13 17, in Appendix 3, show the

minimum total cost solution with parameter combination

which determined the point of local minimum for MPSH1. In

the same manner, the parameters for MPSH2 were

investigated. Tables 18 22, in Appendix 4, show the

results of the local minimum total cost determined with

associated parameters for various fixed values of each

parameter (N,E,B,D, and G). Based on these tables, two

composite graphs (figure 10 for MPSH1 and figure 11 for

MPSH2), showing how the total cost is affected by each of

the parameters, are shown in Appendix 5. Additionally, a

comparison of the results with MPSH1 and MPSH2 has been
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performed by plotting each parameter (N, E, B, D, and G) as

shown in figures 5-9. For four of the parameters (N, E, B,

and,D), it can be readily observed that the variation of

costs obtained using MPSH1 and MPSH2 are very similar. It

was previously stated that in MPSH1 at certain values of G,

the work force size becomes meaningless (i.e. the costs

vary widely see figure 9).

Figure 5. Total Costs on Parameter N Figure 6. Total Costs on Parameter E

Multiple X-Y Plot MPSM.MPSH1N

+ MPSH.MPSH2N

348 368 388 480 428

MPSH.N

Multiple X-Y Plot MPSH. MPSH1E

+ MPSH. MPSH2E
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Figure 7. Total Costs on Parameter B Figure 8. Total Costs on Parameter D

Multiple X-Y Plot MPSH.MPSH1B

+ MPSH.MPSH2B

38.8

4 4 -4- 4 -1-
258 279 290 318 338 358

MPSH.B

Figure 9. Total Costs on Parameter G

Multiple X-Y Plot

38.5

30.2

29.9

29.6

29.3

29

MPSH. PIPSH16

+ MPSH. MPSH26

0 8.2 8.4 8.6
MPSH.B

8.8 1

Multiple X-Y Plot MPSH. PPSH1D

+ MPSH. MPSH2D

8 28 40 60

PIPSH. D

80 100
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Appropriately, then, G, at values less than 0.8, shows a

wide variation in total costs compared to the other

parameters as shown in figure 10. It is followed in minimum

total cost sensitivity by parameters N and E. On the other

hand the minimum total cost is relatively insensitive to

various values of parameters B and D.

These results are reasonable since parameters N, E,

and G are directly related to the total cost function while

parameters B and D are related to the production switching

algorithm. N and E are used in an evaluation of P the

production level. G is used in an evaluation of W the

work force. Both of these values (P, and W,) are used to

determine production and labor costs as well as inventory

costs. B and D on the other hand simply determine whether

or not high, normal or low production rates will be used

during a given planning period.

As can be seen in figure 11 the minimum total cost in

MPSH2 is most sensitive to various values of parameters N

and E followed. In MPSH2 the productivity function is more

rational than in MPSH1. Accordingly, each level of G has a

small but meaningful impact on the determination of Wt.

This accounts for G being significant in MPSH1 where

meaningless work force levels can dramatically effect the

cost function but less significant in MPSH2 where it only

has a small impact at each level of production.
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The minimum total cost again appears as being

relatively insensitive to various fixed values of

parameters B and D. This result is reasonable as both MPSH1

and MPSH2 treat these parameters in the same manner with

regard to the switching algorithm.

Eilon (1974) and Mellichamp and Love (1978) point out

several disadvantages of the PSH. These can be summarized

as the tendency of PSH to peg to either high or low

production rates when confronted with seasonal or

nonstationary demand patterns. This in effect causes PSH to

create excessive inventory surpluses or shortages. With the

MPSH1 and MPSH2, in the paint factory problem, the models

did not produce the low production level in period 11 like

PSH. Instead, the models chased only a high and normal

production level. This can be accounted for the more

sophisticated grid search employed in this research which

tends to less closely track between production and demand

as compared to the PSH model.

A final point should be made with regard to the

computer run times experienced in this research. It is

important to point out that PSH, PPP, and LDR results were

obtained using a UNIVAC 1110 computer or its equivalent

with run times, in the case of PSH, being in the vicinity

of 30 seconds. In this research, a Macli, Personal Computer

was used with a run time of 52 minutes with MPSH1 and 92

minutes with MPSH2. In evaluating any claim of efficiency
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of MPSH1 or MPSH2 over PSH, the models should be run on an

equivalent computer and the run time results compared. This

may be a consideration worth further future research.

Within the context of cost, however, PC time might be

argued to be substantially cheaper for managers than time-

sharing or other mini or main frame arrangements. The power

of personal computers is a strong plus for practitioners in

adopting either the MPSH1 or MPSH2 model. The run time

difference, between the models is, obviously, the

difference between searching over the entire range of G, in

MPSH2, and only searching in the range of G = 0.9, in

MPSH1. The savings is approximately 40 minutes of personal

computer time for a total cost solution that is within

1.52% of the optimal LDR solution with MPSH2 and 1.77% with

MPSH1. Both models outperform the PSH model in total cost.

4. SUMMARY AND CONCLUSION

The production switching approach described in this

research offers several clear advantages over other

approaches for handling the aggregate production planning

(APP) problem. The principal advantage is that it produces

production, work force, and inventory decisions which

require a minimum amount of period to period adjustment a

characteristic that should be appealling to the natural

inclinations of practicing managers in industry.

In this research, the PSH has been modified with an

improved search method, which exhaustively searches over
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the entire cost surface. These modifications are

accomplished using two schemes which are labeled MPSH1 and

MPSH2 for convenience. The computational requirements of

either scheme are quite large, however, the search

procedure is relatively straightforward. The run times for

the series of programs developed on a personal computer are

time-consuming to solve the paint factory problem, MPSH1

took approximately 0.86 hours, as opposed to nearly 1.55

hours by the MPSH2, running on MACII PC computer using the

THINK PASCAL language.

Modified PSH, applied to the paint factory problem,

however, has shown that it can improve the total cost

performance of the original PSH (Mellichamp and Love,

1978). The modified production switching approach also

offers benefits in simplicity and flexibility for a minimal

sacrifice in cost around two percent of optimal. This

feature may appeal to decision makers in industries who are

not pursuing an optimal scheduling policy.

Analysis of the model showed the minimum cost function

to be sensitive to values of the control parameters

directly related to the cost function versus insensitive to

those only indirectly related. These results were

reasonable and they demonstrated the importance of allowing

these parameters to be determined by an open search versus

specified as fixed based on average demand as was the case

in the PSH model.
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The modified approaches developed in this research

offer practitioners a model with a series of programs which

can be run on a personal computer with relative ease. This

is an advantage over other published works which offer

switching heuristics but do not do so in the context of a

pre-packaged program that might be adapted for use by

practitioners in industry.

6. FUTURE RESEARCH

As noted previously, one of the directions for future

research is to run the modified PSH on a similar computer

to that used in presenting LDR, PPP, and PSH to help

establish some run time efficiency comparisons in the

context of the paint factory or other common APP problem

reported in published literature. One might expect the

modified approaches to take longer to run but how much

longer would be the question of interest. Based upon these

findings a comparative cost benefit analyses may be

performed.

Although MPSH1 and MPSH2 provide decisions on

production and work force levels for the entire planning

horizon (January through December) in an industrial

setting, such decisions can be improved as and when better

forecasts become available. For instance, the same analysis

performed in January can be repeated in February with

forecasts for February through December and January of next

year. This is generally referred to in literature as a
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rolling horizon (Buffa and Taubert 1972] approach to

solving the APP problem. As MPSH1 and MPSH2 rely on a

fairly elaborate exhaustive search technique, given a

family of cost functions (i.e., regular payroll, overtime,

firing and hiring, and inventory), future research should

be focused on determining a set of favorable starting

values for the control parameters (N, E, B, D, and G) that

can lead to identifying the local optimum more efficiently

than performing a search over the entire cost surface when

a new set of forecasted demand becomes available. This

would first require performing sensitivity analyses to

determine the variation in total cost for changes in each

control parameter. From this analysis, it is hoped, a set

of decision rules relating each parameter and the

forecasted demand may be established and used in the

determination of favorable starting values.

Finally, further future research may be directed to

follow the lead of other APP investigations that point out

that hiring and firing costs generally do not take into

account the effects of the skill of the workers being laid

off or hired. This investigation may be described as

attempting to refine the MPSH models to account for

learning curve effects and would entail developing some

sophistication in the general cost function representing

the cost of hiring or firing workers.
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APPENDIX 1: Program Flow Chart

START

i
MRH_N - 1000
MRH_B - 350
MONTH - 12
INCRE_UAL_1 - 51
INCRE_URL2 - 11
INCRE_URL_3 - 7
PRODUCTIUITY_RATE - 5.67
G_NUM_DIU - 11
NUM_OF_COST -4

i
I timeln - Tick Count

Subroutine : Stert_Celculetlon

Subroutine : Teke_Uetue

time_out - Tick Count

i
/Total CPU Time

(in hours)

PRINT

1
PRINT

Production Uolue(P) 0
Work Force Uelue(W)1

r NL END
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Subroutine : Stert_Calculetion

Subroutine : Get_Dete_Forecest

Subroutine : Ret_Dete_initieUJelue

Subroutine : initialize_ControLPeram_ED

InitieLN .. 320
ND) - InitieLN

IntuaLN_Incmt .., 0

(11 Subroutine : initiallze_ControLPeram_N

111 1 I - 250
Intual_B - MR11_11 - B[11

Num_Diulded_01_11 - (IntueLB diu 10) + 1

Subroutine : initialize_ControLPeram_B

( RETURN
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Subroutine : Get_Dete_forecest Subroutine : Get_Dete_initial_Velue

V

Fill 430
F12) 447
F[31 440
F141 316
F151 a. 397
F161 375
F[7] 292
F181 458
F191 400
F[101 350
F[111 284
F1121.. 400

( RETURN

W[01 81

1[01 263

Subroutine : Initialize_ControUlerem_ED Subroutine : Initialize_Control_Peram_B



_

FOR Indest_2 1

TO INCRE_URL.2

Ellnden_23 temp2
temp2 Ellndee_21 5

=MP
4- NEXT

Indest_2

temp3 0

FOR Inden_4 1
TO INCRE_11RL3

DOndest_41- temp3
temp3 IIIIndes_41 5

4
NEW

IndeL4

e
RETURN

gP.

T

I I

Intl 10
up1 Num_Oluided_01_B

IMMO Me
FOR Indett-3 - 2
TO up1
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IIM MINN

T I

InInden.-31 N[Indett_3 - 1

IN= aM
NEW I_

Ind it-3

( RETURN

Subroutine : Initialize_Control_Perem_N

I

+ Intl



Intvel_R_Incmt = 0 IntvaLk-Incmt 2

temp MAXI - NI I )
Num_.DividecL0f_N = (temp div 20) +I

Inc a 20
up Nurn_Divided_Of_N

r

I

411M. =Mr

Intvel_PLIncmt I

NurraividecLOLN 7

Inc = 5

up Num_DividedOLN

y
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Num_DividecL0f_N 9
inc = I

up a Num_Divided_OLN

FOR Inden-1 2
TO up

11

1 Minden-1i NIIndest_1 - 1 Inc

NENT

Inden_1

IntueLN..Jncmt IntueLN_Incmt
ReeLMIn_TC a. 999999999

Mln_TC_Per_N - 999999999

e
RETURN



Subroutine : Take_Uolue

I

r-

III
1FOR k1 211 III
TO Num_DividecLOF_N III

III
Min _TC = 999999999 III

III
III
III

FOR k2 a I
TO 1NCRE-VAL-2

II

I 1

I ( IFOR k3. 1

I l
TO Nurn_D1vidtcLOL131-

I l l

11 1 1

.

11 1 r -ITO INCRE-VAL3E
FOR k4 a 1

Temp-t4 NMI)
Temp -E ak2)
Temp-1) 110t31
Temp-I) COO)

II

II

II

III

III

Calculate_P_I

IIIL
I II
III
III
III
II

II

II

II

IL

Colculate_W
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II II
I II
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I II

I II
I II
I II

II
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II
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H_Ilelue Temp_N + TempE
L_Belue Temp_N - TempE
It_Uelue Temp_B - Temp-11
C_Balue - Temp_B Temp_ El

.1 0

PIJ1 L_Velue
Check_LeueltJI 0

PUI ... Temp_N
Check_leuelIfi 2

PU1 ILUelue
Check_LeuelLO 1

up - iti-11 PIJI - nil
Check_Minus_l - Iiii
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Subroutine : Calculate_W

s
NO
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mm 0

mm non I

FOR m
TO nom

NO

Is
ack-LevolIm1 I

Gimml Ornm- I) incr
W(m) (L_Value/PRODUCTIVITY_RATE)* (2Onvnn

ES

I

I

YES
I

il
gl

I WW1 Tomp-N/PRPOUCTIVITY-RATE II

i

I

6Imm1 Wray-II. Ina'
WIml (LValue/PROOUCTIVITY-RATE) G(mm

TC Curnul_Total_Cost
YES

Calculate _TC

IS

) Cumul_TotaLCost

IS
C r ReaUlin_TC 7

YES PI P

WI W
MIRA Temp./4
Real_rlin..TC TC

NO

TC 31 TC

NO

1

1

1

1

1

1



Subroutine : Select_intueLN

YES
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RETURN

I

Min_TC_Per_N 999999999
P4111 u. Mln_N - 15

111

Initleilze_ControLPerern_N

IK1 01

YES
(IntuaL141_Incmt 2) and (k1 - Num_Dlulded_Of_N)

NO

IS

(IntueLN_Incmt - 3) end (k1 - Num_DiuldecLOLN)

I
I

MIn._TC_Per_N 999999999
NI 1 j MIsi_N - 4

111

Initlellze_ControLPereen_N

IICli 01

YES

temp_end - Meit_N - InitieLN
k1 - (temp_end dlu 20) 1

NO

( RETURN
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Subroutine : Calculate_TC

I
ToteLCost -

FOR t I
TO MONTH

1
C(1,t1 340.0 Wit)

Cl2,t1 64.3 sqr( WM - Wit-11)
CI3,t1 - 0.20 sqr( Pit) - 5.67 WM ) + 51.2 Pin - 281.0 WM

YES

I C(3,0

C14,t1 0.0825 sqr( lit) - 320.0 )

(ToteLCost - ToteLCost + C11,t1 + c12,t1 + C13,t1 + CHM

I
"int

i
CumuLToteLCost ToteLCost

r 1
RETURN
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APPENDIX 2: Program Listing

MPSH1

( Operating system and compiler used : Think Pascal. )

( INPUT : Normal Production Level Value(N) , Target Inventory Level Value(B) )
( and Forecast values(F). )

( OUTPUT : Production values(P) and Work WC, values(W). )

Program MPSH1;

Const
MAX_N 1000;
MAX_B 350;
MONTH . 12;
INCRE_VAL_1 .51;
INCREVAL_2 11;
INCRE_VAL_3 is 7;
PRODUCTIVITY_RATE
G_NUM_DN 11;
NUM_OF_COST 4;

( A MAXIMUM VALUE OF A NORMAL PRODUCTION LEVEL VALUE. )
( A MAXIMUM VALUE OF A TARGET INVENTORY LEVEL VALUE. )

( A MAXIMUM NUMBER OF N AND ? VALUES. )
( NUMBERS OF 'E' VALUES. )

NUMBERS OF 'V VALUES. )
5.87;

( NUMBERS OF COEFFICIENT OF V. )
( NUMBERS OF COSTS.)

Type
Array_l Array(1..MONTH) Of Integer;
Array_2 Array(0..MONTHJ Of real;
Array _3 Array( 1..INCRE_VAL_11 Of Integer;
Army _4 Array(1..INCRE_VAL_2) Of Integer;
Array_5 Arrey(0..G_NUM_DIVI Of real
Array_6 Array(1..NUM OF_COST, 1..MONTHJ Of real;

V r
F, P, P1, Check_Level, Prl: Artay_1;
W, W1, I: Array 2;
N, B: Array 3;
E. D: Array_4;
G: Array_5;
C: Array_tt;
Iime_in, time out: longint;
Total_Cost Cumul_Total_Coat, TC, lAn_TC, Real_Min_TC, ChecklAnual: real;
Intval_B, Intval_N_Incmt, Num_Divided_Of_N, Num_Divided 01_8: integer;
H_Value, L_Value, A_Value, C_Value: integer.
Initial_N, Min_N, Ternp_N, Temp_E, Temp_B. Temp_D: integer,

( Procedure name : Get Data_Forecast
( Purpose : To take Forecast values.
( input variables: None.
( Output variables: None.
( Globais: F.

Procedure Get_Data_Forecast;
Begin
91) :. 420;
92) 379;
93) :. 403;
94) :. 371;
951 : 388;
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F(6) : 368;
FM :. 433;
98) :. 324;
991 : 314;
910) :. 422;
911) :. 338;
9121 :. 379;

End; ( procedure Get_DataForecast )

Procedure name : Get_Data_lnitleJ_Value )

Purpose : To get the initial value a Work Force and Inventory.

Input variables: None.
Output variables: None.
Globals: F. )

Procedure Get_Data_lnitial_Value;
Begin
W301 : 81;
1303 :a 263;

End;( procedure Get_Data_lnitial_Value )

(
( Procedure name : Initlalize_Control_Param_ED
( Purpose : To get the initial value al High and Loot Production Level(E) and

( Maximum and Minimum Acceptable Inventory level(B)

( Input variables: None.
( Output variables: None.
( Globale: E, D. INCRE VAL _2. and *ACRE VAL, _3.

Procedure Inidalizit_Control_Param_ED:
VII f

!emit. temp3, Index_2, index4: integer,
Begin

tempt :. 40:
For index _2 : 1 To 1NCRE_VAL_2 Do

Begin
Erindex_21 : tamp2; ( TO ASSIGN 'E' VALUES. )

tempt : E(index_2) 8;
End; (for index_2 :al 1 to INCRE_VAL_2 do)

tempi :, 0;
For index_4 : 1 To 1NCRE_VAL_3 Do

Begin
Drindex43 :. lemp3; ( TO ASSIGN IT VALUES. )

tempi :. Dlindex_4) 5;

End;
End; ( procedure Initialize_Control_Param_ED }

(

( Procedure name : initialize_Control_Param_N
( Purpose : To get the initial value of Normal Production Level(E).

( Input variables: None.
( Output variables: None.

I

)

}

)
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( Globals: Intval_N_Incrnt, N, Num_Divided_Of_N, Real_Ain_TC and Min_TC_Per_N. )

82

Procedure I nit, alize_Control_P a ram_N;
Var

Index_1, Inc, up, temp: Integer;
B egin
Case Intval_N_Inant Of

0: ( WHEN THE INCREMENTAL VALUE IS 20. )
B egin
temp 1.4AX_N N(1);
Num_Divided Of_N (temp Div 20) 1; ( TO CALCULATE NUMBERS OF VALUES.)
Inc 20;
up :a Num_Divided_OLN;

End; (CASE
1: ( WHEN THE INCREMENTAL VALUE IS & )

B egin
Num_Divided_OLN 7;
Inc 5;
up :. Num_Divided_01 N;

End; (CASE 1)
2 : ( WHEN THE INCRFJAENTAL VALUE IS & )

B egin
Num_Divided_Of_N 9;
Inc 1;
up :a Num_Dhrided Of N;

End; (CASE 2)
End; (case Intval_N_Incnd of)
For index_1 :op 2 To up De

N(Index_1) :. NPndext 11 + inc; ( TO ASSIGN Tir VALUE& )
Intval_N_Incrnt intiral_N_Incmt 1; TO INCRF-MENT THE INTERVAL OF ?? VALUES. )
Real_lAin_TC :a 99999999 ( TO MAKE A MAXIMUM NUMBER. )
lAin_TC_Per_N :15 999999999;

End; (procedure Initialize_Control_Param_N)

Procedure name : Initiarae_Control_Param_B
( Purpose : To get the initial value of Target Inventory Level(8).

Input variables: None.
( Output variables: None.

Globais: Num_DIvided_OLB and B

Procedure Initialize_Control_Param_13;
Var
inc1, up1, index 3: integer;

B egin
inc1 10;
up1 Num_Divided_Of_B;
For index_3 2 To upt Do

B(index_3] Kindex_3 - 1J inc1; ( TO ASSIGNS' VALUES. )
End; (procedure Initialize_Control_Param_B)

)

)
( Procedure name : Start_Calculation
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( Purpose : To take input data and arrange Input data
( Input variables: None.
f Output variables: None.
( Globale: Initial_N, N. Intval_N_Inant. B, Intval_B,Num_Divided_01_13.

Procedure Start_Calculation;
Begin

Get_Data_Forecast;
Get_Data_lnitial_Value;
Initlalize_Control_Param_ED;
Initial_N :a 340;
N(1) :a Initial N;
Intval_N_Incmt 0;
Initiallze_Control_Param_N;
B(11 250;
Intval_B MAX_B - BM;
Num_Divided_Of_B (Intval_B

VALUE.
InitialIze_Control_Param_B;

End; (procedure Stan_Calculadon)
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)

( CALL PROCEDURE Get_Data_Forecast.
CALL PROCEDURE Get_Data_lnitlal_Value. )
( CALL PROCEDURE initake_Control_Param_ED. )

( TO INITIALIZE A NORMAL VALUE. )
( TO ASSIGN A FIRST NORMAL VALUE. )
TO INITIALIZE A II4CREMENT CF INTERVAL OF A NORMAL VALUE. )
( CALL PROCEDURE InItlake_Control_Param_N. )

( TO NITIALIZE A DESIRED INVENTORY VALUE. )

Div 10) + 1; ( NUWEERS OF FITERVAL OF A DESIRED FIVENTORY

( CALL PROCEDURE Initlalize_Control_Param_B.

( Procedure name : Calculate_P_I
( Purpose : To calculate Production Values and Inventory Values. )
( Input variables: None.

Output variables: None.
Globale: H_Valua. L_Value, A_VaJue, C_Vakte, Temp_N, Temp E, Temp_B, Temp_D

F, L P. Check_level, Check_Linuel )

Procedure Calculate_Pl;
V a r
j: integer;

Begin
H_Value Temp_N + Temp
L_Value Temp_N Temp_
A_Vakre Tomp_B - Temp
C_Value Temp_B + Temp

0;
Repeat
J :a j + 1;
If (FM 1p - 1] < L_Value

LEVEL )
Begin

P(j)
Check_levelM :a 0;

End (if (FM - - 1) < L_
Else If (FM - 1(j - 1] > H_

LEVEL )
Begin

:. H_Value;
Check_LevelM 1;

End false if (FM - ID
Else

_E;
E;

_0;
_0;

( TO ASSIGN THE HIGH PRODUCTION LEVEL VALUE. )

( TO ASSIGN THE LOW PRODUCTION LEVEL VALUE. )
( TO ASSIGN THE MINIMUM ACCEPTABLE INVENTORY LEVEL )

TO ASSIGN THE MAXIMUM ACCEPTABLE INVENTORY LEVEL )

C_Value) Then ( THIS 5 THE CONDITION OF THE LOW PRODUCTION

( THE PRODUCTION VALUES THE LOW PRODUCTION LEVEL )

Value - C_Value) then)
Value - AValue) Then ( THIS IS THE CONDITION OF THE HIGH PRODUCTION

( THE PRODUCTION VALUE IS THE HIGH PRODUCTION LEVEL )

1) > H_Value A_Value) then)
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Begin ( OTHERWISE, THE PRODUCTION VALUE GETS THE NORMAL LEVEL )

P(j) :. Temp N;
Check_LevelW :. 2;

End; (else)
(a) :. la 1) Pal - Fat ( TO CALCULATE THE INVENTORY VALUE. )

Check_Minus_l :. lat ( TO CHECK THE INVENTORY VALUE F NEGATIVE OR NOT. )

Until (e < 0) Or Q ,.. MONTH); ( UNTIL THE INVENTORY VALUE IS NEGATIVE OR OVER THE 12

MONTHS.)
End; ( procedure Calculate_P_I )

( Procedure name : Calculate_TC
( Purpose : To calculate Total Costs.
( Input variables: None.
I Output variables: None.
( Globe*: Total_Cost, C. W, P, l, and Cumul_Total_Cost

(

)

)

)

)

)
)

Procedure Cakulate_TC;
V a r
t: integer;

Begin
Total Coat :. 0; ( TO INITIALIZE THE TOTAL COST. )

For t :,. 1 To MONTH Do
Begin
C(1, i :. 340.0 W(t3; ( REGULAR PAYROLL )

C12, tJ :. 64.3 scrtvitil - wit - 11); ( HIRING AND LAYOFF. )

C(3, I :. 0.20 sqr(Pft) 5.67 W(t)) 51.2 P111 - 281.0 W(tj; ( OVER ME }

If C(3, 1 4 0 Then ( F THE OVER ME IS NEGATIVE THEN THE OVER TIE is ZERO. )

C(3, Q :. 0;
C(4, tJ :. 0.0825 sqr(I(t) - 320.0); ( INVENTORY COST. )

Total_Cost :. Total_Cost CP, tj + C(2, t) C(3, ti C(4, ti:( TO CUMULATE TOTAL COSTS. )

End; ( for t : 1 to MONTH do )
Cumin Total_Cost : Total_Cost

End; (procedure Calculano_TC)

( Procedure name : Calcvlate_W )
( Purpose : To calculate Value of Work Force. )

( Input variables: None.
( Output variables: None.
( Globale: G, Check_Level, W, Temp N, H_Value, Lyalue, TC.Cumul_Total_Cost

( Realliin_TC, P, P1, W, W1, and Lin_N )

Procedure Calculate_W;
V a r

m, mm: integer;
incr: real;

Begin
incr ... -0.1; ( TO DECREASE THE OVERTIME AND REGULAR PRODUCTION VALUE(G). )

GM :. 1.1; ( TO INITIALIZE THE 'G' VALUE. )

mm :. 0; ( THE NUM3F_R OF 'G' VALUE IS FROM ZERO TO ELEVEK )

Repeat
mm :. mm + 1;
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For m 1 To MONTH Do
Begin
If CheckLevel[m) . 2 Then ( IF THE PRODUCTION VALUE IS A NORMAL VALUE... )

Begin
Min] Temp_N / PRODUCTNITY_RATE; ( TO CALCULATE THE VALUE OF WORK FORCE. )

End (if Check_Level(m) 8, 2 then)
Else If Check_Level(m] 1 Then (F THE PRODUCTION VALUE IS A HIGH LEVEL.. )

Begin
G(mm] G(mm 1) + incr.
W(m) (TompN / PRODUCTIVITY_RATE) ((H Valve - Temp_N) / PRODUCTIVITY_RATE)

G(mm];
( TO CALCULATE THE VALUE CF WORK FORCE. )

End (else if Check_Level (mi. 1 then)
Else ( F THE PRODUCTION VALUE IS A LOW LEVEL- )

Begin
G(mm) G(mm - 1) incr,

W(m) (Temp_N / PRODUCTNITY_RATE) ((Temp_N L_Value) / PRODUCTNITY_RATE)

Gy);
( TO CALCULATE THE VALUE OF WORK FORCE. )

End;
End; (for m :. 1 to MONTH do)

Calculate_TC; CALL PROCEDURE Calculate TC. )

If (TC > Cumul_Total_Cost) Then ( F NEW TOTAL COST IS SMALLER THEN OLD TOTAL COST... )

Begin
TC Cumui_Totai_Coet
If TC < Real_Lin_TC Then (F NEW TOTAL COST IS SMALLER THEN THE REAL MINIMUM TOTAL

)

Begin
P1 ( GET PRODUCTION VALUES TO WRITE THE OUTPUT. )

W1 ( GET VALUES OF WORK FORCE TO WRITE THE OUTPUT. )

koin_N Temp_N; ( ASSIGN THE MINIMUM P1 VALUE WHEN WE GET THE REAL MINIMUM

TOTAL COST. )
Real_Mn_TC TC (TO ASSIGN THE REAL MINIMUM TOTAL COST. )

End;
End

Else
TC :a. TC;

Until (TC < Cumul_Total_Cost) Or (mm > 10);( UNTIL NEW TOTAL COST IS BIGGER THEN THE OLD ONE OR

OVER 11 OF V)
End; (Calculate_W )

( Procedure name : Select_Intval_N
( Purpose : To decide the interval of 'N' value. }

( Input variables: k_First
( Output variables: k_First.
{ Globale: Num_Divided_Of_N, Min_TC , N, Intval_N_Incmt, Lin_TC_Per_N, and Initial _N )

Procedure Select_Intval_N (Var k_First: integer);
Var
temp and: integer;

Begin



If Intval_N_Incmt i 1 Then
Begin
If lifin_TC_Per_N > Min _TC Then

20.)
Begin

Min_TC_Per_N Min_TC
End

Else ( WHEN

Begin
Min_TC_Per_N 999999999;

LARGEST NUMBER }
N(1) MinN - 15;
IS 5. )
lnitialize_Control_Param_N; ( CALL PROCEDURE Initiallze_Control_Param_N )
k_First 0; ( TO RESET THE TT VALUE FROM ZERO. )

End;
End {it Intval_N_Incrnt 1 then)

Else If (Intval_N_Incmt 2) And (k_First Num_Divided_O(_N) Then {THE END OF LOOPING WHEN

THE INTERVAL IS 5. )
Begin

Mln_TC_Per_N 999999999;
N(1) Min N 4; ( TO DECIDE THE FAST NUMBER OF tr VALUE. WHEN THE INTERVAL IS

1 )

Initlallze_Control_Param_N; ( CALL PROCEDURE Initialize_Control_Param_N )
k_First 0;

End (else if Intval_N_Incmt 2 then)
Else If (Intval_N_Inctrit . 3) And (k_First Num_Divided_Of_N) Then ( THE END OF LOOPING WHEN

THE INTERVAL IS 1. )
Begin

ternp_end MAX_N - Initial_N;
k_First (temp_ond Div 20) 4, 1; ( TO ASSIGN THE LOOPING PARAMETER OF N VALUE TO FINISH

THE TOTAL LOOPING. )
End; (else if (Intval_N_Inctrt 3) and (k_First a Num_Divided_Of_N) then)

End; (procedure Take_VsJue}
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( F THE INTERVAL OF N VALUE IS 20 THEN... )

( UNTIL GET THE MINIMUM TOTAL COST, WHEN THE INTERVAL S

GET THE MINIMUM TOTAL COST, WHEN THE INTERVAL IS 20.1

( TO ASSIGN THE NEW TOTAL COST PER EACH INTERVAL TO THE

( TO DECIDE THE FIRST NUMBER OF N VALUE, WHEN THE INTERVAL

( )
( Procedure name : Take_Value
( Purpose : To arrange Values of 'N', 'Ft, and
( Input variables: None.
{ Output variables: None.
( Global.: Num_Divided_OfN. Min_TC , INCRE_VAL_Z Num_Divided_Of_B, INCRE_VAL_3, )

Tomp_N. Terrip_E, Temp_B, Temp_D, N, E. B, D, Check_Ainue_1, and TC )

Procedure Take_Value;
V a r

k1, k2, k3, k4: integer,
Begin
For k1 :. 1 To Num_Divided_Of_N Do LOOPING FOR NUMBERS OF INTERVALS OF 14' VALUES. )

Begin
tietn_TC :. 999999999; ( TO ASSIGN THE TEMPORARY MINIMUM TOTAL COST TO THE

LARGEST NUMBER )
For k2 1 To INCRE_VAL_2 Do ( LOOPING FOR NUMBERS OF INERVALS OF 'E VALUES. )

Begin
For k3 1 To Num_Divided_Of_B Do ( LOOPING FOR NUMBERS OF INTERVALS OF 'B' VALUES. )
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Begin
For k4 1 To INCRE_VAL_3 Do (LOOPING FOR NUMBERS OF INTERVALS OF TY VALUES. )

Begin
Temp_N NM); ( TO ASSIGN THE TEMPORARY N VALUE. )
Temp_E ELk2);
Temp_B 111(k3);

Temp_D D(k4);
Calculate_P_I; ( CALL PROCEDURE Calcuiale_P_I )
If Check_Minus_l 2. 0 Then ( IF INVENTORY VALUE IS POSITIVE THEN )
Begin

TC 999999999; I TO ASSIGN THE NEW TOTAL COST TO THE LARGEST NUMBER. )
Calculate_W; ( CALL PROCEDURE Calculate W }
If Min_TC > TC Then ( F THE NEW TOTAL COST IS SMALLER THEN THE OLD ONE )
Begin

Min TC TC; ( THE OLD ONE GETS THE NEW TOTAL COST. )
End

End {if Check_Mnusl > 0 then)
Else IF INVENTORY VALUE IS NOT POSITIVE THEN )

Begin
k2 IQ 4. 1; ( TO JUL, NEXT S' VALUE. )
k4 0; ( TO RESET THE TY VALUE FROM ZERO. )

End; (else)
End; ( for k4:.1 to INCRE_VAL2 do )

End; (for k3 1 to Num_DIvided Of B 1 do )
End; ( for k2:.1 to INCRE_VAL 2 do }

Select_intval_N(k1);
End; for k1 1 to Num_Dividod_Of_N do }

End; (procedure Take Valve}

)
( Procedure name : Formating_Output
( Purpose : To write the output.
( input variables: None. )
( Output variables: None. )
( Global.: Pd, Real_Mln_TC. F, P, P1. and WI )
Procedure Formating_Output

V a

integer;
Begin
For iii 1 To 12 Do

Bog In
Pri[iii) iii;

End;
writeln('Minmum ToTal Cost is : Real_kin_TC : 12 : 8);
writeln;
writeln;
writeln(' ');
writeln(' Period Forecast Production Workforce ');
writeln(' *);
For ii :. 1 To 12 Do

Begin
write(Pri(iiJ : 6); ( TO WRITE NUMBERS OF MONTH )
write(F[iiJ : 15); ( TO WRITE FORECAST PRODUCTION VALUES. )



write(P11ii) : 15);
writein(W1(iii : 20 : 8);

End;
End; ( procedure Formating_Output)

MPSH1

TO WRITE PRODUCTION VALUES. }
( TO WRITE VALUES OF WORK FORCE. )

Begin ( MAIN )
showiest;
time_in :. Tick Count;
Start_Calculation;
Take_Value;
time out Tick Count;
writeln(Total CPU Time

TIME )
Formating_Output;

End. ( MAIN )
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( TO ESTIMATE A START CPU TIME )
( CALL PROCEDURE Start_Calculation.

( CALL PROCEDURE Take _Value. )
( TO ESTIMATE A END CPU TIME )

(in hours) : abs(time_out - time_in) / 216000 : 20 : 10); ( TO WRITE A CPU

( CALL PROCEDURE Formadng_Output. )
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( Operating system and compiler used : Think Pascal. )

( INPUT : Normal Production Level Value(N) , Target Inventory Level Value(B) )
( and Forecast values(n. )

( OUTPUT : Production values(P) and Work force values(W). )

Program MPSH2;

Const
MAX_N 1000;
MAX_B . 350;

, MONTH 12:

89

( A MAXIMUM VALUE OF A NORMAL PRODUCTION LEVEL VALUE. )
( A MAXIMUM VALUE OF A TARGET INVENTORY LEVEL VALUE. )

INCRE_VAL_1 51; ( A MAXIMUM NUMBER OF N ANDS' VALUES. )
INCRE_VAL_2 11; ( NUMBERS OF' VALUES. )
INCRE_VAL_3 7; ( NUMBERS OF '17 VALUES. )
PRODUCTNITY_RATE 5.67;
G_NUM_DN 11; ( NUMBERS OF COEFFICIENT OF V. )
NUM_OF_COST 4; ( NUMBERS OF COSTS.)

Typo
Array_1 Arrey(1..MONTH] Of integer,
Array_2 Arrey(0..MONT141 Of real;
Array_3 = Array(1..INCRE_VAL_11 Of integer.
Array_4 Array(1..INCRE_VAL_2) Of integer;
Array_5 Arrey(0..G_NUM_DIV) Of real;
Array_6 Array(1..NUM_OF_COST, 1..MONTH) Of real;

V r
F, P, P1, Check_Levol, Pri: Array_1;
W, W1, I: Array_2;
N, B: Array_3;
E, D: Array_4;
G: Array_5;
C: Array_6;
time in, time_out: longint;
Total_Cost, Cumul_Total_Cost, TC, AGn_TC, Real_Ain_TC. Alin_TC_P*r_N, Cheek_Linus_1: real;
Intval_B, IntvaJ_N_Incmt, Num_Dividod_Of N, Num_Divided Of B: integer;
H_Value, L_Value, A_Value, C_Value: integer;
Initial_N, Min N, Temp_N, Temp_E, Temp_B, Temp_D: integer,

( Procedure name : Get_Data_Forecast
( Purpose : To take Forecast values.
( Input variables: None.
( Output variables: None.
( Globals: F.

Procedure Get_Data_Fo recast;
Begin

F[1] :. 430;
F[2] 447;
F[3] : 440;
F[4] := 316;
F[5] 397;

}

)
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F[6] :a 375;
971 :a 292;
98) :/. 458;
99] :at 400;
910] :a 350;
911] :a 284;
F[12) :a 400;

End; ( procedure Get_Data_Forecast }

( Procedure name : Get_Data_lnitial_Value
f Purpose : To get the initial value of Work Force
( Input variables: None.
( Output variables: None.
( Globals: F.

(

Procedure Get_Data_lnitial_Valuo;
Begin
W[0) :a 81;
1(03 :II 263;

End;( procedure Get_Data_lnitial_Value )

)
and Inventory.

}

)

{ Procedure name : Initialize_Control_Param_ED
( Purpose : To get the initial value of High and Low Production Level(E) and
( Maximum and kinimum Acceptable Inventory Level(B)
f Input variables: None.
( Output variables: None.
( Globals: E, D, INCRE_VAL 2. and INCRE_VAL 3.

{

Procedure Initialize_Control_Param_ED;
V a r
temp2, temp3, index_2, index_4: integer,

Begin
temp2 :ii 40;
For index_2 :i 1 To INCRE_VAL_2 Do

Begin
E[index_2) :a temp2; ( TO ASSIGN E VALUES. )
temp2 :a Elindex_2) + 5;

End; (for index_2 :a 1 to INCRE_VAL_2 do}
temp3 : 0;
For index_4 :a 1 To INCRE_VAL_3 Do

Begin
Dlindex_4) :a temp3; { TO ASSIGN D' VALUES. )
temp3 :a D[index_4] + 5;

End;
End; ( procedure Initialize_Control_Param_ED )

)

)

( Procedure name : Initialize_Control_Param_N
( Purpose : To get the initial value of Normal Production Level(E).
( Input variables: None.
( Output variables: None.

)
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( Globals: Intval_N_Incmt, N, Num_Divided_Of_N, Real_Min_TC and Min_TC_Por_N.

Procedure Initiallze_ControlParam_N;
Var
index 1, inc, up, temp: integer,

Begin
Case Intval_N_Incnit Of

0: ( WHEN THE INCREMENTAL VALUE IS 20. )
Begin
temp := MAX_N - NW;
Num_Divided_Of_N := (temp Div 20) 1; ( TO CALCULATE NUMBERS OF Tf VALUES.)
inc :a 20;
up :a Num_DIvided_Of_N;

End; (CASE 0)
1: ( WHEN THE INCREMENTAL VALUE IS & }
Begin

Num_Divided_Of_N := 7;
inc := 5;
up := Num_Divided_Of_N;

End; (CASE 1)
2 : ( WHEN THE INCREMENTAL VALUE IS 5. )
Begin

Num_Divided_Of_N := 9;
inc := 1;
up :a Num_Divided_Of_N;

End; (CASE 2)
End; (case Intval_N_Incnit of)
For index_l := 2 To up Do

Nrindex_1) := N(index_1 - 11 inc; ( TO ASSIGN 'N' VALUES. }
intval_N_Incmt := Intval_N_Incmt + 1; ( TO INCREMENT THE INTERVAL OF 'N' VALUES. )
Real_Min_TC :as 999999999; (TO MAKE A MAXIMUM NUMBER )
Min_TC_Per_N :a 999999999;

End; (procedure Initialize_Control_Param_N)

}
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( Procedure name : Initiake_CoMrol_Param_B
( Purpose : To get the initial value of Target Inventory Level(B).
( Input variables: None.
( Output variables: None.
( Globals: Num_Divided_OLB and B

Procedure Initialize_Control_Param_B;
Var
inc1, up1, index_3: integer;

Begin
inc1 := 10;
Lsp1 :a Num_Divided_Of_S;
For index_3 := 2 To upl Do

13(index_3] := 13(index_3 - 1) inc1; ( TO ASSIGN 'B' VALUES. }
End; (procedure Initialize_Control_Param_B)

I }
( Procedure name : Start_Calculation )
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( Purpose : To take input data and arrange input data.

( Input variables: None.
( Output variables: None.
( Globale: Initial_N, N, Intval_N_Incmt, 8, IntvaJ_B,Num_Divided_Of_B.

(

Procedure Start_Calculation;
Begin

Get_Data_F °recast;
Get_Data_lnitial_Value;
Initialize_Control_Param_ED;
Initial N :a 360;

Initial_N;
Intval_N_Incmt :. 0;
Initialize_Control_Param_N;
13(1) 250;
Intval_B :a MAX_B B(1);

Num_Divided_Of_B (Intval_B
VALUE. )

In itiallze_Control_P aram_8;
End; {procedure Start_Calculation)

)

CALL PROCEDURE Get_Data_Forecast )
( CALL PROCEDURE Get_Data_lnitial_Value. )

CALL PROCEDURE Initialize_Contrd_Param_ED. )
( TO INITIALIZE A NORMAL VALUE. )

( TO ASSIGN A FIRST NORMAL. VALUE. )
( TO INITIALIZE A INCREMENT OF INTERVAL OF A NORMAL VALUE.

f CALL PROCEDURE Initlalize_Control_Param_N. )
( TO INITIALIZE A DESIRED INVENTORY VALUE. )

Div 10) + 1; NUMBERS OF INTERVAL OF A DESIRED INVENTORY

( CALL PROCEDURE Initialize_Control_Param_EL )

( Procedure name : Calculate_P_I
( Purpose : To calculate Production Values and Inventory Values. )

( Input variables: None.
I Output variables: None.
( Globale: H_Value, L_Value, A_Value, C_Value, Temp_N, Temp E. Temp_B, Temp_D

F, I, P, Check_Level, Check_IAnus_l )

Procedure Calculate_P_I;
V a r
j: integer;

Begin
H_Value Ternp_N + Temp_E;
L_Value Temp_N Temp_E;
A_Value Temp_B - Ternp_D;
C_Value Temp_B + Temp_D;
j :a 0;
Repeat
j j + 1;
If (FM - le - 1 ) < L_Value - C_Value) Then ( THIS IS THE CONDITION OF THE LOW PRODUCTION

LEVEL )
Begin

P(j) L_Value; ( THE PRODUCTION VALUE IS THE LOW PRODUCTION LEVEL )

Check_Levele) 0;
End (if (FM - - 1] < L_Value - C_Value) then)

Else If (F[fl - - 1) > Hyaluo A_Value) Then ( THIS IS THE CONDITION OF THE HIGH PRODUCTION

LEVEL )
Begin

P(j) H_Value; ( THE PRODUCTION VALUE IS THE HIGH PRODUCTION LEVEL )

Check_Levell]) :- 1;
End (else if (FM - 1(j - 1) > H_Value A_Value) then)

Else

( TO ASSIGN THE HIGH PRODUCTION LEVEL VALUE. )
( TO ASSIGN THE LOW PRODUCTION LEVEL VALUE. )

TO ASSIGN THE MINIMUM ACCEPTABLE INVENTORY LEVEL )
TO ASSIGN THE MAXIM. M ACCEPTABLE INVENTORY LEVEL )
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Begin ( OTHERWISE. THE PRODUCTION VALUE GETS THE NORMAL LEVEL )

Pal Temp_N;
Check_Levela :. 2;

End; (else)
la - 1) PQ - Fa]; ( TO CALCULATE THE INVENTORY VALUE. )

Chock_Minus_l IM; ( TO CHECK THE INVENTORY VALUE F NEGATIVE OR NOT. )

Until ow < 0) or a >a MONTH); { UNTIL THE INVENTORY VALUE IS NEGATIVE OR OVER THE 12

MONTHS.
End; procedure Calculate_P_I )

( Procedure name : Calculate_TC
( Purpose : To calculate Total Costs.

Input variables: None.
( Output variables: None.
( Globals: Total_Cost, C. W, P, I, and Cumul_Total_Cost

)
)

}

Procedure Calculate_TC;
V r

t: integer,
Begin
Total_Cost :a 0; ( TO INITIALIZE THE TOTAL COST.

For t 1 To MONTH Do
Begin
ql, 340.0 W(t); ( REGULAR PAYROLL )

C(2. 64.3 sclr(W(1) - - 1)); ( HIRING AND LAYOFF. )

C(3. 1) 0.20 sqr(P[t) - 5.67 W(t)) + 512 P(t) 281.0 W(t); ( OVER TIME. )

It C(3, < 0 Then (IF THE OVER ME IS NEGATIVE THEN THE OVER TIME IS ZERO. )

C[3, ti :a 0;
C(4, tj 0.0825 sof(*) - 320.0); ( INVENTORY COST. )

Total_Cost Total_Cost C(1, t) C(2, tj C(3, tj C(4, t);( TO CUMULATE TOTAL COSTS. )

End; (tor t 1 to MONTH do )
Cumul_Total_Cost :a Total_Cost

End; (procedure CalculahLTC)

Procedure name : Calculate _W )

Purpose : To calculate Value of WO* FOAM. )

Input variables: None.
Output variables: None.
Global': G. Chedt_Level, W, Temp N, H_Value, L_Value, TC,Cumuliotal_Cost

P, P1, W, W1, and Ihn_N )

Procedure Calculate_W;
V r
m, mm: integer.
incr: real;

Begin
incr :- -0.1; ( TO DECREASE THE OVERTIME AND REGULAR PRODUCTION VALUE(G). )

G[01 :a 1.1; (TO INITIALIZE THE VALUE )

mm 0; THE NUM3F_R OF VALUE IS FROM ZERO TO ELEVEN.

Repeat
mm mm 1;
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For m :. 1 To MONTH Do
Begin
If Check_Level(m) . 2 Then ( IF THE PRODUCTION VALUE S A NORMAL VALUE... )

B egin
W1m1 :. Temp _N / PROOUCTNITY RATE; ( TO CALCULATE THE VALUE OF WORK FORCE. )

End (if Check_Level(m) . 2 then)
Else If Check_Level(m) . 1 Then (F THE PRODUCTION VALUE S A HIGH LEVEL.. )

Begin
G(mm) :. G(mm - 1) 4, Incr;
WO] :. (H Value / PRODUCTIVITY_RATE) G(mm]; ( TO CALCULATE THE VALUE OF WORK FORCE.

)

End (else if Check_Level (m). 1 then)
Else ( IF THE PRODUCTION VALUE IS A LOW LEVEL. )

B egin
G(mm) :. G(mm - 1) a Incr;
Vilmj :. (L_Value / PRODUCTIVITY_RA'TE) + (L_Value / PRODUCTNITY_RATE) (1 - G(mmD;

End;
End; (for m :. 1 to MONTH do)

Calculate TC; ( CALL PROCEDURE Calculate TC. )

If (TC > Cumul_Total_Cost) Then
Begin
TO :. Cumul_Total_Coat
If TC < RealMin_TC Then
COST_ )
B egin

P1 :. P;
W1 :. W;
lAin_N :. Tomp_N;

TOTAL COST. }
Real_Min_TC :. TC

End;
End

Else
TC :. TC;

Until (TC < CumulTotal_Cost) Or (mm 3% 10);( UNTIL NEW TOTAL COST IS BIGGER THEN THE OLD ONE OR
OVER 11 OF 'G')

End; (Calculaie_W )

( F NEW TOTAL COST S SMALLER THEN OLD TOTAL COST_ )

(F NEW TOTAL COST IS SMALLER THEN THE REAL MINIMUM TOTAL

( GET PRODUCTION VALUES TO WRITE THE OUTPUT. )
( GET VALUES OF WORK FORCE TO WRITE THE OUTPUT. )

f ASSIGN THE ?ANNUM N VALUE WHEN WE GET THE REAL MINIMUM

( TO ASSIGN THE REAL IAINIMUM TOTAL COST. )

( Procedure name : Select_Intval_N
( Purpose : To decide the interval of 'N' value.
I Input variables: k_First.
( Output variables: k_First
{ Globale: Num_Divided_Of N, Min_TC , N, Intval_N_Incmt.

Procedure Select_Intval_N (Var k_First: integer);
Var

temp end: integer;
Begin
If Intval_N_Incrnt . 1 Then
Begin

)
)

}

)

)
kin_TC_Per N, and Initial_N )

( F THE INTERVAL OF 'V VALUE IS 20 THEN... )
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If Min_TC_Per_N > Min_TC Than ( UNTL GET THE MINIMUM TOTAL COST, WHEN THE INTERVAL S

20. )
Begin

A4n_TC_Per_N Min_TC

End
Else { WHEN GET THE MINIMUM TOTAL COST, WHEN THE INTERVAL IS 20. }

Begin
Min_TC_Per_N :a. 999999999; ( TO ASSIGN THE NEW TOTAL COST PER EACH INTERVAL TO THE

LARGEST NUMBER )

N(1) Min _N 15; ( TO DECIDE THE FIRST AUP.43ER OF VALUE, WHEN THE INTERVAL

IS S.)
Initiallze_Control_Param_N; { CALL PROCEDURE initialle_Control_Param_N

k_Fimt 0; ( TO RESET THE VALUE FROM ZERO. )

End;
E nd {if Intval_N_Incrm 1 then)

Else if (Intval_N_Incrm . 2) And (k_First Num_Divided_OLN) Than (THE ENDCF LOOPING WHIN

THE INTERVAL IS 5. )
B egin

Min_TC_Per_N 099409999;

P1(1) Min_N 4; ( TO DECIDE THE FIRST NUMBER OF N' VALUE, WHIN THE INTERVAL IS

1.}
Initlallze_Control_Param_N; ( CALL PROCEDURE Initiallas_Control_Param_N )

k_Fimt 0;
End (ele if Intval_N_Incmt a 2 then)

Else If (Intvid_N_Incrnt 3) And (k_First a Num_Divided_O(_N) Than (THE END OF LOOPING WHEN

THE INTERVAL IS 1. )
Begin

temp_end 1.1AX_N Initial_N;
k_First (temp_end Div 20) 1; ( TO ASSIGN THE LOOPING PARAMETER CF T4' VALUE TOFINISH

THE TOTAL LOOPING. )
End; (else if (Intval_N_Inent 3) and (k_First Num_Divided_OLN) then)

End; (procedure Take_Valuel

}

{ Procedure name : Taks_Valus
( Purpose : To arrange Values of ?l, '8', and 17. 1

{ Input variable: None.
( Output variables: None.
{ Globale: Num_Olvided_Of_N, Iin_TC , INCRE_VAL_2, Num_Divided Of B, INCRE_VAL_3, )

Temp_N, Temp_E, Temp_B, Temp D, N, E, 8, D, ChedtAllnue_i, and TC

Procedure Take_Value;
V a r
kl, k2, k3, k4: integer;

Begin
For k1 :a 1 To Num_Divided_Of_N Do ( LOOPING FOR NUMBERS OF INTERVALS OF 'N' VALUES. )

Begin
Min_TC 999999999; { TO ASSIGN THE TEM'ORARY MINIMUM TOTAL COST TO THE

LARGEST NUASER. )

For k2 1 To INC.RE_VAL_2 Do LOOPING FOR MASERS OF INERVALS OF E' VALUES. )

Begin
For k3 1 To Num_Divided_Of_B Do { LOOPING FOR MASERS OF INTERVALS OF B' VALUES. )

Begin
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For k4 1 To INCRE_VAL_3 Do ( LOOPING FOR NUMBERS OF INTERVALS OF D' VALUES.

Begin
Temp_N N[It1); ( TO ASSIGN THE TEMPORARY W VALUE. )
Tomp_E WA;
Temp_111 Bpt3);
Temp_D D(k4);

Calculate_P_I; ( CALL PROCEDURE Calculais_P I )
If Check_Minus_l > 0 Then ( IF INVENTORY VALUE IS POSITIVE THEN ... }

Begin
TC 999999999; (TO ASSIGN THE NEW TOTAL COST TO THE LARGEST NUMBER. }

Calculate_W; ( CALL PROCEDURE Calculate W )
If Ain_TC > TC Then { IF THE NEW TOTAL COST IS SMALLER THEN THE OLD ONE )

Begin
Mill TC TC; ( THE OLD ONE GETS THE NEW TOTAL COST. )

End
End (if Check Minusl > 0 than)

Else ( F INVENTORY VALUE IS NOT POSMVE THEN ... )

Begin
k2 k2 1; TO JUMP NEXT V VALUE. )
k4 0; TO RESET THE '17 VALUE FROM ZEN/ )

End; {else)
End; ( for to INCRE_VAL_2 do )

End; par k3 1 to Num_Divided_01_13 1 do )

End; ( for 12:1 to INCRE VAL _2 do )
Select_Intval_N(k1);

End; ( for k1 1 b Num_DIvided_Of N do )
End; (procedure Take Value}

( Procedure name : FonnatIng_Output
( Purpose : To Write the output
( Input variables: None.
( Output variables: Now
( Globale: Pri, Real_Min_TC, F, P, P1, and W1

)

Procedure FormatIng_Output
V a r

iii: integer;
Begin
For 1 To 12 Do
Begin

Pri(iii) iii;
End;

writeln('Minmum ToTal Cost it : Real_lAn_TC : 12 : 3);
writeln;
writein;
writeln(' *);

writein(' Period Forecast Production Workforce ');
writelne
For il :. 1 To 12 Do

Begin
write(Pri(ii3 : 6); ( TO WRITE NUMBERS OF MONTH. )

write(F[iiJ : 15); (TO WRITE FORECAST PRODUCTION VALUES. )



write(P1(iii : 15);
writeln(W1(iil : 20 : 8);

End;
End; ( procedure Formating_Output)

UPSH2

( TO WRITE PRODUCTION VALUES. )
( TO WRITE VALUES OF WORK FORCE }

BagIn ( MAIN )
showtext;
Urns jn :. TickCount;
Start_Calculation;
Take Valve;
time out : TickCount;
writoln(Total CPU Time

TIME )
Formating_Output;

End. ( MAIN )
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( TO ESTIMATE A START CPU TIME. )
( CALL PROCEDURE Start_Calculation. )

( CALL PROCEDURE Take Valve. )
( TO ESTIMATE A END CPU TIME. )

(in hours) : % abe(time_out time _In) / 216000 : 20 : 10); ( TO WRITE A CPU

(CALL PROCEDURE Formating_Output )
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APPENDIX 3 : MPSH1 Control Parameters Sensitivity Results

Table 13. Total costs with various N for MPSH1

N TC E B D G

320 $311,188.4 75 340 5 0.9

330 309,516.5 65 340 0 0.9

340 307,977.9 75 310 0 0.9

350 304,358.0 65 310 0 0.9

360 295,178.5 90 300 0 0.9

370 297,412.1 60 280 5 1.0

380 298,852.0 40 310 25 1.0

390 300,785.4 55 280 0 0.9

400 301,535.5 55 300 0 0.9

410 304,894.2 55 280 5 0.9

420 300,532.3 50 260 25 1.0

Table 14. Total costs with various E for MPSH1

E TC N B D G

0 $310,410.2 395 250 0 1.0

10 303,147.6 395 250 5 1.0

20 299,445.5 400 270 5 1.0

30 299,903.5 390 260 0 1.0

40 298,852.1 380 310 25 1.0

50 297,655.2 375 280 20 1.0

60 297,421.1 370 250 0 0.8

70 297,488.3 370 290 10 0.9

80 295,885.4 365 290 10 0.8

90 295,178.5 360 300 0 0.9

100 295,943.1 360 330 0 0.9



Table 15. Total costs with various B for MPSH1

B TC N E D G

250 $300,979.7 420 40 0 0.8

260 303,116.9 360 65 0 0.9

270 297,512.2 365 70 0 0.9

280 296,421.7 365 75 0 0.9

290 295,627.5 360 85 5 0.9

300 295,178.5 360 90 0 0.9

310 295,178.5 360 90 5 0.9

320 295,178.5 360 90 15 0.9

330 295,178.5 360 90 25 0.9

340 295,178.5 360 90 35 0.9

350 295,178.5 360 90 45 0.9

Table 16. Total costs with various D for MPSH1

D TC N E B G

0 $295,178.5 360 90 300 0.9

10 295,178.5 360 90 310 0.9

20 295,178.5 360 90 320 0.9

30 295,178.5 360 90 330 0.9

40 295,178.5 360 90 340 0.9

50 295,178.5 360 90 350 0.9

60 295,885.4 365 80 350 0.9

70 296,412.7 365 75 350 0.9

80 297,512.2 365 70 350 0.9

90 303,116.2 360 65 350 0.8

100 306,472.1 365 50 350 0.8
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Table 17. Total costs with various G for MPSH1

G TC N E B D

0.0 $440,263.5 400 90 250 30

0.1 406,955.9 400 90 250 30

0 2 378,261.2 400 90 250 30

0 3 355,835.1 400 90 250 30

0 4 338,290.9 400 90 250 30

0.5 324,590.7 400 90 250 30

0 6 314,734.7 400 90 250 30

0 7 308,722.8 400 90 250 30

0 8 306,555.0 400 90 250 30

0 9 295,178.5 360 90 300 0

1 0 298,852.1 360 40 310 25

100
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APPENDIX 4 : MPSH2 Control Parameters Sensitivity Results

Table 18. Total costs with various N for MPSH2

N TC E B D G

320 $310,333.8 75 340 5 0.8

330 309,074.7 65 340 0 0.9

340 307,993.6 70 290 0 0.5

350 303,903.2 90 280 0 0.3

360 295,012.4 90 300 0 0.6

370 295,815.9 65 280 10 0.7

380 297,917.7 65 300 20 0.6

390 297,599.3 40 280 0 0.6

400 299,026.5 45 280 0 0.6

410 301,373.2 40 300 10 0.7

420 299,600.6 50 260 25 0.8

Table 19. Total costs with various E for MPSH2

E TC N B D G

0 $310,424.5 390 350 30 1.0

10 303,147.6 395 250 5 1.0

20 299,445.5 400 270 5 1.0

30 298,811.3 385 250 0 0.6

40 298,789.1 380 310 25 0.9

50 299,103.3 380 330 25 0.8

60 296,128.0 370 280 5 0.7

70 295,654.5 365 270 0 0.7

80 295,613.4 365 290 0 0.6

90 295,012.4 360 300 0 0.6

100 295,973.0 360 330 0 0.5



Table 20. Total costs with various B for MPSH2

B TC N E D G

250 $298,553.0 425 45 0 0.7

260 300,654.5 380 45 0 0.3

270 295,654.5 365 70 0 0.6

280 297,599.3 390 40 0 0.5

290 295,134.5 360 85 5 0.5

300 295,012.4 360 90 0 0.6

310 295,012.4 360 90 5 0.6

320 295,012.4 360 90 15 0.6

330 295,012.4 360 90 25 0.6

340 295,012.4 360 90 40 0.6

350 295,012.4 360 90 50 0.6

Table 21. Total costs with various D for MPSH2
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D TC

0 $295,012.4 360 90 300 0.6

10 295,012.4 360 90 310 0 6

20 295,012.4 360 90 320 0 6

30 295,012.4 360 90 330 0 6

40 295,012.4 360 90 340 0 6

50 295,012.4 360 90 350 0 6

60 295,163.4 365 80 350 0 6

70 295,214.0 365 75 350 0 6

80 295,654.5 365 70 350 0 6

90 297,173.8 375 55 350 0.8

100 297,674.2 375 90 350 1 0



Table 22. Total costs with various G for MPSH2

G TC N E B D

0.0 $303,723.2 380 65 290 10

0.1 301,403.8 380 70 300 5

0.2 299,752.9 380 70 300 5

0.3 297,746.5 360 90 300 0

0.4 296,089.9 360 90 300 0

0.5 295,178.6 360 90 300 0

0.6 295,012.4 360 90 300 0

0.7 295,486.6 360 85 290 0

0.8 296,486.4 360 85 290 0

0.9 298,159.7 360 85 290 0

1.0 298,852.1 380 40 310 25
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APPENDIX 5 : Total Cost on Various Control Parameters

Figure 10. Total costs on five parameters for MPSH1
Multiple X-Y Plot -0- THESISS.MPSH1N

(X 1000e)

45

41

37

33

29

-4- THESISS.MPSH1E

1B

1D

9 2 4 6

THESISS.MPSH1

8 18 12

16



Figure 11. Total costs on five parameters for MPSH2
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