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A GENERAL THEORY OF DENSITY IN ADDITIVE
NUMBER THEORY

CHAPTER

INTRODUCTION

1. 1. A General Density

In 1930 L. Schnirelmann [23, 24] introduced the concept of

density for a subset A of the set of positive integers: For a posi-

tive integer n, let A(n) denote the number of elements in A

which do not exceed n. Then the density of A is defined to be

(1) a = g lb { A(n) I n > 1} .

We generalize this definition to subsets of an arbitrary set in

the following way.

Definition 1.1. Let S be an arbitrary set. For a subset

X of S, and a finite subset D of S. let X(D) denote the num-

ber of elements in the set Xr.mD. Let ib be any family of non-

empty finite subsets of S. Then the density of a subset A of S,

with respect to 2 is

A(G)
a = glb{s(G) I GE,b}

This reduces to Schnirelmann's definition if we take S to be the
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set of positive integers, and Zi to be the family of all sets of the

form {1, 2, n} where n = 1, 2,

The main purpose of this thesis is to develop a general theory

of density based upon Definition 1. 1. In order to obtain a fruitful

theory, it is necessary to place some restrictions on the set S and

on the family Z. In doing this we have employed an axiomatic ap-

proach. Chapter 2 contains two sets of axioms. The first set re-

quires S to be a certain type of abelian semi-group which we will

call an s-set. The second set of axioms gives structure to the fam-

ily ,t1 , which is then called a fundamental family on S and is

usually denoted by uS . Then the basic properties of fundamental

families are developed. Some sets in a fundamental family are dis-

tinguished in that they are the intersection of all sets of the family

which contain a given point of the s-set. Such sets will be called

Cheo sets. The family of all Cheo sets is denoted by

In Chapter 3 we give some structure theorems for s-sets

and fundamental families. We also provide an extensive list of

examples.

Chapters 4 and 5 describe special classes of fundamental

families.

In Chapter 6 we define and develop the elementary properties

of two different densities, K-density and C-density. The K-density

is given by Definition 1. 1 where S is taken to be an s-set and



two sets.
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to be a fundamental family 7 on S. The C-density is given

by Definition 1. 1 where S is again an s-set and A/ is the fam-

ily 2)1 of all Cheo sets of some fundamental family on S. One of

several results is that both K-density and C-density are generali-

zations of Schnirelmann's original definition.

In Chapters 7 and 8 we develop the theories of K-density and

C-density respectively. It is the K-density which has proved most

fruitful in extending known results from Schnirelmann density to the

more general setting. This is discussed in Section 1. 2. The

C-density is important as it generalizes other work which is de-

scribed in Section 1.3. The C-density also presents some interest-

ing problems.

In Chapter 9 we show some cases where the a + p theorem

holds (see (6) in Section 1. 2). In Chapter 10 we discuss further

problems.

The general axiomatic approach has provided new insight, and

as a result these theories not only extend familiar results to new ex-

amples but provide new results for both new and old examples.

1. 2. Results for the Positive Integers and Extensions to the
General Theory

Most of the density results involve the density of the sum of



4

Definition 1. 2. Let S be an arbitrary set with a binary

operation, denoted by + , defined on it. Let A and B be two

subsets of S. The sum of A and B, denoted A+B, is the set

{a+b I aE A, b E B} .

Now let S be the set of positive integers with ordinary addi-

tion as the binary operation. Let A and B be subsets of S, and

denote by a, p and y the Schnirelmann densities, given by (1),

of A, B and C = A+B respectively. The following is a list of

some of the results which have been shown:

If a + 13 > 1, then y = 1 (Schnirelmann[ 24] ) .

y > a + 13 - a13 (E. Landau[ 14] and Schnirelmann[ 24] ).

If a + 13 < 1, then y > 131(1 -a) (I. Schur[ 25] ).

y > min {1, 2a, 2131 (A. Khinchine[9] ).

y> min {1 , a+13 } (H. Mann[17] and F. Dyson [4] ).

We have omitted from this list the famous theorem of A. S.

Besicovitch [1] because its statement involves new definitions which

would be inconvenient to present now. In Chapter 10 we will discuss

this result.

In selecting the axioms, particularly those for fundamental

families, we have used as a guide the applicability in the general
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setting of the methods used in proving (2) through (6). In Chapter 7

using K-density, we show that (2) holds in complete generality and,

with an added hypothesis so do (3) and (4). We are unable to obtain

extensive generalizations of Results (5) and (6) for K-density. How-

ever, Mann's Theorem (6) is shown to hold in some very special

cases in Chapter 9.

On the other hand, none of the Results (2)-(6) are known to

hold in wide generality when they are stated in terms of C-density,

although each does hold for some case. As noted in the following

section, (6) has been shown to fail for some cases. In Chapter 8 we

obtain some different but no less interesting results for C-density.

1. 3. The Generalization of B. Kvarda and F. Kasch and Their
Relation to the General Theory

The theory of K-density generalizes the work of B. Kvarda

[11] , who defined density according to our Definition 1. 1 for subsets

of fl where In is the set of all ordered n-tuples
(x1, xn)

with each x. a non-negative integer and x1+- > 0. As willi

be seen, In satisfies the axioms for s-sets. She took the family

to be the set of all non-empty finite subsets F of In which

have the property that, if (x1, ,xn)EF, then all (y,
,yn)E1

with y. < x. (i = 1, 2, ' , n) are also in F. As will be seen, this1 - 1

family, which we denote by X an), satisfies the axioms for funda-

mental families on In. Thus the density of Kvarda is an example



of K-density.

With these definitions Kvarda proved that statements (2) and

(3) hold. This is the first generalization of the Landau-Schnirelman

inequality (3). Kvarda's major work is a generalization of the theo-

rem of Besicovitch and is discussed in Chapter 10.

Preceding Kvarda's work, F. Kasch [7] (and also L. Cheo

[2] in the case n = 2) defined density for subsets of In. Here the

family was taken to be the family of all sets of the form

itly Y = (Y ,Y)E I,y. < x. (i = 1, 2, " , n)} where (x1 , )

ranges over In. It is clear that this family is a subfamily of X (In),

and that a set of the above form is the intersection of all Fe (In)

such that (x1' ,xn)E F. Thus Kasch's family is the family of all

Cheo sets of X(In), and so his density is an example of C-density.

With this density Cheo showed that (2) holds when n = 2. In

Chapter 8 the same method is used to show that (Z) holds for arbitrary

positive integral n. The truth of statements (3) or (4) is unknown.

Statement (6) is shown by Cheo to fail. The Landau-Schnirelmann

inequality (3) can be written -y > a + ki3 (1-a) where k = 1. Kasch

proved that for n > 1 the inequality holds with k=a/(2n(3(n+1))n) .

Using a method reminiscent of that employed by Landau in the proof

of (3), Kasch improved upon k, for the special case xi 2, by

showing that the inequality holds for k = a/2. He conjectured that

for arbitrary positive integral n, the value k = (a/n)n-1 may be



7

used. In Chapter 8, as a special case of our main result on C-density,

we show that we may take k =(1-(1-a)1/(n-1))//n. In Appendix 3 it is

shown that this is a better (i. e. larger) k than those mentioned.

We note that in the case n = 1 both Kvarda's and Kasch's

definition reduces to Schnirelmann's definition. Thus both of these

works generalize Schnirelman.n's density theory.

1. 4. Other Generalizations and the Literature

Other generalizations of density concepts have been introduced

by J. van der Corput and J. Kemperman[3] , E. Harter [6] , B. Muller

[20] , and others. In general however, they do not attempt to develop

a theory of density as such but restrict themselves to special prob-

lems.

There are two excellent bibliographies which cover most of

the work on density in additive number theory. They can be found in

H. Ostmann [21] , and more recently, in H. Mann [19] .

1.5. Notation

We adopt the following notation: For two sets A and B,

denote by A\13 the set of all elements in A which are not in B.

In the case where B reduces to a singleton {x} we write A\ B

as A\x



CHAPTER 2

THE AXIOMS AND BASIC RESULTS

In this chapter we present the axioms for s-sets and the

axioms for fundamental families. The fundamental properties which

follow from these axioms are developed.

2. 1. Axioms for s-sets

Throughout this section, unless otherwise specified, S will

denote a non-empty subset of an abelian group F. The operation in

is denoted by + and the identity element by 0 .

Definition 2. 1. For x and y in r, we write x y

(or y. x) whenever y - xE S.

Definition 2. 2. For XES, let L(x) denote the set of all

y E S for which y.< x or y =x. We call L(x) the lower set of

with respect to S.

The set S is called an s-set if the following three axioms

are satisfied.

Axiom s. 1. S is closed under +.

Axiom s. 2. 0 3 S.

Axiom s. 3. L(x) is finite for each XES .



Theorem 2. 1. Axioms s. 1 and s. 2 are equivalent to the

statement that the relation < is a partial ordering of T, i. e.

that is irreflexive and transitive.

Proof. To show irreflexivity, notice that if x x for some

xE r , then 0 =x xe S contrary to Axiom s. 2. To show transi-

tivity, let x, y and z be elements of r with x y and

y z. Then y - x and z - y are in S, and by Axiom s. 1,

z - x = (z -y)+ (y-x) ES, and hence

Now suppose that < is a partial order relation. We prove

that S satisfies Axioms s. 1 and s. 2. Since .< is irreflexive, we

have immediately that 0 S. Now let x and y be in S. We

have x < x+y and x+y x+x+y, and since is transitive,

X < x+ x+ y. Thus, by the definition of < , x+ y= (x+x+y) - xE S,

and we have shown that S is closed under + .

Thus the Axioms s. 1-3 can be stated equivalently as the

following: < is transitive; is irreflexive; L(x) is finite for

each XE S .

2. 2. An Equivalent Definition for s -sets

We give another equivalent definition for s-sets which doesn't

require the concept of group or order relation. A non-empty set S

is called an s-set if the following three conditions hold:



There is a binary operation + defined on S which is

associative, commutative, and satisfies the cancellation rules.

If x+y are in s, then x+ y x.

For each XES, the equation y+z = x has at most

finitely many solution pairs y, z in S.

We show that any set S satisfying these conditions also sat-

isfies Axioms s. 1-3. Condition (i) says that S is an abelian cancel-

lation semigroup. By the same method which is used to imbed the set

of positive integers in the abelian (additive) group of all integers, so

can such a semigroup be imbedded in an abelian group. Thus S is

a closed subset of an abelian group, say, F. If 0 denotes the

identity in r, then condition (ii) implies that 04S. Now, since

S is a subset of an abelian group, we may define and L(x).

For each yE L(x) with y { x, we have x - yE S. Then y, x-y

is a solution pair in S of the equation y+z =x. Since, by condi-

tion (iii), there are only finitely many such solutions, we obtain that

L(x) is finite. Thus S is an s-set.

Conversely, it may be shown that any s-set satisfies the

above conditons.

2.3. Some Properties of s-sets

s-sets.

The following theorem lists a few of the simple properties of

10
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is an element of S;

n(x+y) = nx + fly;

(n.+m)x = nx + rnx

each element of an s-set is of infinite order;

any s -set is infinite.

Proof. Properties (i), (ii) and (iii) are trivial, property

(iv) follows from (i) and Axiom s. 2, and property (v) follows from

(iv) and the fact that any s-set is non-empty.

Definition 2.3. Let X be a subset of an s-set. A point

xE X is called a minimal point of X if X rm L(x)= {x}. The set

of all minimal points of X is denoted Min(X).

Theorem 2. 3. If a subset X of an s-set is non-empty

then Min(X) is also non-empty.

Proof. Assume that X is non-empty and that Min(X) is

empty. Let xl be an arbitrary point of X. Since Min(X) is

empty, there exists an
x2 x1, with x2 E X (Th L(XI) But then

there must be an x3 x2 with x3e Xr,L(x2 ). Continuing, we obtain a

11

Theorem 2. 2. Let S be an s-set. Let x and y denote

arbitrary elements of S and m and n arbitrary positive

integers. Then
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sequence x1> x2 The members of this sequence are pair-

wise distinct and they all belong to L( x1) which implies that L(xi)

is infinite, contrary to s. 3.

The following theorem shows that Definition 2. 3 agrees with

the standard definition for minimal point of a partially ordered set.

Theorem 2. 4. If X is a non-empty subset of an s-set and

y E X , then there is an xE Min(X) such that x .1(y or x = y.

Proof. If yE Min(X) then take x = y. Hence suppose that

y Min(X). Let XE Min(L(y) rm X). Clearly x y or x = y

(since xE L(y) ), and we show that xE Min(X). Now

XE Mm (L(y) r X) implies L(x) m (L(y) X) = {x} . By the transi-

tivity of we have, since xe L(y), that L(x) C L(y). Hence

L(x) (L(y) rm X) = L(x) rTh X = {x}

and XE Min(X). The proof is complete.

As an immediate consequence of Theorem 2. 4 we have

Theorem 2. 5. If Min(X) = {y} , then y x for each

xE X \ y.

Definition 2.4. Let S be an s-set and let XE S. Denote

by U(x) the set of all YES with x y .
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It is important to observe that x is not a member of U(x)

whereas XE L(x) .

Definition 2. 5. Let X be a subset of an s-set. A point

xE X is called a maximal point of X if X rTh U(x) = cl). The set

of all maximal points of X is denoted Max(X).

Unlike Min(X), Max( X) can be empty for non-empty X,

e. g. if X = S. However we have the following

Theorem 2. 6. If X is a non-empty and finite subset of an

s -set, then Max(X) is non-empty.

Proof. The proof is analagous to that of Theorem 2. 3. In

this case we obtain a sequence x1 x2 X contrary to

the assumption that X is finite.

The following theorem is analagous to Theorem 2. 4.

Theorem 2. 7. If X is a non-empty and finite subset of an

s -set, and XE X, then there is a yE Max(X) such that x y or

x y.

Proof. If xe Max(X), then take y = x. If xj Max(X),

then X (Th U(x) is non-empty and finite. Let yE Max(X U(x)).

Now yE U(x) and so, by the transitivity of .< we have



U(y) C U(x). We have

= (X (m U(x)) U(y)

= X rm (U(x)(mU(Y) )

= X rm U(y) ,

and so y E Max(X). The theorem follows.

Theorem 2.8. If X is finite and Max(X) = {y} , then

for each xe X \y .

Proof. This is an immediate consequence of the preceding

the

2. 4. Axioms for Fundamental Families

Definition 2. 6. For an arbitrary set S let", =Os) de-

note the family of all non-empty finite subsets of S.

Definition 2. 7. Let 7 be an arbitrary subfamily of iff and

let F be a set in 7 . A point x E F is called a corner point of

F if either F = {x} or F\ x e (tS . The set of all corner points
*

F is denoted F .

Notice that F* is dependent upon the family 7. It can

happen that a set F may be in two different families and have

14
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entirely different sets of corner points relative to the two families.

Now let S be an s-set. A non-empty family cps)
will be called a fundamental family on S if the following four axioms

are satisfied:

Axiom f. 1. For each XE S there is an Fe with xE F.

Axiom f. 2. The union of any non-empty finite subfamily of

7 is a. set in. y

Axiom f. 3. The intersection of any non-empty subfamily of 5 is

a set in y , provided the intersection is non-empty.

Axiom f. 4. If Fe then Max(F) CF* .

Definition 2. 8. The ordered pair (S,1) is called a density

space whenever S is an s-set and is a fundamental family on

S.

The family X(In) of the Introduction is an example of a fun-

damental family on the s-set In. Thus (I", 7'(I1.1) ) is an exam-

ple of a density space. Chapter 3 contains an extensive list of exam-

ples of density spaces. In the present chapter we make no further

reference to examples but the reader may find it helpful to keep such

an example in mind.

2. 5. Remarks on the Axioms

Axioms s. 1-3 are consistent because of the examples of
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Section 3. 1. The treatment of other logical questions concerning

these axioms such as independence, redundancy and categoricalness

is not difficult and is omitted.

On the other hand, we consider the following questions con-

cerning Axioms f. 1-4: (1) Are they consistent? (2) Are they inde-

pendent? (3) Are they categorical? (4) Are there any apparent

redundancies in the axioms ?

The examples of Section 3. 2 show that question (1) can be

answered in the affirmative. We answer question (2) in Appendix 1

where we show the Axioms f. 1-4 are independent.

We do not give a detailed discussion of categoricalness. How-

ever, the diversity of the examples of fundamental families given in

Section 3. 2 is evidence that the axioms are not categorical. It is

interesting that, if Axiom f. 4 were replaced by

Axiom f. 4' If FE a°, then Max(F) = F,

then the axioms would be categorical since, in this case, precisely

one subfamily of would serve as an example. This is part of

Theorem 3. 8.

The following theorem answers question (4).

Theorem 2. 9. (i) Axiom f. 2 is redundant in that i is suf-

ficient to state that the union of any two sets of is a set of 7 .

(ii) Axiom f. 3 is redundant in that it is sufficient to state that the

intersection of any two sets of provided it is non-empty, is



a set of .

Proof. Part (i) follows immediately from the usual induction.

To prove (ii), first notice that by induction we can extend this state-

ment to closure of 7 under non-empty intersections of non-empty

oyfinite

subfamilies of Now let
F6

be a set in 7 for each

6 in some non-empty index set A, and suppose that

{F515 A} is non-empty. Let So be fixed, 60 A, and form

the family {F6 F.51 E A} This is a finite class of sets of

whose intersection is non-empty. Thus {F5 F E A} is a setF5

in 7 , and since IF616 E = {F5
F6

e ,6, we have the
0

desired result,

2. 6. Properties of Fundamental Families

The following theorems describe the structure of a funda-

mental family. Throughout this section (5,7) is an arbitrary

density space (Definition 2.8).

Theorem 2. 10. For each F, the set of corner points

F* of F is non-empty.

Proof. The theorem follows immediately from Axiom f. 4

and Theorem 2. 6.

17

Definition 2. 9. Let XE S. Denote by [x] the intersection



of all F such that XE F E T. We call [x] the Cheo set of

determined by x.

Theorem 2. U. For each XE S we have [x] E7.

Proof. By Axiom f. 1 there is at least one F with

XEF E 7. Since {FixEFEl} is non-empty, we have [x] E

by Axiom f. 3.

Theorem 2.12. If xEFET, then [x] C F.

Proof. This is an immediate consequence of Definition 2. 9.

Theorem 2. 13. For each xe S we have [x] = {x} .

Proof. Assume y is a corner point of [x] and y x.

Then F = [x] \ yE Hence XE F, and by Theorem 2. 12 we have

[x] CF, a contradiction. Thus, there is no corner point of [x]

different from x. Applying Theorem 2. 10 we obtain the desired

result.

In view of Theorem 2. 13, we can restate Theorem 2. 12 thus:

If [x] * C F E then [x] CF. The following theorem is a gener-

alization.

then F C G.

18

Theorem 2. 14. If F and G are in , and F C



Thus a fundamental set is uniquely determined by its set of

19

*Proof. Let Ho = vi[x] I xeF 1. By Axiom f. 2, Hoe 7.

By Theorem 2.12, we have
Ho CF. Since F* C G, we have

H0 CG also. If H0 = F, then the theorem is proved. Suppose,

on the other hand, that there is an
x1 E F\Ho and let H1 = H 0v[

For the same reasons as before H E I and
1 H1

CF. If
H1

i F,
then let x2e F \ Hi and H2 = H1 v [x2] . Again H2e 7 and

H2 g F. Continuing in this manner we must eventually arrive at an

Hk- 1 j[xlc.11' r* k
XkEF\Hk_i such that Hk= We show that x, is a

corner point of F, i. e. , F \ xke 7. For

F \ xk = Hk\ 3Ck = (Hk - 1 Xk Xk

= Hk - 1 [Xl< \

which is in 1 by Theorem 2.13 and Axiom f. 2. Thus x,1e F*,

but this is a contradiction since xk is also in F\ Hk_ 1 which
*

is disjoint from F* since F C Ho _c_ Hk..1. Thus the assumption

that H0 is different from F leads to a contradiction and the

theorem is proved.

As an immediate consequence of Theorem 2.14 we have

Theorem 2.15. If F and G are in , then F = G
01,if and only if F = G .
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corner points. In particular, if a set FE 5 has the single corner

point x, then F is identical with [x] .

The next theorem offers a useful decomposition of a set in

Theorem 2. 16. For each FE we have

F=

Proof. If XE F , then XE F, and so by Theorem 2.12,

we have [x] CF. Thus {[x] I XE F*}CF. On the other hand,

by Axiom f. 2, __.) f[x] XE F*le 5. Clearly F*C._.) {[x] XE F*}

so that, by Theorem 2.14, we have F {[x] I XE F }. The proof

is complete.

Theorem 2. 17. Let X be a non-empty finite subset of S.

Then the set F = f[x] I XE X is in el and furthermore F CX.

Proof. The first part is an immediate consequence of Axiom

f. 2. For the second part, suppose there is a point yE F such

that yj X. By the definition of F there must be an XE X such

that ye [x] . Let F1= F\y which is in Since
XEF1

we have, by Theorem 2.12, that [x] çF1 which implies that

yE F1' a contradiction.

Theorem 2. 18. For each XE S, we have [x] C L(x).
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Proof. From Theorem 2. 6, Axiom f. 4 and Theorem 2. 13

we obtain

(1)4 Max([x] ) C [x]* = {x} .

Thus Max([x] ) = {x}. By Theorem 2. 8, we have y.? x for each

ye [x] \ x. Thus for each yE [x] , we have ye L (x) and the proof

is complete.

Theorem 2. 19. Let FE 7. If x and y are distinct

points of F , then xi [y] .

Proof. By Theorem 2.16 we have F= {[z] I z e F*}. If

XE [y] , then by Theorem 2. 12, [x] C[y] and so
* *F = {[z]

I
zeF\ x}. But Theorem 2. 17 implies that F CF \ x,

a contradiction. Thus x4 [Y]

Definition 2. 10. A point XE S is an essential point of the

density space (5,1) if [x] = {x}.

The essential points of (S,7) are of importance in the

proofs of some of the density theorems of Chapters 6, 7 and 8. The

following theorem characterizes the set of essential points of (S,7).

Theorem 2.20. Let xe S. Then x is an essential point

if and only if there is an FE 7 such that XE Min(F).

Proof. If x is essential, then take F [x] . Clearly



XE Min( {x}) = Min([x] ) Min(F).

Now suppose there is an FE I such that xE Min(F). By

Theorem 2. 12, we have [x] CF, and by Theorem 2. 18, [x] C L(x).

Thus
(I)4 [x] CL(x) F = {x}

since x is a minimal point of F (Definition 2. 3). Hence [x] = {x}

and x is essential.

Moreover, we have the following theorem.

Theorem 2. 21. If xE Min(S), then x is an essential point.

Proof. If xE MinS, then {x} = L(x) S L(x). Hence

as before 4 4 [x] C L(x) = {x} and the theorem follows.

Definition 2. 11. Let = X(S) denote the family of all

sets F Eff(S) with the property that if XEF, then L(x) CF.

In Section 3. 2 it is shown that ,e and if are fundamental

families on S. We mention this now because of the following

theorem which shows that 916 and og occupy special places in the

class of all fundamental families on S.

Theorem 2. 22. For any fundamental family es on S we

22

Proof. By definition Gfc.tr Let KE For xeS,

have 7517



let fxj denote the Cheo sets of 7 determined by x (as opposed

to the Cheo set of any other family). Define F = {[x] XE K}

We have by Axiom f. 2, that FE and we show that F = K. By

Theorem 2. 18, we have [xj C L(x). Thus, for each xe K, we

have [x] C L(x) CK, and so F CK. On the other hand, we have

for each xe K, that XE [X] CF, and so K CF. Thus K = F,

KE y and c

Theorem 2.23. For each x E S, we have L(x) 7.

Proof. In view of Theorem 2. 22 it is sufficient to prove that

L(x) E %. To prove this we need to show for each yE L(x), that

L(y) C L(x) . This follows immediately from the transitivity of the

relation -< .

Theorem 2.24. Let 116E be an arbitrary non-empty

class of fundamental families on S. Then (Th IT6 1 5E Al is again a

fundamental family on S.

Proof. Let ,Th{TH6E,61. By Theorem 2. 23, we have

L(x) ET for all xE S and 5 E A . Hence, for all xe S, we have

L(x)E7. Thus 7 satisfies Axiom f. 1 since for each XE S, we

have xE L(x) E Axioms f. 2 and f. 3 are clearly satisfied by trS

To show that Axiom f. 4 holds, let XE Max(F) where FE I. Since

FE for each 5, it follows from Axiom f. 4 that x is in the set6
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of corner points of F relative to
75

for each 6 E A. Thus

F\xE15 (or F = {x}) for each 6 c A , and so F\x y (or F = {x}).

Thus XE F and Max(F) C F .

Theorems 2. 22 and 2. 24 imply the following theorem.

Theorem 2. 25. The class of all fundamental families on S

forms a complete lattice with respect to the partial ordering by set

inclusion C

Proof. The theorem follows from the well known fact that any

class of sets closed under arbitrary intersections and containing a

largest set is a complete lattice with respect to the partial ordering

C',

We conclude this chapter with the following definition which

extends Definitions 2. 2, 2. 4 and 2. 9.

Definition 2. 12. Let

L(0) = [0] = cp, and U(0) = S

where 0 denotes the identity of the containing group of S.

ft
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CHAPTER 3

STRUCTURE THEOREMS AND EXAMPLES

In this chapter we prove several theorems on the structure of

s -sets and fundamental families. Included also is an extensive list

of examples.

3. 1. Examples of s-sets

We begin with some theorems which enable us to construct

new s-sets from given ones,

Theorem 3. 1. If T is a closed subset of an s-set S,

then T is an s -set.

Proof. Denote the containing group by r. Clearly, T

satisfies Axioms s. 1 and s. 2. Let and ...<T denote the par-

tial orderings of r with respect to S and T respectively

(Definition 2. 1). Similarly, let Ls(x) and LT(x) be the lower

sets of x with respect to S and T respectively (Definition 2.2).

If y.,<T x, then x - yE T C S, and so x. Thus LT (x)CLs(x)

for each XE T, and so T satisfies Axiom s. 3. This completes

the proof.

25

We can apply Theorem 3. 1 to obtain many new examples. For
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instance, the following theorem shows that a translation of an s-set

by an element of the s-set forms a new s-set.

Theorem 3. 2. Let S be an s-set and x a fixed element

of S. Then T = {y + S } and T' = {y+xlyS or y= o}

are s-sets.

Proof. Let y1 +x and y2 +x be two elements in T Or

T I . Then (y1 +x) + (y2 +x) = (y1 +x +y2) + x. Clearly,

(Yi +x+y2)ES so that T and T' are closed subsets of S. By

Theorem 3.1, T and T' are s-sets.

Definition 3. 1. For a set X contained in a group r, we

denote by X° the set X Li {0} where 0 is the identity of .

We will use the symbol 0 indifferently for the identity element of

any (additive) group.

The following definition shows us how to take a special product

of a class of sets, each a subset of a group.

Definition 3. 2. Let be given, for each 6 in a non-empty

index set A , a set X6 contained in an abelian group F6. Con-

sider the set X of all functions f defined on A which satisfy

the following two properties:

°(i) f(6) E X6 for each 6 E A ,



27

(ii) the set of 6 for which f(6) 4 0 is non-empty

and finite.

We denote the set X by TI {X616 E A} and we call X the product

of the X A function fE X is sometimes denoted by the indexed

array (x618 e A) where x6= f (8). The elements of X will be

referred to as either points or functions.

Theorem 3.3. Let Ss be an s-set for each 8 in some

non-empty index set A. Let S = H {S616 E A}. Then

S is a subset of an abelian group;

for S' L(f) = 11 {L6(f(6) )1 se A}

where L6(x) denotes the lower set of xe S6 with respect to S6.

Proof. Let r6 denote a group containing S8. Then

F = IT {I-51 s is the (outer) direct sum of the r6 without the

identity element. Thus r. = r 10 is an abelian group, and

clearly SCI" . This proves (i). We denote by and ..4 the

partial orderings of r, and r6 with respect to S and S6.

If fI and f2 are in 5, then a necessary and sufficient condi-

tion that f1 '<f2 or fI f2 is that, for each 6 E A, we have

f1(8) f (8) or f1(8) = f (8). Formula (ii) follows immediately.

Theorem 3. 4. If 58 is an s-set for each SE A, then

S = 11 {S618 e A} is an s-set. Here, addition is defined on S by



the formula

(f1
+ f2)(6) =

f1
(0+ f2(6).

Proof. We omit most of the details. From Theorem 3. 3(1),

S is a subset of an abelian group and it is clear that S is closed

under addition. Conditions (ii) of Definition 3. 2 assures us that 0

(i. e. the zero function) is not in S. Thus S satisfies Axioms s. 1

and s. 2. From Theorem 3.3(ii) we have L(f) = 11 {L5(f(6))1 SE A}

which is finite in view of condition (ii) of Definition 3. 2. Thus S

satisfies Axiom s. 3.

r,

Definition 3. 3. In the case where SS = S for each S in

A we denote Ti {SISA} by SA. In the case where A is finite

of order n we denote SA by Sn.

Notice that Sn is isomorphic to the set of all ordered

n-tuples (s
1

, sn) where s. ES° and at least one s.

(For the definition of isomorphism between s-sets see Chapter 5).

In defining a particular example of an s-set we will often

omit reference to the containing group r. In view of Section 2. 2

this can do no harm.

Example ss- . The set I of positive integers is an s-set.

Here L(x) = {1, 2, x } and Min(I) = {1 } .

Example ss- . For an arbitrary positive integer n, I
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L((xi , x2, )) = fy I y = (3ri, )II,y. <

Min (I ) = {el , e2, where e. = (5 ., 62i,

Example ss-4. Let A be an uncountable index set. Then
AI is an example of an s-set which is uncountable, since Min(?)

is the set of all functions e(5e A), where e6 is defined by the

formula

0 if X + ,

e6(X)
1 if X = 6,

and, clearly, this set has the same cardinality as A.

In Appendix 2 we will show that the following example is not

isomorphic to any s-set which is a closed subset of IA for any

even though it is contained in the additive group of rational numbers.

for i = 1,2, and

29

is an s-set. Notice that P =I and 12 is isomorphic to the set

of positive Gaussian integers, i. e. , the set of all x+ yi with x

and y non-negative integers and x+ y > 0. For In,

L( (xi , x2, ,xn))= fyly=y1, " , yn) In, yi <xi for i= 1,2, n1.

Min(In) = le1, ,en1 where e. = (61i' 62i,.. '6 ') where

6..:O if j4i and 6. 1 if j = i .

Ji

IExample ss-3. is an s-set. This can be identified with

the set of all sequences of non-negative integers with at most finitely

many non-zero entries and at least one non-zero entry. We have



Example ss -5. Let

S = In+ (V23) I n> 1, 0 <i < 2/11.

We show that 5 is an s -set.

S is closed. Let x = n + (i/2n) and y = m + (j/2m)

be arbitrary points of S. Then

m ni2 + j2z = x + y (n+m) +
zn+rn

Write m ni2 +. 32 P-k +
2 2

-n+m n+m

where k is an integer > 0 and 0 <P < 2n+m Then we have

2k Pz = (n+m+k) + - (n+m+k) +
2n+m 2n+m+k

where 0 < 2kP < 2n+m+k and so z E S.

0 is not in S by definition.

For each XE S, L(x) is finite. Clearly, if y-<x

then y < x. Hence,

L(x)C {ylyeS, y <x }

This set is finite, for if y = n(i/2n) < x, then 1 <n <x and
x< i < 2n < 2

All of the examples so far have the property that the
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containing group can be taken to be torsion free, i. e. , with no

non-zero element of finite order. Our next theorem shows how to

construct s-sets for which this does not hold.

Theorem 3. 5. Let T be an s-set and G a finite abel-

ian group. Then the set

S= GXT = {(x,y)IxEG, YET}

is an s-set where addition on S is defined by the equation,

(x, y) + (x' , y') = (x + x' , y + y').

Proof. If r is a group containing T then

G X r = {(xy)J x E G, y E r }

is an abelian group containing S. It is clear that S is clo8ed and

that 0 (=(0, 0) ) is not in S. Now, L((x, y)={(xl,y1)1xlE G, y' E L (y ) },

and this set is finite. This completes the proof.

Notice that if G {0}, then any group r, containing

G)< T must contain a subgroup isomorphic to G, and so r.

cannot be torsion free.

Our next example is just a special case of Theorem 3. 5.

Example ss-6. Let S=GX I where G= {0, 1} is the

abelian group of order 2.
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3. 2. Examples of Density Spaces

We begin with a theorem that characterizes all examples of

fundamental families on a given s-set. It could thus be taken for the

definition of fundamental families.

Theorem 3. 6. Let S be an arbitrary s-set. Correspond-

ing to each XES, let B(x) be a subset of S satisfying the fol-

lowing three conditions

(b. 1) xe B(x)

(b. 2) B(x) C L(x)

(b. 3) if yE B(x), then B(y) C B(x) .

Let

1B = {FIFErfis), xe F implies B(x) CF}

Then is a fundamental family on S. Conversely, given any

fundamental family 7 on S, there exists a function B(x) sat-

isfying conditions (b. 1-3) such that (it =1

Proof. Condition (b. 1) implies that B(x) is non-empty,

and (b. 2) implies that B(x) is finite so that each B (x) er(S).

Now, (b. 3) implies that B(x) e 1. In view of (b. 1), Axiom f. 1

holds. Axioms f. 2 and f. 3 follow immediately from the definition

of 01B. , Let F E 113 and let y e F \ x, where xe Max(F). By

condition (b. 2) and the assumption that xe Max(F), we have that
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is a fundamental family on S. Clearly, by Theorem 2. 12, each

FE 7 satisfies the condition, xe F implies B(x) C F, and hence

C B. Now, let F e 1B. By Condition (i) and the definition of1 1
1B we have that F = {B(x)Ix e F} . This set is in since

it is a finite union of Cheo sets in of. Thus of c and the proofB

of Theorem 3.6 is complete.

Theorem 3. 7, Let S be an s-set and let B(x) satisfy

Conditions (b. 1-3). Then the Cheo set of ID determined by x

is equal to B(x).

Proof. Since X E B(x) E we have by Theorem 2. 12 that

[x] C B(x). On the other hand, since xE [X] E we have by the

definition of 1B that B(x) C [x]

Along with the description of an example of a density space

(S,T, we will characterize the set of corner points of a set of ,
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xi B(y). Thus B(y) B(y)\x CF\x, and so F \x is in efB.

Hence xeF for each xE Max(F and we obtain Axiom f. 4. We

conclude that
fB is a fundamental family on S.

Now, let an arbitrary fundamental family on S be

given. We take l3(x) = [x] . Condition (b. 1) is satisfied because of

the definition of [x] (Definition 2. 9). Condition (b. 2) follows from

Theorem 2. 18, and Condition (b. 3) follows immediately from Theo-

rems 2. 11 and 2. 12. Thus, by the first part of this theorem, lB
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indicate the essential points of (S,I), and show anything else of

interest concerning the density space.

Example ff.-l. The pair (S,k) where S is an arbitrary
s -set and where = TB with B(x) = L(x) is a density space. It

is clear that L(x) satisfies Conditions (b. 1) and (b. 2). Condition

(b. 3) follows from the transivity of . Notice that this definition

of is equivalent to Definition 2. 11.

As =)6S) is a very important fundamental, family, we

list its properties in the following theorem.

Theorem 3. 8. The fundamental family 2.1 has the following

properties :

For each FE we have Max(F) = F*.

X is the only fundamental family on S satisfying

property (i).

The Axioms f. 1, f. 2, f. 3 and f. 4' (see Section 2. 5) are

categorical.

The Cheo set of 'tat determined by xeS is L(x).

The essential points of (4) are just the minimal

points of S.

Proof. (i) From Axiom f. 4 we obtain Max(F) CF*. On

the other hand, let XE F and suppose there exists an element y



such that ye F with x.< y. Then xE L(y) and, since

yeF \xe76 L(y) CF \ x. This is a contradiction. Hence

xE Max(F), and we obtain Max(F) = F*.

Let °I be any fundamental family on S with the

property that Max(F) = F* for each FE al. By Theorem 2. 22

we have
Cl9,{

Let F be any set in and suppose that F

is not in Then there is an x such that both xE F and

L(x) F. Let ye L(x) \F and let G = F [y] where [y]

denote the Cheo set of el determined by y. Then Ge 7 and

so Max(G) = G Since G \y=F ([y] \ y), we have that

ye 0*. But yi Max(G) since XE G and yi< x. This is a con-

tradiction and we conclude that =

From (ii) it is clear that the only family satisfying the

four Axioms f. 1, f. 2, f. 3 and f. 4' is x.
For xES we have, by Theorem 3. 7, that [x] =B(x)

where, by definition, B(x) = L(x).

By (iv), an element xeS is an essential point of (S,X).

if and only if L(x) = {x} . Now L(x) = {x} if and only if

L(x) n S = {x}, that is, if and only if xe Min(S).

Example ff-2. As a special case of Example ff-1 we have

that '70 is a density space.
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This density space is the one used by Kvarda and Kasch in de-

fining K-density and C-density respectively for subsets of In

according to Definition 1. 1. In the special case n= 1 we have

Schnirelmann's original definition. Notice that when we replace

Axiom f. 4 by Axiom f. 4' and specify the s-set to be In we get

an axiomatic characterization of these densities.

Example ff-3. The pair (S,Ifi where S is an arbitrary

s -set and where ff=TB with B(x) = {x} is a density space.

Clearly B(x) satisfies conditions (b. 1-3). Notice that this defini-

tion of II is equivalent to Definition 2. 6. Note that for each xe S

we have [x] = {x} so that every point of S is an essential point

f (so. Note also that F = F for all F Elf

Example ff. 4. The pair (In, °L) is a density space where

R is defined as follows. For x = (xl' x2' xn)E In define R(x)

to be the set of points
ix ix

ixixn

d d

where d = g c , ,x} (g c d = greatest common divisor) and

i = 1, 2, d (we show IR is a fundamental family). Thus R(x)

satisfies (b. 1) since x= (dxi Al, dxn/d) R(x). Condition (b. 2)

follows from the fact that ix./d < x. for i = 1, d and

j = I, , n. To prove Condition (b. 3) notice that



/gc d{ix/d, ,ix/d} i and (i'(ix.) d)/i = d for 1<i' <i

and 1 <j < n. Thus

ix1R( ( n)) C R(x) .

The essential points of (In, IR) are just those points

x = (x1, , xn) for which d = g c d{xr xn} = 1.

Independent of the work on this thesis, Kvarda and R.

Killgrove [13] have given a definition of density for subsets In

which amounts to the C-density with respect to That is,

the density of a subset A of is given by Definition 1.1 where

the family it; is taken to be the family of all Cheo sets of IR.

Example ff-5. The pair (In, ) is a density space

where j is an integer, 1 <j < n, and Hi is defined as follows.For eachxx= (x1, x) E In, define H.( ) to be the set ofn 3

points

{(x
x.3-1, i x. , x ) i(x) <i < x.1 .' 3+1 n - J

Here q(x) is defined to be 1 if xic = 0 for all k where

an xdn(x) = otherwise. Now H.( ) satisfies the

.

Conditions (b. 1-3) so that is a fundamental family on In.

The essential points of (I ) are all pointsH.

such that x. = 0 together with the point e.

which has unit jth coordinate and all other coordinates zero.

37
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The preceding two examples can be extended to the s-sets

for arbitrary A as is shown in Example ff-6 and ff-7.

Example ff-6. The pair (IA, IR) is a density space where

R is defined as follows. Recall that an element of 1A is a func-

tion f on A into Io such that f(5) = 0 for all but finitely

many 5 E A , and f(5) 4 0 for at least one 5. For a function
Af E I, let d = g c d{f(5)I 5 E A}, and define R(f) to be the set of

functions g. (1 <i < d) defined by the formula

if(6)
gi(5) d

Then, as before, R(f) satisfies Conditions (b. 1-3).

We remark that Theorem 2. 24 provides a method for obtain-

ing new fundamental families on a given s-set from old ones.

Moreover, if is any subfamily of D., then the family which

is the intersection of all fundamental families es on the s-set

which contain jff ' is a fundamental family, and is called the

fundamental family generated by 161 .

defined by the formula

Example ff-7. The pair (IA' ) is a density space
HX

where X is a fixed element in A, and
HX

is defined as

follows. For f E IA, let H(f) be the set of all functions g E



tg(5)

= f(6) if 6 4 X ,

i(f) < g(6) < f(k) if 5 = X

where

if f(6) = 0 for 5 + X

ri(f) =

otherwise .

By Theorem 2. 24 we have that n {TH 1XE A} is a fundamental
X

family on IA. We note that this family is

B is defined below. As usual we represent I2 as the set of all

ordered pairs (x,y) where x and y are non-negative integers

and x + y > 0. Define B( (x, y) ) as follows :

{(x,y)} if x > 0 and y is odd,

B((x, y)) = {(x, i-) I i 0, 2, 4, y} if x> 0 and y is even,

{(x, i) I i=1, 2, y} if x = 0

The abundance of examples of density spaces is indicated by

how easy one can obtain spaces from the space (I, X) by varying

I and X slightly. For example, we can take closed subsets of

I. The following is an example where is varied.

Example ff-9. The pair (I, 1B ) is a density space where
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Example ff-8. Ths pair ,1) is a density space where



B is defined as follows :

{x} if x is odd,

B(x) =

{2, 4, ,x} if x is even.

The following theorem provides a method by which we can

construct a fundamental family on an s-set S, where S is the

product of a class {S5I 5 E A } of s-sets.

Theorem 3. 9. For each 6 in an index set A, let

(S5' id be a density space, and let S = ii {s51 8 A}. Then

41B is a fundamental family on S where B is defined as

follows : Denote by [x] 6 the Cheo set of 6'16 determined by

S5. For a function f ES define B(f) to be the set

ii {[f(5)415e A).

Proof. Condition (b. 1) follows since fE11{[f(6)]516"

Letting L6(x) denote the lower set of XE S6 with respect to

S5' we know, by Theorem 2. 18, that [f(6)]6 CL6(f(6)) for each

6 e A . Hence

B(f) = {[f(5)] 6 16 E c ii {L5(f(s) )1 e A) = L(f)

where this last equality holds by Theorem 3. 3(ii). Thus B sat-

isfies Condition (b. 2). Now, if g13(f), then g(6) e [g6)] for
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each 5E A . Hence, by Theorem 2. 12, we have [g(5)] 6 C [f(6)]

and so

B(g) =1i {[g(5)]615E A} Crl {[f(8)]6I5E A } = B(f) .

Thus Condition (b. 3) is satisfied and the proof is complete.

Fundamental families on product s-sets are studied in

Section 8. 2.

Definition 3. 4. The fundamental family of Theorem

3.9 is denoted by

P11516EA},

and the density space (S, ) by

P{S5' DI)16EA}.
5

Theorem 3.10. For any non-empty class {S6 I e A}, we

have

(i) s I 6E Al) = p{,6s6)15E .

Also,

X(In) = p{,6i) I 5 = 1, 2, n}

Proof. We have that p {s5) I 5E A} where
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B(f) Ilf[f(o)j616E A}

11{L6 (f(6)) I 5 E

L(f) .

Thus from Example ff-1, we have 1B )(. Now (iii) follows

from (*) if we let A { 1, 2, - ,n}, and S6 = I for each 6 E 4 .
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CHAPTER 4

TRANSFORMATION PROPERTIES

In the proofs of some of the theorems of Chapters 7 and 8

it will be necessary to assume that the fundamental family has one

of two transformation properties which are defined and discussed in

this chapter. Even though they are not used until Chapter 7 we pre-

sent them now in order not to disturb the continuity of the theory of

density developed in Chapters 6 through 9.

4. 1. Definitions

There are two transformation properties which we define now.

Definition 4. 1. Let (5, be a density space, Let F

be an arbitrary set of and x an element of F°. Let

D = F (-\ U(x) (U(x) is defined in Definitions 2. 4 and 2. 12). Define

T1[D] to be the set {y-xl yE D}. If T1[ID] is either in I or

is empty for every D = F U(x) where FE 7 and xEr°, then

satisfies the first transformation property or 7 is transforma-

tion -1.

Definition 4. 2. Again let (S, op be a density space. Let
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XE S and let F be any set of or let F be empty. Let



D = [x] \ F. Define T2[D] to be the set {x-y y D \ x} If

T2[D] is either in or is empty for each set D = [xj F

where xE S and {4)} ,

transformation property or 7

0.2
then satisfies the second

is transformation -2.
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Just how these properties are used will be seen in Chapters

7 and 8, particularly in the proofs of the theorems which generalize

the inequalities of Landau and Schnirelmann and of Schur.

4. 2. Existense of Fundamental Families with the Transformation
Properties

There are fundamental families which are transformation -1

and fundamental families which are transformation -2. In particular,

we have

Theorem 4. 1. For an arbitrary s-set S,

transformation - 1 and transformation -2.

0FE 2.6 and xEF .

is both

Proof of transformation - 1. Let D = F U(x) where

Suppose that T1[D] is non-empty. To show

that Ti[D] E is to show that for any yE Ti[D] we have

L(y) C T i[D] . For this it is sufficient to show that, if ye T i[D]

and z.< y (Z E S), then z E T i[D] . Thus let yE Ti[D] and

z (z ES). We have x{x+z , and so x+z EU(x). Next y= d-x

for some dE D so that x+yED C F. Thus, since x+ z4x+ y,
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we have x+ Z E F. Hence x+ Z E D, and so z = (x+ z) - xe T 1[D] .

This completes the proof.

Proof of transformation -2. Recall that in the present case

we have [x] = L(x) for XE S. Let D = L(x) F where xeS
and FE,C..){4)}. Suppose that D\ x is non-empty so that T2[D]

is non-empty. Let yE Tz[D] and let z ES with z.< y. As

before we prove that Z E T2[D] . We have y= x-d for some

dED\x so that x-yED. Now x-y.4x-z so that, if x-zEF,

then also x-yE F, a contradiction. Thus x-z F. Furthermore,

x-z x so that x-z E L(x). Thus x-z D and since x-z x,

we have x-zED \ x. Hence z = x- (x-z) T2] Di .

The only examples of Section 3.2 where the fundamental

family fails to be transformation - 1 are Example ff-4 and the more

general Example ff-6. The only example where the fundamental

family fails to be transformation - 2 is Example ff-8.



In this section we prove that (S) is separated if and only

if S is isomorphic to I. For convenience we define isomorphism

between s-sets.
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CHAPTER 5

SEPARATED FUNDAMENTAL FAMILIES

In this chapter we define and treat the concept of separated

fundamental families. These families have important applications

to the theory of C-density (Definition 6. 2), and to the proofs of the

a+ p theorem (Chapter 9).

5. 1. Definition of a Separated Fundamental Family

Let of, ) be an arbitrary density space.

Definition 5. 1. The family of is separated if, whenever

x and y are points of S such that x4 [y] and yi [x] , then

[x]n[y] is empty.

Thus from Theorem 2.12, given any two Cheo sets o

either one is contained in the other or they are disjoint.

5. 2. Characterization of Separated Fundamental Families of the
Form X(S)
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Definition 5. 2. An s-set
S1 is isomorphic to an s-set

S2 if there exists a one-to-one function T on
S1 onto S

such that

T(x+y) T(x) + T(y)

for each x and y in Sl. If
S1 is isomorphic to S2' then

S2 is isomorphic to Si, and
S1 and S2 are isomorphic.

The function T is an isomorphism.

The following two theorems lead up to Theorem 5. 3 which is

the main result of this section. Theorem 5. 1 is somewhat stronger

than what is needed, but it is presented here since it is of interest by

itself.

Theorem 5. 1. Let S be an arbitrary s-set. Each element

XE S can be written as a finite linear combination

(1) x = niei + n2e2 +- nkek

where the n. are positive integers and each eiE Min(S).

Proof. Suppose there are points of S not represented in

the form ( 1). By Theorem 2. 3, we may take x to be a minimal

point of the set of those not representable. If L(x) = {x}, then

xEMin(S), and so x is representable in the form (1) (take k = 1,

n1 = 1 and el= x). If there is a yE L(x) such that y 4 x, then
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y<x and x-y-<x, and so both y and x-y are representable.

Thus

= +nkek

x-y rnleI 1
e'

and so x y + (x-y) is representable in the form (1). This is a

contradiction and the proof is complete.

Theorem 5. 2. An s-set S is isomorphic to I if and only if

Min(S) reduces to a singleton {x}.

Proof. If Min(S) = {x}, then by Theorem 2. 2(i), nxeS

for each positive integer n, and by Theorem 5. 1, each ye S has

the form y = nx for some positive integer n. Thus

S = Inxi n= 1, 2, The function T on S onto I, defined

by T(nx) = n, clearly satisfies the requirements of Definition 5. 2

so that S is isomorphic to I.

Now suppose that S is isomorphic to I and let T be

the isomorphism. Because of the manner in which the order rela-

tion is defined in terms of the operation + we have that T

preserves the order relation, and hence that T(Ls(x)),= Li(T(x))

for each XE S. Thus, if XE Min(S), then LI(T(x)) = T(Ls(x))=

T ({x}) = {T(x)} which implies that T(x)E Min(I). Thus T(x),= 1

for each XE Min(S), and so S has one and only one minimal point.
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Theorem 5. 3. The fundamental family N.(S) is separated

if and only if S is isomorphic to I.

Proof. In view of Theorem 5. 2 it is sufficient to prove that

(S) is separated if Min(S) is a singleton, and that X(S) is

not separated if Min(S) has at least two distinct points.

If Min(S) = {x}, then S = {nxi n= 1, 2, }. Clearly

L(nx) = i= 1, 2, n}. If FE (jS) then F {L(y) lyEF

Clearly then F = L(mx) where m = max {i I ix E F} . Hence

every set inX(S) is of the form L(y) for some yE S. If

nx and mx are two distinct points of S then either n <m or
m <n i. e., nxE L(mx) or mxE L(nx). Thus the condition of

Definition 5. 1 is satisfied (vacuously), and so X(S) is separated.

Now suppose x and y are two distinct elements of Min(S).

Consider the two points x+ y and y+y. If x+ y = y+y, then

x = y, a contradiction. Also, if x+ y.< y+y, then x.< y con-.
tradicting the fact that yE Min(S). Hence x+ y L(y+y). Similarly,

we obtain y+yl L(x+y). But yE L(x+y) n L(y+y) and so the con-

dition of Definition 5. 1 is not satisfied. Thus (S) is not separ-

ated. This completes the proof.

Along with X(I) (and X(S) where S is isomorphic to I),

all the families from Example ff-3 through ff-9 are separated.



5. 3. Decomposition of a Set in a Separated Fundamental Family

Let °I be a separated fundamental family on an s-set S.

By Theorem 2. 16 we may write for any FE I that F i {[x] Ix eF*.}

By Theorem 2. 19 and Definition 5. 1 we have that the Cheo sets [.x]

for XE F are pairwise disjoint. Thus we have shown

Theorem 5. 4. If F is a set of a separated fundamental

7family on an s-set, then F is the union of disjoint Cheo

sets

F L) {[x] I xEF*}
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CHAPTER 6

INTRODUCTION TO DENSITY

In this chapter we define the two densities which will be

studied in this thesis. Also the elementary properties of these

densities are developed.

6. 1. Definitions

(17Throughout this section (S, ) is an arbitrary density space.

Definition 6. 1. Let X be a subset of S. For any finite

(possibly empty) subset D of S we let X(D) be the number of

elements in the set X (Th D. Furthermore, if D is non-empty,

let q(X, D) be the quotient X(D)/S(D) .

A few of the important properties of the counting function

X(D) are listed in the following theorem, the proof of which is

immediate.

Theorem 6. 1. The function X(D) has the following proper-

ties

(i) If DD is a finite collection of finite subsets1, 2,

S, then
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X(D \ _j ri) < X(Di) + X(D)



with equality holding if the Di are pairwise disjoint.

S(D) is just the number of elements in D.

If D1 CD2' then X(D2\DI) =
X(D2 ) - X(D1).

If X C Y, then (Y \X)(D) Y(D) - X(D) .

Definition 6. 2. Let A be an arbitrary subset of S. The

K-density of A with respect to is

d(A,17) = g 1 b {q(A,F)IF E el} .

Definition 6. 3. Let A C S. The C -density of A with

respect to y is

d (A,7) = glb{q(A,[x] )1xeS}

where [x] denotes the Cheo set of determined by

(Definition 2. 9).

As already noted in Example ff-2, for the density space

(In)() we have that d(A,() is the density defined by Kvarda

[11] and d(A() is the density used by Cheo [2] and Kasch [7] .

The following theorem provides alternate definitions for K-

and C- density, and follows immediately from Definitions 6.2 and 6. 3,

Theorem 6. 2. The density d(A,7) is the largest real

number a such that A(F) > a S(F) for each set F ET-) { CO

Similarly dc(A,1) is the largest real number a such that
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A([x] ) > acS([x]) for each XE S°.

6. 2. Elementary Properties of K- and C- density

In this section (S,I) is an arbitrary density space. We

adopt a shorter notation and write d(A, = a and dc(A, 17) ac
where A is an arbitrary subset of S.

Theorem 6. 3. We have 0 <a < a < 1 . Furthermore,

a = ac = 1 if and only if A = S.

Proof. The fact that a < ac follows from the relation

{q(A,F)IF {q(A,[x])1 XE s} .

Now, for each F E we have 0 < A(F) < S(F), and so

0 < q(A,F) < 1 from which it follows that 0 <a < 1 and

0 < a < 1. For the second part, if A = S, then clearly

=7. = 1, since q(S, F) 1 for each Fey. Now assume

there is an XE S \ A. Then A([x]) <S([x]), and SO

a < ac < q(A, [x]) <1.

Theorem 6. 4. If
D1' ,n

wise disjoint non-empty finite subsets of S, and

D = {Di I i= 1, ,n}, then for any set ACS we have

q(A, D) > min {q(A, Di) I i= i, n} .

is a finite collection of pair-
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Proof. If n= 1 the theorem is immediate. For n = 2 we

have, using Theorem 6. 1(i), that

A(D1
) + A(D2)q(A, D)

S(D1
) +

S(D2)

Letting ai = A(Di) and si = S(Di) (i= 1,2) we have that, if

al +
a2 a.

1

s1
+ s2

<
(s.,

i 1,2)
1

then both a1s2 < a2s1and a2s1< a1 s2' a contradiction. Thus

a1+a2 a.
q(A., D) > min {_ i= 1, 2}

sl+s2

min {q(A, Di) (i= 1, 2}

Let n > 2 and suppose the theorem is true if n is replaced by

any smaller integer. Let D' = {Di 1, n- 1}. Then

q(A, D) > min{q(A, D'), q(A, Dn)}

> min {min {q(A, Di) 1, ,n-1}, q(A,Dn)}

min {q(A, Di) I i= 1, n} .

The following theorem shows that there is no difference be-

tween K- and C- density when the fundamental family is assumed

to be separated.



Theorem 6. 5.

then the density given in Definition 6. 2 and 6.3 are identical. That

is, a = ac for each ACS

Proof. By Theorem 6.3 we have a ac, Let F be an

arbitrary set in By Theorem 5. 4 we have F=_){[x] I xE F*}

where this is a union of pairwise disjoint sets. Hence, we have by

Theorem 6. 4 that

q(A, F) > min {q(A, [x] )1x F*1

a

Since F is arbitrary, we conclude that a > ac, and the theorem

is proved.

Theorem 6. 6. 11 a > 0 or
ac > 0, then A contains all

the essential points of (S,) (Definition 2.10).

Proof. Suppose x is an essential point not in A. Then

0 = A({x}) = A({xj) > acS(Exp = acS({x})

= a > a > 0 .c
Thus a = a 0c

= .

is a separate fundamental family,
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The notation introduced in the following definition will be used



extensively throughout the remainder of this thesis.

Definition 6. 4. For a set X C s, the set S \X is denoted

by X.

The following theorem offers an equivalent definition for the

K-density of a set A 4 S.

Theorem 6. 7. If A is non-empty, then

a = g lb {q(A, F)1 FE °land F C A } .

Proof. Let a = glb {q(A,F)IFE7,

a' > a. Now let F be an arbitrary fundamental set. If

A (F) = S(F) then q(A, = 1 > a' . If A(F) < S(F), then

let G = ){[x] IXE F rmA}. By Theorem 2.17, we have that r.

and G* CFF rTh A . Thus G.* . Also G CF which implies,

by Theorem 2. 14, that G CF, Thus F G ._)(F\G), and G

and F\G are disjoint. Finally, by the construction of G we

have F AC G, and so F\G CA, so that A(F\G) S(F\G).

Hence, we have

A(F) A(G) + A(F\q(A, F)
S(F) S(G) + S(F\

A(G) S(F \ G) A(G)
S(G) S(F G)> S(G) q(A, G) > a'

Thus a > a', and the theorem is proved.

*
A } . Clearly,
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The natural question to ask is whether or not

ac = gib {q(A,[x])IxE -A-1. In general this is not true as the follow-

ing example shows. Consider the density space (I2,). Take

A to be the set of all ordered pairs (x,y)E I2 which satisfy at least

one of the following conditions :

(x, y) is equal to one of (0,1),(0,2), (1,0), ( , 0) or (3,3)

x > 4 ;

y > 4

Then ac = 1/3 while, recalling that [x} = L(x),

glb{q(A,[x] ixe.A}= 4/11.

However, if is assumed to be separated, then we can

prove the following theorem.

Theorem 6. 8. If A is non-empty and the fundamental

family 7 is separated, then

ac = gib {q(A,[x])IxeX}.

Proof. Let a' = g I b{q(A,[x])IxeAl It is clear that
*a' > ac. Now let FE 5 such that F C A. From Theorems 5.4

and 6.4 we obtain

q(A, F) > min {q(A, [y] yE F*). > a' .

The last inequality follows since each y EA. Hence, by Theorem



6. 7 we have a > a' , and so, since a = ac (Theorem 6. 5), we

have ac < a' and the theorem is proved.

The last theorem of this chapter expresses some simple but

useful density relations.

Theorem 6. 9. Let of and af2 be two fundamental
1

families on S, and let Al and A2 be two subsets of S.

If 6j73. 12, then d(A, d(A, 12) for each ACS.

If A1 CA2, then d(A31_,..2, for each funda-

mental family 7 on S.

If A1 CA2' then d
(A1

de(A2, 649) for each'

fundamental family I on S.

implies that

{q(A,F)1FE GI}c{q(A,F)IFE 12} .

Parts (ii) and (iii) follow since Al CA2 implies that

A1(F)<A2(F) and thus q(A1,F) q(A2,F) for each FE
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Proof. Part (i) follows from the fact that T



CHAPTER 7-

K- DENSITY

In this chapter we present some theorems which involve

K-density. Most of them require the concept of sum of sets which

we define in the first section.

7. 1. The Sum of Subsets of an s-set

Definition 7. 1. Let S be an s-set and let A and B

be subsets of S. The sum A + B of A and B is the set

A ...)13 _){a+blaEA, beB}.

The sum of a finite number of subsets of S, say Al , A2,

(n > 2), is defined recursively by

n.- 1

A. =A. A. +
An

i=

where

i= 1

for i = 1, 2, ,n n> 1), we denote A. by n.A.

i=

We note that an equivalent definition of the sum of n sets

Al' An is given by
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0
SA.= (Th {a1+. +a ja.E.A. , 1 <i <n }

1 n 1 1

i= 1

7. 2. K-density Results Involving the Sun-i of Sets

In all that follows (S, is a density space, and A and

B are arbitrary subsets of S. We write C = A+ B and further-

more, we write d(A, = a, d(B,1) =i, and d(C, = y.

Theorem 7. 1. y > max {a, p } .

Proof. From Definition 7. 1 we have A, B CC so that, by

Theorem 6. 9(ii), we have a <y and p < .

Theorem 7. 2. If XE T, then

A(L(x)) + B(L(x)) < S(L(x)) -1 .

Proof. Let A r, L(x) = {a1,a2/ an}. Since xE C it

follows from Definition 7. 1 that xE B also. Furthermore, for

e L(x).1 < i<n, we have x-a. (x). Also x-a. E B since, if

x =-a.EB,then a. +(x-a.) x would be in C contrary to hypothe-

sis. Thus, letting X denote the set {x, x-a1, ,x-an}, we

have X C73 L(x). Hence
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A(L(x))+1 = S(X) < B(L(x)) = S(L(x)) - B(L(x)) ,



7. 2

A(L(x)) + B(L(x)) < S(L(x)) -1 .

Dividing this inequality by S(L(x)), and applying the definition of

a and p we obtain

a +13 < q(A, L(x)) + q(B, L(x)) < 1-1/S(L(x)) < 1 .

This contradicts our assumption that a + p > 1, and the theorem

follows.

The following theorem offers a useful property of finite sub-.

sets of S.

Theorem 7. 4. If X is a non-empty finite subset of S,

then we may index the elements of X, X
{x1, x2' ,xn} in

such a way that the following condition is satisfied:

If x..<x., then i <j .
1 j

Proof. Let xi E Min(X). Take x2 E Min(X \xi),

x3 E Min ( X \ { x
x2 }), and so on. Theorem 2.3 and the finiteness of
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and the theorem follows.

Theorem 7. 3. If a + 13 > 1, then y = 1.

Proof. By Theorem 2. 23 we have L(x) for each x E S.

y < 1, then by Theorem 6. 3, there is an xe C By Theorem



X, X\xi, X\{x1,x2}, assure us that this process exhausts

X. We show that the resulting indexing of X satisfies the stated

condition. Letx.,<x..Sinae.x. x. we have either j <i
1 3or=i< j. If j <i, then x. XVx., } Y. Buti I x3-1

x.EMin(Y) so that x.-<x. is impossible. Thus we must have
J i J

i < j.

The following theorem is used to prove Theorems 7.6 and 7.7.

Theorem 7. 5. Suppose that is transformation -2

(Definition 4. 2), and that E is non-empty. Let Fe 5 such that
*

C C . 1.f H is any set such that F*CH CC F, then

-173(F) > a(S(F) -S(H)) + S(H) .

Proof. Let gi, g2, ,g be the points of H, indexed

according to Theorem 7. 4, so that

g.-<g.implies i <j .

Let D1 = [ g1] and for 1 <i <n, let

Di+1 = [ gi+i] \ L.) -([ g.] 1 < j < i } . Then we have
J

D. D. is empty if i 4 j
3

L.) {D.11 <i <n} = F,
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and

g. E D. for 1 < i <n .
1
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Now (2) follows immediately from the definition of the Di.

To see (3), notice that since F CH, we have by Theorem

2. 16, for each x E F that XE [gi] for some i. Since

{D.I 1 < i < = L){[g.] < i <n} ,

then (3) follows. To prove (4) suppose that gi 1D. for some

Clearly i >1. Then giE '..{[g.] 1 i-l} so that g.E[g.
1 jo

for some jo<i. Hence, by Theorem 2.18, we have g.. g. , which

by property (1) implies i < jo, a contradiction.

Now since is transformation -2 and because of the way

each D. is defined, we have

T2[Di] E or is empty,

S(T2[Di]) = S(Di)-1 .

Now, for each a EA r-,T2 [D1
'

there exists a unique

XE D.\ g. such that a = gi -x. It follows that xEB for, other-
1 1

wise a +x = gi would be in C, contrary to hypothesis. Also

from (4), we know .g.E13 rThD. and so

-13 (Di) > A(T2{Din + 1

> a S(T2 [D.]) + 1.

The second inequality follows from (5) and the definition of a. Thus,

from (6), we have



73(D.) > a (S(D.)-1) + 1 .

Summing (7) over i, applying Theorem 6. 1(1) in view of

(2) and (3), we obtain,

173-(F) > a (S(F)-n) n.

Now, n = S(H) and so (8) becomes

i(F) > a (S(F)-S(H))+S(H)

which is the desired result.

Note that the property (1) is used only in the proof of (4). in

the case H = F*, the proof can be simplified somewhat by using

instead, Theorem 2. 19 to prove (4).

The following theorem is similar to Theorem 7. 2. It can be

used in much the same way to prove Theorem 7. 3 with the additional

hypothesis that the family is transformation -2, although we

omit this proof. More importantly it is used to prove Theorem 8. 4.

Theorem 7. 6. Suppose is transformation -2. Let

be non-empty and let FE such that FCC . Then

áS(F) + B(F) <S(F) .

Proof. By the preceeding theorem we have

(F) > a S(F) + (1- a)S(H)
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for any H with F CHCC fm F. By Theorem 7. 1, since y <1,

we have a < 1 so that (1-a)S(H) > 0. Hence

(F) > a S(F) .

Since B(F) = S(F) - B(F) we have the desired result.

Theorem 7. 7. Suppose is transformation - If

*is non-empty and FE such that FCC, then

C(F) > a C(F) +B(F).

Proof. In Theorem 7. 5 let H = F. Then S(H)=E(F)-

and

ii(F) > a(S (F) - E(F))+-E(F) .

Since B(F) = S(F) - B(F) and E(F) = S(F) -C(F), we have

C(F) > a C(F) + B(F)

and the theorem is proved.

The following theorem generalizes the inequality of Schur

mentioned in the Introduction. This accounts for the only generali-

zation known to this writer of this inequality.

Theorem 7. 8. If the fundamental family is transforrna-

tion -2 and a + p <1, then

(9) Y >13/(1-a).
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Proof. If y = 1, then, since 131(1-a) < 1, the theorem

follows. If y < 1, then E is non-empty, and by Theorem 7. 7,
*

if FE I and FCC, then

C(F) > a C(F) + B(F) .

Dividing by S(F) we obtain

q(C,F)>aq(C,F) + q(B,F)

> ay+13

We apply Theorem 6. 7 and obtain that

y > a y +13 ,

which, because a < 1-13 < 1, is equivalent to

y > 13/(1-a)

and the theorem follows.

The next theorem leads to the generalization of the Landau-

Schnirelmann inequality. The proof is a refinement of the proof

given by Kvarda [11] for the specialization of this theorem to the

density space

Theorem 7. 9. Suppose satisfies the first transforma-

tion property (Definition 4. 1). Then for each Fe , with

Min(F) CA we have



C(F) > A(F) p A(F) .

7Proof. Let F be an arbitrary set of such that

Min(F) CA. By Theorem 2.3, we then have (I) i Min(F) CA r, F_

and so A rTh F 41). Let the set A r) F be indexed

{al' a2' an} where, according to Theorem 7.4, we may assume

that

if ai.<ai, then i < j.

We define inductively Di = U(ai) Girm F where

G. = {L(x) I x satisfies conditions N(i)} .

[ (a) a. E L(x)i
Conditions N(i)

Now G. rm F = {L(x) (Th F x satisfies N(i)} which is a finite

union of sets in (since each L(x) F is a set in , and

L(x) (Th F CF so that only finitely many such sets are possible).

Thus G. rTh F J., and clearly a. e G. cm F. Hence, since

is transformation -1, and because of the way D. is defined, we

have for each i, 1 <i <n, that

T [DIE 7 or T [D.] is empty,
1 11

Also, from the definition of
T1 [D.1, it is clear that

S(T [Di]) = S(Di) .

(b) ai L(x) if j > i
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We prove next that the sets D., 1 <i < n, satisfies the

following two properties :

If i 4 j, then D. D. is empty,

and

{D.11 <i <n} = F

To prove (14) let i <j and let yE D. If yE Di, then

there exists an x satisfying Conditions N(i) such that

y LEU(ai) rTh L(x) (Th F. But then, since j > i and a. E (y) C L(x),

Condition N(i)-(b) is violated. We conclude that yi Di and

property (14). follows.

To show (15) we first prove that D. c 7A, F for each

i, 1 < <n. Let yE Di. There exists an x satisfying Con-

ditions o

that if y = a., then we would have by (11) that i < j. But then

Condition N(i)(b) is violated. Thus y a. for all j and so

y4 A (Th F. Clearly yE F so that y E (Th F. It follows that

{D.11 <i < n} CArF.

prove now the reverse inclusion. Let xe7A. F.

Choose i0 to be the largest index such that a. -< . Since
0

Min(F) C A, such an index must exist by Theorem 2. 4. We show

that x s L(x)the Conditions N(i0). We have a. E (x) since
10

a.< x. By the maximality of i, aj 4 L(x) for j > io. Thus
10
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Conditions N(io)(a, b) are satisfied and so XE U(a. )(Th L(x) CD..
10

We conclude that A. F Ck_) {Dil 1 < i < n} and the proof of (15) is

complete.

Now for each 13E13 (Th T1[Di] we have that b= x- a.

where xED. is uniquely determined. It follows that x= a.+bEC
1 1

so we have that

C(Di) B(Ti[Di]) .

Now (14) and (15) imply

-A(F) =

i=1

Thus, we have (giving justifications to the right) that

C(F)= A(F) + C(A rTh F)

= A(F) + C( L.) {Dil 1 < i < n})

= A(F) + C(Di)

i=1

A(F) + B T

i=1

A(F) + S(TI[Di])

i=1

A(F) + 3 S(Di)
i=1

A(F) + r3 .

Theorem 6. 1(i)

(12) and Def. of p

(13)



This completes the proof.

Theorem 7.10. If 7 is transformation -1, then

y > a + p - ct13 .

Proof. If a = 0, then the inequality reduces to y > p

which is true by Theorem 7.1. Thus we assume that a > 0. By

Theorem 6. 6, we have that A contains all the essential points of

(5,(1) so that, by Theorem 2.20, we have that Min(F) CA for

any FE Thus, for each FE we have, by Theorem 7. 9,

that

C(F) > A(F) + p -A(F)

= A(F) (l-13) + p S(F)

> a(l_p) S(F) + p s(F)

= (a±13 - af3 ) S(F)

Dividing by S(F) we obtain

q(C,F) > a-1-p -a13

for each FE 7 and the theorem follows.

7.3. A Theorem on Bases

In this section we prove a famous result on bases. Let

(S,I) be a density space. We begin with the definition of a basis.
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Definition 7. 2. A set A C S is a basis for S if nA = S

for some positive integer n (see Definition 7. 1).

Theorem 7. fe. If d(A,7) > 0, then A is a basis for S.

Proof. By Theorem 2.22 we have (jS) CI, and by Theo-

rem 6. 9(i) we have d(A, ) > d(A,1), so that d(A,X) > 0. Let

a d(A, It suffices to show that, if a > 0, then A is a

basis for S. We give two proofs, one based upon Theorem 7. 8

and the other upon Theorem 7. 10.

First, by Theorem 4. 1, is transformation -2 and so we

may apply Theorem 7.8. For n > 1 denote the number d(nA,X)

by yn. By Theorem 6. 3 it is sufficient to show that yn 1

for some integer n.

If a = 1, then -yi = a = 1 and we are done. Hence as-

sume a < 1. Since by definition kA = A+(k-1)A for k > 2,

then if a + y > 1, we have by Theorem 7. 3 that yk = 1.

a Yk-1 < 1, then by Theorem 7. 8, we have

yk yk-1 /(1-a)

Hence

yk > min {1' Yk-1/(1-a)} (k > 2)

Now we prove by induction that

min {1, ym/ (1-a)} > min {1, a/(la)m}.



For m = 1 we have equality. Now, for m> 2, we have by (18)

that

min {1, y/(1-a)}

> rrxin{1, (min {1, ym i/(1-a)})/(1-a)}

> min {1, (min {1, a/(1-a)rn 1})/(1-a)}

min {1, min {1/(1-a), a/(1-a)m}

min {1, 1/(1-a), a /(1-a)m}

min {1, a/(1-a)m} .

Hence, from (18) and (19) we have

yk> min{1, a/(1-a)k-1} . (k > 2)

-1Since a > 0, then for sufficiently large n we have a/(1- >1,

and so yn = 1. This completes the proof.

Alternatively, by Theorem 4.1, X is transformation -1

and we may apply Theorem 7.10. Using the same notation as above

we have by Theorem 7.10 that

a Yk- 1 aYk- 1
(k > 2)

which is equivalent to

(1-yk) < (1-a) (1-y). (k > 2)

Thus it follows by induction on k that

(la)k.
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Since a > 0, we have for sufficiently large k, that

(1-a)k < a .

Hence for n sufficiently large

( 1 ) < a .

Thus a + yn-1 > 1 and so, by Theorem 7. 3,

A + (n-1)A nA =

and the proof is complete.
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CHAPTER 8

C - DENSITY

In this chapter we develop some of the properties of C-density

(Definition 6. 3). Generally, little is known about C-density, and the

results obtained are sometimes weaker than those obtained for

K-density. On the other hand, the simple nature of the C-density

seems to permit a wider range of possibilities for future research.

8. 1. C-density Results Involving the Sum of Sets

Let (S,I) be an arbitrary density space. Let A and B

be subsets of S. We write C = A+B, dc(A ,)= ac, dc(B , 1)=13c

and d (C, 1) = yc. Our first theorem is an immediate consequence

of Theorem 6. 5.

Theorem 8. 1. If the family I is separated (Definition 5.1),

then all the density theorems of Chapter 7, for K-density, are true

for C-density. Thus

(i) a + p > 1 implies yc = 1,
c c

Y >p /(1-ac) if a +c 1 and (717 is trans-
c

formation -2,

(iii) y
c

> ac +p
c

- a 13 , ifc c

ac
> 0 implies A is a basis for S.

is transformation -1,
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Accordingly, for the remainder of this section we will make

no assumption as to whether the family is separated or not.

Theorem 8. 2. y > max {ac,c

Proof. From Definition 7. 1 we have that A, B CC so that,

by Theorem 6. 9 (iii), >a
C C

and y > p .
C C

None of the parts of Theorem 8. 1 are known to hold in gener-

al without the separated hypothesis. However, we obtain other spe-

cial theorems corresponding to the parts of Theorem 8. 1 by applying

the methods of Chapter 7. Corresponding to Theorem 8. 1(i) we have

the following two theorems.

Theorem 8.3. If 7. ;((s) and ac+ Pc > 1, then yc = 1.

Proof. Since 7. )( we have by Theorem 3. 8(iv) that

[x] = L(x) for each XE S. If yc < 1 then there exists an x(C

and so, by Theorem 7. 2, we have

A(L( )) + B(L(x)) < S(L(x)) - 1

Thus, dividing by S(L(x)), we have

q(A, L(x)) + q(B, L(x)) < 1

and so ac + 3 < 1. The theorem is proved.
C

Theorem 8. 4. Let 7 be transformation -2 and let a



denote the K-density of A with respect to I. If a + 13 >

then yc = 1.

Proof. Suppose
yc

< 1 and let x be an arbitrary point

in C. We recall that [x] is a set in 7 and [x]* -7 {x} so

that [x] C C. By Theorem 7. 6 we have

a S([ B([x]) <S({x])

Dividing this inequality by S([x]) we obtain

a + q(B, [x]) < 1 .

Thus a + pc < 1, contrary to hypothesis, and the proof is complete.

Since Pc > = d(B, 7) (Theorem 6. 3) we see that a+ 3> 1

implies a+ p > 1, but not conversely. Thus we conclude that,
c

when applicable, Theorem 8. 4 is a stronger result than Theorem

3. However, Theorem 7. 3 is always applicable while Theorem

4 requires that °I be transformation -2.

The methods of Chapter 7 fail to provide a satisfying result

corresponding to Theorem 8. 1(ii). Using a similar argument as in

Ithe
proof of Theorem 8. 4 we see that, if is transformation -2

and xe C, then by Theorem 7. 7, we have

C([x] ) > a C([x] ) + B([x] )
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and so

q(C, [x] ) > a q(C, [ ]) + q (B, [

> a y + 13 .
c

We cannot, however, replace the left hand side of this inequality by

since we do not have in general that y = glb fq(C, [ 1)1 xE -6}

as is shown by the example which follows Theorem 6. 7.

On the other hand Theorem 7. 9 provides the following result

which corresponds to Theorem 8. 1(iii).

Theorem 8. 5. If 7 is transformation -Cl, then

y > a + P - a 13c c

Proof. We can assume a > 0 since, if ac = 0, then the

inequality reduces to yc> p , which clearly holds, since y > p
c

(Theorem 8. 2), and Pc > p (Theorem 6. 3). Let x be an arbi-

trary point of S. Then [x] e and since ac > 0, we have by

Theorems 2.20 and 6.6 that Min ([ ]) CA. Thus by Theorem 7.9

we obtain

C([x] ) > A ([x] ) + 13K([x])

A([x])(1-13) + PS([ x])

> a c(i-p)s([x]) + ps([ ])

(ac + 13 -a c13)sax])

77

1)



and

p6(f) = g

where g is the function in S defined by the formula
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and the theorem follows upon division by S([x]) .

The methods of Chapter 7 do not seem to provide us with a

C-density result corresponding to Theorem 8. 1(iv).

z. The C-density on a Density Space which is a Product of
Density Spaces

There is a method available for working with C-density

which requires that the density space be a finite product of density

spaces. The following discussion will introduce the concepts and

notation which we will need.

Let (S6, 16) be a density space for each 6 in a non-

empty index set A. Let (S, ) r){(s6, 16)16E A }. Thus

S = {So I 6 E A} and 41 = {16 I 6 E A } (see Theorems 3. 4 and 3. 9).

We consider the two different projections on S given in the fol-

lowing defintion.

Definition 8. 1. Let be a function in S and 6 a point

in A. Then define

P(f) = f(6)



=

if(X) if X 6 ,

0 if X =

Sometimes we allow f to be the zero function (in S°). In this case

we define P6(0) = 0 and p (0) = 0.

Definition 8. 2. We adopt the following notation. As usual,

the Cheo set of determined by a point f ES is denoted by [f]

but in order to avoid any possible confusion, the Cheo set of 16
determined by a point s E S6 is denoted by H5(x) .

Recall from Theorems 3.9 and 3. 7, that [f] = 1111-16(f(6)) I 6 EA

Definition 8. 3. Denote by S(5) the set of all f ES with

the property that f(X.) = 0 for all X4 6. Let A CS and denote

the set A (Th
S(5)

by
A(5).

Finally, let A5= 1135(f) If E A(5)}=P5(A(6)).

Notice that
S(6)

and Ss are different since S is a

subset of S and S6 is not. However, the correspondence

P5(f)

establishes an isomorphism between
S(5)

and .
S6

Theorem 8. 6. If f
ES(5)'

then

A([f]) = A6(H5(f(5))) .
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Proof. We establish a one-to-one correspondence between the

sets A rm [f] and
A5 H6(f(5)). Let gEA [f]. Since

g E [f] we have g(X) E Ho (f (X)) for each X E A. Here

Ho(x) H (x) {O}. Since f(X)= 0 for all X such that X * 6
X X

0we have g(X) E H (0) = 0 } , e g(X) 0, for X + 6. Thus
X

gES(6), and since gEA, we have g E
A(6).

Hence P6(g)E A6.

Since g [f] we have P (g) = g(6) E Ho(f(6)), and since g(6) 0
6 5

we have P(g)E H (f(6)) . Thus P5(g)EA6 (Th H6(f(5)) .

Now if g1 and g2 are distinct points in A (Th [f], then,

since g (X) = 0 = g2(X) for X 6, we must have g1(6)*g2(6).

Hence P5(g1)4P6(g2) .

So far we have shown that Ps takes points of A tm [f] , in

a one-to-one manner, into points of A6 H(f(5)). It remains only

to show that each xE.A.6 (Th H6(f(6)) is the image under P6 of

some g E A (Th [f] . Naturally, we take g to be the junction de-

fined by

complete.

g(X) =

if X

if X = 5 .

From the definition of
AS

it follows that gEA, and since

0g(X)e H (f(X)) for each X E A , we have ge [f] . The proof is



Then we have

0 -1(S (X)) < 11 s0(p6(X)) ,

5=1

where S0 (Z) is the number of elements in S0 Z .

Proof. The proof is by induction on n. In the case n=1

Theorem 8. 7. For each 5 e A we have dc(A,

Proof. We have for fixed

Ao-fu ,dc(A,7) < glb {s(Efi) t so) j

A (H (f(0)
5 5= gib{

I fESS
(H5 (f(5)) (6)

A (H (x))
6 5

xESE.}= S60-16(x))

= dc Ao, .

The second step follows from Theorem 8. 6.

For the remainder of this chapter we assume that the index

set A is finite, and moreover, that A = {1, 2, for some

positive integer n. We will use the following theorem, which has

been proved in less abstract form by Loomis and Whitney [16] and

Kemperman [8].

Theorem 8.8. Let X be a finite non-empty subset of S°.

$1

<d (A ,
5 I5



we have p1( X) = 01 so that

(S (X)) = 1 = S°0 n-1
p =

5=1

In the case n = 2 we have that X is contained in the ordinary

cartesian product of the two sets (p (X))1 and (p 1(X))2 Thus

0 n-1S (X)) = So(X) .< S ((p2(X)) X (p (X))2

= So(p (X))S0
(p1

(X)) = rr s0P5( (x)) .

5=1

Now let n > 3 and assume the theorem is true if n is replaced

by n-1. For each XESo let

{f f X, f(n) = x } .

Note that
Yx

is non-empty for at most finitely many x. For

6 = 1, 2, n-1, let

B6, x Yx).

Since the
Yx

have fixed

tion hypothesis and obtain,

(1) (s0(y ))n-2

nth

for

n-1

5=1
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coordinate we may apply our induc-

XE0

S0(B )6,x

This inequality holds even if Y is empty since, in that case, both

sides are zero.



on-l) n-1 0
( S (B

x)
6=1

83

Now X is equal to the disjoint union of the Y where x

0ranges over
Sn, so we have

So(X) S°(Y ) ,

xES°

and, for 6 = 1, 2, , n-1

S0 (p6(X)) = S0(B6, )
xES°

Furthermore, since p Y ) Cp (X), we havex 11

S0(Y ) = 0
Pn(Y)) < S°(Pn(X))

Now, since n > 2, expression (1) can be seen to be equivalent to

-1(SO(YSr-r
0(B V2(n- 2)

6=1

In the following chain of inequalities we assume that all sum-
0mations are over X E Sn and all products are from 6 = 1 to

6 =n-1 unless otherwise noted. We have
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(6) (S0( X)) ZS0(Yx)1n-1

{z{s0(y ).s0(y ),11/2}n-1
x

{z[s°(Yx) (1-1 S0(B6, x))1A

{Z[So(Y ))
) 1/

(H S0(B ))(n-1)1}8,x

= {E [H ((S0 (Y)) 1)
S0 (B6, x))1An-1)] }n-1

1/(n-

< 11 ( [(So(Y ))On-1) S°(
,

H [(So(p (X))1/(n- 1). ( So(B ))],x

11 [(S (p (X))1An-1). S0(p6(X))]=

so(p(X)) .

6=1

Here, (6) follows from (2); (7) from (1); (8) from (5); (9) from

the standard generalization of the Cauchy inequality which can be

found, e.g. , in [5] ; (10) from (4); and (11) from (3). This corn-

pletes the proof.

Our main result on C-density follows.

Theorem 8.9. Assume for each 6 E A , that 16 is

transformation -1. Let A and B be arbitrary subsets of S.

We denote by ac and yc the numbers d (A,7) and dc(C,I)



where C =A+ B. Furthermore, we write, for = 1, 2, ,n,

Po to be the K-density d(B6,16) and (3, --- min {P , Pn} .

Then we have

1 - (1-a )0n-1)

Proof. Let z be an arbitrary point in S. Let 5 be a

fixed element of A. Let Es = {f I f E [Z] 0, f(5) = . For each

f E E5' let

Zf = {f + glgEG(f)}

where

G(f) = {g g E
S(5)

such that g(6) E
Ho (z(6))}

if f0, and

G(0) = tglgES(6) such that g(4EH6(z(6))}-.

We show that

(12) [z] = {ZfifEE6}

and that this union is disjoint. If XE [Z] , then x= f+ g where

f = p6(x) and g is defined by

o if X45,
g(X) =

x(5) if X = 5 .

Now, f E [Z] ° since

>a +
c c

131 (1 - ac) .
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x(X)E Ho (z(X)) if X 4 6,
X

f(X) =

0 E (z(5)) if X =
6

Note, in particular, that f(5) = 0 so that fEE5. We have to show

that gEG(f). Since g(X) 0 for all X 4 5, we have gES(6) .

0Thus it is sufficient to show that g(5) E I-16(Z (6)), if f 4 0, and

g (6) E H5(z (5)), if f = 0. Now g(6) = x(6), and since XE [z]

we know x (5) E Ho(z(6)). In the case f = 0 we must have
6

x(6) 4 0, and so x(5) E H (z(6)). ThusXE Zf' and so

[z] ç {ZflfEE5}.

To prove the reverse inclusion notice that, if x=f+gEZf,

then x(X) = f(X)EHx° (Z (X )), for X 4 5. Furthermore

x(5) = g(5)EH(z(6)). Hence XE [Z] °. Since f 40 implies x 40,

and f 0 implies g 4 0 implies x 4 0, we have x * 0, and

SO [ 1 Thus [z] JZf, and so [z] Dj {Zf I f e . Thus

(X) is proved, but it remains to show the disjointness of the union.

Let f ,f2EE and suppose that f1 4f2. Let x =f1 +g1 with

g1
E G(f1 ) and x2 f2 + g2 with g2E G(f2).

Since
f1

* f we must2

have f1(X) * f2(X) for some X 46 (since f1 (6)=f2 (0=0). But then

x1(X)=9X)4f2(X)=x2(X) so that x1 4x2. We conclude that Z rThZ =4).
fl f2

Now let f be a fixed element of E6. Let

al f, a2, f, ak(f), f be all the points of G(f) such that

A.f + a1.f Let a. = P6 (af ) so that the set {a1, , ak(f)
,
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subset of
SS. Moreover, by the definition of G(f), each

a. e
HO

(z(5)). Let us assume, according to Theorem 7.4, that the

indices- are so arranged that a..<6 a. implies i < j. Now, we
i j

define inductively Di = U51(a.)r\ G. r, H5(z(6))
1

where

{L6(x)lx satisfies Conditions N(i)} , where the Conditionsi

N(i) are given in the proof of Theroem 7. 9. Here LS(x) is the

lower set of x with respect to S5 and similarly for U5(x).

We have that the D. satisfy the following properties .

T [Di.] 15 or T [D.] =
1

So(T [Di] ) = S5 (Di) ;

(15) if

(16) %,..) {Di I 1 < i < k(f)}

= ( _){U5(ai)11<_i_<_k(f)}) rTh H (z(S))\{aill<i<k(f)}).

then D. (Th D.
1 j

immediate from the definition of T1 [D.].

To prove (15) let i < j and let ye D.. If y E Di, then

there is an x satisfying Conditions N(i) such that

ye U(ai) r\ L(x) r\ H6(z(6)). But then, since j > i and

a. E L(y) CL(x), Condition N(i)(b) is violated. Hence D. r\ D.=4).
1 j

Notice the difference here in statement (16) as compared to

CI) ;
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Now (13) follows since os, is transformation -1, and (14) is
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(15) of Chapter 7. This is necessary since we have no guarantee, as

we had in Theorem 7.9, that Min(H5(z(8)))C {ail 1<i<k(f)}. To

prove (16) first let XE D.. Then xeU5(ai) so that

xEU5(a. )1 l< j < k(f)}. Also xEH5(z(5)). We need only show

that x 4 a. for 1 < j < k(f). Since xeU8(ai) we have x 4 a.,

and since ai.<6 x, if x = a. then by our special indexing

< j. Now xeD. implies there exists y satisfying Conditions

N(i) such that XE U6(ai) n L(y) H6(z(5)). In particular, xe L(y)

and so x 4 a. for all j > i by Condition N(i)(b). Hence we
3

have proved that the left hand side of (16) is included in the right

hand side. To prove the reverse inclusion, first let

X E L.) { tro (ai) < i < (Th (VW)) \ fail 1 < 1< k(f)}). Let io

be the largest index such that XE U (a ). We show that x satis-
5 i0

fies the Conditions N(i). We have a. E L (x) since a. .1
1

x.0 106
By the maximality of i we have

0
L(x) for j > io. Thus

Conditions N(i0) are satisfied and so XE U (a. ) H6(z(5))nL(x)CD. .5 1 10

This completes the proof of (16).

Now, for each i, let IT. and D'! be the subsets of S
1 1

defined by

ID!
{xlxeS(8Y

x(5) D }
1

{xlxeS(5), x(6)T1[Di]}

We have D C G(f), for if g e DI, then g E S(5) and
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g(6)ED. H8(z(6)), this last inclusion following immediately from

(16). Now any point xE [z] of the form f+ g (g E G(f)) with

x(6)ED. is not in A, for we have f(5) = 0 and so g

Since g(6)ED. we have g(5) 4 a. (by(16)) and so g 4 a. for
J, f

all j, 1 < j < k(f). Thus f+gA.
For each bE B (Th D" we have

1 ai, f+b E DiC G(f), and so

f + ai,f, + bE Zf. Also f + aiif+ bE.K. since (f + ai,f+b)(8)EDi.

bFurthermore,

since f + a. EA and bE B we have f + . + EC.I, f ai, f
Thus

f + a
f + b E C\A Zf '

and so, since (15) implies that the D' are disjoint,
k(f)

C(Z ) - A(Zf) > B(D" ) .

i=1

Hence,



C(Zf) > A(Z )

A(Z1,) +

>
A(Zf)+

= A(Zd +

= A(Z1) +

k(f)

B(D)
i=1

k(f)

B6 (T1[Dij )

i=1

k(f)

S6 (T [D.])

i=1

k(f)

S(D )
i=1

k(f)

S(DI)

i=1

The second step follows from the definition of D!' and B5' ' the

k(f)

Denoting S(D!) by M(f) , we sum the last inequality
i=1

over the set Es and obtain, using (12) and the disjointness of the

Zf'

Caz]) > A([z]) + 136 M(f) .

f E E5

Letting 0-6 M(f) we have

fEE5

the fourth from (14);
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third step from (13) and the definition of P6;

and the last step from the definition of D! .



c({z]) > A([zi) + 136 cris > Aqz]) + 13' CT6 .

Summing this inequality over the n values of 5 and d by

n, we obtain

(17) C([z]) > A([z]) + Cris .

6=1

We prove next that
CT5

is the number of elements xe [ ]

for which

xE.71 ,

there exists a E A [z] such that a(k) = x(k) for

X z 6 and
x(5)EU6( (6)).

Suppose x satisfies Conditions (i) and (ii). Write x f+g

where f = p6(x). Then, we can write the element a, whose

existence is assured by (ii), as a = f +a.If . In view of (lb),
,

since x(6) E6(a(5)) and x(6) a. (since XE A) we have that
3,f

x(5) E D, for some j. Thus i {1011 1 < j < k(f)} and so x is

counted by M(f).

On the other hand, any x = f+ge Zf with g L.J{D.111 < < MO}

(i.e. any point counted by M(f)) clearly satisfies Conditions (i)

and (i.). Thus we see that 0-6 = M(f) counts those and only
f E E6

those points which satisfy (i) and (ii).
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Now, let Y be the set of all xe [z] which satisfy Condi-

tion (i), and for some 6, Condition (ii). Then by the preceding

remarks we have

n.

(18) cr6 > S ( Y) =A ([z]) - S(X)

6=1

where X = CA-.,--,[z])\Y. Thus X is the set of all xeA.

for which Condition (ii) is satisfied for no 6.

We assume that, for each xe S(6) 1 < 5 < n, with
'

x(6) e Min(H6(z(5)), that xe A. Otherwise, applying Theorem 2.20

to obtain that [x] = {x}, we have ac = 0 and the theorem clearly

holds. It follows that, if
yES(6)

[z] , then ye Y Or ye A. Thus,

we have shown that for each xe X, x(5) 4 0 for at least two dis-

tinct 6. Hence p6(x) 40 for each x E X and l< < n. Let_ -
X E X. We have (po(x))(X) x(X) for X 4 5. Now if x(5) 4 0,

then x(5) E S5 = U5(0) = U5 ((p5 (x))(5)) so that, since Condition (ii)

is satisfied for no 5, we have p5(x) E -.A-.. If x(5) = 0, then

x = p6(x), and so p(x)E7A... . Thus, for any 5, 1 < < n, we

have

p6(X) r-,p (X) CAr-p6([z])= rTh[p6(z)] .

The second relation follows from the fact that XC [z] . The last

equality can be seen to hold by observing the expression for a Cheo

[ j

set of . Using Theorem 8.8 we obtain



and

= Safi - Afff]

so that

(1-ac) Safi > ([f] )

Now, making use of the formula

S([fi) = ( Tr ts6(H6(f(6)))+ -1
5=1

we have
S([zi) + 1

1JSaP6(z)l) TT s (H (z(5)))-i- 1
8=1 8=1 8

S([z] )
M

8=1 S5 (H8
(z(5)))+ 1

(S([z]))n < (S([z] ))11-1 .S([z] ) + 1

Hence (19) yields S(X)<(1-ac)1S([z]). Substituting this into (18)

(19) (S(X))n1- < H S(p8(X))
5=1

-Ern
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n
< 7 A ([p8(z)])

8=1

< (1-a )flTT Sap8(Z)]) .

5=1

The first inequality follows from Theorem 8.8 since S0 (X)= S(X)

and (as we have p6(x) 0, XE X, 1 < 6 < n) So(p (X)) = S(p8(X)).

The last step follows from the relations

A([f] ) > (IC San)



y >a +C c

P (1-ac

Since z is an arbitrary element of S, the proof is complete.

Under an additional assumption we may replace the p, by

p = d (B,7) as shown in the following theorem.c c

Theorem 8.10. Under the hypotheses of Theorem 8.9, if

we further assume that each 18 is separated, then

(1-(1- On-1))
Pc( 1 - a ) .

Proof. We have by Theorem 6.5 that dc(B6,16)=d(B6,16)=136

for each 5, and by Theorem 8.7, d(13,7) < dc(136,16). Hence

we obtain 94

(20) 0-8 > -A".([zj) - 1-a s([z])
5=1

and finally (17) and (20) give us

Cazn > A([z]) +11- rAl({zi) _ (1-ac)nAn-l)sazili

= A([zi) (1J-2-)+ (1-(1-acM11-1))S([z]) .n n

Dividing by Sazj) we obtain

q(C,{ ) > q(A,[zj)(1--) +
(1-(1-ac)11An-1))

> a ) (1- " nAn
-1))C n

(1-(1-c )1/(n1)C



y >a +c 1-(1-ac)

2

ac
= ac + 13' (1-ac).2

Also, since p. > 13" , we have

acy > a +
13"(1-ac) .c c 2

Clearly, if 132 >
13c,

then 13" > Pc,

P' (1-a)

and so
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Pc = dc(B,7) < minfi3 , = 13' The theorem follows immedi-

ately.

The following special case of Theorem 8.10 improves the

work of Kasch mentioned in the Introduction: Let Ss = I and

5
= 7.61). Then S = In and 619= p{k(i) < 6< n} =k(In).

Since XI) is transformation -1 (Theorem 4.1) and separated

(Theorem 5.3), it follows that the inequality of Theorem 8.10 holds.

In Appendix 3 we show that this inequality betters those proved and

conjectured by Kasch.

We conclude this chapter with simple applications of Theor-

ems 8.9 and 8.10. Let A {1, 2}, s1 = I, S2 = I2, =10(2),

and 72 = 706'2). Then S is isomorphic with I and

7= h(I3). We have 131 = d(Bi, X(I))= dc (131,((I))> dc(B,X(S))=(3c.

Hence p.
= 32} > mm {Pc' Pz} = 13" By Theorem 8.9 we

have



acy > a +
13c(1- a c) .c 2

We summarize this example by saying that if A and B are subsets

of I and if the K-density of the restriction of B to one of the

2-dimensional hyperplanes with respect to X(12) is greater than or

equal to the C-density of B with respect to X(I3), then the

inequality

acy > a +
(3c(1-ac)c c 2

holds.

Now let , = to {si, Idi , 1, 2}

where S1 = S2 = 12 and 7 is the fundamental family on

12 given in Example ff-4. Since ef. (i 1, 2) is separated we

apply Theorem 8. 10 to the density space (I4,1) and obtain the

inequality

acyc > + 13 (1-a ).c 2 c c

Many more applications like the preceding can be made.
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CHAPTER 9

THE a + (3 THEOREM

In this chapter we discuss extensions of Mann's famous a+13

theorem.

9. 1. The a + p Conjecture

Let (S, j) be an arbitrary density space. We make the fol-

lowing conjecture.

a + p Conjecture. If A and B are subsets of S, and

C = A + B, and as usual a = d(A,7), p = d(B,7) and

y= d(C, 7), then

y > min {1, a + (3}

In this section and the next we treat some cases where this

conjecture can be seen to hold.

The conjecture holds for the density space This is

the famous theorem of H. Mann. We do not give a proof of this

theorem but refer the reader to one of the following papers

Mann [17] , Dyson [4] , Khinchine [10] , van der Corput-

Kemperman [3] .

We can use Mann's theorem to prove the a + p Conjecture

for a new and general class of density spaces.
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Theorem 9. 1. Let S be an arbitrary s -set, and X
a subset of S with the property that if x and y are distinct
elements of X, then the equation mx ny is unsolvable in posi-
tive integers m and n. For each z ES define R(z) by the
formula

{ix Ii < i <n} if z = nx (xE X, n > 1),
R(z)

{z} otherwise

Then R(z) satisfies Condition (b. 1-3) of Theorem 3. 6, and so

afR {FIFES), ZEF implies R(z) Fl is a fundamental
family on S. Finally, the a + (3 Conjecture holds for the density
space (S

R
).

Proof. We prove first that R(z) satisfies Conditions (b.1-3
of Theorem 3.6. Clearly, Z E R(z), and R(z) CL(z). Now let

z'ER(z). If z' z, then clearly R(z') CR(z). If z' z,
then we must have z = nx and z° = ix for some xe X and
1 < i < . But then

R(z1) {i I 1 < < ±}C{ixi 1 < <}... R(z) .

Thus is a fundamental family on S.

Now, by Theorem 3. 7, we have that the Cheo set of

determined by ZES is just R(z), i.e. , [z] = R(z). Let
z , z ES

1 2 such that zitiR(z2) and z24R(z1). If R(z )=
1

es.
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or R(z2) = {z2}, then clearly R(z1) R(z2) cj:I. Hence sup-

pose that R(z1) = {ixi 1 < i<n} where z = nx, xe X and n > 1,
1

Y2R(z) fiI 1 < < m}
and similarly that where 22 = my, ye X

and m> 1. If x y, then

(mm {n, mil xe R((max {n, )x)

contrary to our assumption. Hence x 4 y, and if z e R(z) f-NR(z2),

then for some i and j we would have ix = z = jy contradicting

the stated property of the set X. Hence R(z1)r-,R(z2) = cl) and

is separated (Definition 5. 1), and so, by Theorem 6. 5, wecifR

have for any Y C S,

d(Y, IR)= de(Y,

= glb{q(Y,[z])IzeS}

= glb{q(Y,R(z))1zES} .

Now let A, B and C = A + B be subsets of S. Let a = d(A,%),
(3 = d(B, 1 ) and y= d(C, ). For fixed XE X consider the

set {ixli > 1}. This set is isomorphic to I, and we may apply

Mann's theorem to obtain for each i > 1 , that

q(C, R(ix)) > min {1, ax f3x}

where ax = glb {q(A,R(ix))1i > 1} and similarly for 13x. Clearly

a > a and f3 >13 so that, for all xe X and i> 1, we havex-
q(C, R( )) > min {1, a + p } .



I-1(z) =

[{x+iul 0 <i <n}

{z}

if z = x+ nu (xE X, n > 0),

otherwise.
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Now, suppose z 4 ix for all i> 1 and all xe X. If zEC,

then q(C,R(z))= 1 > Min {1, a -1-p}. If z E C, then q(C, R (z)) = 0

and so 'y = 0 which implies, by Theorem 7. 1, that a = 13 = 0.

Thus in all cases

q(C,R(z)) > min {1, a +p

and the a +f3 Conjecture holds.

Note that the density space of Example ff-4 is a special case

of that defined in Theorem 9. 1. Here we take S = In and X
be the set of all (xi, ,xn)E In for which g c d{x ,

The a +p Conjecture holds for Example ff-4.

A method similar to the one used in the proof of the preceding

theorem can be used to prove the following theorem. We state it

without proof.

Theorem 9. 2. Let S be an s-set, and u a fixed ele-

ment of S, and X a subset of S with the following properties:

(1) U E X ,

(ii) if x and y are distinct elements of X then the
equation x +mu = y +nu is unsolvable in non-negative integers
in and n. For each zES define H(z) by the formula
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Then H(z) satisfies Conditions (b. 1-3) of Theorem 3.6, and so

is a fundamental family on S. Finally, the a +13 Conjec-

ture holds for the density space (S, 5H).

Note that the a +13 Conjecture holds for Example ff-5 by

this theorem. Here we take S = In and, for fixed j, 1 <j <n,

take u e. = (0, 0,1, 0, .0) where the 1 appears in the

ith place, and take X to be the set consisting of u and all

points (x1, - , xn)c In with x. = 0.

9. 2. Discrete Cases

We will call a fundamental family on an s -set S dis-

crete of order n if satisfies the following two conditions:

(i) is separated; (ii) for each XE S, S([X] ) <n with equality

holding for some x.

Theorem 9.3. For any s-set S, and for any positive inte-

ger n, there is a fundamental family on S which is dis-

crete of order n.

Proof. Let x be a fixed element of S and let n be a

fixed positive integer. For YES, define B(y) by the formula

{ixl 1 < i <il} if y= nx,
B(y) =

{y} otherwise.
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Evidently, if n > 1, there will be many different discrete

fundamental families of order n on S. For n = 1, D(S) is

the only example of a discrete fundamental family of order 1 on S.

The a +p Conjecture is known to hold in the discrete case only for

n = 1 and n = 2 as shown in the following theorem.

oTheorem 9.4. Let (S, f) be a density space where

discrete of order 1 or 2. Then the a +13 Conjecture holds.

Proof. Let A, B and C = A +B be subsets of S and

define a, p and y as usual.

1 11. The order of is 1. Since is separated we

have that

Y g 1 b {q(C,[x])IxES}

g lb {q(C, {x})1xESI .

Hence the only possible values for y are 0 or 1.

then y > min {1, a + p }. If y = 0, then, by Theorem 7.1,

0 > max { a , p } , and so a + p 0, and the a + p -Conjecture

Then Conditions (b. 1-3) of Theorem 3.6 hold and thus is a

fundamental family on S.

then B(y1) B(y2) = (1)

Clearly,

so that

if yit B(y2) and

B
is separated.

Y2 I3(Y)1,

Also

S(B(y)) <n

of order n.

for all y and S(B(nx) = n so that 1 is discrete

1 is



holds in all cases.

ofZ.
The order of is 2. As before

y = glb{q(C, [x] )1xES}.
1Now, for each xeS, q(C, [x]) has one of the values 0, or 1.

1Thus y = 0, or 1. Similar statements hold for a and 1.

If y = 0 or 1 we argue as above to obtain y > min {1, a +13 }.

1 1 1
Now, if y = -2- and a+13 we are done. The case - 2

1 1
and a +13 > is impossible since, if a +13 > -2-, then a +13 > 1

and so, by Theorem 7. 3, y = 1. The proof is complete.

The method used in proving the preceding theorem fails for

n >3.

9. 3. Other Methods

In all of the cases where we have shown that the a+13 Con-

jecture holds the fundamental family has been separated. Evidently

much stronger methods will be required to prove the a +p Con-

jecture for many cases. There seems to be some hope in applying

the methods of Mann and Dyson, although the author cannot report

any particular successes along these lines. Both of these methods

involve slight transformations of one or both of the sets A and B.

It is true that both methods use the linearity properties of the inte-

gers and that these properties all but disappear in the general s-set.

But both of these methods have been used in proving results, related
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to the a +3 Theorem, concerning subsets of finite abelian groups

where the linearity properties vanish.

On the other hand, the method used by Khinchine in proving

the weaker result

y > min {1, 2a, 2(3}

seems more remote in its possible application to s-sets in general.

A good account of Khinchine's proof can be found in Landau{15] It

is seen that a double induction is employed and the linearity proper-

ties of the integers are used over and over again. Such observations

leave little hope in applying it in a more general setting.



A(F)al = gib { s(F) 4_ I I

C(F)
(3) S(F)+ 1

CHAPTER 10

FURTHER PROBLEMS

10.1. Research Problems

In this section we give brief discussions of several general

problems.

(i) Let (S, y) be a density space. For a set ACS let

us define the modified Besicovitch (or Erdos) density of A, with

respect to to be

For the density space (111,)'1), Kvarda [12] has shown that

C(F) > ai(S(F) +1) + B(F)

for each FEk(In) such that F* C C . Here A and B are

arbitrary subsets of In and C = A +B.

Dividing (1) by S(F) we obtain that

q(C, F) > a

and so, by Theorem 6. 7, we have

> al + 13

Moreover, if we divide (1) by S(F) + 1 we get

F11, A(F) <S(F)} .

13(F)
> al+ S(F) + 1 al +131
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*for each F 7 with F C C. We prove that

we have Y <
1

C(F)
1

= g lb { S(F) +1

as in the proof of Theorem 6. 7, the set

G= {[x] I C

*
Then GET, GC, GCF and F\GCC so that

C(F) C(G) +C(F\G) C(G) +S(F\G)
S(F)+1 -S(G)+1+S(F\G) S(G)+1+S(F\G)

C(G)
S(G) + 1

Thus vi > yl and the proof is complete. Hence we obtain from

(3) that

(4)

A problem is to what extent can the inequality (1) be extended.

It is clear upon study of Kvarda's proof that inequality (1) may be
Aextended by her method to the density space (I ) for arbitrary

non-empty A . If we are to use Kvarda's method in other density

spaces, it can be seen that the family necessarily satisfies the

following properties: the family is translation -1; if

D= U(x) rTh F (xF(3), and yl' y2 E D with y
1 '2' then

y
F2-y1 T1[ID] ; if x. ° (i= 1, 2, k), and Di = Mx.) F,

FE7, *
C C .
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Now let FE QI such that C(F) <S(F). Define,

*Let VI denote this glb. Since FCC implies that C(F)<S(F),



then S(
T1

[D.]) + 1 < S( D.). We do not claim that theseI

properties are sufficient.

We remark that for the density space (I,X) Kvarda's

inequality (1) was proved earlier by the methods of Mann [18] and

Besicovitch. This latter method was first used for this purpose by

P. Scherk [22] . Consequently inequalities (2) and (4) were also

obtained for this special case at an earlier date although inequality

(4) does not appear explicitly in the literature. Kvarda's method of

proof for this special case is essentially different than the two earlier
emt.methods which haveAyet been applied successfully to other density

spaces.

Our second problem concerns the so called essential

component theorem. Given a density space (S, op, we call a set

B CS a K essential component ( C essential component) if, for each

A CS with 0 < <1 (0 <dc(A,1)) <1) we have

d(C,) > d(A,1) (dc(C,) > cic(A, 1)) where C = A +B. The

essential component theorem states that, if B is a basis (Defini-

tion 7. 2), then B is a (K or C) essential component. Kasch[7]

has shown this theorem for the density space (In,X) where the

theorem is stated for C-density. Nothing else is known for any

other density space.

R. Stalley [26] has defined a modified Schnirelmann

density for infinite sets of positive integers. We generalize his
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definition. For the density space (5,5) we define the K -density

of an infinite subset A of S, to be

a = d. (4) = g lb {q(A,F)IF F CA .

Correspondingly, we define the C -density of A to be

*
a

C
= (A,1) = gib {q(A,[ ])13cEA } .

C

Both of these definitions reduce to Stalley's for the density space

108

For this density space he has shown, among several other
er:

../.

results, that if a + p > 1, then y = 1 where a , 13 , and y

are the K* (or C ) densities of the infinite sets A, B CS and

C = A + B respectively. This result does not necessarily hold

for other density spaces as the following example shows. Consider

the density space (I2,fr Let A be the set of all pairs (x, y)e I2

such that either x > or (x,y) equals one of (0,1),

(1,0), (2,0), ).
* *

Let B = A. Then a +p = a +p = 12,/ii
c c

but
*

9/11 < 1.

If the above result doesn't hold, are there constants k <2

*
such that a + p > k implies y = 1 ? If so what is their

greatest lower bound ?

(iv) Another problem, barely touched in this thesis, is the

purely algebraic problem of characterizing the class of all s-sets.

The examples of Section 3.1 and the proof in Appendix 2 indicate

that this is no trivial problem. To the best of the author's
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knowledge, the study of s-sets as algebraic entities in themselves

has not yet been carried out. It would be useful to know, for instance,
Awhen an s-set S is imbeddable in an s-set of the form G)< l.

The work in Appendix 2 suggests that a necessary and sufficient con-

dition might be that, for arbitrary xeS, there exists positive con-

stants r and t, depending on x, such that S(L(nx)) <r
for n > 1.

10.2. Concluding Remarks

The problems of the preceding section by no means exhaust

the possible areas for research. For instance, we have not men-

tioned the generalization of asymptotic density. There is also the

problem of continuing to improve upon the results of Chapters 7 and

8. To embark upon research on any of these problems is to tacitly

agree that the foundation for the theory which we have set forth is

one worth keeping. This brings up the important question of whether

or not the axiomatic foundation can or should be changed.

One possibility is to remove from the axioms for s-sets

Axiom s. 3. This would then allow sets like the positive rationals

or the positive reals to be considered. Retaining the same axioms

for fundamental families, much of the theory would go through un-

altered. The most important exception is that we would not be sure

that is a fundamental family since we would not be sure that



L(x) is finite. Looking back, we find many important results de-

pending on the fact that is a fundamental family.

Another possibility is to leave the axioms for s-sets as they

are and replace Axiom f. 4 with the weaker statement of Theorem

2, 10, i.e. , that for each FE 7 we have F*4 4). This would

have the effect of enlarging the class of fundamental families on an

s-set. Theorem 2. 22 would no longer hold and hence neither would

several results which depend on it. The definition of the transforma-

tion properties would have to be revised.

Other changes in the axiomatic formulation can be considered.

The question as to whether any of these changes are worth while can

be answered only through long and serious research. It is hoped

that this thesis helps to induce that research.
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APPENDIX 1

In this appendix we will prove that, given an arbitrary s-set
S, the axioms for a fundamental family I on S are independent.

The proof results from the construction of four subfamilies of ffS),
namely 7 (i.1,2,3,4), where of satisfies Axiom f. j (j 4 i),
and fails to satisfy Axiom f. i. In each of the following constructions
let x denote an arbitrary element of S.

(1)
ILet

1 = {{x}}, i. e. , the family which consists of the

single set {x}. Then satisfies Axioms f. 2-4, but clearly

fails to satisfy Axiom f. 1.

(ii) For a positive integer n let

R(n) = {nx, (n-2)x," - , 2x}

if n is even, and

R(n) = {nx, (n-2)x, , x }

if n is odd. For n < 0, define R(n) to be the empty set.

7Let be the family of all non-empty sets of the form2

R(n) ..) X where n = 0,1,2, and X is any (possibly empty)

finite subset of S which contains no integer multiple of x. We

prove that
2 satisfies all the axioms except Axiom f. 2.

Let ye S. If y = nx, then take F = R(n) j 4) (where,

as usual, 4) denotes the empty set). If y is not a multiple of x,
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(iii) With R(n) defined as above, let 13 be the family of

115

then take F R(0) 1, and we have proved Axiom f. 1.

To show Axiom f. 3, it is sufficient, after Theorem 2. 9(u),

to prove that the non-empty intersection of two sets of 1 is a set
of T. Thus, let R(n) _./ Xi and R(m) _iX2 be sets of /
such that

(R(n) v
X1 ) n(R(m) 1/4,.) X2) = (R(n) fmR(m)) v (X1

is non-empty. If n and ni are both even or both odd, then

R(n) (-) R(m) = R(min {n, m}). Otherwise R(n) r-, R(m) = (I) = R(0).

Also
X1 (-\ X2 has the desired properties. Thus,

(R(n)1) (R(m)
...)X2) is of the form R(k) X and, since it

is non-empty, it is in 72.

To prove Axiom 1.4 holds, let R(n) (--)X be a set of

with more than one point in it, and let y be a maximal point of

R ( ) X. If yE R(n), then y = nx and

(R(n) j X) \y 17- (R(n)\y) LiX . Since R(n.)\ nx = R(n-2), we

obtain that y is a corner point of R(n) Li X. Now, if ye X,

then

(R(n) k_iX)\ y = R(n) v(X\y)

which, clearly, is in Thus y is a corner point of R(n)X.

Finally, does not satisfy Axiom f. 2, since R(1) and

R(2) are sets of but R(1) ..)R(2) is not.
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all sets F EffS) with the property, if nx E F, then R(n-1) CF

Or R(n-2) CF (possibly both). Axiom f. 1 is shown to hold similarly

tion. To show that Axiom f. 4 holds, let FE such that F has
more than one point in it. Let y be a maximal point of F. If

y is not a multiple of x then F \y still has the required proper-
ty. If y = nx, then, by the maximality of y, n is the largest

integer such that nxE F. Thus, F \y still satisfies the require-

ments of a set of

is shown to fail Axiom f. 3 by the following example

{ 3x, 2x} and {3x, x} are sets of but their intersection,

{ 3x} , is not.

(iv) Finally, define to be all sets of the form

R (2n) R(2n-1) L.) X where n = 1,2, and X is restricted
as in (ii).

Axiom f. 1 is shown similarly as for Axioms f. 2 and

f. 3 follow immediately from the equations

(R(2n) R(2n-1)) )(R(2m) ..)R(2rri-1))

= R(2(max {m, n}))_,R(2(max {m, n}) -1

R(2n) __JR(2n-1)) rTh(R(2m) vR(2m-1))

= R (2(min {m, n})) ._)R (2(min {m, n}) -1 ) .

Finally, the set {2x, x 14 but {x11. Thus 2x is not a

as for 12 above. Axiom f. 2 follows immediately from the defini-
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corner point of {2x, x} which shows that
4 fails to satisfy

Axiom f. 4. This completes the proof of the independence of the

Axiom f. 1-4.



APPENDIX 2

We prove that the s-set of Example ss-5 is not isomorphic
Ato any closed subset of an s-set of the form I . For any integer

j > 1, we have j + 0/2i = jE S. We estimate the number S(L(j))

for j = 1, 2, " First we prove

xe S, x < j/2 imply XE L(j) .

If x=j/2, then j-x-----xES and so x.<j. If x is equal to an integer,

then j-x is an integer > 1 and so j-xeS, whence X< j. Thus, we as-

sume that x=n+i/2n <j/2 where i + 0. We have n < j/2 which

implies j - 2n - 1 > 0 . Hence

2n_i 2j-2n- 1(2n-i)
= (j-n-1) + - (j-n-1) + 2j-n- 1

2n

which is in S by definition. Hence, again, x.ç1 j and so (1) is

proved.

Next we prove

S({xIxES, x < j/2}) >2k-1

where k denotes the greatest integer < j/2. First note that (2)

is true if j 1. Hence, assume that j > 1. Clearly

S({xIxES, x< j/2})>S({x1xES, x < k})
k-1

= 1+ S({xl xES, i < x < + 1 1) .

118

i=1



As is easily seen from the definition of S, we have

S({x1xES, i<x<i +1 } ) = 2

and so
k-1

S({xIxES, x< j/2})> 1 +

i=1

This completes the proof of (2).

Now, if XE L(j) and x < j/2, then j - x and so

j - XE L(j) and j - x > j/2. Thus, (1) and (2) yield

S(L(j)) > 2(S({xixES, x< j/2 1)) -1

> 2k+1-2-1 = 2k+1-3 > 2j/2 -3 .

Now let us suppose that S is isomorphic to S CI.
Under this isomorphism 1 corresponds to some function f S' .

Then j corresponds to the function jf. As can be seen

St (L' (g)) < TT (g(6) +1)S
E A

for any gE St . If we let N denote the (finite) number of 5 for

which f(5) 4 0, then

S ( L ( j ) ) = S'(Ls .N
-r-r-f(jf))< TT (jf(6)+ 1) < 3 H (f(6) +1).

6 E A SE A
p

Thus for all j > 1 we have

.N AH (f(5) + 1) > S(L(j)) > (N2 ) - 3.
6E A
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This is a contradiction since, for large enough j, the right hand

side will exceed the left hand side. Thus, it is impossible that S

is isomorphic to any subset of any IA .
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K1
(z, n) =

K2(z'n

In this appendix we prove that

a
c

+
K(ac, n)13 (1-a )c c

> max fac+K (a ,n)Pc(1-ac), ac+K2(ac , n)Pc ( - ac }

where n is a positive integer and 0 < ac < 1, and that strict

inequality holds except in the case n < 2, ac = 0,1 or 13c = 0.

This shows that, for the density space (In,)-(), the inequality of

Theorem 8.10 improves upon those proved and conjectured by Kasch

[7] (see Section 1.3). Clearly it suffices to show that

K(z , n) > Ki(z , n) (i=1,2)

for n> 1 and 0 < z < 1, and that strict inequality holds for

n > 3 and 0 < z .

We will use the following lemma : if n > 3, then

2n(3(n+1))n
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APPENDIX 3

For convenience we define

K(z , n) -
1-(l-z)1/(n- 1)

n-1



it follows that

x-1 2d'(x) > log e + log ( )x

x-2 x- 1- + log ( ) .

Now e> 1+y, and so el-(2/x) > 2 ...(2/x) so that

e
1 - (2/x)

(1- 1) > (2- 12)(1- x)x x

= 2 - +x x2

Thus e1-(2/x)(1- > 1 if x > 4. Taking log of both sides we

have

2 ) + log (1 -
x

Thus, from (2), we obtain that d(x) > 0 if x> 4, Hence d(x)

increases as x increases through values > 4, and so

d(x) > d(4) > 0 for x > 4. Thus (1) follows for n > 4. If

122

n(n+1)(n-2) > (n-

Let d(x) = (x+ 1)(x-2) log x - x(x- 1)log (x-1). We show that d(x) > 0

for x > 4. Now

d'(x) = log x- 1
-2x+1

2

From the relation



n = 3, then

n(n+1)(n.-2)4 6 n( -1)= 3 = 81 > 64 = 2 = (n-1)

and so (1) is proved for n > 3.

We now show that K(z,n) > Ki(z,n) for n> 1, 0 < z < 1

with strict inequality if n> 3 and 0 < z. In the cases n = 1

and n = 2 it is clear that we have equality for all z. Hence sup-

pose n > 3 and let

f(x) = nn-1
n-2 1

(1-x n-1

1

We show that f(x) > 0 for 0 < x < 1. Now

2-nn-2 1
n-1

f'(x) = 1 - nn-1 1 )((1-x n-1
) x)

-1)2

Hence f' (x) = 0 if and only if x -xn/(n-1) = 1/A where

A = (1/n)(n-1)(2(n- 1))/(n- 2)
. Define g(x) = x - xn/(n

Then g' (x) = 1 - (n/(n- 1))xl/(n- 1), and so g' (y) = 0 only when

y = ((n-1)/n)11-1 . Hence g(x) > g(y) = (1/n)((n-1)/n)n- 1. From

(1) we obtain

n(n-1) 2(n-1)n+1n- 2 n-2n > n-1) -1) (n-l)n-1

and so

(n_i)n-1
/2(n-1)) > nn(n_31.)n-2
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which is

Thus g(x) = 1/A is impossible and hence so is f' (x) = 0 impos-

sible for 0 < x < 1. Hence f' (x) is of constant sign. For_

sufficiently close to zero it can be seen that f' (x) < 0 so that

f'(x) < 0 for all x, 0 < x< 1. Hence f(x) is a strictly de-

creasing function, and so for all x, 0 < x< 1,

f(x) > f(1) = 0 .

Furthermore, if x 4 1, then f(x) > 0.

Now, if we let x = 1-z, then we have

f(x) = (K(z , n -
(K1

(z , n))1/ (n-1)

and so K(z,n) > K1(z,n) for n > 3 0 < z < 1 and strict

inequality holds if 0 4 z .

Finally, we show that K(2, n) > K2(z , n). For the cases

n + 1 and n + 2 it can be seen by direct computation that strict

inequality holds if z > 0. Assume n > 3 and let B = 2n(2(n+1))n.

Let

h(x) = B(K(I-x, n) - K(1-x, n))

=B (1 - xl/(n-1) ) -1 + x.

Now
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n-1
2-n(n-1)and so h'(y) = 0 only when y - (n ) > 1,

and so hl(x) is of constant sign in the interval 0 <x < 1. This

sign must be negative so that h(x) is strictly decreasing for these

values of x. Hence we have

h(x) > h(1) = 0 (0 <x < 1)

and h(x) > 0 if x 4 1. Substituting z = 1-x we obtain the

desired result.

Let n = 3 and z = 15/16. Then K(z , n) = 1/4,

Ki(z , n) = 25/256 and K2(z , n) = 15/211. 34 The preceding

example gives an idea of how much better K can be than K1 or
K2.

2
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2-n
h' (x) = 1-

n(n-1 x n- 1




