
AN ABSTRACT OF THE THESIS OF
 

Chung-lun Chan for the degree of Master of Science in Electrical and Computer 

Engineering presented on June 9, 2000. Title: Modeling Microarchitecture 

Simulator, Using Object-Oriented Approach. 

Abstract approved: 

Shih-Lien Lu 

With the success of the CounterDataFlow Pipeline microarchitecture 

developed by Oregon State University, there is increasing demand for a highly 

flexible high-level simulator modeling tool to support the further expansions and 

studies of the Counterfiow pipeline processors family. This work examines the 

implementation of a Java-based execution-driven simulator modeling tool, 

bBlocks, which gains flexibility by identifying the independent parts in a micro 

system and partitioning them into reusable blocks. Two simulators have been 

constructed to demonstrate the possibility of bBlocks. 

Redacted for privacy



Copyright by Chung-lun Chan
 
June 9, 2000
 

All Rights Reserved
 



Modeling Microarchitecture Simulator Using Object-Oriented Approach 

By
 

Chung-lun Chan
 

A Thesis submitted
 

To
 

Oregon State University
 

In partial fulfillment of 
The requirements for the 

degree of 

Master of Science 

Presented June 9, 2000
 
Commencement June 2001
 



Master of Science thesis of Chung-lun Chan presented on June 9, 2000. 

APPROVED: 

Major Professor, representing Electrical and Computer Engineering 

Head of Department of Electr4e-al and Computer Engineering 

Dean of Gr chool 

I understand that my thesis will become part of the permanent collection of Oregon 
State University libraries. My signature below authorizes release of my thesis to 
any reader upon request. 

Chung-lun Chan, Author 

Redacted for privacy

Redacted for privacy

Redacted for privacy

Redacted for privacy



ACKNOWLEDGEMENT 

The research presented in this thesis would never have been possible 

without the tremendous effort of my teammate, Hua Ying. Special thanks to my 

major professor, Dr. Shih-Lien Lu, for guidance and assistance. 



TABLE OF CONTENTS
 

CHAPTER 1. INTRODUCTION 1 

1.1 MOTIVATION 2 

1.2 RELATED WORKS 3 

1.2.1 aBlocks 3 
1.2.2 SimpleScalar 5 
1.2.3 Ptolemy 7 

CHAPTER 2. BBLOCKS PRELIMINARY 9 

2.1 GOALS 9 

2.2 DESIGN PROBLEMS 10 

2.3 EVOLUTION BEYOND ABLOCKS 11 

2.4 SYNCHRONOUS LOGIC SUPPORT 13 

CHAPTER 3. SOFTWARE ARCHITECTURE OF BBLOCKS 15 

3.1 "JIGSAW PUZZLE" INTERFACE 15 

3.2 WHY JAVA 17 

3.3 OVERALL STRUCTURE 17 

3.3.1 Simulator 18 
3.3.2 Provider 19 
3.3.3 Block 20 

3.3.3.1 Generic block 20 
3.3.3.2 Application-specific block 22 

3.3.4 Data Type 22 

3.4 EXAMPLE 22 

3.4.1 Modeling a Block 23 



TABLE OF CONTENTS (CONTINUED) 

3.4.2 Modeling a Simulator 26
 

CHAPTER 4. SIMULATIONS AND RESULTS 28
 

4.1 SIMULATION METHODOLOGY 28 

4.2 SUPERSCALAR SIMULATION 30 

4.2.1 Structure 31 
4.2.2 Configurations 34
 

4.3 COUNTERDATAFLOW SIMULATION 35
 

4.3.1 Structure 36 
4.3.2 Configurations 38
 

4.4 SIMULATION RESULTS: CDF VERSUS SUPERSCALAR 42
 

CHAPTER 5. CONCLUSIONS 50 

CHAPTER 6. FUTURE EXTENSIONS 52 

6.1 PERFORMANCE ENHANCEMENT 52
 

6.2 FAST FORWARDING 53 

6.3 SYSCALL 54 

6.4 STALLING 54 

BIBLIOGRAPHY 56 

APPENDIX 57 

A.1 SYSTEM REQUIREMENTS 58
 

A.2 INPUT FILES PREPARATION 58 



TABLE OF CONTENTS (CONTINUED) 

A.3 STARTING THE SIMULATION 59 

A.4 COLLECTING SIMULATION RESULTS 59 



LIST OF FIGURES
 

Figure Page 

3.1 bBlocks "jigsaw puzzle" structure 16
 

3.2 Two Integers class 24 

3.3 Integer Provider interface 24 

3.4 Adder class 25 

3.5 SslntegerFeeder class 26
 

3.6 S sAdder class 27 

3.7 SampleScalar class 27
 

4.1 The SuperScalar structure that bBlocks implemented 30
 

4.2 The CDF structure that bBlocks implemented 36
 

4.3 Simulated CDF sidepanels placement 39
 

4.4 Sample code segment 40 

4.5 applu simulation results 43 

4.6 swim simulation results 43 

4.7 compress95 simulation results 44
 

4.8 fpppp simulation results 44
 

4.9 turb3d simulation results 45 

4.10 test-printf simulation results 45
 

4.11 Usage percentage of CDF ROB with 32-entry and ......... 48
 

4.12 Full percentage of CDF ROB with 32-entry and 128-entry. 49
 

4.13 IPC comparison 49 



LIST OF TABLES
 

Table Page 

3.1 Key methods of Simulator class 19
 

3.2 Key methods of Block class 21
 

3.3 Specification of an adder 23
 

4.1 Descriptions of generic blocks 29
 

4.2 Descriptions of application specific blocks in SuperScalar simulator 34
 

4.3 Descriptions of generic blocks implemented for CDF ..... . ................. 38
 

4.4 Descriptions of application specific blocks for CDF simulator 38
 

6.1 Example to demonstrate the stalling problem 55
 



Modeling Microarchitecture Simulator Using Object-Oriented
 
Approach
 

CHAPTER 1. INTRODUCTION 

The complexity of modern processors is growing exponentially causing 

architecture validation to become increasingly difficult. While simulation provides 

one effective way to verify correctness of a design at the high level, the growth of 

high-level simulators has not kept up with the development of new processors. 

The Architecture-Blocks simulation package, or aBlocks, was a modeling tool 

for microarchitecture simulation developed three years ago by Oregon State 

University to address this demand [2-41. At that time, there were no modeling tools 

for high performance computer architecture simulation available which provided 

enough flexibility to describe a variety of architectures or the capability to 

prototype microarchitectures rapidly. 

A good simulator usually optimizes one or two of the following three 

categories: details, performance, and flexibility. aBlocks optimized toward 

flexibility. The primary objective for the aBlocks project was to develop a tool that 

allows rapid microarchitecture prototyping and performance evaluation. 

While aBlocks is relatively flexible and easy to use, its structural shortcomings 

and trace-driven simulation nature limit its usability. This work inherits and 

expands the design goal from aBlocks. Lessons learned from aBlocks provided the 

foundation for the next generation simulator modeling tool, bBlocks. 



2 

1.1 MOTIVATION 

The initial motivation for this simulator modeling tool project was to support 

research on the CounterDataFlow pipeline processor architecture (CDF). CDF is a 

cutting-edge microarchitecture design based on the counterflow pipeline concept 

originated by Sproull et. al. [1] and expanded by Oregon State University [2-4, 7]. 

As a result of the uniqueness of this architecture, it requires a simulator with high 

flexibility to achieve fast microarchitecture prototyping and performance 

evaluation, which was not available in the market. For this reason, aBlocks was 

developed. 

With the success of CDF, a variety of research opportunities have opened, 

ranging from performance enhancements to feature add-ons. However, due to the 

lack of details from trace-driven simulation and its structure, the work required for 

further extension is expensive. After developing the counterflow pipeline 

architectures, the CDF research team was lacking a model of industry standard 

computer architecture (such as basic Super Scalar [6]) to serve as a benchmark for 

its results. To fill this need, it was decided to develop a second generation of 

aBlocks with the first aim targeted to Super Scalar architecture. 



3 

1.2 RELATED WORKS 

This section describes prior works in microarchitecture simulator modeling. 

Three projects, including aBlocks, Simple Scalar [5], and Ptolemy [10], were 

studied. 

1.2.1 aBlocks 

The aBlocks simulation package was the ancestor to this work, with a goal to 

support the product lines of counterflow pipeline processors. It is a trace-driven 

simulator that runs the industry standard Simple Scalar simulator's program traces. 

As noted from the name, it is a block-based simulator where the components of 

microarchitecture are grouped into functional blocks and implemented as objects in 

the software. aBlocks provided Java's object-oriented advantages and adopted an 

environment for rapid simulator development. It's graphical support is also 

beneficial for debugging and prototyping various architectures. It is a cycle-timer 

simulator that tracks microarchitecture state for each cycle. A simulation cycle is 

initiated by a function call give(). This function call at the beginning of every 

simulation cycle initiates the execution chain by propagating this function call to 

other blocks. This call will not return until the return from the last blocks in the 

chain. 



4 

The advantages of aBlocks are: 

Objected oriented structure. The strength of abstraction, encapsulation, 

inheritance, polymorphism rewarded by object-oriented methodology allow 

high code reusability and in turn, gives the simulator high flexibility. 

GUI support. This helps significantly in debugging and prototyping a new 

microarchitecture (especially for the counterflow pipeline-based 

processors), because it is easier to visualize the flow of data as well as to 

check for correctness. 

Extremely portable Java-based executable. It provided the platform 

independent capability that allows our simulator to run on virtually any 

platform without modifying the source code or recompiling it. 

Trace-driven. It is simpler to implement in comparison to other simulation 

methods like execution-driven, which reduces the development time for 

new design. In addition, the performance of simulations can be better 

because it has fewer details. 

Simple software structure. The chain-linked give() function call 

standardizes the communication interface between blocks. This simple 

protocol allows the designers not to worry about timing problems that arise 

from data transactions. 

The disadvantages of aBlocks include: 

Not enough details to demonstrate the correctness of a prototyped 

architecture. A trace driven simulator does not perform actual 



5 

computation. It is good at hiding minor problems that can easily be 

overlooked. In fact, we found a couple problems in the design that were 

hidden for this reason. It gives the designer less confidence that their 

design is functionally correct. 

Linear software structure. Although it adopted the look of object-oriented 

design from Java, it's more of a structural program. Note that it uses a 

give() method to communicate with adjacent blocks, and the adjacent 

blocks invoke their give() method to talk to other blocks. It is in fact 

applying structural methodology instead of object-oriented methodology. 

For this reason, it loses code reusability because every block tightly 

depends on the adjacent blocks. In another words, it gives away flexibility. 

1.2.2 Simple Scalar 

Simple Scalar is a Super Scalar architecture simulator developed by University 

of Wisconsin-Madison. It's currently the most widely used Super Scalar simulator 

in the academic area and the leading product in the market. It is a very 

sophisticated simulator that runs primarily in the UNIX environment. It has its 

own Instruction Set Architecture (ISA) derived from MIPS ISA, and it provides a 

lot of tools for simulations including a compiler for FORTRAN and C code, an 

assembler, a loader, and a debugger. 



6 

The advantages of Simple Scalar include: 

Comprehensive features. Having its own ISA and compiler, Simple Scalar 

has the ability to simulate both the software and hardware environment 

with great detail. It benefits researchers from research in software 

enhancement to hardware enhancement to improve performance. It 

benefits microarchitecture research from compiler enhancement to 

hardware add-on to study and improve performance of Super Scalar design. 

Simulate with varied details. Simple Scalar optimizes performance and 

flexibility, and in addition, it provides portability and simulators with 

different levels of detail, from one optimized in performance to one 

optimized in details. 

The disadvantages of Simple Scalar are: 

Pipeline stage bases. It makes Simple Scalar incapable of describing new 

architectures that do not follow the traditional pipeline stages, e.g. CDF. 

Provides only source code portability, but the binary is still not portable 

(i.e. requires recompilation of source). 

Lack of flexibility in terms of architectural changes. When Simple Scalar 

works with a new architecture, the designer will need to "hack" the source 

code. It does not provide a way to "build" a simulator. 



7 

1.2.3 Ptolemy 

Ptolemy is a heterogeneous concurrent modeling tool developed for embedded 

systems by University of California, Berkeley. It is a general-purpose modeling 

tool to describe systems in different domains, including continuous time, discrete-

events, finite-state machines, and synchronous dataflow. It defines a modeling 

system and constructs an environment on which varies system architects can build 

their design. It also provides GUI, XML support, and some useful tools including 

plotters. 

The advantages of Ptolemy are: 

Extremely flexible: The second generation of Ptolemy is written in Java. 

The component based Ptolemy applied 00 techniques when possible, 

which empowered it to be as flexible as possible. One can even construct 

models through simple web-based scripting. 

Best at describing concurrent system. Its focus is on handling concurrency 

and time. Everything is built around that goal. Therefore it has the ability 

to describe a great variety of concurrent systems.
 

Sophisticated infrastructure. They defined their own typing system for
 

Ptolemy models. While it may seem unnecessary at first glance, it
 

pioneered the possibility to effectively connect interacting components,
 

which are heterogeneous by nature, together.
 



8 

The disadvantage of Ptolemy is the great overhead from handling concurrency. 

It is especially critical to systems like microarchitecture simulation, when 

performance is important. 



9 

CHAPTER 2. BBLOCKS PRELIMINARY 

2.1 GOALS 

"Why do I feel that flexibility is generally the most important quality you 
can give to your designs and code? The reason is that, as one of my 
managers used to put it, "software is a living product". Code isn't static. It 
is constantly being tweaked, enhanced, fixed, and so on, by a team of 
programmers, a team that is usually in constant flux itself' [8]. 

The primary goal for bBlocks, inherited from the ancestor aBlocks, is to assist 

microarchitecture researchers with rapid prototyping and performance evaluation 

by providing a simulator modeling tool with maximum flexibility. It should be 

able to comfortably accommodate any architectural changes or add-ons and should 

allow researchers to build simulators according to their design in the shortest 

amount of time while maintaining a satisfactory level of simulation details. While 

overall speed is also important to a simulator, it is of less importance to this project 

in comparison with flexibility and detail. In order to achieve rapid prototyping, it 

should also have graphical support to ease in the process of debugging. It's 

especially helpful for the product line of counterflow processors since counter-

flowing data and instructions and on-the-fly matching are not trivial to trace 

without visual aids. 

To achieve rapid prototyping, code reusability is highly important. The ideal 

scenario is that designers do not need to write code to describe new designs or 

features. While this may seem difficult to achieve, it is made easier by the fact that 



10 

most of the research has a tendency to modify or add to an existing design. By 

carefully partitioning a design into multiple components, it is possible to keep the 

majority of the components untouched, where changes only happen to a very small 

portion of the overall simulator. Two problems remain: how to identify what needs 

to be updated and how to add or extend features without affecting the existing 

functionality? These problems can easily be answered by applying object-oriented 

techniques, which promotes abstraction, encapsulation and information hiding. 

The goal for this project is to develop a modeling tool with flexibility to 

develop new microarchitectures that Simple Scalar doesn't offer, detail that aBlocks 

lacks, and low overhead and block reusability that Ptolemy does not emphasize. 

2.2 DESIGN PROBLEMS 

In reality, a microarchitecture usually contains a very large amount of digital 

logic. To ease the complexity in development, we partition a large design into 

small entities. A typical entity would have a set of inputs to receive data, a body to 

perform functions, and a set of outputs to pass the result to other entities. 

This concept of an entity is the same as in software. Entities are not limited to 

a fixed number of input/output ports, nor restricted to a certain data type. For 

instance, entity A might have output(int, int, float, boolean, double), while entity B 

might have input(double, long, float, char). For a modeling tool, it is fundamental 



11 

to identify commonalities of entities and encapsulate them into a class, so that only 

the non-reducible, design-specific porting of the code is left to the designer. 

aBlocks works around the heterogeneous nature of functional blocks by 

generalizing every block to have the same I/O interface and same data type. The 

other heterogeneous system modeling tool, Ptolemy, has a better solution to this 

problem by developing a data type system. By taking advantage of data 

polymorphism offered by an object-oriented approach, it defined a token to be the 

common type for data. A tree of data types is then derived from the object token. 

The actual attribute of a token depends on what it is created for. bBlocks noticed 

the loosely coupled nature of the entity. No attempt was made to generalize the 

data type and solve the type problem caused by the generalization. Instead, the 

problem was solved in a different way. 

2.3 EVOLUTION BEYOND ABLOCKS 

As mentioned in the previous chapter, aBlocks' blocks rely on the give() 

method to communicate with other blocks. This method for bi-directional 

communication can be interpreted as "I am giving something to you", or "please 

give something to me". It generalizes all blocks to have the same input/output 

interface. The cycle-based aBlocks performs a call every simulation cycle to the 

give() method of the first block in the calling tree to initiate the chain reaction. The 

give() method of the first block will make a call to the give() method of the 



12 

adjacent block during its linear execution. Similarly, within the give() method of 

the adjacent block, it will make a call to its adjacent block. This motion continues 

until a block reaches a steady condition (i.e. doesn't make call to a give() method of 

other blocks). It can also be viewed as a hybrid recursive call, with the difference 

that the method is not calling itself, but rather the method with same declaration 

from other blocks. There are two major points that the user of aBlocks should be 

aware of. First, there must be a block in the calling tree that serves as terminator, 

otherwise a give() method will keep looping and cause a deadlock. Second, calling 

order is essential. While the declaration of give() methods are the same across the 

simulator, their requirement and functionality is not. When a call is made is as 

important as passing the correct information to a block. aBlocks give() method 

passes information by using an data object called aToken, which is a container (or 

data structure) of information. The meaning of the data stored varies based upon 

which block it is locating and when it is received. 

While it may not be obvious, aBlocks structure does not take much advantage 

from object-oriented methodology. First of all, it defined that every block has the 

same input/output interface (i.e. every block uses the give() method to 

communicate), and the type of information is generalized as aToken. Blocks are 

heterogeneous. To implement heterogeneous blocks with a homogeneous structure, 

aBlocks defines the generalized aToken be used for all data types. In another 

words, the meaning of aToken varies, from block to block, depending on where it is 

and when it is being received. This implementation placed a constraint to the 



13 

aBlocks structure that the blocks give() method has to be connected and called in a 

certain order to allow the blocks to receive the correct aToken. Thus, every block 

is depending on other blocks, in the sense that it makes assumptions about who is 

connecting it in what order. 

To illustrate this problem, consider the amount of work that must be done to 

add a new block to an existing design. Ideally the new block would be 

implemented and add it to the current design, without modifying or affecting the 

existing design. In the aBlocks system, the first step is to examine the block in the 

existing design that the new block is going to attach to. Since blocks are source 

and call-order dependent, adding a block very likely requires modifying the 

existing design. The modification in the current design may affect the blocks 

adjacent to the modified block, because the call-order is changed and that could 

affect the overall functionality, requiring examination or modification of other 

blocks. In another words, adding a block to the system affects the existing system, 

which reduces the level of flexibility and increases the time for prototyping. 

2.4 SYNCHRONOUS LOGIC SUPPORT 

bBlocks works the best with synchronous logic, i.e. a block where most of the 

activities happen at the beginning of the machine cycle. For asynchronous logic 

that does not depend on the clock, a cycle-based simulator will need to allow data 

to iterate and oscillate until it reaches a steady state. However, this task is 



14 

extremely time consuming, as signals can oscillate for many simulation cycles 

before stabilizing. Since it would badly hurt the simulation performance, 

asynchronous logic is not supported in our current release. 



15 

CHAPTER 3. SOFTWARE ARCHITECTURE OF BBLOCKS 

bBlocks is a system that takes the component view of design, where interactive 

blocks are defined and built. It governs the interaction and execution of blocks 

under the system. 

The bBlocks design was borrowed from Java Bean, where an event-listener 

model is used for loosely coupled bean communications. The Java Bean system has 

a very similar nature as our computer architecture block: both beans and blocks are 

loosely coupled. However, unlike GUI, computer architecture has extremely busy 

traffic, which makes the event-listener model too expensive to use. To fix this 

problem, the interface to bBlocks was designed differently than Java Bean. An 

interface based on the concept of the jigsaw puzzle is developed. 

3.1 "JIGSAW PUZZLE" INTERFACE 

This "jigsaw puzzle" structure is based on a couple observations. First, recall 

that a block has a set of inputs and a set of outputs. While the block's computation 

depends on its input and the internal state, output format is not a requirement for a 

block to process. The output is served solely for the other blocks that it connects 

to. Second, a block does not depend on a particular block, but it only needs a 

certain data type at its inputs to allow computations. In this sense, a block is a 

completely independent unit. It is a very important key to lead to better flexibility, 



16 

because as long as a block is independent of others, it can be added or removed 

easily without affecting the system. 

c) 
joining the application-
specific 
blocks 

Figure 3.1 bBlocks "jigsaw puzzle" structure 

Based on these observations of the blocks, bBlocks allows a block to define 

who can be connected to its input. Only those whom meet all the criteria set by the 

by the block can be the provider of inputs. A block that defines inputs and 

performs computations is called a generic block, as shown in Figure 3.1a. When a 

block implements the input criteria defined by another block, it becomes an 

application-specific block, as shown in Figure 3.1b. Application-specific blocks 

are put together to construct a simulator like jigsaw puzzle pieces fit together to 

make a picture (Figure 3.1c). 



17 

3.2 WHY JAVA
 

To achieve the flexibility that other structured based simulators do not offer 

requires an object-oriented based simulator. Considering flexibility of the 

language, graphical support, the bonus of cross-platform binary independence that 

comes without extra efforts, and the choice of the ancestor aBlocks, Java was an 

obvious choice for the second generation of simulator modeling tool. 

3.3 OVERALL STRUCTURE 

bBlocks comprises four kinds of classes: Block, Provider, Simulator, and data. 

With these four basic kind of classes, you can build simulators for any 

microarchitecture. Block is a class that describes an entity in the microarchitecture. 

It is responsible for performing computations. Provider is an interface used by 

blocks to define the communication topology between the outputs of one block to 

the inputs of another block. Simulator is a class that defines a simulation system. 

By joining blocks in a certain manner, a simulator class describes the behavior of a 

microarchitecture. 



18 

3.3.1 Simulator 

The simulator class defines a simulation system. It is also a system manager 

that disciplines and monitors the blocks registered to it, and governs the 

interactions between blocks and executions. 

For a cycle-based simulation for a synchronous system, data should be moved 

from the source blocks to the destination blocks at the beginning of the cycle, all at 

once. While it's trivial to achieve in hardware, software does not work the same. 

A software block cannot update internal status while it is still being retrieved from 

the other blocks. This causes a race condition. 

bBlocks simulates the concurrency by dividing the action of retrieving input 

and perform computation on input into two different stages. In other words, a 

simulation cycle has two stages. We called the stage where a block retrieves inputs 

and lets other blocks acquire outputs "pre-tick", and called the stage where the 

actual computation take place "tick". 

Every machine cycle, the simulator will go around and execute twice the 

blocks that are registered to it. The first simulation cycle is to invoke the preTick() 

method of all blocks to initiate them to collect their inputs. The second simulation 

cycle is to invoke the tick() method, which is used to instruct the blocks to execute 

with the input. 

Simulator is an abstract class in bBlocks. To define a simulation system, a 

user should create a new class, have it extend or inherit from the simulator class, 



19 

and direct it to register the necessary block and connect them together according to 

the microarchitecture. 

Method 
setup() 

Description 
It defines blocks and how they are connected. A concrete simulator 
class (e.g. Super Scalar) should implement this method inherit from the 
abstract Simulator class in order to complete the functionality. Code to 
instantiate, register, and connect blocks should be put in this method. 

Main() To make the java program executable. 
run() method to start a simulation. 

The designer should invoke 

Table 3.1 Key methods of Simulator class 

3.3.2 Provider 

Provider is simply an interface that a block defined to guarantee that 

whomever connects to its input agrees to provide the necessary input data. It can 

be viewed as a contract a promise that the acceptor must have implemented 

certain methods, where methods in this case are the means to feed inputs. This 

interface structure is the key to meeting the primary goal of maximizing the 

reusability of code. With a provider, input to a block is no longer limited to a 

specific block. Instead, any blocks that meet the requirement of a particular 

provider can be used to feed inputs of that block. 

A provider is not restricted to a certain data type or data object. It can be of 

any data type or object. 



20 

3.3.3 Block 

A block in bBlocks is defined as a synchronous computation module that 

performs a core computation that is a function of only its inputs and the current 

state. 

Due to the race condition problem mentioned earlier, a block should not update 

the internal state when getting input or being queried for output. Therefore there 

should always be an input buffer and output buffer for each input and output 

interface. 

In the "jigsaw puzzle" structure, a block has two forms: a generic block, and an 

application-specific block. A generic block is a block that carries out the 

computation, while an application-specific block is responsible to take care of 

communications. 

3.3.3.1 Generic block 

A generic block is an abstract class. It is simply called "Block" in the 

software. Since the computations of a block only depend on its input, a generic 

block defines inputs only, but no outputs. At this level, blocks are completely 

independent from other blocks, in the sense that it does not know any other blocks. 

The only knowledge it has about the block connecting to its input is that block has 

the ability to provide the necessary data that it needs. This confidence is obtained 

from an agreement of input, which we called "Provider". This agreement is 



21 

basically a contract from other blocks, saying they must provide the necessary input 

in the proper format. In other words, only the blocks that are providers of a certain 

data can connect to that particular block. Because a generic block is independent 

from others, this object is highly reusable. 

As mentioned in the earlier sections, due to race conditions, there are two 

phases in the execution of a block. The first phase is so called "pre-tick". It is 

when a block collects inputs from other blocks. When a block is ready to receive 

an input, it invokes the provider-defined methods of the connected blocks, 

requesting the connected blocks to feed the necessary data, if they have any ready. 

The received input is then stored into an input buffer, waiting to be processed in the 

next phase, "tick". 

The second phase, tick, is the body of a block. It processes the inputs in the 

input buffer stored in the pre-tick phase and performs computations. Outputs are 

stored in output buffers, waiting for the other blocks to collect them. 

Methods Description 
connectTo() It defines which provider to connect to 
preTick() First phase of the two phases execution. A simulator modeler should 

fill out this method with calls to provider's method to collect inputs, 
and code to load the data into the input buffer. 

tick()	 Second phase of the two phases execution. The actual computation 
happens in this phase. When computation is finished, outputs are 
stored in the output buffer. 

Table 3.2 Key methods of Block class 



22 

3.3.3.2 Application-specific block 

An application-specific block is a concrete class that inherits from the generic 

block. It specifies which input interface it agrees to implement, and it implements 

the necessary methods to serve as a provider. It can be view as a wrapper to wrap 

a generic block in a form that another block can use. Code at this level is design 

specific, so the level of reusability is limited. When there are architectural changes 

in the computer design, code may no longer reusable if the connection is altered. 

But it is comforting to know that it only shares a very small portion of the total 

amount of code. 

3.3.4 Data Type 

Unlike aBlocks or Ptolemy, bBlocks input and output is not limited to a fixed 

data type or object. It can be a data structure that contains a group of data. So it is 

practically possible to transmit anything, including both data type and objects, from 

one block to another block. For example a result object would contain instruction 

id, instructions address, results, etc. 

3.4 EXAMPLE 

At this point, an example would help to explain the architecture more clearly. 

This example demonstrates how to model an adder, integrate it to the system and 



23 

connect it to other blocks to complete the design. Our adder has the properties 

described in Table 3.3. 

Input 2 integers 
Body Add the two integers 
Output 1 integer 

Table 3.3 Specification of an adder 

Let's assume that generic blocks Integer Feeder and Output Printer are available 

to feed input to the adder and take the output from adder to some storage media. 

3.4.1 Modeling a Block 

To model a block, the first step is to define a provider, the input interface of 

adder. In this example, a provider to the adder is anyone who can provide two 

integers. To ease the data transmission and make it clearer, a unique data type is 

defined (Figure 3.2). The code of Adder Provider is shown in Figure 3.3. 



24 

public class TwoIntegers{
 
public int a;
 
public int b;
 

Figure 3.2 Two Integers class 

public interface IntegerProvider implements Provider{
 

TwoIntegers giveTwoIntegers();
 

Figure 3.3 Integer Provider interface 

The next step is to code the generic adder block. A generic block should have 

a constructor to initialize the member variables, a connectTo() method to get a 

handle to the block connecting to it, and preTick() and tick() for loading input and 

processing the data, respectively. Figure 3.4 shows the code for the generic adder 

block. 



25 

public class Adder extends Block{
 

protected AdderProvider adderProvider;
 

protected TwolntegersQueue inputBuffer;
 
protected TwolntegersQueue outputBuffer;
 

public Adder(){
 

inputBuffer = new TwoIntegersQueue(1);
 
outputBuffer = new TwoIntegersQueue(1);
 

public void connectTo( AdderProvider adderProvider ){
 

this.adderProvider = adderProvider;
 

public boolean preTick(){
 

if( !inputBuffer.isFull() ){
 

Twolntegers tmp = adderProvider.giveTwoIntegers();
 
InputBuffer.push(tmp);
 

return true;
 

public boolean tick(){
 

while( !inputBuffer.isEmpty() && !outputBuffer.isFull() )f
 

Twolntegers tmp = inputBuffer.pop();
 

int sum;
 
If( tmp != null ){
 

sum = tmp.a + tmp.b;
 
outputBuffer.push(sum);
 

return true;
 

Figure 3.4 Adder class 



26 

3.4.2 Modeling a Simulator 

After completing the blocks for the simulator, it's time to put things together 

and build a simulator. First of all, we need a wrapper to dress Integer Feeder in a 

way that Adder block can use. Integer Feeder needs to implement Adder Provider, 

as shown in Figure 3.5. 

public class SslntegerFeeder extends IntegerFeeder implements
 
AdderProvider{
 

public Twolntegers giveTwoIntegers(){
 

Twolntegers out = new Twolntegers(};
 

out.a = myOutputBuffer.pop();
 
out.b = myOutputBuffer.pop();
 

return out;
 

Figure 3.5 SslntegerFeeder class 

To allow the generic adder block to be connectable, it also needs an 

application-specific block (Figure 3.6). 



27 

public class SsAdder extends Adder implements OutputPrinter.OutputProvider{
 

public int giveOutput(){
 

return outputBuffer.pop();
 
} 

} 

Figure 3.6 Ss Adder class 

Now that all the application-specific blocks are done, they must be assembled 

to form the simulator system. Figure 3.7 shows the code for the simulator. 

public class SampleScalar extends Simulator{
 

SslntegerFeeder intFeeder; 
SsAdder adder; 
SsOutputPrinter outPrinter; 

public void setup(){ 
intFeeder = new SsIntegerFeeder();
 
adder = new SsAdder();
 
outPrinter = new SsOutputPrinter();
 

adder.connectTo(intFeeder);
 
outPrinter.connectTo(adder);
 

add(intFeeder);
 
add(adder);
 
add(outPrinter);
 

} 

public static void main( String[] args ){
 
Simulator sim = new SampleScalar();
 

sim.run();
 
I 

) 

Figure 3.7 Sample Scalar class 



28 

CHAPTER 4. SIMULATIONS AND RESULTS 

To demonstrate the possibilities with bBlocks, we built two simulators: 

Super Scalar and CDF. They both support dynamic scheduling and have an out-of­

order execution microarchitecture. In this chapter, we'll show how flexible 

bBlocks is to move from the basic Super Scalar microarchitecture to a 

CouterDataFlow pipeline microarchitecture. 

4.1 SIMULATION METHODOLOGY 

We build a set of generic blocks based on the basic Super Scalar 

microarchitecture. This set of generic blocks is independent to simulator structure 

and is reusable across different simulators (Table 4.1). 

bBlocks does not yet have its own ISA and compiler. In the current release it 

relies on the front end of Simple Scalar to provide ISA definitions and binary 

generation capability. In spite of the fact that blocks were constructed around 

Simple Scalar's definition, blocks are independent to this definition and have the 

ability to adopt other definitions. 

There is one drawback of using Simple Scalar's ISA and compiler. Recall that 

syscalls are instructions that provide operating-system-like services. These 

services include interfacing with the I/O. Since the syscall instructions were 

designed specifically for the UNIX environment using C, it is extremely difficult, if 



29 

not impossible, to completely port every syscall functionality to the java-based 

bBlocks. For this reason, we only implemented a few syscalls that are critical to 

us, including the stdout write function, and simulated the rest of the syscall by 

some constant return values. 

Block Description 
Pre Fetch It fetches instructions every cycle. 
Memory Unit A basic unit of memory unit. Cache and Memory are built 

from that. 
Cache It can serve as either instruction or data cache, and it can be use 

for any level of cache. 
Memory Main memory. It has access to the virtual memory (which are 

files on disk). 
Decoder It decodes raw instructions. 
IW Instruction Window. It keeps the instructions that are pending 

to be executed. 
EU Execution Unit. It can serve as any functional unit, e.g. INT 

ALU, FP ALU, etc. 
BEU Branch Execution Unit. It is a child of EU. It is responsible for 

executing branch or jump instructions. 
MEU Memory Execution Unit. It is responsible for executing 

instructions that access to the memory. It also handles syscall 
instructions. 

ROB Re-Order Buffer. It's a buffer to maintain the retiring order of 
the instructions. 

RF Register File. 

Table 4.1 Descriptions of generic blocks 



30 

4.2 SUPERSCALAR SIMULATION 

The following discussion shows the simulator that was constructed to model a 

SuperScalar microprocessor. 

Level - 2 
D-Cache 

1^ I 
5 6 

1 

Level - 1 
D-Cache 

Level - 2
 
I-Cache
 

,r 

i 

Level - 1 
I-Cache 

1. addresses 
Z raw instructions 
3. instruction tokens 
4. results 
5. addresses (for read) or data (for write) 
6. data 
7. oldest instruction ID in ROB 
8. new PC 
9. number of ROB entries to reserve 

Figure 4.1 The Super Scalar structure that bBlocks implemented 



31 

4.2.1 Structure 

The Super Scalar structure we built is presented in Figure 4.1. It consists of the 

application-specific blocks shown in Table 4.2. 

The simulation starts with loading the program binaries to the memory. Once 

the binaries are loaded, the simulation cycle will begin. The following will 

demonstrate how an instruction travels through each block and retires to the 

Register File. (Note that in bBlocks, every transition is completed by putting data 

into a buffer to let the destination pick it up during the next pre-tick. Later, when 

we say passing data from one block to the other, it implies that the data is stored in 

a buffer and being picked up at the beginning of the next cycle). 

1.	 The SsPreFetch generates an address according to the PC, and stores the 

address into its output buffer for the cache. 

2.	 The first level cache, an instance of Ss Cache, takes the address from 

SsPreFetch. It looks up its content for a match. If it cannot find a match, it 

passes the address to the next level cache by storing it at the output buffer for 

the next level. Otherwise, it puts the raw instruction that matches the address 

to the output queue for the SsPreFetch. Let's assume we have a miss at this 

cache. 

3.	 The second level cache, also an instance of Ss Cache, takes the address from 

the first level cache's output buffer, and repeats the same searching process as 

in the first level cache. Again, let's assume we have a miss at this cache. 



32 

4.	 The memory, represented by Ss Memory, takes the address from the second 

level cache's output buffer. Then it brings the data from the instruction's 

virtual memory (implemented by a file), and stores it to the output buffer for 

the higher level (second level cache). 

5.	 The second level cache gets the instruction from the Memory's output buffer. 

It updates the cache line with the instruction, and passes it on to the output 

buffer for the higher level (first level cache). 

6.	 The first level cache repeats the same procedures as in second level and passes 

the instruction back to the SsPreFetch by putting the instruction into the output 

buffer. 

7.	 SsPreFetch gets the instruction from cache, and passes it on to the next block, 

SsDecoder. 

8.	 Ss Decoder gets the raw instruction and decodes it into an instruction token. 

As opposed to a raw instruction that is nothing more than a fix size set of bits, 

an instruction token is an object that holds all the information about an 

instruction that must be present prior to execution. Surprisingly, it also takes 

extra effort to rename registers and attempts to load the necessary register 

values to the operand. After these tasks are done, it passes the instruction 

token to the instruction window. 

9.	 SsIW gets the instruction token from Decoder and stores it into the instruction 

window. A just arrived instruction cannot be passed to the functional unit to 

execute until it has an entry in the re-order buffer reserved. For this reason, 



33 

SsIW will make an entry request to the SsROB after it receives an instruction 

token. 

10.	 After an entry is allocated in SsROB, an instruction token may be fetched if all 

the operands are ready. If the operands are not ready, it will stay in the 

instruction window until the required results come back from the execution 

units or from SsROB. 

11. When an instruction token is ready (when it has all	 its operands), the 

execution units (instances of SsEU) can take the instruction token from the 

instruction window. Note that if it is a memory access instruction, it will be 

executing in order. Results will be generated after execution, and they will be 

stored in an output result buffer, and forward buffer. The former buffer is for 

the result retiring (results will go to SsROB in this case), the later buffer is to 

perform result forwarding (going to SsIW in this case). 

12. SsROB takes the results from the functional units, and fills them into their 

reserved entry. Every cycle, SsROB looks from the bottom of the buffer 

where the oldest results are located, and marks the results retired in 

descending order. 

13. SsRF takes results in the SsROB that are marked retired, and writes them to 

the register file. 



34 

Applicatons Specific Generic Block Inherit From: Implemented Providers to 
Blocks connect to: 
SsPreFetch Pre Fetch Memory Unit 
Ss Cache Cache Decoder 
SsMemory Memory Memory Unit 
SsDecoder Decoder IW 
SsIW IW ROB, EU 
SsEU EU IW, ROB 
SsBEU BEU IW, ROB, RF 
SsMEU MEU IW, ROB, Memory Unit 
SsROB ROB IW, RF, MEU, BEU 
SsRF RF 

Table 4.2 Descriptions of application specific blocks in Super Scalar simulator 

4.2.2 Configurations 

To understand the performance of Super Scalar, we ran simulations for some 

SPEC95 [9] benchmarks and programs. The simulation results obtained from these 

four programs will be used as the baseline to compare the performance with CDF. 

The Super Scalar simulator can fetch, issue, and complete up to four 

instructions per clock. It has four fast integer units, one slow integer unit, one fast 

floating-point unit, and one slow floating-point unit. They have a latency of one, 

four, four, and four, respectively. There is one memory execution unit to take care 

of the memory access instructions, and one branch execution unit to execute branch 

or jump instructions. It has two levels of instruction cache as well as a data cache, 

and one memory unit. The cache size for level one instruction cache, level two 

instruction cache, level one data cache, and level two data cache are 32, 128, 16, 



35 

and 64 bytes, respectively. It takes two cycles to access the first level cache, four 

cycles to access the second level cache, and six cycles to access the memory. Both 

instruction windows and the re-order buffer have 32 entries. 

4.3 COUNTERDATAFLOW SIMULATION 

To support future studies in CounterDataFlow microarchitecture and to 

demonstrate the flexibility of bBlocks to adopt different designs, a CDF simulator 

is built. The following sections discuss the construction of this simulator. 



36 

Level 2 
D-Cache 

Level - 1 
D-Cache 

Level - 2 is 
I-Cache H I

16 

Level ­
I-Cache
 

Pipe Stages 

1. addresses 
2. raw instructions 
3. instruction tokens 
4. results 
5. addresses (for read) or data (for write) 
6. data 
7. oldest instruction ID in ROB 
8. new PC 
9. number of ROB entries to reserve 

Figure 4.2 The CDF structure that bBlocks implemented 

4.3.1 Structure 

CounterDataFlow pipeline microarchitecture is an architecture derived from 

the counterflow pipeline concept. CDF differs from the basic Super Scalar structure 

by having a set of instruction pipelines and a set of result pipelines as opposed to 

Super Scalar's instruction window. Instructions are passed from Decoder to ROB, 

and from ROB to the instruction pipeline stage that is closest to the ROB (the first 



37 

instruction pipeline stage). Every cycle, instructions in the instruction pipeline will 

shift one pipeline stage away from the ROB. When instructions reach their launch 

points, instructions will be launched to the corresponding execution units, if they 

have all the operands ready. Instructions continue their adventure in the pipeline 

otherwise. When results come back from the execution unit, they are transferred to 

the result pipeline. Results in the result pipeline shift one stage toward the ROB 

every cycle. The name "CounterDataFlow" describes the fact that instructions and 

results are flowing in opposite directions in the pipeline stages. If instructions find 

a match of results that they are waiting for at the same stage of pipeline, they take 

the values from the result pipeline. When the results reach the ROB, the ROB will 

retire them in order. On the other hand, when instructions reach the last stage 

without launching, they will wrap around to the ROB and be fetched again to the 

first stage. One keynote is that the CDF pipeline does not stall. 

The simulator that we built for CounterDataFlow pipeline microprocessor 

reused most of the objects from Super Scalar simulator. Table 4.3 and Table 4.4 

show the generic blocks and the application specific blocks implemented for CDF. 



38 

Block Description 
CdfROB The completion unit for CDF. Besides the basic re-order buffer 

functionalities to retire instructions in order, its tasks include 
passing instruction tokens to the pipeline, taking care of wrap 
around instructions, and perform values matching to the 
instructions. 

CdfPipe It represents the pipeline stages in CDF, both instruction and 
result pipelines. 

Table 4.3 Descriptions of generic blocks implemented for CDF 

Applicatons Specific Generic block inherit from: Providers implemented: 
Blocks 
SsCdfROB CdfROB CdfPipe, RF, BEU, MEU 
SsCdfPipe CdfPipe EU, BEU, MEU 
SsCdfEU EU CdfPipe 
SsCdfMEU MEU CdfPipe, MemoryUnit 
SsCdfBEU BEU CdfPipe, RF 

Table 4.4 Descriptions of application specific blocks for CDF simulator 

4.3.2 Configurations 

The same integer and floating-point programs used for the Super Scalar 

simulations were also used for CDF simulations. In order to collect comparable 

simulation results, all the CDF configurations are set to the same as Super Scalar. 

While CDF does not have an instruction window, it has pipeline stages. It has eight 

pipeline stages. Each stage can hold up to four instructions and eight results. This 

configuration of pipeline stages accommodates the 32-entry instruction window in 

Super Scalar. CDF simulator has the same number of executions with the same 



39 

amount of latency. The positions of each execution unit are listed in Figure 4.3. 

This sidepanel setup is similar to the setup presented in [7], except that it only has 

eight stages instead of nine, and one branch execution unit as opposed to two BEU 

used in [7]. 

1 
1 

stxustie L Result 1 
FM-Mine-1 L Pipetfne1 

L 1 

1

17 1 

entry point 

launch point 

Figure 4.3 Simulated CDF sidepanels placement 

During the development of bBlocks, our simulator uncovered a design flaw in 

the CDF microarchitecture. This flaw is caused by memory access instructions that 

should be executed in order. The original design did not guarantee the execution 

order of these instructions, so only the memory access instructions in the buffer of 

the BEU are kept. 



40 

1: Store R3, Location_i 
2: Load R4, Location_1 
3: Load R5, Location_1 

Figure 4.4 Sample code segment 

Consider the code shown in Figure 4.4. Assume the MEU has one buffer. In 

the case where R3 is being used by other instructions but R4 and R5 are ready, 

Load2 and Load3 will be fetched to the MEU, while Storel remains in the pipeline. 

There are two preferences to execute these instructions: perform the memory 

access only when the corresponding instruction is retiring from the ROB, or allow 

"load passes store" if the load instruction is not reading from the memory location 

that the previous store is writing to. 

For the former case, Load2 will be in the MEU pending for the signal from 

ROB to perform the memory access, and Load3 waiting in the buffer of the MEU. 

As one may observe, Load2 will not be retired until after Storel is retired. 

However, Storel will never have a chance to get to the MEU, because the MEU is 

occupied by Load2, and the buffer is filled by Load3. In another words, Store! will 

never be retired and a deadlock is generated. 

For the later case, load instructions can pass store instructions. In the example, 

if Load2 reaches the MEU before Storel because MEU is lacking information 

about the earlier store instructions, it will allow Load2 to be executed, before 

Storel comes to the MEU and writes to Location 1. It is obvious that the 



41 

instruction execution order is no longer maintained and will result in incorrect 

execution. 

The solution that we applied to our CDF simulator is so called "dynamic 

dependency adding". At the ROB, it keeps track of the memory access 

instructions. When it sees one, it will dynamically attach an operand to it, an 

operand that's waiting for the previous memory access instruction. When this 

instruction travels in the pipeline, it will not be launched to its execution unit until 

it finds the result from the previous memory access instruction, solving the 

dependency. 

Since it is not the goal of this research to investigate microarchitecture designs, 

this topic will not be discussed any further. But it should be noted that the 

"dynamic dependency adding" does affect the performance of CDF 

microarchitecture. Since those instructions depend on the previous memory access 

instructions and it's not trivial to anticipate when the instruction will solve the 

dependency, there is a good chance that the instructions may not be able to solve 

the dependency before they reach the end of the pipeline stages and wrap around. 

The designer of CDF in the future should pay more attention to the placement of 

execution units to take this issue into account. 



42 

4.4 SIMULATION RESULTS: CDF VERSUS SUPERSCALAR 

This section investigates the results obtained from the simulations. Since the 

purpose of these simulations is mainly to demonstrate the potential of bBlocks, we 

are not going to study the results from the two microarchitectures extensively. 

Instead, we will discuss only some of the major observations, and focus on 

studying the performance differences between Super Scalar and CDF. 

The following tables present the simulation results using different 

configurations. Every simulation ran two thousand instructions. The purpose for 

obtaining these results is to demonstrate the capabilities of bBlocks. It should be 

noted that the simulator was not fine tuned, because optimizing a microarchitecture 

is beyond the scope of this research; therefore the microarchitecture performance is 

not necessarily optimal. But every effort was made to keep all simulation 

parameters the same across Super Scalar as well as CDF simulations to generate 

comparable results. 



43 

Branch Prediction 
miss rate 

D-Cache miss rate 

I-Cache miss rate 

bBlocks Super Scalar 

Simple Scalar 

I PC 

0 0.1 0.2 0.3 04 0.5 0.6 0.7 08 

Figure 4.5 applu simulation results 

Branch Prediction 
miss rate 

D-Cache miss rate 

I-Cache miss rate 

IPC 

111111111111 

I I I 

0 0.1 0.2 0.3 04 0.5 06 0.7 

bBlocks Super Scalar 

Simple Scalar 

Figure 4.6 swim simulation results 



44 

Branch Prediction 
miss rate 

D-Cache miss rate 

1-Cache miss rate 

bBlocks Super Scalar 

0 Simple Scalar 

1PC 

02 04 06 08 1 12 1.4 

Figure 4.7 compress95 simulation results 

Branch Prediction 
miss rate 

D-Cache miss rate 

I-Cache miss rate 

bBlocks Super Scalar 

0 Simple Scalar 

IPC 

0,1 0.2 0.3 0.4 0.5 0.6 07 0.8 

Figure 4.8 fpppp simulation results 



45 

Branch Prediction 
miss rate 

D-Cache miss rate 

I-Cache miss rate 

bBlocks Super Scalar 

o Simple Scalar 

IPC 

0.2 0.4 06 0.8 

Figure 4.9 turb3d simulation results 

Branch Prediction 
miss rate 

D-Cache miss rate 

I-Cache miss rate 

MbBlocks Super Scalar 

CI Simple Scalar 

IPC 

0 0.1 0.2 03 04 05 06 0.7 0.8 

Figure 4.10 test-printf simulation results 



46 

The simulation results point out that CDF does not have a better performance 

in terms of instructions per cycle (IPC) against Super Scalar under the same 

conditions. CDF is about two times slower than Super Scalar, averaging about 0.2 

instructions per cycle, while Super Scalar has over 0.5 IPC on average. 

Readers may find the results differ from that obtained in the earlier research on 

CDF using aBlocks [4, 7]. Although lower cache and branch prediction miss rates 

do make a contribution to the better performance, the major factors that offer better 

results in aBlocks simulations are the large ROB size and the neglect of the 

memory access instructions execution order. Without taking care of instructions 

execution order carefully in aBlocks, there is little true data dependency between 

instructions. Thus, instructions can be executed earlier and in turn, more 

instructions can be retired in a cycle. For the result from [4, 7], aBlocks 

simulations used a ROB size of 128 entries to get the best performance. The role of 

a large ROB is to allow new instructions to issue from the decoder without stalling 

while the older instructions are still traveling in the pipeline. In addition, the ability 

to retire an indefinite number of instructions per cycle also benefits aBlocks IPC. 

Bblocks' CDF simulations implemented "dynamic dependency adding" to 

maintain the order of memory access instructions, and used a ROB size of 32 

entries only. In this scheme, a load instruction that reads from a location where an 

earlier store instruction is writing will not be launched to the execution unit until 

the store instruction finishes execution. When the store instruction is executed, the 

result will enter the result pipe at the corresponding entry point. There is the 



47 

chance that the following load instruction will either miss the result, meet the result 

immediately, or hit the result in a few cycles. In any case, however, the following 

load instruction will have a good possibility to travel in the pipeline for a few more 

cycles before it can meet the launch point again. In the case that an instruction 

misses the result, it will take even longer. Assume that a memory access 

instruction take three cycles to get to the launch point after resolving the data 

dependency on average, executing a memory access instruction will be three times 

slower than Super Scalar. The performance of CDF will therefore be greatly 

reduced, especially for programs with a large percentage of memory access 

instructions. 

Even for a program with fewer memory access instructions, it is not very 

optimistic. The long latency memory access instructions cause more instructions to 

stay in the ROB without retiring. For this reason, the ROB is easily filled up. For a 

four issue CDF microprocessor, a full ROB prevents instructions from issuing even 

though it is very likely that there are spaces in the pipeline. Consequently, a four 

issue microprocessor wastes the chance to issue four instructions for every cycle 

the ROB is full. Unfortunately, this happens very often in a 32-entry ROB as 

shown in Figure 4.11 and Figure 4.12. 

The performance of CDF greatly relies on optimal sidepanel placement and 

ROB size, according to [7]. While optimal sidepanel placement is dependent on 

the nature of the program, it is feasible to enlarge the ROB to some extent. 

Increasing the ROB size from 32 to 128 entries should help to improve the IPC. 



48 

However, the simulation results in Figure 4.13 do not conform that. It is obvious 

that CDF performance is limited by factors besides ROB sizes. This research will 

leave the investigation of CDF performance bottlenecks to the future studies. 

Future research should run simulations with more instructions to obtain results with 

better accuracy. 

test- printf 

swim 

usage % of the 128-entry ROB 

0 usage % of the 32-entry ROB 

compress95 

applu 

0% 20% 40% 60% 80% 100% 

Figure 4.11 Usage percentage of CDF ROB with 32-entry and 128-entry. 



49 

swim 

tull 'Y. of the 128-entry ROB 

0 full % of the 32-entry ROB 

compress95 

applu 

Figure 4.12 Full percentage of CDF ROB with 32-entry and 128-entry. 

test-printf 

swim 

compress95 

applu 

11111111111111111111111111 

MIUMMEMBE 

III1111111111111111111111111111 

IIMMENEINEME 

11111111111111111111111111111111 sill1111MENIMINIMEINIIII 

1111111111111111111111111111111 
MENNESINEMINEE3 

bBlocks CDF with 128-entry ROB 

bBlocks CDF with 32-entry ROB 

bBlocks Super Scalar 

0 Simple Scalar 

0 0.2 0.4 0.6 0 8 1 1 2 14 

Figure 4.13 IPC comparison 



50 

CHAPTER 5. CONCLUSIONS 

We have designed and developed a simulator modeling tool for 

microarchitecture, bBlocks. It is a Java-based application with 19,000 lines of code 

that takes advantage of object-oriented methodology to obtain better flexibility, and 

code reusability as well as object reusability. 

The development of bBlocks provides a sophisticated simulation tool to the 

microarchitecture designer to prototype designs with the minimum amount of time. 

The flexibility offered by bBlocks opens the possibility for researchers to study and 

optimize designs by adjusting different parameters of the simulator. 

It has a re-designed structure that is completely different from its ancestor 

aBlocks. While bBlocks is also a component-based simulator like aBlocks, it has a 

"jigsaw puzzle structure", which consists of four kinds of base objects: Simulator, 

Provider, Block, and Data objects. This structure allows improved code reusability, 

and provides high flexibility to integrate new blocks to the simulator system to 

adopt new designs. Execution-driven property also gives advantages to bBlocks 

over aBlocks, offering greater details and more accurate simulation results. It 

found design problems in the microarchitecture that aBlocks did not reveal. The 

simulations also indicate that CDF requires more hardware than SuperScalar to 

attain the same level of performance. 

The experience of building two simulators for SuperScalar and CDF 

microarchitectures demonstrated how bBlocks achieves great code reusability as 



51 

promised. Implementing the CDF simulator only required adding 2000 lines of 

new code to the Super Scalar components already available. It has only 13% of the 

total number of lines of code in the CDF simulator. In other words, over 86% of 

the code in CDF simulator is reused from the Super Scalar simulator. This 

flexibility not only accelerates a simulator development, it also relieves the burden 

of debugging as the majority of the code is tested. 



52 

CHAPTER 6. FUTURE EXTENSIONS
 

Based on experience gained in this research, a number of useful extensions to 

bBlocks can be envisioned. 

6.1 PERFORMANCE ENHANCEMENT 

While bBlocks has great flexibility and details, the simulation performance is 

slower than aBlocks. It averages about 5 simulation cycles per second on Pentium 

II-266MHz running Windows NT 4.0. It is much slower than the trace-driven 

aBlocks, which can cycle about 50 times in a second. 

To obtain better flexibility, we chose the object-oriented language Java to 

develop bBlocks. Object-oriented is by definition less efficient than structural 

methodology. An interpreted language is also significantly slower than machine 

language. Therefore in terms of simulation time, bBlocks is no match for a 

simulator like Simple Scalar that is built on the structural language C. The 

simulation performance could be improved by porting bBlocks to C++, an object-

oriented language that generates platform dependent machine code. While a C++ 

implementation would lack platform independent capability and trouble-free GUI 

support, it would give an order of magnitude improvement to bBlocks. 



53 

6.2 FAST FORWARDING 

There are times when the simulating program is large, but we are only 

interested in investigating how a portion of the code behaves in the simulator. 

Currently this requires executing all programs from the beginning. However, since 

sometimes a simulation with all details will take a long time to run, it might take 

days to reach the code that we are interested in. A fast forwarding feature would be 

helpful if it executes the code that is less important to us as fast as possible. 

It would be difficult to perform the exact functionality of fast forwarding, in 

the sense that the simulator fast forwards to anywhere in the program, and all the 

blocks have all the state information once the fast forward is stopped. But the 

simulator can do the simplest, fastest, in-order execution to skip to the section that 

we are interested in. During the transition that fast forward has just stopped and 

out-of-order execution is beginning, blocks in the simulator will not have state 

information. It is as if the program has just started. 

With bBlocks flexibility, this functionality is not impossible to implement. 

One possible way to implement it is to allow dynamically adding, removing, 

connecting or disconnecting blocks. Then implement a block for fast forwarding, 

and replace all blocks from Pre Fetch to ROB with it. The memory and Register 

File blocks will need to be kept throughout fast forwarding or normal simulation in 

order to maintain data consistency. 



54 

6.3 SYS CALL
 

bBlocks borrows the ISA definition from Simple Scalar, including the syscall 

definition. Due to the fact that Simple Scalar was developed in C for the UNIX 

environment, it is tedious to completely port all syscall functionalities to Java-

based bBlocks. In the future, effort could be spent on developing a custom ISA 

definition and compiler for the long run, or modifying Simple Scalar's syscall 

definition and compiler as a short-term goal. 

6.4 STALLING 

Since information and controls signals are highly localized in bBlocks, it is 

quite tricky to handle stalling. Because bBlocks does not have a global controller 

to control the dataflow blocks make decisions themselves it is not possible to 

propagate the stall information all the way back in one simulation cycle. The 

current version of bBlocks uses buffers to work around this problem. A block does 

not worry whether the next block will take the results or stall. It just produces a 

result and puts it into the buffer, as long as the buffer is not full. 

While this work around seems feasible, there are cases that it cannot handle (a 

two-stage pipeline for example). To move data from one pipeline stage to the next 

stage, the first pipeline puts the data in the output buffer and waits for the next 

pipeline to catch it at the beginning of the next cycle. The problem reveals itself 

when a stall happens. Consider the example below with two pipelines. During pre­



55 

tick, a block takes inputs from the previous block if its input buffer is not full. 

During tick, a block processes its input and puts the result in the output buffer. 

Assume the block connected to Pipe-2 input is stalled at cycle three and does not 

take the data from Pipe-2's output buffer. Pipe-2 does not sense the stall at cycle 

three and continues to take input. Now, there are three data values in the pipeline 

in two pipeline stages. 

Simulation Pipe 1 Pipe 2 
cycle 

Input buffer Output buffer Input buffer Output buffer 
1 a. sre-tick 
lb. tick 
2a. pre-tick B A 
2b. tick B A 
3a. pre-tick C B A 

Table 6.1 Example to demonstrate the stalling problem 

Extensions to bBlocks can be implemented to fix this problem. Along with 

local signals, global signals can be added to signify to all blocks that there is a stall 

happening. A block reacts to this signal and decides how many inputs it should 

take for the next cycle. This implementation may require complex algorithms and 

structural modification in bBlocks, however. 



56 

BIBLIOGRAPHY
 

1.	 R.F. Sproull and I.E. Sutherland and C.E. Molnar, "The Counterflow Pipeline 
Processor Architecture," IEEE Design and Test of Computers, vol. 11, no. 3, 
pp. 48-59, Fall 1994. 

2.	 K.J. Janik and S. Lu, "Synchronous Implementation ofa Counterflow Pipeline 
Processor," ISCAS, vol. 4, pp. 69-72, May 1996. 

3.	 K.J. Janik and S. Lu and M.F. Miller, "Advances to the Counterflow Pipeline 
Microarchitecture," in HPCA-3, February 1997, pp. 230-236. 

4.	 K.J. Janik and M. Miller and S.L. Lu, "Non-Stalling Counterflow 
Architecture," in Proceedings of HPCA-4, February 1998, pp. 334-341. 

5.	 D.C. Burger and T.M. Austin, "The Simple Scalar Tool Set, Version 2.0," 
University of Wisconsin Computer Science, Madison, Wisconsin, Tech. Rep. 
#1342, June 1997. 

6.	 J.E. Smith and G.S. Sohi, "The Microarchitecture of Superscalar Processors," 
in Proceedings of the IEEE, in Proceedings of the IEEE, December 1995, vol. 
83, no. 12, pp. 1609-1624. 

7.	 K.J. Janik, "A Microarchitecture Study of the Counterflow Pipeline Principle," 
Ph.D. Dissertation, Oregon State University, Corvallis, Oregon, February 1998. 

8.	 B. Venners, "Design Techniques," April 1999, 
http://www.javaworld.com/javaworld/jw-04-1999/jw-04-techniques-2.html. 

9.	 Standard Performance Evaluation Corporation, "SPEC Describes SPEC95 
Products And Benchmarks," SPEC Newsletter, Fairfax, Virginia, September 
1995. 

10. E. Lee, "The Ptolemy Project II	 Heterogeneous Concurrent Modeling and 
Design in Java," January 2000, http://www.ptolemy.eecs.berkeley.edu. 

http:http://www.ptolemy.eecs.berkeley.edu
http://www.javaworld.com/javaworld/jw-04-1999/jw-04-techniques-2.html


57 

APPENDIX
 



58 

This appendix briefs the system requirements and usage of bBlocks. 

A.1 SYSTEM REQUIREMENTS 

bBlocks runs on any platform that support JDK 1.2.2 or above. Although it is 

not required, it is highly recommended to run bBlocks on a virtual machine that has 

Java HotSpotTM (performance engine) installed. It greatly reduces the elapsed time 

of the bBlocks simulations. 

A.2 INPUT FILES PREPARATION 

bBlocks runs only the big-endian binary generated by SimpleScalar. Prior to 

performing a bBlocks simulation, the simulating program should be compiled on a 

big-endian machine by the SimpleScalar compiler. 

bBlocks needs a definition file before running a simulation. This definition file 

tells bBlocks how the simulator should be configured. It also tells bBlocks which 

binary file to simulate. Currently bBlocks has two definition files (superscalar.def 

and cdf.def) for SuperScalar and CDF simulations. 



59 

A.3 STARTING THE SIMULATION 

There are two "jar" files for Super Scalar and CDF simulation. To run a 

simulation, one may simply execute the corresponding jar file, with the definition 

file name as the argument. For example, if a designer were to run Super Scalar 

simulation, the following command should be invoked at the command prompt: 

java -jar superscalar.jar superscalar.def 

Depending on the configuration in the definition file, bBlocks runs in either 

batch mode or graphic mode. In graphic mode, each block has a window. At the 

end of each simulation cycle, all blocks dump the internal state information to the 

corresponding window. 

A.4 COLLECTING SIMULATION RESULTS 

At the end of the simulation, bBlocks will generate a report file. This file 

contains all the simulation results, including block usage, branch miss rate, and 

cache miss rate. BBlocks also generates a log file for all the retired instructions if 

the option in the definition file is set to active. The name of the report file and log 

file are specified in the definition file. 




